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Abstract

Accurate seasonal prediction of the Indian Ocean Dipole (IOD) is crucial given its socioeconomic impacts on countries
surrounding the Indian Ocean. Using hindcasts from the Met Office Global Seasonal Forecasting System (GloSea6),
coupled mean-state biases in the western and eastern equatorial Indian Ocean (WEIO and EEIO) and their impacts on IOD
prediction are examined. Results show that GloSea6 exhibits a pronounced cold bias in the EEIO that rapidly develops
after the monsoon onset in boreal summer (JJA, July—August) and persists into autumn (SON, September—November).
This cold bias is linked to erroneous easterlies and a shallow thermocline, likely associated with the monsoon circulation.
The seasonal evolution and relative timing of the precipitation biases, such that they develop through JJA in the EEIO but
follow in the WEIO in SON, suggests that the EEIO plays the leading role in the development of coupled feedbacks that
lead to the large dipole pattern of coupled biases. Analysis of skill metrics for the IOD shows that GloSea6 achieves a high
anomaly correlation coefficient at short lead times, though it tends to overestimate IOD amplitude. This overestimation
is larger in the eastern IOD pole than in the western pole and is likely linked to the poor representation of the evolution
of the sea surface temperature anomalies in the EEIO during 10D events in SON. This study highlights the crucial role
of regional biases, particularly in the EEIO, in shaping IOD variability and demonstrates that addressing such biases in
GloSea6 could improve 10D prediction.
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The tropical Indian Ocean and its interaction with the atmo-
sphere modulate regional and global climate, and exhibit
multiple modes of climate variability on intraseasonal-
to-interannual timescales (Schott et al. 2009). The Indian
Ocean Dipole (IOD) is the dominant coupled mode of inter-
annual variability of sea surface temperature (SST) across
the equatorial Indian Ocean (Saji et al. 1999; Webster et al.
1999). It is characterised by cool SST anomalies in the east-
ern equatorial Indian Ocean (EEIO) and warm anomalies
in the western equatorial Indian Ocean (WEIO) during its
positive phase, while the opposite pattern of SST anoma-
lies occurs during its negative phase. Positive IOD events
have been shown to increase flooding in East Africa (Wang
and Cai 2020; Wainwright et al. 2021; Schwarzwald et al.
2023), and monsoon rainfall in India (Ashok et al. 2001;
Hrudya et al. 2021) and Australia (Ashok et al. 2003; Saji
and Yamagata 2003; Ashok et al. 2007; Cai et al. 2012;
Liguori et al. 2022; Karrevula et al. 2024). A recent study
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by Karrevula et al. (2024) using the North American Multi-
Model Ensemble seasonal forecasting system found that
warming in the central Indian Ocean, driven by strong
equatorial easterlies, plays a crucial role in modulating the
frequency of extreme positive IOD events and their impact
on summer monsoon precipitation from June to November.

The relationship between the IOD and the South Asian
summer monsoon is complex and influenced by a range of
coupled processes. While positive IOD events are often asso-
ciated with enhanced monsoon rainfall over parts of India,
the teleconnection is modulated by several factors including
equatorial Indian Ocean dynamics, land—atmosphere inter-
actions, and regional atmosphere circulation (Bollasina and
Ming 2013; Annamalai et al. 2017; Crétat et al. 2017; Cher-
chi et al. 2021). Given the importance of regional climate
and weather patterns influenced by the 10D, its accurate
representation in models is crucial for producing reliable
climate forecasts and future projections. Furthermore, since
the 10D interacts with the El Nino-Southern Oscillation
(ENSO), accurately capturing the observed IOD character-
istics is essential for improving forecasts of climate impacts
on a global scale (Crétat et al. 2017; McKenna et al. 2020).

Despite the socio-economic significance of the tropical
Indian Ocean, the region suffers large mean state biases in
general circulation models (GCMs) used for climate projec-
tions and seasonal forecasts (Li et al. 2015; Johnson et al.
2017; McKenna et al. 2020; Long et al. 2020; Marathe et al.
2021; Martin et al. 2021; Wang et al. 2021). Systematic
biases during SON (September-November), when the IOD
typically peaks and has significant regional climate impacts,
have been found in the previous and latest generations of
coupled GCMs that contribute to the Coupled Model Inter-
comparison Project (CMIP) (Li et al. 2015; Annamalai et al.
2017; Wang et al. 2021; Long et al. 2020). Earlier studies
suggest that coupled biases over the equatorial Indian Ocean
originate from spring and summer seasons, and are linked to
biases in the simulation of the South Asian monsoon (e.g.
Bollasina and Ming 2013; Prodhomme et al. 2014; Li et al.
2015; Annamalai et al. 2017). Li et al. (2015) found that
these biases emerge during JJA, where a weakened South
Asian monsoon leads to a warm SST bias over the western
equatorial Indian Ocean, which is then amplified into SON
via the Bjerknes feedback. On the other hand, Annamalai
et al. (2017) found that the equatorial Indian Ocean bias
originates earlier, in April-May, when easterly wind stress
bias begins to develop across the equatorial Indian Ocean
and persists through the JJA and SON seasons, peaking in
November. This easterly wind stress bias from April-May
initiates a warm SST bias in the western Indian Ocean that
persists into JJA, ultimately influencing the summer mon-
soon. A more recent study by Long etal. (2020) demonstrated
the source of the positive IOD-like pattern of the mean state
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biases in precipitation and SST across the equatorial Indian
Ocean is linked to the warm SST bias in the western Indian
Ocean, which is influenced by the South Asian summer
monsoon circulation during JJA (June-August). This warm
SST bias amplifies into SON via the positive Bjerknes feed-
back, a process driven by the zonal SST gradient across the
equatorial Indian Ocean that strengthens low-level easterly
winds and reinforces the west-east temperature gradient.
The strong ocean—atmosphere coupling associated with the
South Asian summer monsoon dominates the low-level cir-
culation in the Indian Ocean during JJA, shaping the typical
seasonal cycle of the IOD, which is observed to develop in
JJA, peak in SON, and decay in boreal winter (DJF, Decem-
ber-February; Saji et al. 1999). Consequently, JJA and SON
are key seasons for examining the predictability of the
IOD and the development of coupled Indian Ocean biases.
While the 10D typically develops during boreal summer
and peaks in autumn, some events may begin earlier dur-
ing boreal spring, with possible links to Indo-Pacific Ocean
interactions. For example, Annamalai et al. (2003) suggest
that equatorial Pacific SST anomalies can remotely initiate
EEIO cooling and wind-driven upwelling off the coast of
Sumatra, potentially triggering IOD events that are later
sustained by local ocean—atmosphere feedbacks during JJA.

