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ABSTRACT 

 

Ecology has yet to embrace causal inference, yet most questions in ecology are causal. 

Despite the common use of terms that imply causation, such as "shapes," "drives," or 

"impacts," many studies shy away from directly acknowledging their causal ambitions. 

This avoidance not only obscures the true intent of research but also underpins a 

broader challenge within the field's approach to science. Ecology relies heavily on 

observational data, and so the necessity for robust causal inference becomes 

paramount. However, causal methods are also needed for non-randomised 

experiments. We critique the predominance in ecology of scientifically-empty statistical 

procedures that lack scientific clarity and value. We advocate for a shift towards explicit 

causal inference, arguing that understanding causality is not confined to randomised 

controlled trials but can also be enriched through observational data when paired with 



rigorous causal inference methodologies. This paper elucidates the common pitfalls in 

ecological studies, such as throwing all variables into an analysis, use of the Akaike 

information criterion (AIC) for model selection, the ‘Table 2 Fallacy’  and the misuse of 

controls: all of which can lead to misleading scientific understanding. The good news is 

that causal inference is not primarily a statistical problem, but rather a scientific one that 

is accessible to all ecologists.  We can achieve reasonable progress by continuing to 

use the standard statistical toolbox based around regression models, familiar to many 

ecologists, paired with causal diagrams. For regression, causal inference is about 

understanding what we should condition on (good controls) and what we should not 

condition on (bad controls). We provide not only a critique but a constructive guide, 

aiming to demystify causal inference and encourage its adoption in ecological studies 

using familiar approaches. By doing so, we seek to elevate the quality and impact of 

ecological research, moving beyond routine convenient statistical procedures and 

towards a more scientifically sound and insightful understanding of ecology. 
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I. INTRODUCTION 

The adage "correlation does not equal causation" is widely appreciated, and for good 

reason (it’s also true that causation is not necessarily correlation). However, this is 

about as far as teaching about causation in statistics typically goes. As Pearl & 



Mackenzie (2018, p7) point out “Unfortunately statistics has fetishized this 

commonsense observation. It tells us that correlation is not causation, but it does not tell 

us what causation is.” A cause is something that changes an outcome following a 

real-world intervention upon it. By contrast, something that is only spuriously correlated 

with the outcome would not change the outcome following an intervention. This 

distinction is important in differentiating different approaches to statistical modelling.  

Models under a causal inference framework are not only about prediction, they are 

about cause and effect. We unpack what we mean by causal inference in the next few 

paragraphs.  

 

Many ecological studies state that they aim to explain how X ‘shapes’, ‘drives’, or 

‘impacts’ Y. These terms are self-evidently substitutions for ‘causes’ because, if we were 

only interested in a co-occurrence of X with Y, then X cannot be said to shape, drive, or 

impact Y. While most - although not all - questions we ask in ecology are causal, there 

is a pervasive reliance on these euphemistic terms that mask our true causal ambitions 

(Ahern, 2018; Hernán, 2018; Grosz, Rohrer & Thoemmes, 2020; Haber et al., 2022). 

Outside of these causal euphemisms, it is also common to use agnostic terms such as 

‘associated with’ or ‘predicts’ when we are actually interested in a relationship that is 

causal. While these latter terms represent an attempt to make a more cautious claim, it 

is often better explicitly to acknowledge our causal intention and be explicit about any 

limitations to our conclusions.  Only when we are clear about our causal ambitions can 

we be transparent about our scientific and statistical assumptions and make explicit any 

limitations in our understanding to take forward into future research. 

https://www.zotero.org/google-docs/?1flaxh


The pervasive avoidance of “cause” in ecological research questions transcends mere 

semantics; it underscores a profound challenge deeply rooted in the discipline's 

approach to science. This is particularly relevant to ecology, where the vast majority of 

studies are observational. With observational data, the act of data analysis is more than 

simple number-crunching; it's where the core scientific investigation takes place. In the 

absence of randomised and controlled experiments with physical interventions, we rely 

on statistical control (Pearl, Glymour & Jewell, 2016b). We will all benefit from thinking 

generatively about the processes underlying the ecological data and use causal 

inference to model that generative process to the best of our knowledge. Like many 

applied scientists we - the authors - are continuously learning and evolving in our 

scientific and statistical understanding and practice, and our pasts are haunted by the 

problems highlighted herein. While the following discussion may be critical of current 

approaches that are prevalent in ecology, its primary purpose is a call for collective 

improvement in putting the ecology before the statistics by using causal inference. Its 

secondary purpose is to persuade ecologists that this change is not only desirable but 

also achievable.  

Ecological studies employing causal methods for answering causal questions are 

currently rare [but include e.g. (Rosenbaum et al., 2020; Laubach et al., 2021a; Dee et 

al., 2023; Lange et al., 2023; Grimes et al., 2023)]. Many ecological analyses, while not 

explicitly using terminology related to causality, still ‘control for’ variables. If a study is 

‘controlling for’ a variable then the aim of the study must be causal, because statistical 

control requires causal justification (Conroy & Murray, 2020; Wysocki, Lawson & 

Rhemtulla, 2022). The purpose of controlling for a variable is to provide a statistical 

https://www.zotero.org/google-docs/?man3XQ
https://www.zotero.org/google-docs/?65W5Ou
https://www.zotero.org/google-docs/?65W5Ou
https://www.zotero.org/google-docs/?2qdopR
https://www.zotero.org/google-docs/?2qdopR


control as a substitute for a physical control, so that non-causal pathways can be closed 

(where a pathway is a sequence of connected variables that represents a chain of 

causal relationships). But causality is typically unacknowledged, and a full attempt at 

elucidating the evidence for causality is not made. Adopting this approach – which sits 

ambiguously between causal and descriptive – can lead ecological studies astray, as 

evidenced by widespread instances of the ‘Table 2 fallacy’ (Westreich & Greenland, 

2013) and use of ‘bad controls’ which can actually introduce spurious correlations by 

conditioning  on colliders, or remove or reduce causal effects by conditioning on 

post-treatment variables (Montgomery, Nyhan & Torres, 2018; Cinelli, Forney & Pearl, 

2020). For those who are unfamiliar, all terms linked to causal inference will be 

explained below. 

Rather than moving towards a better understanding of causality using the causal 

frameworks available, observational ecology could be described as anchored in 

scientifically-empty statistical procedures that provide answers to ambiguous questions 

that no one really wanted to ask. Such analyses have been harshly-but-fairly termed 

‘Garbage can regressions’ in other fields (Achen, 2005). It is also common in ecology 

for null hypothesis significance testing studies to report only test type, degrees of 

freedom, test value and P-value. At its most extreme, there can be a focus on pursuing 

statistical significance alone, pushing ecological significance out of existence or into the 

background. These approaches - by themselves - neglect causality and are of 

questionable scientific and practical value when addressing causal questions in ecology 

(Krzywinski & Altman, 2013; Halsey, 2019). Rather than addressing the ecological 

questions of interest this ‘statistification’ of ecology - the cursory and routine application 

https://www.zotero.org/google-docs/?e3LK8E
https://www.zotero.org/google-docs/?e3LK8E
https://www.zotero.org/google-docs/?3LPnBv
https://www.zotero.org/google-docs/?3LPnBv
https://www.zotero.org/google-docs/?dh0PFJ
https://www.zotero.org/google-docs/?A6NSUD


of statistics -  appears driven by tradition rather than scientific value. To gain scientific 

value we need to establish the target quantity we need to estimate (termed the 

“estimand”), to connect the statistical evidence to the question we want to address and 

estimate the target quantity with respect to the causal process. 

A misconception that may exist in ecology is that causality is only discernible through 

experiments employing randomised controlled trials (RCTs). Although RCTs do have 

advantages, observational data or non-RCT experiments paired with causal inference 

can still offer richer insights into our causal questions than experiments can alone 

(Diener et al., 2022) (see online Supporting Information, Appendix S1 for a full 

discussion). Note that most experiments in ecology are not RCTs, and therefore 

researchers still need to consider carefully what to control for and what not to control for, 

in exactly the same process as if the controls were statistical on observational data. 

Causal inference with statistics also opens possibilities not available to experimental 

design for ethical, logistic, or practical reasons, or because a controlled environment 

introduces biases itself that make the results laboratory-specific. Of course, the nature 

of understanding causality in ecology can be complicated, which has left many with the 

pervasive sentiment that we are impeded from discerning anything about causality with 

observational data. But this is overly pessimistic, and would leave a large part of 

ecology with no way forward. Either way, it is clear that the appropriate approach is not 

to masquerade causal questions as unclear non-causal questions, paired with 

half-causal analyses that lack the scientific clarity of causal studies. The key is to work 

explicitly with the causal structure, including making transparent any limitations and 

assumption to take forward into future work. Dealing with causal diagrams is non-trivial 

https://www.zotero.org/google-docs/?mU5yMK


and it requires time and careful consideration, but making causal assumptions explicit is 

always better than the only alternative – making implicit hidden causal assumptions. 

The good news is that causal inference is not primarily a statistical problem, but rather a 

scientific one that is accessible to all ecologists (McGowan, Gerke & Barrett, 2023). We 

can get reasonably far continuing to use the standard statistical toolbox based around 

regression models, that is familiar to many ecologists. When it comes to regression, 

causal inference is about understanding what we should condition on (good controls) 

and what we should not condition on (bad controls) (Pearl et al., 2016b; Cinelli et al., 

2020). Here, we focus on the approach of combining regression models with causal 

diagrams (Pearl & Mackenzie, 2018; McElreath, 2020). This approach is versatile in 

accommodating most types of analysis including temporal effects, censoring, 

measurement error, and missing data. In the following sections, we outline a vision of 

causal inference for ecology that pairs causal thinking with statistical methods already 

familiar to ecologists. First we need to be clear about the difference between causal and 

other forms of analysis.  

 

II. PREDICTIVE AND DESCRIPTIVE ANALYSES ARE NOT CAUSAL 

There are three key categories of data analysis: descriptive, predictive and causal. 

