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Abstract21

Regional atmospheric models struggle to maintain supercooled liquid in mixed-phase22

clouds during polar cold-air outbreaks (CAOs). Previous studies focused on the param-23

eterization of aerosol, microphysics and turbulence to understand the origin of this widespread24

model bias. This study investigates the role of macrophysics parameterizations (MacP)25

in the simulation of mixed-phase clouds. Km-scale simulations are performed for a large26

number of CAO cases over Norway, for which continuous ground observations were col-27

lected at one site over 6 months. We use a novel analysis that attributes the cloud-radiative28

errors to deficiencies in specific cloud regimes. We show that the MacP matters for cloud-29

radiative effects in CAOs, but that it is probably not the primary cause of the lack of30

liquid water in simulated mixed-phase clouds. Of all the MacP sensitivities explored in31

this study, the prognostic representation of both liquid and ice shows most promise in32

increasing the liquid water path. A newly proposed hybrid MacP with prognostic frozen33

and diagnostic liquid cloud fraction reproduces some of the benefits of the prognostic scheme34

at reduced cost and complexity. The two-moment microphysics scheme in this study pro-35

duces too large precipitation particles. Reducing the snow deposition rate decreases the36

precipitation particle sizes and largely improves the liquid water path. Simulations are37

less sensitive to reduced riming rates.38

Plain Language Summary39

Cloud droplets and ice crystals often coexist in polar clouds, even at temperatures40

well below the freezing level. These clouds play an important role in the climate system,41

since they reflect more sunlight back to space than completely frozen clouds. Therefore42

it is important that climate and weather forecasting models are thoroughly evaluated43

in their ability to produce these so-called mixed-phase clouds. This study compares sim-44

ulations of polar clouds with detailed cloud observations over Norway. We confirm that45

simulations produce clouds that are nearly completely frozen, while observations clearly46

show both liquid and frozen clouds. We test sensitivities of the simulations to specific47

model components to assess potential avenues for model improvement. Of all the tests48

performed, the ones affecting the simulated snowflake sizes seem most promising in al-49

lowing both liquid and frozen cloud to coexist.50

1 Introduction51

Mixed-phase clouds in polar cold-air outbreaks (CAOs) continue to pose a major52

challenge for regional atmospheric models (Klein et al., 2009; Abel et al., 2017; Field et53

al., 2017). The co-existence of ice and supercooled liquid in these clouds at temperatures54

well below the freezing point, challenges our understanding of the interaction between55

aerosol, microphysical and turbulent processes. Yet, it is imperative that progress be made56

in the representation of mixed-phase clouds, given their abundance over polar regions57

and their potentially important cloud-radiative feedbacks in a changing climate (Frey58

& Kay, 2018; Murray et al., 2021). Despite progress in the representation of the inter-59

action of turbulent processes and microphysics (Korolev & Field, 2008; Field, Hill, et al.,60

2014), most atmospheric models still struggle to reproduce the observed amount of su-61

percooled liquid in polar mixed-phase clouds (Klein et al., 2009; Abel et al., 2017; Field62

et al., 2017).63

Scales involved in the maintenance of this supercooled liquid range from the mi-64

crophysical scale, to sub-cloud scale turbulent eddies, and open- and closed-cell mesoscale65

organization. This implies that a number of parameterizations are involved in the cor-66

rect simulation of mixed-phase clouds. Solomon et al. (2009) and Klein et al. (2009) showed67

that two-moment microphysics parameterizations capture the supercooled liquid water68

content in the mixed-phase clouds better than one-moment schemes. Too rapid glacia-69
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tion through riming processes was found to deplete liquid water effectively in mixed-phase70

clouds over the Southern Ocean simulated by Furtado and Field (2017). Abel et al. (2017)71

pointed to the importance of precipitation formation and autoconversion from cloud to72

rain as an important driver for liquid water depletion. In a large intercomparison of convection-73

permitting CAO simulations, Field et al. (2017) found all simulations to struggle to re-74

produce sufficient supercooled liquid. It was found that the dynamical core, and the con-75

vective and boundary-layer parameterization, played an important role in the evolution76

of the cloud fields. In another study, Field, Cotton, et al. (2014) demonstrated that the77

significant underestimation of supercooled liquid in a CAO case over northern Europe78

could be alleviated by changing the boundary-layer diagnosis and inhibiting the ice for-79

mation at warm temperatures.80

It has often been suggested that phase separation plays an important role in the81

maintenance of supercooled liquid in CAO clouds, even at km-scale. This can be related82

to continuous turbulent generation of liquid in updraft regions, while depositional growth83

of the ice phase is limited to downdraft regions (M. Shupe et al., 2008; Korolev & Field,84