In a recent study, Mayer et al. (2024) showed that sev-
eral current seasonal forecasting systems, provided by the
Copernicus Climate Change Service (C3S 2018), share
common mean state easterly wind and cold SST biases in
the EEIO. For example, the fifth-generation European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) sea-
sonal forecast system (SEASS) exhibits an easterly wind
bias in the EEIO which develops within the first few days of
the forecast and amplifies via coupled feedbacks, leading to
a cold SST bias in the region (Mayer et al., 2022). On sea-
sonal timescales, Mayer et al. (2024) attributed the cold bias
to strong equatorial easterlies that induce a local easterly
wind bias and shallow thermocline in the EEIO. This cold
SST bias, arising from wind-induced upwelling, is further
worsened by a shallow thermocline bias that already fea-
tures in the EEIO oceanic initial conditions used.

Previous studies have shown that simulated mean state
biases in the tropical Indian Ocean result in errors in the rep-
resentation of the IOD (Zhao and Hendon 2009; Shi et al.
2012; Johnson et al. 2017; Hirons and Turner 2018; Wang
et al. 2021). A mean state bias in the zonal SST gradient
along the equatorial Indian Ocean, associated with a steep
west-east upward tilt in the thermocline, leads to larger [OD
amplitude compared to observations in climate and forecast
models (Zhao and Hendon 2009; Wang et al. 2021). This is
because a shallower thermocline in the mean state over the
EEIO leads to local SSTs that are more susceptible to wind
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anomalies during IOD development, resulting in erroneous
IOD SST anomalies (Johnson et al. 2017).

The development of such mean state biases in the equa-
torial Indian Ocean, along with poor initialisation of the
subsurface ocean, have been shown to limit IOD predict-
ability on seasonal timescales (Zhao and Hendon 2009; Liu
etal. 2023). Liu et al. (2023) assessed the IOD predictability
across two generations of seasonal forecast models, with the
upgraded version demonstrating improved skillful predic-
tion of the IOD of up to 6 months lead time, with a better
simulated 10D spatial pattern and SST interannual vari-
ability, compared to its predecessor. The previous version
exhibited a positive IOD-like bias in SST and zonal wind,
resulting in stronger than observed cooling in the EEIO that
extended too far west, accompanied by weak warming in
the WEIO, during positive IOD events. They concluded that
such a mean state bias in the tropical Indian Ocean led to an
underestimation of the SST variability in the WEIO.

While some studies have focused on the sources of mean
state biases in the equatorial Indian Ocean and others on the
predictability of the IOD, very few have specifically linked
these mean state biases to their impact on the prediction
of the IOD. For example, although many of the aforemen-
tioned studies have highlighted persistent positive IOD-like
biases in SST, circulation, and precipitation within coupled
GCMs, most have not explored their effects on regional SST
variability in the WEIO and EEIO, which are key poles of
the IOD, and linked them to IOD prediction. Therefore, out-
standing questions remain, that we aim to address in this
study:

e How do mean-state biases in the atmosphere and subsur-
face ocean evolve in the WEIO and EEIO?

e What influence do the WEIO and EEIO regional biases
have on the representation and predictability of the IOD?

In this study, we assess the performance of the UK Met
Office Global Seasonal Forecasting System version 6
(GloSea6) in simulating the mean state and climate vari-
ability in the Indian Ocean, with a focus on the WEIO and
EEIO regions. We examine the coupled ocean—atmosphere
mean state biases and their interannual variability to better
understand their influence on the representation of coupled
dynamics and prediction skill of the IOD.

The remainder of this paper is structured as follows: a
description of the forecast system, the observational data
used, and the statistical methods applied is featured in Sect.
2. Section 3 contains the analysis of the development of
mean state biases in SST, circulation and precipitation in
JJA and SON, over the large-scale Indian Ocean, including
the WEIO and EEIO. In Sect. 3, we further examine the
coupled nature of the biases, by investigating the subsurface

ocean compared to observations, evaluate the representation
of the IOD spatial pattern and SST variability, and examine
the prediction skill of SST anomalies associated with the
IOD. Section 4 summarises the results and concludes the

paper.

2 Data and methods
2.1 Model description

GloSea6 is an ensemble prediction system that is fully
coupled with atmosphere, land surface, ocean, and sea-ice
components. GloSea6 in Global Configuration 3.2 (GC3.2)
consists of the following components: the Met Office Uni-
fied Model (UM) Global Atmosphere version 7.2, the
Nucleus for European Modeling of the Ocean Global Ocean
version 6.0, the Joint U.K. Land Environment Simulator
Global Land version 8.0, and the Los Alamos Sea Ice Model
Global Sea ice version 8.1. The atmosphere and land models
are based on Walters et al. (2019), and the ocean and sea ice
models are based on Storkey et al. (2018) and Ridley et al.
(2018), respectively. The atmospheric model resolution is
N216, corresponding to horizontal grid spacings of approxi-
mately 70 km in the tropics, with 85 vertical model levels
extending up to 85 km. The ocean model has a horizontal
resolution of 25 km, equivalent to 0.25° (ORCAO025), with
75 vertical levels. MacLachlan et al. (2015) provide detailed
model information on GloSea5, an earlier version of Glo-
Sea6 with the same atmospheric horizontal resolution. Both
versions of GloSea produce sub-seasonal to seasonal fore-
casts for operational use, alongside corresponding hindcasts,
and employ the same Stochastic Kinetic Energy Backscatter
(SKEB) scheme to generate perturbations between ensem-
ble members initialised from the same analysis (Bowler
et al. 2009). The SKEB scheme introduces small, random
perturbations to the wind field during model integration to
represent uncertainty from unresolved sub-grid processes,
re-injecting a portion of the kinetic energy lost through the
semi-Lagrangian advection scheme, thereby increasing
ensemble spread and improving the representation of fore-
cast uncertainty.

In this study, monthly operational hindcasts are analysed
to examine the Indian Ocean climate variability, and pre-
dictability of the IOD. GloSea6 uses a lagged initialisation
approach to represent uncertainties in the initial conditions,
with hindcasts initialised on the 1st, 9th, 17th, and 25th of
every month from 1993 to 2016. Within the GloSea6 sys-
tem, each start date has seven ensemble members, resulting
in a total of 28 members each month. Ensemble members
initialised on the Ist of the month are integrated longer for
seven complete calendar months, including the month of
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initialisation, while those initialised on the 9th, 17th and
25th produces forecasts for six complete months.