Descriptive analysis is about characterizing data (Laubach et al., 2021b). For example, 

a researcher might want to know the age distribution of a particular population, or what 

proportion of high centrality positions in an animal social network are occupied by 

females. This is useful and allows us to concisely summarize the properties of the raw 

data, but does not answer any underlying scientific questions. Typically, descriptive 

https://www.zotero.org/google-docs/?GP5cVN
https://www.zotero.org/google-docs/?DHa7wb
https://www.zotero.org/google-docs/?DHa7wb
https://www.zotero.org/google-docs/?DL2Kfp
https://www.zotero.org/google-docs/?D1LDMT


statistics are precursors to pursuing the actual causal questions of interest, and are 

often theory and hypothesis generators. However, if we want to do more than just 

describe a particular data sample, even descriptive studies need causal consideration of 

some form (Lesko, Fox & Edwards, 2022). 

Predictive analysis is entirely about forecasting, and is focused on the outcome variable 

only. That is, the variables being used to predict the outcome are mere servants only to 

forecasting and should not be discussed as if they were explanatory or causal variables 

(Ramspek et al., 2021; Boettiger, 2022). For instance, if we are interested in predicting 

species distributions under climate change scenarios, a predictive model may be 

sufficient, because we are concerned with forecasting the outcome rather than 

understanding causal mechanisms. However, many ecological questions go beyond 

prediction. If we seek to understand why species distributions are the way they are, or 

how a specific environmental change causally alters distributions, then we must adopt a 

causal approach. This is because intervening on something that is not a cause will not 

change the real-world outcome, and standard predictive models do not account for the 

causal data-generating process. With causal questions, we are not only interested in 

making predictions but in making predictions under hypothetical interventions – this 

distinction is crucial when guiding ecological decision-making. 

The implicit assumption of statistical and machine learning models (outside of structural 

causal models)  is that all variables cause the outcome, but do not cause each other 

(not to be confused with interactions). Understanding what predictors are used most 

heavily to predict the outcome in a correlative model tells us nothing about causation, 

because predictive models will actively make use of non-causal correlations if this leads 

https://www.zotero.org/google-docs/?QYClgc
https://www.zotero.org/google-docs/?3auMsT


to better forecasting predictions.  Further, if we select our model based on predictive 

efficacy [e.g. using the Akaike information criterion (AIC)] then we can block causal 

pathways and leave non-causal pathways open (see section V). Statistical control 

requires causal justification, not predictive justification (Wysocki et al., 2022). The 

predictive approach has some limited use in ecology for applied management situations 

where the question is focused purely on forecasting, such as in some conservation 

scenarios. However, even then research might benefit from using causal methods. 

Causal methods can also be used to make predictions, but can additionally explain 

causality behind the predictions and suggest interventions to change the outcome. That 

is not possible with predictive models, yet conservationists will want to know the 

potential impact of a real-world intervention. 

Causal inference is about being able to predict the change in an outcome following a 

change on a potential causal variable [for more information see the do() operator of 

Pearl et al., 2016b)]. This cannot be done with a purely forecasting or descriptive 

approach. Rather than describing the data or predicting an outcome, a causal approach 

attempts to isolate only causal paths from a potential cause (exposure) to the outcome.  

With experiments the idea is that intervening on the treatment / exposure variable of 

interest cuts off other causes of that treatment / exposure – because the assignment is 

the only cause of the treatment (assuming this condition is true – which it may not be in 

some field experiments). This means there can be no confounding. However, with 

observational data we are not intervening, and so there may be natural causes of the 

exposure, creating the possibility for confounding (see section III). To deal with 

confounding with observational data involves closing non-causal pathways that cause 

https://www.zotero.org/google-docs/?GdYffN
https://www.zotero.org/google-docs/?OYUu4v


misleading correlations, while leaving open causal pathways. With regression analysis 

this can be done by using causal diagrams to derive the ‘adjustment set(s)’: the 

collection of variables you need to condition on to close non-causal pathways while 

keeping causal pathways open. What do we mean by ‘condition on a variable’? This is 

distinct from intervening on a variable. In standard statistical models, including variables 

as ‘predictors’ means conditioning on those variables. When you condition on a 

variable, you are effectively holding it constant, making the analysis conditional on its 

observed values in the data. This is often referred to as statistically ‘controlling’ for a 

variable in ecology. 

There are different approaches to causal inference, but we focus herein on regression 

models combined with causal diagrams, following the approach of Pearl et al., (2016b) 

and Pearl & Mackenzie (2018). We do this because combining methods already familiar 

to ecologists, along with intuitive causal diagrams should allow easy adoption. We next 

introduce such causal diagrams.  

 

III. CAUSAL DIAGRAMS 

A common approach in ecology is a “kitchen sink” approach where all available 

variables are thrown into the analysis. This has been aptly described as a ‘causal salad’ 

approach: “You put everything into a regression equation, toss with some creative 

story-telling, and hope the reviewers eat it. In general, this is not a valid approach, for 

well-known reasons. But it can get you published. Causal salad can discover causes 

too. But you have to get lucky. … No amount of data reliably turns salad into sense.” 

(McElreath, 2021). 

https://www.zotero.org/google-docs/?k75Qb3
https://www.zotero.org/google-docs/?k75Qb3
https://www.zotero.org/google-docs/?rJi9mp


 

A causal approach instead maps out the potential causal structure and uses this to 

derive an adjustment set: the set of variables to condition on in the analysis (i.e. by 

including them in a regression). Causal diagrams are often drawn as directed acyclic 

graphs (DAGs) where nodes represent variables and arrows point from cause to effect 

(de Mesquita, 2018; Rohrer, 2018). The process is to draw the DAG built around your 

exposure (i.e. the particular cause(s) of interest) and outcome of interest. Fig 1, for 

example, shows a minimal causal diagram where rate of egg production in birds 

(exposure) can be a cause of (for example, it may potentially reduce) longevity 

(outcome). 

You start with nodes representing these variables and then draw any other nodes that 

may be part of pathways – causal and non-causal – between them. Note that the nodes 

that you draw do not need to correspond only to data that you have collected; they 

should be based on ecological knowledge and common sense, including any 

unobserved (latent) variables. 

One of the primary concerns for researchers delving into causal inference is the fear of 

misrepresenting causal relationships, because constructing an accurate DAG can 

sometimes be challenging. This might lead to the conclusion that it is best not to deal 

with DAGs at all. But this is misguided. Regardless of whether a DAG is drawn, all 

analyses make assumptions about the underlying causal structure. When variables are 

introduced into a regression model without a DAG, the implicit assumption is that all 

variables are independent causes of the outcome (i.e. all included variables have 

arrows to the outcome, but not to each other). Assuming that variables can only cause 

https://www.zotero.org/google-docs/?tQL8HZ


the outcome typically means that arrows between variables are being missed. This is a 

problem because missing an arrow is a stronger causal assumption than adding an 

arrow. Without the guiding clarity of a DAG causal assumptions still exist, but they are 

more likely to be incorrect and hidden from scientific scrutiny. It’s much better to draw an 

explicit DAG to the best of your knowledge, in an attempt to be causality consistent, 

transparent, and less likely to obtain incorrect answers to a causal question. 

Defining an appropriate DAG in real-world ecological systems can indeed be 

challenging, but it is necessary. Many ecological systems are complex, multilevel, and 

dynamic, making it a challenge to specify a DAG that fully captures the data-generating 

process. But this is a core part of the scientific process: researchers often need to refine 

and update their DAGs iteratively as new insights emerge. Mis-specified DAGs can lead 

to incorrect causal conclusions, emphasizing the need for careful causal thinking at 

every stage of analysis. 

The increasing use of DAGs in ecological research is promising, but their adoption must 

be accompanied by careful reasoning. A poorly specified DAG does not justify a causal 

claim; rather, it can introduce new sources of bias. Some researchers mistakenly 

assume that any DAG-supported adjustment set is valid for estimating causal effects, 

but without careful thought, this can lead to ‘garbage-in, garbage-out’ inference. 

Ensuring that a DAG accurately reflects a plausible ecological process requires both 

domain knowledge and critical evaluation of causal assumptions. It is not sufficient to 

simply include all available variables; researchers must carefully consider which 

relationships are scientifically justified and which variables are necessary for causal 

identification. 



A common question raised when first drawing a DAG relates to the functional form of 

the relationships. For example, how do you include interaction effects, non-linear 

effects, random effects, etc? But such concerns stem from misunderstanding the 

purpose of a DAG. Each node in a DAG is an unspecified function of the nodes causing 

it. A DAG is not coupled with the specific modelling approach and should be used 

simply to establish cause and effect; the same DAG applies regardless of the specifics 

of the functional forms. If you include a variable in a regression model then you have 

conditioned on it, and the purpose of the DAG is to establish the adjustment set that you 

need to condition on. Any decisions about functional forms should be made at the 

post-DAG modelling stage. 

Researchers also ask about temporal dynamics, given that a DAG is acyclic. Whenever 

you have the need to add a loop to a DAG, it is likely that you actually need a 

time-variant variable. This way information can flow through the DAG over time, even 

though the DAG itself is static and acyclic (see Section VI.2). 

We now move on to discussing key causal patterns that you will find in a DAG and the 

implications of conditioning or not conditioning on variables. When you condition on a 

variable, then you can usually think of this as blocking the flow of information (causal or 

non-causal) through that variable. So you draw the DAG to see what you want to block 

(open non-causal pathways) and what you want to isolate (causal pathways). To find 

non-causal (backdoor) confounding paths look for paths between exposure and 

outcome starting with an arrow pointing into the exposure (Pearl, Glymour & Jewell, 

2016a). 

 

https://www.zotero.org/google-docs/?8CtpTS
https://www.zotero.org/google-docs/?8CtpTS


(1) Confounders 

There is confusion in ecology about confounders, which ecologists sometimes refer to 

as ‘nuisance variables’. Confounders are often considered as ‘anything other than the 

exposure of interest that also causes outcome’. This does not describe a confounder, 

and the difference is important. This section describes confounding variables, and 

subsequent sections describe other types of variables, some of which are causes of the 

outcomes but are not confounders. 

You can think of a confounding variable as a ‘common cause’ along a path that leads to 

both the exposure and outcome, as illustrated in Fig 2. Take, for example, the 

hypothesis that a higher frequency of alarm calls from sparrows in a specific area 

causes a reduced rate of predation by hawks. To establish a causal relationship 

properly between the frequency of alarm calls and the observed predation rate by 

hawks, researchers would need to control for the confounding variable – availability of 

tree cover. Failing to do so could lead to a misleading conclusion that the alarm calls 

themselves are responsible for deterring predation. In reality, sparse tree cover could 

make sparrows more visible, prompting more frequent alarm calls while simultaneously 

making them easier prey for hawks. This creates a ‘backdoor path’ – a causal pathway 

that erroneously suggests a relationship - which must be closed to prevent non-causal 

associations. Simpson’s Paradox serves as a unique case of confounding, wherein a 

trend observed in the aggregate data reverses when analysed at subgroup levels. 

 

(2) Competing exposures 



Revisiting our previous example, if we consider tree cover as a determinant of predation 

rate but not of frequency of alarm calls (Fig. 3), then tree cover would be a competing 

exposure and not a confounder. Since we lose the arrow from tree cover to frequency of 

alarm calls, there is no backdoor path between exposure and predation. In ecological 

research, the phrase ‘confounder’ is often used incorrectly to describe a competing 

exposure. Confounders must be accounted for when isolating causal pathways, 

whereas competing exposures do not need to be. A competing exposure refers to a 

variable that may affect the outcome but is not essential for elucidating the causal 

relationship between the primary variable of interest and that outcome (Fig. 3). A 

competing exposure does not bias the estimation of the causal effect, whereas a 

confounder does. However, including a competing exposure in an analysis can improve 

precision. 

 

(3) Mediators 

Mediators are the go-betweens that relay causality from one variable to another, like 

body mass mediating the relationship between exercise and heart health. Mediators, 

along with colliders (see Section III.4) are a key reason that you cannot just include all 

possible variables into a model (Pearl, 2009; Zeng et al., 2021, 2023). Including 

mediators in your adjustment set can be a cause of ‘overadjustment’ in that it blocks 

causal paths. Adjusting for all mediators will give you the ‘direct causal effect’ which is 

usually (but not always) not what is wanted. Adjusting for some mediators but not others 

does not give anything meaningful outside of specific hypotheses that require blocking 

https://www.zotero.org/google-docs/?jDJVpK


certain mediators. Mediators are essential for distinguishing between the total causal 

effect and the direct causal effect (Table 1). 

Whereas conditioning on confounders removes non-causal pathways, conditioning on 

mediators removes causal pathways. The total causal effect is the effect of the 

exposure on the outcome through all causal pathways – direct and indirect (Lundberg, 

Johnson & Stewart, 2021). The direct causal effect is the effect of the exposure on the 

outcome through only the direct causal pathway (arrow from exposure directly to the 

outcome). Which of these you are most interested in depends on your question / 

estimand. We usually will want the total causal effect, but sometimes a specific question 

might require specific targeted mediating paths to be closed (this is termed ‘mediation 

analysis’). If we adjust for a mediator, we are removing some, or all, of the indirect 

effects from the total effect. If your intention / estimand was to understand the total 

effect then you have implemented a causal diagram for a different estimand. 

An example of where you would want the total causal effect, and would get the wrong 

result if you condition on a mediator is shown in Fig. 4.  In the example in Fig. 4, the 

focus is on the total causal effect of group size on predation rate. The question here is 

whether larger group sizes lead to lower predation rates. Importantly, conditioning on 

the Vigilance Rate of the group closes a causal pathway and gives the direct causal 

effect, which would not be what you are looking for with this question, because the 

direct causal effect is less ecologically relevant here. This is because vigilance rate 

serves as a mediator in an indirect causal pathway between group size and predation 

rate. For instance, larger groups may exhibit lower levels of vigilance, consequently 

experiencing higher predation rates. By conditioning on vigilance rate, this indirect 

https://www.zotero.org/google-docs/?7yVAiE
https://www.zotero.org/google-docs/?7yVAiE


causal pathway would be blocked, potentially leading to misleading conclusions about 

the magnitude of the group size's causal effect on predation rates. Note that this is a 

simplified example and there may also be confounders (Roberts, 1996). 

 

(4) Colliders 

A collider is a variable along a path between exposure and outcome where two (or 

more) arrows converge into it along that path — i.e., both arrows enter the node from 

nodes on the path. Colliders are notoriously difficult to understand intuitively, so we will 

start with an example from outside of ecology. Colliders are essentially variables that, if 

conditioned upon, cause a selection effect at the collider. For example, it is often the 

case that restaurants in worse locations often have the best food? This is due to a 

selection effect. You are only seeing restaurants that have survived (survival being the 

collider) and two contributions to their survival is food quality and location quality. For a 

restaurant to survive in a bad location, it needs to have good food. If you look at all 

restaurants that have ever been, then there will likely be no correlation between location 

and food quality (they are not causes of each other), but if you condition on restaurants 

that have survived, it creates the correlation between the two, but it is not causal. 

Conditioning on a collider introduces unwanted selection effects. Remember that 

conditioning on a variable can be done by sampling data under one condition of that 

variable, subsampling data based on that variable, or including that variable in a 

regression model (although they can be included in structural causal models without 

conditioning on them).  

https://www.zotero.org/google-docs/?wIsZrq


Unless conditioning on a collider is core to the question being asked, conditioning on 

colliders should be avoided because they can heavily bias and even flip the estimated 

causal effect between exposure and outcome. Fig. 5 shows a simplified collider 

example. Here, higher forest density and higher species diversity might lead a 

researcher to place more feeders. This makes feeder density a collider because it is 

along a path between exposure and outcome, and has two arrows going into it. By 

default a backdoor path from exposure to outcome is closed at the collider and so no 

conditioning on the collider is needed. However, if we do condition on the collider then 

we open the backdoor path. This means that we can create or bias an association 

between forest density (exposure) and species diversity (outcome) by conditioning on 

the collider. As a note: conditioning on a variable that is caused by a collider (known as 

a descendant of a collider) can also introduce a bias similar to that of the collider itself, 

and should also be avoided. Apart from rare cases, we ideally want to avoid 

conditioning on a collider where possible. 

Returning to Fig. 5, the question might be “Does forest density cause species (bird) 

diversity?” An ecologist might be worried that the density of bird feeders might impact 

the results, and so try to control for it. But feeder density is a collider because it is 

caused by both forest density and bird species diversity (the arrows collide at feeder 

density). This means that it is a ‘bad control’ (Cinelli et al., 2020). Feeder density has no 

impact if it is left alone. However, if we condition on it then we create or bias an 

association between forest density and bird diversity by opening the path through feeder 

density as a backdoor path. This biases any estimate of the causal effect of forest 

https://www.zotero.org/google-docs/?59cWIn


density on bird species diversity, regardless of whether or not there is a causal 

relationship. 

It is important to recognise that collider bias can manifest even before we initiate 

statistical analysis, such as during the data-collection process or data processing. For 

example, in a comparison of detached wings of checkerspot butterflies that had been 

predated with a sample of butterflies that were not predated, Bowers et al. (1985) 

concluded that birds preferred to attack females (which are bigger) over males, and 

butterflies with light red wings over dark red. Imagine that we used the same data to 

examine whether sex caused redness. If we used the first sample – which is already 

conditioned on ‘predation’ – then we might observe an association between sex and 

redness, even if there is no association. This is because either sex or redness may be 

sufficient to make a prey preferred. However, this relationship is not seen if we look at 

the entire population (Fig. 6). 

Occasionally you do need to condition on a collider in the analysis, because it is part of 

the question you are asking (see the ‘obesity paradox’ for example; Banack & Kaufman, 

2013) . But then you need to close any new unwanted paths that conditioning on the 

collider opens. Fig. 7 shows an example DAG where this is the case if we want the 

direct causal effect of the exposure (X) on the outcome (Y). In this case we need to 

condition on B, which is a collider (arrows come into it from X and C), to close an 

indirect causal path. However, conditioning on B opens a path between the exposure 

and C. This can then be remedied by conditioning on both B and C, to isolate the direct 

causal path. 

 

https://www.zotero.org/google-docs/?EQBzUG
https://www.zotero.org/google-docs/?EQBzUG


IV. SELECTING YOUR MODEL BASED ON THE DAG 

(1) Backdoor adjustment 

A backdoor is a non-causal pathway (i.e. there is an arrow in a non-causal direction 

somewhere on the path). These pathways, if open, need to be closed so that causal 

pathways can be isolated. The ‘backdoor criterion’ helps researchers determine which 

set of variables –  the adjustment set –  need to be conditioned upon to estimate causal 

effects based on understanding of the motifs discussed below. We also recommend that 

ecologists read the excellent articles by Cinelli et al., (2020), Lundberg et al., (2021) and 

Wysocki et al., (2022). For guidance on drawing and reporting DAGs we recommend 

Tennant et al., (2021). 

Blocking non-causal paths between a cause variable (exposure) X and an outcome Y is 

known as closing a backdoor path. This is the most common approach to causal 

inference with observational data. A backdoor path represents a way that non-causal 

information can flow between the two variables from exposure to outcome. Blocking 

backdoor paths prevents non-causal associations from clouding the causal effect. The 

adjustment set is the set of variables that need to be conditioned on to close all 

backdoor paths between exposure and treatment, while keeping relevant causal paths 

open. Backdoor paths should ideally always be closed, while the question of whether to 

close some causal (forward) paths depends on whether the question relates to the total 

causal effect (as it usually does) or the direct causal effect (Table 1). This is why you 

need to clearly specify your estimand and whether your question relates to the total 

causal effect or the direct causal effect before establishing the adjustment set. Where 

the direct causal effect is required, indirect causal paths (i.e. mediated causal paths) 

https://www.zotero.org/google-docs/?zPSnWd
https://www.zotero.org/google-docs/?fgPuxx
https://www.zotero.org/google-docs/?I3ShhI


should be closed by conditioning on relevant mediators, but if the total causal effect is 

needed then indirect causal pathways should be left open. This is often where studies 

go wrong, for example (Montgomery et al., 2018) showed that around half of political 

science studies wrongly conditioned on post-treatment variables (which will be 

mediators). The total causal effect is typically needed but mediators are frequently 

conditioned on, blocking the causal path. 