Lead time in this study is defined as the number of calen-
dar months elapsed since forecast initialisation. Forecasts at
0-month lead time (LMO) refer to the first complete calendar
month of forecast output. Therefore, for GloSea6 hindcasts
initialised on the 1st of the month, LMO corresponds to that
same calendar month, as the forecast begins on day one and
spans the entire month. In contrast, for hindcasts initialised
later in the month (on the 9th, 17th, or 25th), LMO corre-
sponds to the following calendar month, as GloSea6 outputs
forecasts as monthly means starting from the first completed
calendar month after initialisation. For example, LMO for a
Ist February start date corresponds to February, while LMO
for 9th, 17th, and 25th February start dates corresponds to
March. Accordingly, monthly climatologies are constructed
by averaging forecasts for the same calendar month across
all relevant start dates. For instance, the March SST clima-
tology at LMO includes March forecasts initialised on 9th,
17th, and 25th February, and 1st March, averaged over all
years from 1993 to 2016.

To assess the seasonal mean by lead time, monthly hind-
casts with the same lead time are averaged to produce a
hindcast seasonal mean. For example, the JJA mean at LMO
is created by averaging the first month of forecasts for June,
July, and August. Likewise, the SON mean at a 0-month lead
time is an average of the forecasts for September, October,
and November, with each forecast started at the beginning
of each month. By using this method, the influence of model
drift is expressed equally in all three months.

2.1.1 Observational datasets

The fifth-generation ECMWF reanalysis (ERAS; Hersbach
et al. 2020) at horizontal resolution 0.25° x 0.25°, is used for
comparison with model output for dynamic fields such as
10 m and 850 hPa winds. For precipitation fields, the Global
Precipitation Climatology Project (GPCP) dataset at 2.5° x
2.5° horizontal resolution, with monthly version 2.3 (Adler
et al. 2003) and the Tropical Rainfall Measuring Mission
(TRMM) Multi-satellite Precipitation Analysis monthly
product, 3B43, constructed by the National Aeronautics and
Space Administration at 0.25° x 0.25° horizontal resolution
are used.

For verification with GloSea6 SST outputs, monthly SST
from the Met Office Hadley Centre Sea Ice and Sea Surface
Temperature (HadISST) dataset (Rayner et al. 2003) and
National Oceanic and Atmospheric Administration Opti-
mum Interpolation Sea Surface temperature version 2 (OIS-
STv2) monthly data are used (Reynolds et al. 2007). The
ECMWF Ocean Reanalysis System 5 (ORASS) is used for
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comparison against the GloSea6 ocean potential tempera-
ture in the subsurface (Zuo et al. 2019).

2.2 Methods

The pattern correlation coefficient (PCC) and root mean
square error (RMSE) are calculated with respect to observa-
tions to quantify the performance of GloSea6 in simulating
the Indian Ocean mean climate and variability. PCC mea-
sures the degree of similarity between the spatial patterns
of the observed and simulated fields, while RMSE measures
the magnitude of the difference in simulation relative to
observations. To assess the statistical significance of the dif-
ference between the simulated and observed Indian Ocean
mean states, the paired Student’s t-test (Wilks, 2011) is per-
formed on the hindcast ensemble mean and observations.
Observed and predicted IOD events are identified using
the Dipole Mode Index (DMI), which is defined by the
west-east gradient of SST anomalies between the western
equatorial Indian Ocean (WEIO; 50—70°E, 10°S-10°N) and
eastern equatorial Indian Ocean (EEIO; 90-110°E, 10°S-0°)
(Saji et al. 1999). SST anomalies of the DMI timeseries are
calculated relative to the full validation hindcast period of
1993-2016. To quantify the performance of GloSea6 in pre-
dicting the IOD, deterministic metrics such as the anomaly
correlation coefficient (ACC) and root-mean-square error
(RMSE) are evaluated. These metrics are calculated between
the observed and predicted SST anomaly time series of the
DMI. To compare the IOD variability between GloSea6 and
observations, the amplitude ratio is computed, defined as
the ratio of the standard deviation of the predicted DMI to
that of the observed DMI (e.g. Johnson et al. 2019; Wedd
et al. 2022). An amplitude ratio < 1 indicates that the model
underestimates IOD variability compared to observations,
while a ratio >1 suggests that the model overestimates it.

3 Results

In this section, the ability of GloSea6 to capture the observed
climatological JJA and SON mean states, in the atmosphere
and subsurface ocean, is assessed. Given the importance of
JJA and SON on the seasonality of the development and
maturity of the 10D, respectively, we evaluate the simu-
lated seasonal evolution of coupled processes with respect
to observations. Specifically, we examine the biases related
to monsoon circulation in JJA that influence the coupled
ocean—atmosphere Bjerknes feedback across the equatorial
Indian Ocean in SON.
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3.1 Development of coupled ocean-atmosphere
biases in JJA and SON

Figure 1 compares the JJA and SON mean state biases in
SST, precipitation, and 850 hPa winds at LMO (0-month
lead time) and LM2 (2-month lead time), showing how these
biases differ between seasons and how they change with
increasing lead time. Across the equatorial Indian Ocean,
GloSea6 exhibits a predominantly warm SST bias, with a
small but significant cold bias over the EEIO during JJA at
LMO (Fig. 1a). As lead time increases to LM2, this JJA SST
bias intensifies into a distinct and significant dipole pattern,
characterised by a warm SST bias in the WEIO and a cold
SST bias in the EEIO (Fig. 1b). The SON SST bias follows
a similar evolution: starting with a significant warm bias
across much of the tropical Indian Ocean, which is largest
over the EEIO at LMO (Fig. 1c). By LM2, this bias devel-
ops into a dipole pattern resembling that of JJA at LM2,
with pronounced warming in the WEIO and cooling in the
EEIO (Fig. 1d). Although the evolution of SST bias into a

a) LM0 JA b) LM2

JA ©) LMo

dipole pattern is similar for JJA and SON with increasing
lead time, the magnitude of the warming in the WEIO and
cooling in the EEIO at LM2 is notably larger in JJA com-
pared to SON. At LM4 and LM6, the dipole structure of the
JJA and SON SST biases becomes well established across
the equatorial Indian Ocean (not shown).