To know which variables we need to include in our adjustment set for conditioning on to 

block the right pathways, we need to write out all paths – causal and non-causal – from 

the exposure to the outcome (Cinelli et al., 2020; Wysocki et al., 2022). This allows us 

to identify paths already closed by colliders, non-causal paths that go through 

confounders, and indirect causal paths that are mediated. It is worth repeating that to 

distinguish causal and non-causal paths, we just need to look for any sequence of 

arrows between exposure and outcome that starts with an arrow pointing towards the 

exposure. Using the DAG in Fig 8 as an example, we can sketch all possible paths from 

the exposure (X) to the outcome (Y): 

 

1. X → Y    (direct causal path) 

2. X → C → Y    (indirect causal path) 

3. X ← D ← U1 → B → Y  (backdoor path) 

4. X ← B → Y   (backdoor path) 

5. X ← B ← U1 → D → Y (backdoor path) 

6. X ← A → Y   (backdoor path) 

7. X ← D → Y   (backdoor path) 

https://www.zotero.org/google-docs/?Hb0ZZr
https://www.zotero.org/google-docs/?xQhiXr


8. X → E ← Y   (non-causal path already closed by collider) 

 

If we want the total causal effect then the minimal adjustment set for this DAG is: A, B, 

D (the confounders). These variables in combination close all five backdoor paths. B by 

itself, for example, closes backdoor paths 3, 4, and 5. If we wanted the direct causal 

effect then we would add C to the adjustment set. Path 8 remains closed providing that 

we do not condition on E. 

Note that there may be multiple different adjustment sets that could isolate the causal 

pathways. But the idea is to identify the minimal adjustment set. A practical way to 

establish the adjustment set for more complex studies is to use either the DAGitty web 

app or R package (Johannes Textor et al., 2016). With DAGitty, you can draw your 

proposed DAG and it will automatically provide you with the minimal adjustment set(s) 

given your exposure and outcome. It will also allow you to investigate what additional 

variables (if any) you should be conditioning on if you insist on controlling for any given 

set of predictors. Note that the minimum adjustment set reduces the possibility of 

overcontrol bias. But you might not want to use the minimum if, for example, the 

minimum suggests conditioning on a variable that you either do not have data on, or 

whose data you do not trust as much. Then you might want to condition on a few more 

variables that block the paths in a different (less minimal) way. 

 

(2). Frontdoor adjustment 

An approach that might be useful in ecology is frontdoor adjustment (Pearl, 2009), 

which can be used to estimate causal effects when you cannot directly control for 

https://www.zotero.org/google-docs/?nZaozz
https://www.zotero.org/google-docs/?yzCDCc


confounders (such as genetic confounders). Imagine a scenario where you want to 

understand the effect of an exposure (X) on an outcome (Y), but there are unobserved 

confounders (U) that you cannot adjust for (Fig. 9). If there exists a variable (or set of 

variables) Z that acts as a mediator between X and Y, then we may be able to use Z to 

estimate the causal effect of X on Y. For Z to be a valid frontdoor variable, two main 

conditions must be satisfied: (1) There should be no unblocked backdoor paths from X 

to Z. In other words, X affects Z and only then does Z affect Y; and (2) there should be 

no unobserved confounders between Z and Y after controlling for X. 

After you have verified that Z meets these criteria, you can then proceed to quantify two 

specific pathways: (1) The effect of X on Z; (2)The effect of Z on Y, while controlling for 

X. To obtain an unbiased estimate of the causal effect of X on Y, you then multiply these 

two quantities. This mathematical operation allows you to bypass any unobserved 

confounding factors that might otherwise skew your results. By breaking down the 

causal effect into these two pathways and then taking their product, you can achieve a 

more accurate and reliable estimate of the causal relationship between X and Y. 

 

V. NEVER USE MODEL SELECTION (SUCH AS AIC) FOR CAUSAL INFERENCE 

There are two most common approaches to selecting the variables to include in a model 

in ecology. The first is to include all variables in the analysis. From the arguments made 

above, you will by now understand why this is not a valid approach for causal inference. 

The second most common approach is to use a model selection based on information 

criteria (IC), such as the Akaike information criterion (AIC). However, such approaches 

are based upon predictive value with a penalty for model complexity, and so are not 



suitable to be used for causal inference. For clear accounts of this problem in ecology, 

see Addicott et al., (2022) and  Arif & MacNeil, (2022). The problem is that causality is 

unrelated to predictive outcome-focused value or model complexity, and so IC is not 

appropriate for causal inference. A common approach is to include mediators simply 

because they are in the fitted model with lowest AIC. This happens because mediators 

will be closer to the outcome than the cause of interest, and so can provide better 

predictive ability. But conditioning on mediators blocks causal pathways. Thus, 

information criteria should only be used in the rare cases in ecology where a predictive 

analysis is needed. 

Using R2, F-tests, and significance for model selection is also flawed from the 

perspective of answering causal questions. Stepwise regression, where variables are 

repeatedly added (forward) or removed (backward) from an analysis based on set 

inclusion/exclusion criteria, is a questionable statistical approach, due to its relationship 

to data dredging (Causton, 2002), let alone causal grounds. From the causal inference 

perspective, it is clear that statistical significance does not tell you what variables to 

condition on to isolate causal effects. 

The use of principal component analysis is also common in ecology, but again, requires 

careful consideration needs to be taken here. Just because some of the variables group 

together to explain a proportion of the outcome variance, it does not mean that they are 

causal. All of these approaches are agnostic as to whether the model is capturing the 

data-generating process. 

Let us return to the group size example discussed earlier (Fig. 3). A model selected 

using a predictive approach such as AIC might well select both group size and vigilance 

https://www.zotero.org/google-docs/?kAD2FY
https://www.zotero.org/google-docs/?Tx7BkF


rate as predictors, because the mediator is a good predictor of predation rate. This is 

fine for a predictive task, where all we care about is predicting a predation rate and 

ignoring any scientific question. But if we want to know what effect group size has on 

predation rate then we know we should not be conditioning on vigilance rate, because 

we would want the total causal effect. The only valid way to select a correct model is to 

draw a DAG to derive the adjustment set. 

 

VI. DIFFICULT DAGS, BI-DIRECTIONAL ARROWS, AND MISSING VARIABLES 

(1) What if our DAG is not correct? What if the system is too complex? 

In many ecological situations, there will be natural concern as to whether a particular 

DAG is ‘correct’. We have already argued that a causal structure is assumed whether or 

not a DAG is drawn, and the alternative to drawing a DAG is to bury our heads and 

accept the implicit and unlikely causal structure implied by our model. But to quote an 

informative social media post: "...it’s a common (mis)conception that arrows and nodes 

in a DAG are assumed to exist in or represent the real world. Rather than a best guess 

at reality… DAGs are most useful when they encode a “realistic worst case scenario”. 

The researcher does not say “I can estimate this effect if all these arrows are true.” 

Rather, they say “I can estimate this effect even if all these arrows are true.” By adding 

nodes and arrows, the researcher is allowing a bunch of challenging relationships to 

exist and can show that their identification strategy works even if they in fact do exist. 

This is why the absence of an arrow is a stronger assumption than the presence of 

one." (Dausgaard, C. H.  [@chdausgaard], 2023). 

https://www.zotero.org/google-docs/?UJyPKu


Another common question relates to what to do if you have a few plausible DAGs. The 

answer here is to draw each of them and see if they share the same adjustment set. If 

they do, then you simply go ahead with the same regression, which is valid for all 

plausible DAGs. If the DAGs do not share an adjustment set then you need to run 

multiple analyses and report the differences that result from each DAG. This is 

scientifically useful, honest, and transparent. For example, you might be unsure about 

the direction of a particular effect. The only way to deal with this is to draw a DAG with 

the effect in each direction and derive a model with the correct adjustment set for each. 

Sometimes it will produce the same adjustment set anyway, and at other times you will 

need to report both analyses with the different assumptions made clear through the 

DAG. This is much more scientifically valuable than taking a non-causal approach to the 

problem. Of course, an analysis based on a number n of DAGs is more work than an 

analysis based on a single DAG, but commonality of workflows mean that it will involve 

much less than n times the work. Similarly it will need more space in its presentation, 

but this space too will not scale linearly with the number of DAGs.  

There might also be concern that a particular ecological system is ‘too complex’. First, 

we should remember that we are isolating the causal paths from a given exposure to an 

outcome. We only need to capture what is impacting the estimate of that particular 

causal path, and conditioning on variables will close off paths to entire sections of the 

system in question, isolating a smaller part of the system relevant to the exposure and 

outcome of interest. Second, if you genuinely cannot understand the data-generating 

process even approximately, then you certainly cannot justify a correlational approach 

either. How can you know if any of the correlations relate to anything meaningful? It is 



best to try to get as close to causal relationships as possible while acknowledging 

limitations. For more extremely complex diagrams, it is possible to perform some 

simplification of the DAG. For example, removing variables that (a) are irrelevant for 

isolating the causal pathways, (b) we have high confidence are of little importance, or 

(c) are redundant (Huntington-Klein, no date). 

Defining a sensible DAG is an iterative process, requiring careful refinement as 

understanding of the system improves. In complex systems, researchers may find that 

their initial DAG needs multiple revisions before it accurately reflects the causal 

relationships in their data. This is normal and should be embraced as part of the causal 

modelling workflow. A common mistake is assuming that once a DAG is drawn, it is final 

—when in reality, each DAG is a hypothesis about the causal structure that should be 

scrutinized and, if necessary, revised. Many researchers new to causal inference 

struggle with the feeling that their DAGs are ‘wrong’ or incomplete. The goal is not to 

achieve a perfect DAG but rather a useful one that makes causal assumptions explicit 

and allows for rigorous estimation of effects. Documenting changes and justifications for 

different DAG structures can improve transparency and scientific rigor. 

 

(2) What if we need bi-directional arrows on our DAG? 

Directed Acyclic Graphs (DAGs) are structures without cycles, meaning causality 

cannot loop back on itself. Two-way causal relationships in a DAG may be necessary in 

the following circumstances. (1) where there is uncertainty about causality direction. If 

you are unsure about the direction in which causality flows, create two separate DAGs, 

each assuming a different causality direction. Sometimes, the necessary adjustments 

https://www.zotero.org/google-docs/?Fz4jfH


for causal inference (adjustment set) are the same for both DAGs. In this case, the 

direction of causality might not impact the result. For instance, if using the adjustment 

set prevents any influence through the bidirectional arrow in both DAGs, the direction is 

irrelevant. (2) Where there is feedback between nodes. If you believe there is a 

feedback loop (i.e., variables influence each other over time), you need to account for 

time in your model. This is similar to temporal regression models. You would include 

time-dependent versions of your variables (like Xt and Xt-1) in your DAG. The time scale 

can vary – it could be annual, monthly, or daily – leading to more time-dependent nodes 

in your DAG. This approach helps to model the temporal dynamics of causality. For 

further reading we recommend (Rohrer & Murayama, 2023; Runge et al., 2023). 

 

(3). What if we have missing variables? 

Sometimes there will be variables that are part of the data generating process that we 

know exist, but have not been measured [called latent variables (Fig .10) denoted U]. 

Sometimes these variables might be abstract and intangible but you know there is, for 

example, a common cause of two variables. These latent variables should always be 

included in your DAG because they are a possible source of backdoor paths . Not 

having measurements of these variables often does not doom your analysis (see 

Section VI.4), but they should always be considered, whether or not they do so. 

 

(4). What if our DAG shows we cannot isolate the causal effect? 

Identifiability is our ability to isolate specific causal pathways. Our estimand is 

'identifiable' if we can confidently isolate this effect from other influences. Otherwise, it is 

https://www.zotero.org/google-docs/?lImDjS


'unidentifiable' and we cannot isolate the causal effect. For instance, when a DAG 

suggests conditioning on an unknown variable – like an unmeasured confounder – our 

estimand will sometimes become unidentifiable. This can be remedied if you are able to 

condition on a variable that blocks backdoor paths through an unobserved variable (Fig. 

10), but when we have no option other than to condition on the unobserved variable the 

estimand is unidentifiable. 

Some ecologists might be wary of this approach, fearing that a causal model could 

reveal insufficient variables for the causal effects in question. However, this concern 

underscores the method’s value. An unidentifiable causal effect remains unidentifiable, 

whether or not you draw the DAG; either way you cannot answer the question with the 

data that you have. We need to know this, and this is much better than the alternative of 

taking an associative approach where it is unclear what is even being discovered. 

Whatever we do, there are underlying assumptions about the causal structure 

embedded in the model. If we take a descriptive or predictive approach then we are 

asking a different question, and it will be unclear what that question even is. 

Yet even in the face of unidentifiable effects there is hope. Partial identifiability is 

achievable with clear causal assumptions and well-defined limitations. Partial 

identifiability refers to a situation in causal inference where some, but not all, aspects of 

a causal effect can be isolated from the available data and the underlying model. In this 

context, while the full causal effect may not be completely identifiable due to limitations 

in data or model structure, certain bounds or components of the effect can still be 

estimated with some degree of confidence. 



For unobserved, yet vital, variables, ecologists have options to: (a) go back and collect 

data on those variables, (b) collect data on a different variable that allows you to block 

the path to an unobserved variable; or (c) use domain knowledge to simulate the impact 

of the missing variable. Simulating the impact of unobserved variables is a useful way 

forward with partial-identifiability. By varying the influence of missing variables 

systematically, we gain insights into how these unmeasured confounders might affect 

our primary estimand and allowing honest and transparent scientific progress to be 

made (Daniel et al., 2012; Cinelli et al., 2020, n.d.; Cinelli & Hazlett, 2020; D’Agostino 

McGowan, 2022). Tools like the tipR package for R might make this process more 

accessible (McGowan et al., 2023). 

 

VII. WHEN SELECTION BIAS IS A CAUSE 

The data-generating process includes the data collection process. DAGs also help us to 

see whether selection bias in data collection has an undesirable causal effect. Selection 

bias takes place in the data-collection process and often results in conditioning on 

colliders due to biased selection. We recommend reading the excellent “A structural 

approach to selection bias” (Hernán, Hernández-Díaz & Robins, 2004) for a more 

detailed account. At its core, selection bias occurs when the subjects in your sample are 

not representative of the larger population you are interested in. This can lead to 

erroneous conclusions about causal relationships. Although conditioning on a collider 

can be a source of selection bias, selection bias can also come from other sources, 

such as bias in data collection or pre-filtering of the data. 

https://www.zotero.org/google-docs/?DXYhGx
https://www.zotero.org/google-docs/?DXYhGx
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https://www.zotero.org/google-docs/?AKzzUQ


‘Loss-to-follow-up’ is one example of selection bias. In many observational studies and 

experiments, some animals will be lost or stop responding to the exposure. Removal of 

these individuals can cause bias. In the hypothetical example shown in Fig. 11, in which 

we are investigating if urban proximity causes predation rate, territorial range of birds 

might affect whether they can be tracked for the full length of the study, and thus 

territorial range is a cause of censoring, as is urban proximity. If only birds that were 

tracked for the entire study are included in the analysis, the process of removing those 

with loss-to-follow-up involves conditioning on censored=0, thus opening the backdoor 

path from the exposure to the outcome. This DAG and its variations are quite general 

and the structures apply to any loss-to-follow-up scenario or self-selection scenario 

(Hernán et al., 2004). We note that a more complex example might have food 

availability and territorial range as time-dependent variables that impact each other, but 

the same conclusions apply. 

What of cases with observational or experimental data and no way to avoid selection 

bias already present? In this case the selection bias needs to be explicitly modelled and 

corrected for. In some cases you might be able to condition on variables that lead to the 

collider. Returning to our example in Fig. 11, conditioning on territorial range would 

close the backdoor path opened by the collider. Thus, even though the collider opens 

the path, it can be closed again. 

 

VIII. WHEN MISSING DATA IS A CAUSE 

Many ecological datasets contain missing data and/or variables of interest that are 

imperfectly measured. Here we are not talking about missing variables byt instead are 

https://www.zotero.org/google-docs/?wVRRep


focusing on missing rows of data for the variables that have been collected. The 

process by which data are missing is often part of the data generating process and thus 

causal (Daniel et al., 2012). There are three primary mechanisms for missing data: 

Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not 

At Random (MNAR)  (Lee et al., 2023). Failing to consider the causal process for 

missing data can interfere with the estimation of the causal effect. This is why it is 

alarming that the default behaviour of many statistics libraries is to remove (sometimes 

silently) missing data.  Equally, replacing missing data with some estimated value (often 

the mean of recorded values) can also be biased. Instead, missingness needs to be 

included as part of the causal diagram so that you can account for the ‘missingness’ 

process. 

In general, pathways from the outcome to the missing data variable will cause bias, but 

causal diagrams allow us to understand the nature of the missing data. The way to deal 

with causal missing data bias can be to condition on variables to close pathways (e.g. 

conditioning on a variable along a path that the missing data is on between the 

exposure and outcome) or more commonly to impute the missing values as part of a 

regression, depending on the causal nature of the missingness. With regression 

imputation the information of other variables is used to impute missing values by 

regression imputation (McElreath, 2020). We do not cover missing data in detail here, 

but recommend "Using causal diagrams to guide analysis in missing data problems" 

(Daniel et al., 2012) and chapter 15 of the excellent book “Statistical Rethinking” 

(McElreath, 2020). 

https://www.zotero.org/google-docs/?tMMyq5
https://www.zotero.org/google-docs/?8BvIw2
https://www.zotero.org/google-docs/?Nsqeoq
https://www.zotero.org/google-docs/?aOKfNZ
https://www.zotero.org/google-docs/?k0z1Dv


In cases where a mediator is imperfectly measured or there is unmeasured confounding 

between the mediator and the outcome, decomposition of causal effects (i.e. need to 

condition on mediators) can lead to biased estimates if not used carefully [e.g. (Böhnke, 

2016; Hernman, Miguel A. & Robins, James M., n.d.)]. Researchers conducting 

adjusting for mediators (conducting mediation analyses) should carefully consider these 

issues to ensure valid inference. 

 

IX. THE MUTUAL ADJUSTMENT (TABLE 2) FALLACY  

The mutual adjustment fallacy,  often termed the Table 2 Fallacy (Westreich & 

Greenland, 2013), is extremely common in ecology, with studies reporting all of the 

coefficients of a regression (or marginal effects) as if they CAN all be interpreted in the 

same way (Cole & Hernán, 2002, 2002; Keele, Stevenson & Elwert, 2020; Lundberg et 

al., 2021; Hünermund & Louw, 2023). But this is not the case: you cannot always 

estimate multiple causal effects in the same model (unless it is a structural causal 

model, which we do not cover in this review). The causal diagram for one estimand or 

exposure-outcome pair, is often not the same as the causal diagram for another 

exposure-outcome pair. For example, something that is a confounder in one case might 

be a mediator for the other. Estimands require that the causal pathways of one or more 

variables/causes of interest are isolated, and non-causal paths blocked corresponding 

to each estimand. 

Estimating causal effects also often requires conditioning on confounders. While it is 

critical to condition on confounders for this purpose, their coefficients are often wrongly 

interpreted as meaningful. In reality, confounders are incorporated purely as statistical 

https://www.zotero.org/google-docs/?JuOgxe
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controls to obtain an unbiased estimate of the primary causal effect. That is, the causal 

diagram used to obtain the adjustment set is based around the estimand and its 

corresponding cause(s) and effect. The causal pathway from the confounders to the 

outcome has not necessarily been isolated, and you would probably need a DAG and 

analysis specifically targeted at that confounder, to discern its causal effect. The same 

applies to examining multiple causes of interest. The adjustment set that you need for 

one cause might be different from the adjustment set that you need for a different 

cause. For example, something that is a confounder for one cause might be a mediator 

for another, so you should condition on it for one cause and should not for the other. 

The only way to tackle this with standard off-the-shelf regressions is to have a model for 

each cause that you are interested in. 