The dipole pattern of JJA and SON SST biases at LM2
resembles the SST anomalies typically observed during a
positive IOD event (Saji et al. 1999). Previous studies (e.g.,
Johnson et al. 2017; Martin et al. 2021; Mayer et al. 2024)
found a similar positive IOD-like pattern of JJA mean SST
bias in GloSea5 and SEASS hindcasts. In GloSea6, the JJA
and SON biases in precipitation and lower-tropospheric cir-
culation (Fig. 1e-h) are consistent with the changes in SST
biases as lead time increases. A dry bias over India in JJA
(a known problem in the GloSea forecast model; Johnson
et al. 2017; Martin et al. 2021; Keane et al. 2024) wors-
ens from LMO to LM2, while a dipole between excessive
rainfall in the central Indian Ocean and a dry bias in the
EEIO, off the coast of Sumatra, increases (Fig. le and f).
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Fig. 1 Climatological JJA and SON mean biases in GloSea6 for (a—
d) SST, and (e-h) precipitation and 850 hPa winds at 0-month (1st
month of the forecast; LMO0) and 2-months lead time (3rd month of
the forecast; LM2). GloSea6 SST, precipitation and low-level winds
are compared against HadISST, GPCP and ERAS, respectively, from
1993-2016. Black boxes show the western (50-70°E, 10°S-10°N)
and eastern (90—-110°E, 10°S to equator) poles of the IOD. Grey box

shows the central equatorial Indian Ocean (70-90°E, 5°S-5°N), used
to capture a metric of zonal wind. Black stipples on the SST and pre-
cipitation panels indicate regions where these mean-state biases are
statistically significant at the 95\% confidence level, based on a paired
Student’s t-test. The overlaid 850 hPa wind vectors are shown only
where they are also significant at the same confidence level
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Similarly, the SON biases in precipitation and circulation
over the equatorial Indian Ocean show comparable changes,
with significantly strengthened southeasterlies and a dry
bias in the EEIO, alongside a wet bias in the WEIO by LM2
(Fig. 1e-h). However, it is notable that the SON precipita-
tion bias is larger in the WEIO at LM2, despite responding
to a smaller magnitude of SST bias, compared to the JJA
precipitation bias at the same lead time. This may be related
to the significantly stronger easterlies in the central equato-
rial Indian Ocean in SON compared to JJA at LM2, which
likely enhances low-level convergence in the WEIO (Fig. 1f
and h). A positive IOD-like precipitation pattern, with a wet
western and central equatorial Indian Ocean and a dry EEIO,
is established at LM2 in JJA and SON. These features are
likely associated with the Bjerknes coupled feedback, where
excessive easterly winds in the equatorial Indian Ocean are
coupled with biased dipole patterns in SST and precipita-
tion. For instance, the significant erroneous southeasterly
flow off the coast of Sumatra enhances upwelling, which
cools the SST further in that region, reinforcing the dipole
pattern. The interactions between SST, winds, and precipi-
tation leads to a coupled feedback loop that amplifies the
initial biases and their associated patterns.

To investigate the interplay between SSTs, precipita-
tion, and the subsurface ocean, and to further examine how
ocean—atmosphere biases evolve from months to seasons
ahead in the tropical Indian Ocean, quantities were averaged
over the WEIO and EEIO regions. Analysis was performed
on hindcast ensemble means initialised between February
and November.

Figure 2 shows the predicted climatological seasonal
cycles of SST and precipitation compared to observations
over the WEIO and EEIO. The SST in the WEIO (Fig. 2a)
generally tends to be initialised systematically warmer than
observations from May onwards in contrast to the EEIO
(Fig. 2b). The EEIO SST bias initially shows warming for

Fig. 2 Monthly evolution of clima- a) SST over WEIO

February—April start dates, but then rapidly develops into a
cold bias from May onwards, persisting through JJA during
the boreal summer monsoon and into SON when initialised
from May-August starts. The distinct EEIO cold bias is
much larger in magnitude than the warm bias in the WEIO,
and is notably larger when initialised from February to July
compared to the relatively smaller cold bias that develops
following August and September initialisations. Forecasts
running through a larger portion of the JJAS season tend
to suffer a worse bias. Together with the circulation bias
seen off Sumatra in Fig. 1e-h, this finding suggests that the
northern hemisphere monsoon in JJA strongly influences
the evolution of the SST bias in the EEIO. This indicates
a strong seasonal dependence in the development of the
EEIO SST bias. As in the case of the EEIO cold SST bias,
hindcasts started from May—August show rapid growth of
dry bias into the SON months (Fig. 2d), showing a strong
seasonal dependence. The dry bias for hindcasts initialised
in the autumn is much smaller, after the withdrawal of the
boreal summer monsoon. Meanwhile in the WEIO (Fig.
2¢), large precipitation biases do not begin to develop until
autumn, coinciding with the positive IOD-like precipitation
pattern of wet bias in the WEIO and dry bias in the EEIO
during SON, which is also consistent with Fig. 1h. The more
pronounced SST bias in the EEIO and the relative timing
of the precipitation biases between the EEIO and WEIO,
such that the biases develop through summer in the EEIO
but only begin in the autumn in the WEIO, suggest that the
EEIO plays a leading role in the development of the overall
SST bias pattern. We note that the observational uncertainty
in precipitation is generally larger compared to SST due to
the highly variable nature of precipitation, which may con-
tribute to some of the discrepancies seen in these biases.
For instance, GPCP and TRMM_3B43 show a discrepancy
of approximately 0.5—1 mm/day from January-September in
the WEIO and EEIO (Fig. 2c¢) in contrast to the small and
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negligible monthly differences between HadISST and OIS-
STv2 throughout the year.

In the central equatorial Indian Ocean, easterly wind
biases in near-surface 10 m zonal winds and zonal wind
stress develop in late spring, then rapidly intensify through
JJA, and peak in SON (Fig. 3a and b). In particular, Glo-
Sea6 exhibits a weak ecasterly wind stress bias in March-
April when initialised in February and March. As a result,
the eastward-flowing Wyrtki jets remain relatively well
developed in March and April for these early initialisations,
compared to ERAS5 (Fig. 3c). These jets are strong equato-
rial ocean currents that transport mass and heat in the upper
ocean from the western to the eastern Indian Ocean biannu-
ally, during the spring and autumn intermonsoon seasons,
driven primarily by westerly winds (Schott and McCreary,
2001). Therefore, the opposing easterly wind stress bias
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Fig. 3 Monthly evolution of climatological a 10 m zonal wind (against
ERAS), b zonal wind stress (against ERAS) over the central equato-
rial Indian Ocean (70-90°E, 5°S-5°N), as marked in Figure 1, which
depicts the region used for capturing the metric for zonal winds, and
¢ the Wrytki jet, measured as the depth-integrated (0—100 m) of zonal
current (against ORASS) at 0°, 85°E, adapted from Annamalai et al.
(2017), in GloSea6 hindcasts initialised from February to November
over the 1993-2016 hindcast period. Solid coloured lines represent the
monthly ensemble means from 28 members: seven from each of four
monthly start dates (1st, 9th, 17th, 25th). Dashed vertical lines during
May and November illustrate the time when the Wyrtki jet peaks in
ORASS

acts to suppress these eastward-flowing Wyrtki Jets, which
is particularly evident for hindcasts initialised in April and
May. The easterly wind bias is especially strong in May,
resulting in considerably weaker Wyrtki jets relative to
ORASS. Notably, despite differences in the magnitude of
the easterly wind stress bias in April-May across different
initialisation months, this bias rapidly intensifies from May
to June following the onset of the summer monsoon, and
continues to strengthen through JJA and into SON.