To illustrate, consider a basic example where we want to know the total causal effect of 

the total food in a territory (exposure) on the average body mass (or weight) of a fox 

(here the outcome). Fig. 12 demonstrates the need to adjust for confounders, such as 

group size (a common cause of both the exposure and outcome) and ‘area of territory’ 

(a shared cause of exposure, outcome, and group size). Imagine that we fit a regression 

to estimate the total causal effect of total food in territory on average weight of fox. For 

this specific total causal effect, group size and area of territory are confounders and so 

we need to condition on them to close backdoor paths. 

This model can estimate the total causal effect of total food in territory but the causal 

effects of the variables group size and area of territory are uninterpretable as causal 

effects. This is because the model is built around isolating the causal pathways from 

total food in territory to average weight of fox only.  If we wanted to get the total causal 



effect of the area of territory, for example, the DAG shows that our adjustment set 

should be empty; we would not condition on any variables other than the exposure. The 

total causal effect of area of territory cannot be estimated with the original model, 

because we conditioned on group size and total food in territory, closing three causal 

pathways between area of territory and average weight of fox. Thus, we need a different 

statistical model for each estimand or exposure-outcome pair. This is almost unheard of 

in ecology, but is the only way to perform the analysis correctly. 

For a model that conditions on the adjustment set suggested by the DAG, it only makes 

sense to report the estimated causal effect for total food in territory and not to report the 

coefficients for the other variables, because they are not causally meaningful for this 

model in the same way that the estimand is. For estimates of ‘control variables’ to be 

given a causal interpretation, they need to become the exposure variable in the DAG 

and the corresponding adjustment set derived for that exposure-outcome pair. The 

same argument applies to multiple exposures. You need to check that each exposure in 

the model has the same adjustment set. If it does not then you need a different DAG 

and corresponding model for each exposure-outcome pair, if using a regression 

approach. 

 

X. CONNECTING YOUR MODEL TO YOUR QUESTION 

 

(1) Defining estimands for average treatment effects 

An estimand defines the causal effect of an exposure on the outcome that we aim to 

estimate. It could be defined informally, along with the DAG, by clearly specifying the 



exposure, outcome, what any contrast is between, and whether the direct or total effect 

is required. Or it can ideally be formally specified (Lundberg et al., 2021). We might, for 

example, have a question about whether the diversity of butterflies in forests in northern 

Borneo is caused by forests being logged or unlogged (Hamer et al., 2003). Here the 

estimand would be the difference in the expected diversity of butterflies between forests 

where logging has occurred (treated) and forests with no logging (control). This defines 

the estimand because we are interested in the causal effect of logging (versus not 

logging) on butterfly diversity. We will return to this example below. 

Without defining the estimand, it is often difficult for a reader to decipher how the 

analysis connects to the question, and even more difficult to understand conflicting 

results between studies. Notably, discrepancies between two studies can arise merely 

because they implicitly refer to different estimands, even when addressing a common 

question. To avoid such ambiguity, estimands are best articulated using an equation 

along with an essential statement as to whether the investigation focuses on discerning 

the total (through all causal pathways) or direct causal effect, and how that relates to the 

ecological question, which we expand on below. 

Depending on our questions, we may seek the total causal effect or the direct causal 

effect. Each of these will change the ecological meaning of the results. As a reminder, 

direct causal effect is simply the direct effect of the exposure (the cause of interest) on 

the outcome, typically represented by an arrow from the exposure of interest directly to 

the outcome. The total causal effect is the total over all forward causal pathways from 

the cause to the outcome; it includes the direct causal effect and any indirect causal 

paths that go through other variables (Table 1). This is an important distinction and 

https://www.zotero.org/google-docs/?SCltt6
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which effect you need depends on your specific ecological question. For our butterfly 

diversity question, we want the total causal effect of logging on butterfly diversity. 

Pearl introduced the do() operator to represent an intervention on a variable (Tucci, 

2013; Pearl et al., 2016b) and express the causal effect in terms of experimental 

interventions. There are mathematical reasons for this, but here we will simply use the 

do() operator as a way to define which variable is the exposure that we later statistically 

(rather than physically) intervene on when calculating marginal effects. For example, 

p(Y|do(X=x)) gives the distribution of Y we would observe if we experimentally 

intervened in the data-generating process setting the variable X to take value x. 

Statistical controls do not use the do() operator because there is no intervention. 

Instead they are represented by conditional statements. In causal inference, the 

average causal effect of an exposure on an outcome is often referred to as the average 

treatment effect (ATE). We use the term exposure to refer to a potential cause of the 

outcome we are interested in. The term originates in epidemiology, where it describes 

variables like environmental conditions, behaviours, or medical treatments that 

individuals are “exposed” to. 

For a binary exposure X and outcome Y, the ATE is formally defined as: 

,   (1) 𝐴𝑇𝐸 = 𝐸[𝑌| 𝑑𝑜(𝑋 = 1)] − 𝐸[𝑌| 𝑑𝑜(𝑋 = 0) ]
This represents the expected change in the outcome Y under a hypothetical intervention 

that sets X to 1 versus 0 for the entire population. Note that this is the causal estimand, 

distinct from what we observe without intervention. In contrast, for observational data 

we require statistical conditioning, which does not involve an intervention and is 

therefore conceptually different. To achieve the ATE we use the backdoor criterion: 

when we have an appropriate set of covariates Z that blocks all confounding paths 

https://www.zotero.org/google-docs/?Sny8J4
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between X and Y, this causal effect can be identified from observational data as the 

identified statistical estimator: 

,    (2) 𝐴𝑇𝐸 = 𝐸𝑧[ 𝐸[𝑌| 𝑋 = 1, 𝑍] − 𝐸[𝑌| 𝑋 = 0, 𝑍] ]
In this expression, the inner expectations E[Y | X=x, Z] are obtained from a regression 

model. These are conditional on the covariates Z, which are included to control for 

confounding statistically. The outer expectation E[⋅] indicates that we are averaging 

over the empirical distribution of Z in the population. 

Returning to our logging example the statistical estimator of the ATE would be: 

 𝐴𝑇𝐸 = 𝐸[𝑌|𝑑𝑜(𝑙𝑜𝑔𝑔𝑖𝑛𝑔 = 1)] − 𝐸[𝑌|𝑑𝑜(𝑙𝑜𝑔𝑔𝑖𝑛𝑔 = 0)]
,  (3) = 𝐸𝑧[ 𝐸[𝑌|𝑙𝑜𝑔𝑔𝑖𝑛𝑔 = 1,  𝑍] − 𝐸[𝑌|𝑙𝑜𝑔𝑔𝑖𝑛𝑔 = 0,  𝑍] ]

where Z would be the adjustment set derived from the DAG. 

But what if your exposure X is continuous? In this case, we might be interested in the 

average marginal effect of a one-unit increase in X, averaged across the population. 

Under the same causal assumptions, the estimand is: 

,     (4) 𝐴𝑀𝐸 = 𝐸𝑍[ 𝐸[𝑌|𝑋 + 1,  𝑍] − 𝐸[𝑌|𝑋,  𝑍] ]
This expression estimates the causal effect of a one-unit increase in X, conditional on 

confounders Z. Note that if you lack variation in X, you cannot estimate the causal effect 

— there is simply no basis for comparison, regardless of the method. In causal 

inference, this is termed a violation of the positivity assumption (Hernán & Robins, 

2006). But this limitation applies to any statistical analysis, not just causal ones. 

 

(2) Calculating average treatment effects 

https://www.zotero.org/google-docs/?hH7AZ0
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Once a model has been fitted to the data, we can calculate the ATE. To calculate the 

ATE it is often best to look at marginal effects to obtain interpretable and meaningful 

causal effects. A marginal effect typically measures the change in the expected value of 

the outcome for a one-unit change in the exposure, averaged over the entire sample (or 

at specific values) of the adjustment set (Bartus, 2005; Pearl, 2009; Mize, 2019). 

Marginal effects offer a more interpretable and meaningful measure than model 

coefficients, by quantifying the expected change in the outcome in units of the outcome 

itself rather than arguably impractical and difficult-to-interpret log-odds and other such 

summaries. Marginal effects are typically based on model predictions rather than 

attempts to interpret model coefficients. The difficulty ecologists can have in relating 

measures like log-odds to real-world implications is potentially why many ecologists 

instead focus their findings simply on whether or not an effect is significant, despite that 

also having little meaning for the ecological question either. This makes marginal effects 

particularly useful for placing the findings in a clear ecological context. 

In the simplest linear regression model where we have, for example, yi ~ β0 + β1x + β2z + 

N(0,σ2), the coefficient β1 represents the marginal effect of x on y. Because it represents 

the change in y per unit change in x, holding other variables constant — that is, ∂y/∂x, in 

a linear model. However, it is uncommon that a basic linear model is the right choice in 

ecology. If there is-nonlinearity in your model, if you have random effects, or if your 

model is anything other than a basic linear structure, then this interpretation does not 

stand. 

In a model with random effects, for example, simply looking at the fixed-effect 

coefficients is akin to setting the random effects to zero, which means assuming there is 

https://www.zotero.org/google-docs/?fFeQlM


no variability between levels of that factor. This approach ignores the unique influences 

of each level that the random effects capture. To obtain the average effect of an 

exposure across all levels, we need to average over the marginal effects, which include 

the contributions of random effects.  

In non-linear models, such as logistic regression, the relationship between the predictor 

variables and the outcome is not constant; it changes depending on the values of the 

predictors. Model coefficients in non-linear models typically represent the change in the 

log-odds (for logistic regression) or some other transformation of the outcome, not the 

change in the outcome itself. These transformed coefficients cannot be directly 

interpreted as the change in the probability of the outcome because the effect of the 

predictors depends on their current values. Therefore, the coefficients do not provide an 

intuitive measure of the actual impact of changes in the predictor variables on the 

probability of the outcome. This is why marginal effects might be preferred for 

interpretation in such contexts, as they translate these coefficients into the actual 

change in the predicted probability of the outcome. 

The general process to calculate marginal effects for a binary variable X is: 1) Predict 

the outcome for each observation while setting X=0 (keeping all other variables at their 

observed values), then predict the outcome again for each observation while setting 

X=1. 2) Compute the difference between these two predicted outcomes for each 

observation. 3) Take the mean (and optionally other summaries) of these differences 

across all observations. 