The timing of the evolution of the biases in the equato-
rial Indian Ocean therefore appears to follow the sequence
of substantial EEIO SST and precipitation biases from May
(Fig. 2b and d). This is followed by the rapid growth of the
erroneous zonal SST gradient, characterised by a larger cold
bias in the east than the smaller warm bias in the west (Fig.
2a and b), and the central equatorial Indian Ocean wind
biases in JJA (Fig. 3a and b), and then the WEIO precipita-
tion biases in SON (Fig. 2c¢). This structure of the coupled
biases indicates that they arise from Bjerknes feedback in
the equatorial Indian Ocean, emerging from the atmospheric
bias in the EEIO driving substantial SST and thermocline
depth biases in the region, which in turn increases the
zonal SST gradient across the equatorial Indian Ocean and
strengthens the easterlies in the central equatorial 10, which
leads to large precipitation bias in the WEIO.

Given the focus on the EEIO and the suspicion that the
circulation bias, related to the boreal summer monsoon,
plays a crucial role in driving the IOD-like SST response,
the evolution of near-surface winds and thermocline depth
across the basin is examined. Figure 4 shows the devel-
opment of coupled mean state biases in 10 m zonal wind
(ulOm) and thermocline depth (using the 20 °C isotherm
as a proxy) across the equatorial Indian Ocean for May-
November initialisations. The range of start months, from
May to November, is chosen to examine how the biases in
the subsurface ocean evolve from the pre-monsoon period
through to the end of the autumn season, the period across
which we have shown the biases in SST and precipitation to
develop most rapidly.

Hindcasts initialised from May exhibit anomalous 10 m
easterly winds originating in the eastern half of the basin,
and shallower thermocline depth in the EEIO from June
onwards (Fig. 4a and b), which indicates a coupled feed-
back that leads to upwelling of deeper, cooler water to the
surface, resulting in colder SSTs than observations. Johnson
et al. (2017) found similar characteristics of the anomalous
SST and circulation over the Indian Ocean in GloSea$5,
which showed that this coupled mean state bias in the 10 is
related to the anomalous upward tilt of the thermocline to
the east compared to observations.

The easterly wind bias strengthens and extends westward
after the boreal summer monsoon onset in June, reaching a
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Fig. 4 Hovmoller diagram (time versus longitude) of climatologi-
cal monthly mean biases in a) 10 m zonal wind (compared against
ERAS) and b) thermocline (20 °C isotherm) depth (against ORASS),
latitudinally averaged 5 °S-5 °N, initialised from May to November

maximum in boreal autumn, likely influenced by the mon-
soon circulation bias along the Sumatran coast (Fig. 4a). In
hindcasts starting from May—September, the strengthening
of erroneous easterlies in the central equatorial Indian Ocean
during SON leads to the deepening of the thermocline in the
west and shoaling in the east compared to observations (Fig.
4a and b), via the positive Bjerknes feedback. The coupled
feedback, with an erroneous upward tilt of the thermocline
toward the EEIO, relates to the large cold and dry biases
there in SON. Hindcasts initialised in August-November
show biases in thermocline depth reducing across the equa-
torial Indian Ocean from December to February of the fol-
lowing year.

The comparison of JJA and SON mean state biases in
GloSea6 reveals a predominantly warm SST bias across the
equatorial Indian Ocean, developing into a distinct dipole
pattern with a warm (wet) bias in the WEIO and cold (dry)
bias in the EEIO as lead time increases in JJA and SON from
LMO to LM2 (Fig. 1). Investigating the evolution of coupled
biases in the WEIO and EEIO showed that the boreal sum-
mer monsoon circulation bias in the EEIO during JJA likely
influences the growth of the overall dipole pattern of biases
in SST, precipitation, and the subsurface ocean into SON
(Figs. 2 and 4). The seasonal evolution of coupled regional
biases in the equatorial Indian Ocean begins with a cold SST
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(columns) from 1993-2016. Ensemble mean of 28 ensemble members
from four initialised runs (1st, 9th, 17th, 25th) per month, each with 7
ensemble members. Panel subtitles indicate the hindcast initialisation
months, and time increases up the page in each case

and dry bias in the EEIO in JJA (Fig. 2b and d), accompa-
nied by erroneous zonal 10 m easterly winds and a shal-
lower thermocline depth (Fig. 4a and b). This is followed by
the strengthening of 850 hPa (not shown) and 10 m (Fig. 4a)
easterly zonal wind biases through the JJAS months over
the central equatorial Indian Ocean, and by a wet precipita-
tion bias in the WEIO in SON (Fig. 2c). These biases reflect
a positive IOD-like pattern, amplified by the Bjerknes feed-
back, linking SST, wind, and precipitation biases, and high-
light the strong seasonal dependence of the coupled biases
in the equatorial Indian Ocean.

3.2 Representation of SST variability over the
Indian Ocean and the IOD

In the previous section, JJA and SON biases in the atmo-
sphere and subsurface ocean over the WEIO and EEIO
were assessed. Here, the influence of these coupled mean
state biases on the simulated interannual variability over the
equatorial Indian Ocean, including IOD characteristics, is
examined.

Figure 5 shows the forecast DMI compared against obser-
vations for different lead times. The correlation between
the observed and GloSea6 DMI at LMO and LM2 is gen-
erally well forecast, with ACC values of 0.80 and 0.71,
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Fig.5 Time series of monthly
DMI in HadISST (bars) and Glo- )
Sea6, normalised by its standard /
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Fig. 6 Spatial distribution of the standard deviation of SON SST obtained by averaging the monthly ensemble means for September,
anomalies, as a measure of SST variability, in a HadISST and b—e October, and November, each comprising 28 members
GloSea6 at LM0, LM2, LM4 and LM6. For each lead time, SON is

respectively, exceeding the commonly used ACC thresh-  related to the erroneous easterlies in the central equatorial
old of 0.5 (e.g., Zhao and Hendon 2009; Song et al. 2022). Indian Ocean, which strengthen and extend westward after
An ACC of 0.5 is used to indicate moderate forecast skill,  the onset of the summer monsoon in June, peaking in SON
which is comparable to using the climatological average as  (Fig. 4a). This hypothesis is supported by the findings of
the forecast. In comparison to the ACC skill at LM0O and  Johnson et al. (2017) who demonstrated that coupled mean-
LM2, the forecast skill of the predicted DMI at LM4 and  state biases in the EEIO lead to errors in representing the
LMBG6 is relatively lower. At LMO, GloSea6 predicts stronger 10D as a mode of variability in GloSea5, thereby reduc-
positive and negative IOD events compared to LM2, LM4,  ing its ability to predict the Indian monsoon circulation.
and LM6. For example, the magnitudes of the negative and ~ Here, we have shown that the strengthening of the easterly
positive 10D events observed in 1996 and 1997, respec-  wind bias during SON leads to a deepening of the thermo-
tively, are overestimated at LMO compared with longer lead  cline in the west and shoaling in the east (Fig. 4), reinforc-
times. This is reflected in the measure of the predicted [OD  ing the already shallow SON climatological thermocline
amplitude, defined as the standard deviation of the GloSea6 ~ of GloSea6 in the EEIO (not shown). The easterly wind
DMI, with the highest value of 0.38 °C at LMO. Calculating  bias, combined with a shallower thermocline in the EEIO,
the ACC values and amplitudes for the DMI at the individ-  suggests that even small fluctuations in wind are likely to
ual poles of the IOD reveals that the EEIO DMI has con-  quickly lead to changes in upwelling. This may in turn lead
sistently lower ACC and higher IOD amplitude compared  to rapid adjustments in SST, as the thermocline tilt shoals in
to the WEIO DMI for all lead times (LMO to LM6) (not  the east making the region particularly responsive to wind

shown). variations.

Examining the standard deviation of SST anomalies in To examine the representation of observed positive and
SON, an important season during which the IOD peaks,  negative IOD events, a composite analysis of the SON
shows a large SON SST variability over the EEIO, particu-  hindcast ensemble mean is performed. Here, positive and
larly off the coasts of Sumatra and Java (Fig. 6). This sug-  negative IOD events are classified when the observed nor-

gests that the larger IOD variability in the GloSea6 DMI ~ malised DMI time series exceeds 1 standard deviation for
compared to observations is likely due to increased SON  September-November (Fig. 5). During the full hindcast
SST variability over the EEIO. A possible hypothesis is that ~ period of 1993-2016, seven positive and six negative IOD
the larger SST variability in the EEIO in GloSea6 may be  events are identified in the observations.
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At LMO, it is evident that GloSea6 exhibits larger SST
anomalies over the WEIO and EEIO compared to obser-
vations for both phases of the IOD (Fig. 7b and g). For
instance, the simulated positive 10D event shows colder
SSTs in the EEIO and warmer SSTs in the WEIO than
observed, suggesting a stronger positive I0D. This likely
relates to the SON mean state biases in SST and circulation,
characterised by a positive IOD-like pattern, that may be
amplified during a positive IOD event. Likewise, a stronger
negative IOD event relative to observations is simulated at
LMO, accompanied by a dipole pattern of colder anomalies
in the WEIO and much warmer SST anomalies in the EEIO
than observed. Such large SST anomalies in the EEIO per-
sist at longer lead times of up to 4 months for a positive IOD
and 6 months for a negative IOD (Fig. 7d and j). Gener-
ally, the positive and negative IOD composites of SON SST
anomalies at LMO exhibit large-scale patterns in the Indian
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Ocean that are comparable to observations, with pattern cor-
relations of 0.91 and 0.89, respectively (Fig. 7a, b, fand g).
Figure 7 shows that the pattern correlation decreases, while
the RMSE increases, with increasing lead time up to LM6
for both positive and negative IOD composites.

Analysing the evolution of SST anomalies during SON
for positive and negative 10D events reveals that these
anomalies are poorly simulated in the EEIO compared to the
WEIO from February to October start months. In Fig. 8, we
further examine the seasonal cycle of monthly SST anoma-
lies at both poles for positive and negative IOD events. The
simulated IOD SST anomalies are compared against two
observational datasets (HadISST and OISSTv2). Notably,
these datasets exhibit larger observational uncertainty in the
EEIO than in the WEIO, particularly during SON.

The seasonal cycle of SST anomalies over the WEIO
generally match observations across different start months
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during the positive and negative IOD. GloSea6 is able to
capture the observed warming in the WEIO during the
development and mature phases of a positive 10D, spe-
cifically from June to November (Fig. 8a). Similarly, the
observed cooling from June to November, associated with
the evolution of SST anomalies in the WEIO during a nega-
tive 10D, is well represented (Fig. 8c).

In the EEIO, GloSea6 hindcasts started in February-
May struggle to simulate the observed evolution of the cold
SST anomalies, associated with a positive IOD, from June
to November particularly in the SON months. These EEIO
SST anomalies are underestimated and do not reach the
observed cold anomalies during SON, the mature phase of
the IOD (Fig. 8b). In contrast, when hindcasts are started in
June-October, the simulated EEIO SST anomalies in SON
during a positive IOD are generally overestimated and are
much colder than those in HadISST (Fig. 8b). The colder
SON EEIO SST anomalies simulated following September-
November starts, compared to HadISST, (Fig. 8b) are con-
sistent with the larger SON EEIO SST anomalies at LMO
relative to HadISST in Fig. 7b.

A similar pattern of evolution occurs with the warm SST
anomalies in the EEIO during a negative IOD, where the
observed warming is not well captured compared to Had-
ISST, with colder SST anomalies in June to November for
February to March starts, and warmer anomalies following
June to October starts (Fig. 8d). Thus, it is evident in Fig.
8b and d, that the SST anomalies in the EEIO are poorly
represented during the development and peak of the positive
and negative IOD events when compared against HadISST.

The precipitation and circulation anomalies associated
with IOD SSTs for SON are shown in Fig. 9. Consistent with
the stronger positive IOD and negative IOD than observed
at LMO, the precipitation anomalies over the WEIO tend to
extend further into the central Indian Ocean, off the equator
to the north near Sri Lanka, for both positive and negative

IOD events. Although the low-level circulation anomalies
have considerably weakened for positive and negative IOD
events, the precipitation anomalies persist in the EEIO and
extend into the central equatorial Indian Ocean up to 6
months following initialisation (Fig. 9e and j). The precipi-
tation anomalies over the EEIO at LM6 coincide with the
SST anomalies over the region at the same lead time (Fig.
7e and j).

The pattern correlation of the SON precipitation anom-
alies compared to observations weakens as lead time
increases, similar to the SST anomalies shown in Fig. 7.
The dipole spatial pattern of precipitation anomalies over
the IOD poles, and a large region of the Maritime Continent,
shows comparable features. For instance, the magnitude and
spatial distribution of precipitation over Indonesia and the
Maritime Continent closely resemble observations at LMO.