We provide a coded example of how to do this in Appendix S2. This procedure 

estimates the average treatment effect (ATE) under the assumption that confounding 

has been addressed using an appropriate adjustment set. Formally, the estimand is: 

   (5) 𝐴𝑇𝐸 = 𝐸𝑧[ 𝐸[𝑌|𝑋 = 1,  𝑍] − 𝐸[𝑌|𝑋 = 0,  𝑍] ]
where Z is the set of variables in the adjustment set derived from the DAG. 

A full review of marginal effects is outside our scope herein, but this process can be 

generalised to continuous and non-linear variables by taking the average marginal 

effect at different exposure ranges. Some discussion and example code is provided in 

Appendix S2. For more information we also refer the reader to the excellent 

marginaleffects R package  (Arel-Bundock, 2022). 

 

XI. CAUSAL ESTIMATION 

The main purpose of this paper is to stimulate ecologists to think about how to connect 

their inherently causal questions to their analysis. However, it is still, of course, 

important to consider how to proceed from the causal diagram to the analysis. Causal 

estimation aims to quantify the causal effects identified through causal diagrams. This 

process involves specifying and fitting appropriate models to estimate the causal 

relationship between the exposure and outcome variables as depicted in the DAG. You 

can go quite far using a GLM or GLMM for this purpose bit, as always, you need to 

select an appropriate model for the specific estimation. 

When you use any regression model with a DAG you need to essentially require the 

causal structure in the DAG to work with the causal structure that you implicitly have in 

the regression model. Regression models assume that the independent variables are 
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exactly that: independent. The assumption is that all of the independent variables cause 

the outcome variable, but not each other. To work with this, we use the DAG to inform 

us as to the appropriate variables to condition on (i.e. good controls to include in the 

model) and what not to condition on (i.e. bad controls to leave out of the model). An 

alternative approach to this is to create a structural causal model, where the structure of 

the causal relationships in the model matches the DAG (Pearl, 2012). Although this has 

several advantages, including dealing with the table 2 fallacy in a single model, here we 

focus on regressions. 

As with any regression, there are many considerations such as the likelihood function 

for the outcome, link function, and the functional form of the relationship between each 

independent variable and the outcome variable. Note that DAGs only hypothesise the 

real-world data-generating causal structure, as diagrams they do not represent 

functional form: that is a consideration for the estimation stage. Decisions here might 

be, for example, whether a non-linear relationship is needed (e.g. with splines or 

Gaussian Processes) and whether interactions are appropriate. A full discussion of 

estimation is outside the scope of this article, but we direct the reader to the excellent 

texts provided by McElreath (2020), Gelman, Hill & Vehtari, (2020a); Gelman et al. 

(2020b). 

Once the model has been appropriately fitted to the data, it can be queried using 

marginal effects (see Appendix S2). 

 

XII. ECOLOGICAL DAG EXAMPLE 

https://www.zotero.org/google-docs/?wct7wX
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We now use the influential paper Why individual vigilance declines as group size 

increases, (Roberts, 1996) as an example. This paper meticulously and thoughtfully 

presents a verbal consideration of complex causal issues, but did so before the 

widespread use of DAGs. We therefore construct a DAG from the descriptions given in 

the text (Roberts, 1996). This paper provides verbal arguments of hypotheses about 

how individual vigilance and group vigilance changes with group size. Roberts (1996, 

p1077), citing (Elgar, 1989) discusses the “...familiar caution that correlation does not 

imply causation”. Here our intention is to go through drawing a full DAG based on the 

descriptions given. 

Roberts (1996, p1077): “There are two main hypotheses to explain the widespread 

existence of an inverse relationship between group size and [group] vigilance.” In the 

first hypothesis “.... animals benefit by flocking because the vigilance of flock-mates 

leads to an increase in the probability of detecting a predator within the time it takes 

to attack.” In the second “individuals in larger groups can enjoy the same or improved 

predator detection rate while scanning less frequently and having more time to 

feed.” In both of these cases, the exposure is clearly group size, while the outcome 

appears to be both individual vigilance rate and group vigilance rate, which are each 

tied to predator detection rate, so we start the DAG with these. 

Roberts (1966, p1079) continues: “Predator attack rate depends on an ‘encounter 

effect’ (Turner & Pitcher, 1986; Inman, A.J. & Krebs, J., 1987), that is, larger groups may 

be more likely to be detected by a predator.” This implies that group size → detection 

rate. 

https://www.zotero.org/google-docs/?f3oMIy
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Next (p1080) “in a larger group an individual has a lower chance of being taken” 

Implying that Group size -> individual predation risk (hereon ‘predation risk) 

Also (p1978) “An additional potentially confounding factor not considered by Elgar 

(1989) is that the perceived level of risk of attack may decline with the passing of time at 

a site without the appearance of a predator” This implies several causal links: 

passing of time → individual vigilance rate 

passing of time → group vigilance rate 

Here, passing of time only becomes a confounder if we also think that: 

passing of time → group size 

Roberts (1996, p1078) further states “...larger groups may tend to feed on better food 

supplies and animals feeding on better food supplies may spend less time on other 

activities such as vigilance. Other potentially confounding effects include distance from 

cover, age, sex and observer proximity (Elgar 1989).” It’s unclear how these are 

considered confounders without drawing a DAG. Food supply is named as a 

confounder, but its description reveals it as a mediator when the DAG is constructed 

from the explanations. The DAG requires thought but we are likely to conclude that: 

group size → better food supply 

better food supply → individual vigilance rate 

better food supply → group vigilance rate 

distance from cover → group size 

distance from cover → predation risk 

sex → group size 

sex → predation risk 

https://www.zotero.org/google-docs/?yBdWiL
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observer proximity → group size 

observer proximity → individual vigilance rate 

observer proximity → individual vigilance rate 

Finally, because there is much discussion in Roberts (1996) about individuals being 

attacked, predator detection of the individual, and survival, we have also included those 

as nodes. However, as they are not part of any pathways between exposure and 

outcome in the DAG then data on them do not need to be collected. Once we have 

drawn the DAG, which produces the DAG in Fig. 13, we can reconsider whether we 

need to add more arrows. 

For Fig. 13 we used DAGitty to help us define the adjustment set for the total causal 

effect. We have set the causal model so that group size is the exposure (hence it is 

green with a triangle) and that there are potentially two outcomes (blue with an I in the 

middle). Normally we would consider outcomes one at a time, but a single diagram is 

possible for this example because the pathways do not interfere with each other. 

DAGitty classifies the nodes as red = confounder (ancestor of exposure and outcome) , 

blue = mediator or competing exposure (ancestor of outcome), and grey = redundant 

(not part of any pathways between exposure and outcome). Once the DAG is drawn, 

DAGitty computes the adjustment set, here sex, age, observer proximity, distance from 

cover, and potentially passing of time (if we believe time changes group size). We 

should ensure not to condition on better food supply which, despite being discussed by 

Roberts (1996) as a confounder, is actually a mediator following their subsequent 

causal description. 



Note that even though there are two outcomes here, this DAG does not suffer from the 

mutual adjustment fallacy, because the causal paths for each outcome have been 

isolated in this case. You can again see that if survival (or predation rate) was the 

outcome, then we should not condition on vigilance (group or individual) because this 

would block a causal pathway, and we want the total causal effect. 

 

XIII. Counterfactuals 

So far we have discussed population-level interventions. By using different interventions 

(e.g. exposed / not exposed) you can calculate the ATE. However, with causal inference 

you can also calculate individual-level or group-level effects under different hypothetical 

scenarios. These are called ‘counterfactuals’. Whereas interventions are based on 

hypothetical “what if” scenarios comparing two interventions, counterfactual questions 

involve comparing what actually happened (the factual) with what would have happened 

under a different set of circumstances (the counterfactual). Counterfactuals on 

hypothetical scenarios are assessed at levels lower than the entire data (e.g. individual 

or group level) (Pearl et al., 2016b). We should note that the term ‘counterfactuals’ is 

often used – in deviation from Pearl’s original definition – to describe two 

population-level interventions. Here we adhere to Pearl’s definition, which relates to a 

distinct concept. 

When you consider a counterfactual, the question essentially being asked is: “What 

would have happened to this specific individual (or group) had the intervention not 

occurred?” This is a question that requires both a conditional and an interventional 

statement, since it pertains to an hypothetical scenario for a unit (e.g. an animal, 

https://www.zotero.org/google-docs/?HHU71X


matriline, group, population within a study of multiple populations etc.) in scenarios 

where you have not observed them. You might ask for example: “what is the total causal 

effect of an animal’s size on its personality”. Here you want to compare interventions on 

size for an individual/group, while keeping the other variables for the individual/group 

the same. 

Where all necessary individual-level variables have been collected, counterfactuals can 

be estimated from the model, for example, using a regression. However, a problem 

arises where there are unobserved attributes of the individual that we need to estimate. 

For example, what is intrinsically special about this individual that means they are more 

likely to be shy? In this situation we need to model a latent variable, which we will call U. 

Here we need Structural Equation Models (SEMs) (Pearl, 2012; Shipley, 2016). Unlike 

regressions, SEMs explicitly model the causal structure. This means that – in contrast to 

regressions and any non-structural model – you can use a single SEM model to 

ascertain multiple exposure-outcome causal effects simultaneously from different 

queries of a single model. They also provide a framework where latent variables like U 

are explicitly connected to both observed and unobserved variables. SEMs are more 

explicit about how the DAG links to the causal structure, can be non-parametric –  e.g. 

with splines or Gaussian Processes at nodes – and more powerful than regressions in 

their ability to estimate counterfactuals. In general, SEMs are likely to have high 

applicability in ecology, where it is difficult to measure everything about individuals. 

SEMs have other advantages for causal inference, but a full discussion of SEMs is 

outside the scope of this review (but see (Pearl, 2012). 
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XIV. Causal Structure Learning 

Causal discovery algorithms attempt to detect the causal structure from the data. 

However, not all causality can be inferred from data alone, and we recommend that 

causal discovery algorithms are used mainly to help sense-check, and that researchers 

first draw a DAG. As Pearl & Mackenzie (2018) say “You are smarter than your data”. A 

good use of causal discovery is to check for the potential for unobserved confounders. 

But care is needed here too. Many causal discovery algorithms – such as the classic 

PC algorithm –  assume linearity of relationships and do not detect latent confounders 

(for a review see (Glymour, Zhang & Spirtes, 2019)). More recent methods, however, do 

not make these assumptions and can be used for this purpose (Reiser, 2022; Ashman 

et al., 2022). Note that for something we really do not know (direction of arrow or 

whether an arrow exists) then the only possibility to have high certainty (other than look 

at the result of different assumptions) would be to perform an RCT on that particular pair 

of variables. 

 

XV. Practical Causal Workflow 

We make the following recommendations for a causal ecology workflow: 

1. Explicitly specify your causal questions. 

2. Specify each exposure and outcome pair that you want to examine (to avoid the 

Table 2 fallacy). 

3. Decide whether you want the total or direct causal effect. 

4. Specify your estimand(s) for your question(s). 

https://www.zotero.org/google-docs/?piIFwQ
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5. Draw the full DAG before data collection, where possible. Draw all variables 

potentially involved in pathways from exposure to outcome, whether or not you 

have collected those data. 

6. Identify the adjustment set(s) for each exposure and outcome pair. 

7. Design and fit a model based on the adjustment set for your estimand. Note that 

variables in the adjustment set might need to be splines or GPs if they might be 

non-linear (which is likely). Remember that you are not going to be interpreting 

them, you need them to condition on good controls, and are likely to be using 

marginal effects on your exposure-outcome anyway. 

8. Simulate interventions on the exposure for each and get the desired marginal 

effects. 

For examples of good causal workflows we recommend (Kawam et al., 2024; Deffner et 

al., 2024) 

 

XVI. What to Report in Causal Studies 

1. The questions and ideally estimands, based on clearly expressed exposure and 

outcome for your question. 

2. A statement on whether you want the direct effect / total effect for each. 

3. DAGs suitable for each estimand-outcome. 

4. Adjustment sets for each estimand. 

5. The statistical models: ideally in formula style to make assumptions clear. 

Remember to include your code. 

6. Description on how the interventions and estimands were estimated. 

https://www.zotero.org/google-docs/?dwjsN7
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7. Estimates for the estimands with ecological interpretations. 

8. Any model coefficients can go in the supplementary materials, not in table 2. 

 

XVII. Conclusions 

(1) We have laid bare a pervasive problem in ecology and made a call for a 

paradigm shift. Our key message is that the future of ecological research hinges 

on embracing explicit causal language and methods, moving beyond 

statistically-driven but scientifically-empty procedures, and recognising that 

causality is not confined to RCTs. For a more detailed discussion of why causality 

is not confined to the realm of RCTs, and why observational causal inference can 

sometimes be better, see Appendix S1. 

(2) We argue that clarity in framing causal questions is not just a semantic exercise 

but a prerequisite for robust ecological research. Once the question and 

corresponding theory are clearly articulated, a DAG can be constructed as part of 

a rigorous methodology to address the question. Whether statistical results are 

described as causal or not is up to each researcher, but we argue that it is 

appropriate to use causal language and express that, for example, given the 

assumptions one can discuss a total causal effect. This is our preference. It is 

also acceptable to use associational language in reporting the results, if 

preferred, but it must be be clear that every effort was made to make causal 

inference rather than misleading associations 

(3) The utility of DAGs is that they: 



•       Make assumptions explicit and link the study question/hypothesis when 

paired with a clear estimand. 

•       Map out and define variables. They are needed to define whether what they 

are controlling for is a good or bad control, and specify what is missing that 

needs to be collected to answer a causal question. 

•       Inform interpretation of the results. For example, helping avoid 

misinterpretation by the reader because assumptions are unclear, and avoiding 

the reader interpreting all estimates from adjusted models as meaningful. 

(4) Moving forward, we anticipate that grant-awarding and ethical-approval 

committees will increasingly expect to see causal diagrams within research 

proposals, serving as a robust method to rationalise the selection of variables for 

data collection. Such diagrams facilitate a clear justification for gathering data on 

confounders, while also elucidating when data collection on mediators may not 

be necessary, contingent on the research question at hand. There is potential to 

allocate additional resources for capturing competing exposures, albeit with 

distinct justifications grounded in resource-benefit analyses. 

(5) This shift mirrors the recent trend where power analysis is becoming a standard 

requirement in grant proposals to justify proposed sample sizes. In a broader 

scope, mandating the inclusion of Directed Acyclic Graphs (DAGs) in 

publications - particularly within observational and experimental ecological 

studies that do not adopt a RCT approach - is a step we deem exceptionally 

valuable. This measure will contribute significantly to enhancing replication, 

transparency, and the overall quality of scientific inquiry within the field of 



ecology. It is worth noting too that you cannot calculate statistical power unless 

you have defined the causal structure anyway. To perform a power analysis you 

need to define a desired effect size, and that desired effect size should be 

unconfounded and either the total causal effect or direct causal effect. 

(6) We have reviewed the tools needed for basic causal inference using the 

statistical and experimental tools and approaches already widely used by 

ecologists. Causal inference is not easy, but the challenges we face are not 

insurmountable. Causal inference is not primarily a statistical problem but a 

scientific one, accessible to all ecologists. We can make important progress by 

employing statistical methods already familiar to the field, but with a renewed 

focus on causation and the questions of interest. The path forward is clear: we 

must embrace causal inference as an indispensable tool in our scientific arsenal. 

Only by doing so can we hope to answer the pressing ecological questions of our 

time with the rigor and clarity they deserve.  
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section at the end of the article. 

Appendix S1. Causal inference and experiments. 

Appendix S2. Average treatment effects in R. 

 

Table 1. Definition of three key types of causal effect. Each can be very different from the 

others, and it is important that studies specify clearly and explicitly which one they are studying, 

because it connects to the question that is being asked. 

Direct causal effect The causal effect of the exposure on the outcome through only the direct 
causal pathway (i.e. the arrow from exposure directly to the outcome). 

Indirect causal effect The causal effect of the exposure on the outcome through all causal 
pathways except the direct causal pathway. 

Total causal effect The causal effect of the exposure on the outcome through all causal 
pathways – direct and indirect. 

 

 

 

Fig. 1. An example Directed Acyclic Graph (DAG) showing a simple 

causal relationship between birds’ rate of egg production and longevity. 

Here the egg production rate is the exposure (the variable whose causal 

effect we are interested in) and longevity is the outcome. The arrow 

represents the causal relationship between variables that is being 

estimated. 

 



 

Fig. 2. An example directed acyclic graph (DAG) showing tree cover as a 

confounding variable. The level of tree cover is a common cause of both 

the frequency of alarm calls (exposure) and the predation rate (outcome). 

We need to condition on confounder tree cover to close the backdoor 

path between alarm calls and predation rate to estimate the causal 

effect. 

 

 

Fig. 3. An example directed acyclic graph (DAG) showing tree cover as a 

competing exposure. Conditioning on the competing exposure is not 

necessary because it is not along a backdoor path, but conditioning on it 

can improve precision. 

 



 

Fig 4: An example of a mediator. Vigilance Rate is a mediating effect 

along an indirect causal path from Group Size to Predation Rate. 

Conditioning on vigilance blocks the indirect causal path from group size 

to predation rate. 

 

 

Fig 5: A simplified example of a collider. The question might be “Does 

forest density cause bird species diversity?” There is a closed backdoor 

path between forest density (exposure) and species diversity (outcome), 

because the collider blocks/closes the path. However, if we condition on 

(experimenter determined) bird feeder density, then the path is opened 

and an artificial association between forest density and species diversity 

is created. The solid lines represent real world causal relationships, and 

the dotted line is the causal relationship being estimated. 

 



 

Fig 6: An example of a collider due to the data collection process. If we 

condition on predation having occurred (the collider), by only looking at 

butterfly wings collected post-predation then we create an artificial 

association between butterfly sex and wing redness that does not exist in 

the total population. The solid lines represent real world causal 

relationships, and the dotted line is the causal relationship being 

estimated. 

 

 

Fig. 7. An example of when we might need to condition on a collider, as 

long as we condition on variables along unwanted paths that it opens. 

Here, we want the direct causal effect. So we need to close the path via 



B, but doing so means we need to also close the path that is 

subsequently opened through C. 

 

 

Fig 8: Example directed acyclic graph (DAG) for deriving paths and the 

adjustment set for the example given in Section IV.1. X is the exposure 

and Y is the outcome. U1 is a latent (unobserved) variable. Square 

nodes represent nodes that need to be in the adjustment set to be 

conditioned on. The path through E is already closed, because it is a 

collider, and the path through C is a causal path and should be left open 

if we want the total causal effect. 

 

 



Fig. 9. An illustrative example of where the frontdoor criterion could be used. U 

here might be something like genetics causing both the exposure (X) and the 

outcome (Y). Given that we cannot easily control for genetics, we could use the 

frontdoor criterion through Z to estimate the causal effect of X on Y. 

 

 

Fig. 10. An example of a latent (unobserved) variable U. U is 

unmeasured and creates a backdoor path. Dotted lines illustrate 

causality from the latent variable. The total causal effect of X on Y is 

identifiable because the backdoor path is closed by conditioning on Z. 

 

 

Fig. 11: The censoring process should be considered in a directed 

acyclic graph (DAG). Here we might be asking if a bird’s urban proximity 

(exposure) causes predation (outcome). In this example, censoring has 

been conditioned on during the data collection procedure (see Section 

VII for details). Because it is a collider, this opens a backdoor path. This 

path can be closed by conditioning on territorial range. 



 

 

 

Fig 12: A simple ecological example for illustrating the mutual adjustment fallacy. The directed acyclic 

graph (DAG) is designed to isolate the total causal effect of the exposure, total food in territory, on the 

outcome average body mass of the fox. The confounder parameters group size and area of territory 

cannot be interpreted in the same way. 

 

 

Fig. 13. A directed acyclic graph (DAG) produced in DAGitty for isolating the total causal effect of group 

size on individual-level vigilance rate and group-level vigilance rate. Green (with triangle) = exposure; red 

= confounder; blue = mediator or competing exposure; grey = redundant. Blue nodes containing I are 

outcomes. 

 