Results indicate that the ability of GloSea6 to simulate
observed IOD SST variability is strongest at short lead
times, despite the larger monthly DMI amplitude and SON
SST variability over the EEIO compared to HadISST (Figs.
5 and 6). The high ACC of the DMI at LM0 and LM2, along
with pattern correlations of over 0.7 for SST and precipi-
tation (Figs. 5, 7 and 9), suggests that GloSea6 may offer
valuable potential for forecasting the IOD at short lead
times. This section has shown that the large SON SST vari-
ability in the EEIO, compared to the WEIO (Fig. 6), likely
relates to the poor representation of the evolution of SON
SST anomaly in the EEIO during positive and negative IOD
events relative to HadISST (Fig. 8).

3.3 Predictability of the IOD

The previous section showed the ability of GloSea6 to rep-
resent positive and negative [OD phases at their maturity in
SON for lead times of up to 6 months. Here, we assess the
predictability of the IOD during its developing and mature
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Fig. 10 Skill metrics of the normalised monthly DMI as a function of
lead month and forecast start months in a ACC, b amplitude ratio of
the DMI predictions (ratio of the standard deviation of the GloSea6

phases by examining the monthly SST anomalies of the
DMI as a function of lead time and different initialisation
times.

Figure 10a demonstrates that an 10D, in its developing
and mature phases, can be well predicted (defined by an
ACC of 0.5 or higher) at up to 4-5-months lead time when
initialised in July. In addition, GloSea6 shows good predic-
tive skill of the IOD at up to 6 months when initialised in
June, following the onset of the boreal summer monsoon.
The mature phase of the IOD, which usually peaks during
SON, can be predicted as early as July. The high pattern
correlation between the observed and simulated composites
of SON IOD SST anomalies at LMO0, shown in Fig. 7, is
consistent with the skillful prediction for the SON months
at LMO when initialised in September-November (Fig. 10a).
Another notable feature of the prediction skill in GloSea6 is
the winter predictability barrier in the decaying phase of the
IOD, indicated by the rapid decline of ACC skill in boreal
winter when initialised in August-November. Such a feature
has been found in a fully coupled forecast system (Luo et al.
2007) regardless of the start month, and in a coupled GCM
(Feng et al. 2014). Another deterministic skill metric, the
10D amplitude ratio, is shown in Fig. 10b. As discussed in
the previous section, GloSea6 simulates 10D events with
amplitudes that are high compared to observations. Here,
the amplitude ratio is determined as the ratio of monthwise
standard deviation of the predicted monthly DMI to that of
the observed standard deviation. Thus, an amplitude ratio
of 1 indicates a perfect match between GloSea6 and obser-
vations. Stronger than observed amplitude of the predicted
IOD, with ratios greater than 1, is simulated when started
in June-September with up to 2 months lead. Similar to the
ACC skill, the amplitude ratio falls rapidly in boreal winter
for hindcasts initialised in August-December. Although Glo-
Sea6 predicts strong 10D events in SON, the RMSE scores
show low prediction errors, less than 0.5, when started in
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September-November (Fig. 10c). The highest prediction
errors of greater than 0.6 tend to be simulated for hindcasts
started in February-May, which may be attributed to the
large mean-state bias in SST that grows into SON over the
EEIO following initialisation in spring shown in Figure 2b.
An examination of ACC and RMSE skill scores of the sepa-
rate poles of the IOD reveals that the EEIO DMI has lower
ACC and higher RMSE values than the WEIO DMI for up
4 months lead time when initialised in July-September (not
shown).

Overall, while GloSea6 demonstrates strong prediction
skill for IOD events, especially when initialised in late
boreal summer or early autumn, it shows limitations in the
boreal winter months. Specifically, GloSea6 demonstrates
skillful prediction of the IOD during its developing and
mature phases when initialised in July. In addition, GloSea6
tends to predict stronger IOD events than observed, with
amplitude ratios higher than 1 for forecasts started between
June and October. However, prediction errors are higher for
forecasts initialised in March-June.

4 Conclusion

Despite the significance of the WEIO and EEIO as key
regions of IOD SST wvariability, few studies have spe-
cifically explored the coupled mean-state biases in these
regions and linked their impacts to IOD predictability (Zhao
and Hendon 2009; Shi et al. 2012). The presence of these
regional biases and their role in modulating local climate
and weather patterns over countries surrounding the Indian
Ocean through 10D atmospheric teleconnections highlights
the importance of accurately representing the underlying
coupled processes in both the mean climate and variability
in the WEIO and EEIO. Most recent research has focused
on mean-state biases and their sources across the broader
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equatorial Indian Ocean region, such as the persistent posi-
tive I0OD-like bias in SST, precipitation, and circulation
which is well-documented in coupled GCMs (Li et al. 2015;
Long et al. 2020). In comparison, the evolution and interan-
nual variability of coupled biases in the WEIO and EEIO
remain less studied. This study, therefore, focused on these
regional biases, examining their evolution on seasonal and
interannual timescales and linking them to IOD SST vari-
ability and prediction. The analysis of coupled initialised
GloSeab6 seasonal hindcasts aimed to answer the questions
presented at the start of the study.

a) How do mean-state biases in the atmosphere and sub-
surface ocean evolve in the WEIO and EEIO? The analysis
focused on the evolution of coupled mean state biases in JJA
and SON, given their importance for IOD development and
maturity, respectively. Both JJA and SON mean state biases
in SST, precipitation, and 850 hPa winds at LMO (0-month
lead time) showed a predominantly warm SST bias across
the equatorial Indian Ocean, along with significant cold and
southeasterly wind biases over the EEIO. This cold bias in
the EEIO intensifies by LM2 (2-month lead time), forming a
distinct dipole pattern with warming in the WEIO and cool-
ing in the EEIO. At LM2, the related JJA and SON precipi-
tation biases show a consistent dipole pattern, resembling a
positive IOD with a wet bias in the WEIO and a dry bias in
the EEIO.

Investigation of the seasonal cycles of SST and precipita-
tion over the WEIO and EEIO revealed a persistent WEIO
warm bias throughout the year, in contrast to a EEIO cold
bias that gradually increases in magnitude from JJA to SON.
Correspondingly, an EEIO dry precipitation bias rapidly
develops in JJA and SON, which contrasts the WEIO wet
precipitation bias that only peaks later in SON. Analysis of
the seasonal evolution of the biases in the atmosphere and
subsurface ocean showed that the EEIO plays the leading
role in the development of the large SST and precipitation
biases in SON, especially for forecasts initialised in May.
The sequence begins with a circulation bias in the EEIO
during JJA, characterised by erroneous easterlies and a shal-
low thermocline, likely related to the boreal summer mon-
soon circulation. These biases in the wind and thermocline
lead to upwelling of cooler subsurface water, reinforcing the
cold SST bias and dry conditions in the EEIO in JJA. At
the same time, the 850 hPa and 10 m easterly wind biases
in the central equatorial Indian Ocean strengthen through
JJAS, amplifying into SON via the Bjerknes feedback. This,
in turn, leads to the intensification of the WEIO wet bias
by SON. This seasonal sequence, beginning with the mon-
soon-driven circulation bias in JJA in the EEIO and culmi-
nating in a large wet bias in the WEIO in SON, highlights
the seasonal dependence of coupled biases in these regions
and the leading role of the EEIO in initiating coupled

feedbacks across the equatorial Indian Ocean. Notably, Kar-
revula et al. (2024) demonstrated using the North Ameri-
can Multi-Model Ensemble models that forecasts initialised
in May capture warming in the central Indian Ocean due
to strengthened equatorial easterlies, which they identified
as critical in modulating the frequency of extreme positive
10D events and their impact on summer monsoon precipita-
tion from June to November

b) What influence do the WEIO and EEIO regional biases
have on the representation and predictability of the IOD?

Results show that the GloSea6 DMI time series of monthly
SST anomalies has a high anomaly correlation coefficient
compared to the HadISST DMI at short lead times (LMO
and LM2). The high ACC skill of the predicted monthly
DMI at LMO is consistent with the high pattern correlation
of over 0.8 between the observed and simulated composites
of SON SST and precipitation anomalies in both positive
and negative IOD events. However, results also showed that
the amplitude of monthly DMI is larger compared to Had-
ISST from LMO to LM4 (0—4 month lead times), indicating
higher IOD SST variability in GloSea6. Additionally, exam-
ining the separate poles of the IOD reveals lower ACC and
higher IOD amplitude for the EEIO than the WEIO DMI for
all lead times (0—6 month lead times). Investigating the SST
variability in SON, during which the IOD peaks, showed a
larger SON SST variability in the EEIO compared to Had-
ISST. A possible hypothesis is that the erroneous easterlies
and shallow thermocline depth in the EEIO make the region
highly sensitive to small wind fluctuations, which can rap-
idly alter upwelling and SST. This aligns with the findings
of Johnson et al. (2017), who showed that coupled mean-
state biases in the EEIO lead to errors in representing the
IOD as a mode of variability in GloSea5. The analysis of
the seasonal cycle of SST anomalies over the WEIO and
EEIO during positive and negative IOD events showed a
difference in how well GloSea6 captures the observed SST
anomalies in each region. In the EEIO, cold SST anoma-
lies in SON are overestimated relative to HadISST, espe-
cially when initialised from June onwards. However, in the
WEIO, GloSea6 closely matches the observed evolution of
warm SST anomalies into SON during the mature phase of
a positive IOD, regardless of initialisation dates.

Assessing the predictability of GloSea6 showed consid-
erable skill in forecasting the IOD during its developing and
mature phases, especially when initialised in June and July.
The model demonstrates skillful prediction of IOD SST
anomalies in SON, achieving an ACC of 0.5 or higher for
forecasts started as early as July. Notably, the highest pre-
dictive skill for the IOD occurs when initialised between
September and November, coinciding with the peak of
observed IOD events. Although GloSea6 shows reason-
able predictive skill for the IOD, it encounters a significant
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winter predictability barrier, resulting in a rapid decline in
skill during the IOD’s decaying phase. This limitation has
also been found in another fully coupled forecast system
(Luo et al. 2007), regardless of the start month, and in a
coupled GCM (Feng et al. 2014). GloSea6 has also been
shown to overestimate the intensity of IOD events, particu-
larly during the development phase in JJA, as indicated by
amplitude ratios exceeding 1 when comparing the predicted
DMI to the observed DMI. Additionally, RMSE scores of
the GloSea6 DMI, calculated against HadISST, reveal large
prediction errors for SON when initialised in June. This sug-
gests that the monsoon circulation in JJA likely plays an
important role in shaping the mean state and variability in
the equatorial Indian Ocean.

These results suggest that reducing regional coupled
biases over the equatorial Indian Ocean, particularly in the
EEIO, could lead to improved 10D forecasts during SON
in GloSea6, potentially from as early as May. Our analysis
highlights the strong influence of atmospheric circulation
biases during and after the onset of the summer monsoon
in driving surface cooling through wind-driven upwelling,
particularly over the EEIO.

Further research could perform ’nudging’ sensitivity
experiments in the EEIO, such as the technique imple-
mented by Crétat et al. (2017) and Martin et al. (2021), to
disentangle the local and remote contributions of the oceanic
and atmospheric components to the coupled processes in
the Indian Ocean. Martin et al. (2021) applied atmospheric
nudging by relaxing the winds and air temperature back
to reanalysis at all model levels over the whole globe and
chosen sub-domain regions that may be local and remote
sources of Indian Ocean systematic biases in the model.

While this present study focused on regional processes
within the Indian Ocean, additional sources of bias may
arise from remote influences. For example, recent studies
have highlighted the potential role of the Southern Ocean
in IOD variability and predictability (e.g. Zhang et al. 2020;
Feba et al. 2021). Zhang et al. (2020) propose a mechanism
in which cold SST anomalies and anomalous subtropical
high pressure in the southern Indian Ocean generate south-
easterly winds that strengthen the monsoon off the coast of
Sumatra during May-August, independent of ENSO. The
enhanced southeasterly winds induce early SST cooling via
upwelling and latent heat loss, initiating an early IOD onset
over the eastern IOD pole. This mechanism highlights the
importance of the summer monsoon atmospheric circula-
tion over the EEIO as a critical region in driving coupled
processes that can influence the Indian Ocean mean state
and variability.

In addition, we recognise the potential role of the equato-
rial Pacific Ocean and the representation of the Indonesian
Throughflow that may influence the coupled biases in the

@ Springer

Indian Ocean and IOD simulation in GloSea6. Annamalai
et al. (2003) suggest that equatorial Pacific SST anoma-
lies can modulate EEIO conditions through changes in the
Walker circulation during boreal spring, potentially trig-
gering IOD events. More recently, McKenna et al. (2020)
found that coupled GCMs with warmer SSTs in the western
Pacific tend to exhibit stronger IOD events. Further research
is needed to explore these broader Indo-Pacific interactions
that can influence I0D-like mean state biases and poten-
tially impact IOD prediction in forecasts systems.

Overall, this study highlights of addressing regional
biases in the WEIO and EEIO is essential for improving
IOD representation in coupled forecast systems like Glo-
Sea6 to enhance the predictability of climate impacts over
the countries surrounding the Indian Ocean.
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