2008). Another often cited mechanism is phase separation through sedimentation of ice85

particles near the cloud top, while condensation of liquid takes place through longwave86

cooling (Rauber & Tokay, 1991; Forbes & Ahlgrimm, 2014). This phase separation typ-87

ically occurs at subgrid scales and hence surprisingly few studies have been devoted to88

the role of macrophysics parameterization (MacP) in convection-permitting simulations89

of CAO clouds. One exception is the study by Abel et al. (2017) showing that a reduced90

subgrid overlap between the liquid and ice phase in a MacP improved their simulation91

of a CAO event over the United Kingdom. While many km-scale models ignore subgrid92

cloud variability, several studies find that the inclusion of a subgrid MacP in these mod-93

els is beneficial for cloud-radiative processes (Hughes et al., 2015; Boutle et al., 2016; Bush94

et al., 2020; Van Weverberg, Morcrette, & Boutle, 2021).95

Macro- and microphysics are closely intertwined. Indeed, the macrophysical treat-96

ment of ice and snow growth in microphysics parameterizations (MicP), i.e. partition-97

ing of grid boxes in ice- and liquid sub- and supersaturated regions, also affects the co-98

existence of liquid and ice in polar clouds.99

In this paper, we explore the role of MacPs, and of ice growth in MicPs, in mixed-100

phase cloud evolution using the Regional Atmosphere and Land 3 (RAL3) configuration101

of the UK Met Office Unified Model (UM). Km-scale simulations are performed with a102

range of MacP configurations for 47 CAO cases identified during the Cold-Air Outbreaks103

in the Marine Boundary Layer Experiment (COMBLE, Geerts et al. (2022)). The con-104

tinuous ground-based observations collected at one site over a 6 month period provide105

a unique opportunity to perform a more statistically robust analysis of the cloud phase106

compared to single case studies observed by aircraft. Sensitivities explored in this pa-107

per include (1) the formulation of the subgrid saturation-departure distribution in di-108

agnostic MacPs, (2) the role of the subgrid phase-overlap between the liquid and the ice109

phase, and (3) the added value of using a prognostic rather than diagnostic representa-110

tion of liquid and frozen fractions. The latter experiments include a novel hybrid MacP111

approach with prognostic ice, but diagnostic liquid cloud fractions. Furthermore, (4) the112

role of snow deposition and riming in the microphysics parameterization (MicP) is in-113

vestigated. Particular attention is given to the collocated radiation and cloud property114

biases, identifying those cloud regimes contributing most significantly to cloud-radiative115

errors.116

The remainder of the paper is organised as follows. Section 2 provides some back-117

ground on the COMBLE field campaign and lists the observations used in this study.118

The sensitivity experiments are explained in Section 3. Section 4 discusses all the anal-119

ysis performed with these simulations and a summary is provided in Section 5.120
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2 COMBLE field campaign and Observations121

2.1 COMBLE field campaign122

From 1 December 2019 to 1 June 2020, the U.S. Department of Energy (DOE) At-123

mospheric Radiation Measurement (ARM) Mobile Facility (AMF; Miller et al. (2016))124

was deployed at a coastal site in northern Norway (near Andenes, 69.14N, 15.68E, fur-125

ther referred to as ANX), in the framework of COMBLE (Geerts et al., 2022). During126

this six-month campaign, there were a total of 47 CAO events that lasted from hours127

to days, leading to a cumulative total of 34 days of CAO conditions. CAO events were128

identified following Geerts et al. (2022), based on the following observed conditions: A129

potential temperature contrast between the sea surface temperature (SST) and the 850130

hPa pressure level (ΘSST−Θ850; further referred to as ∆SST−Θ850) >0, a surface wind131

speed >10 kt, and a wind direction between 250◦ and 30◦. A list of all CAO cases dur-132

ing the COMBLE campaign can be found in the Supplementary Material of Geerts et133

al. (2022). CAO events can broadly be categorized as one of two distinct modes. A first134

mode consists of more convective events with heavier precipitation and alternating strong135

updrafts and decaying convective cells (Mode A as described in Geerts et al. (2022), fur-136

ther referred to as the convective (CNV) mode in this study). The second mode is more137

stratiform and quiescent with weaker updrafts, lighter rain and lower cloud tops (Mode138

B as described in Geerts et al. (2022), further referred to as the stratiform (STR) mode139

in this study). The first, unstable mode is typically associated with larger ∆SST−Θ850140

than the second mode. In this paper, we analyze both modes separately where CNV and141

STR cases have ∆SST−Θ850 >2 K and <2 K, respectively.142

2.2 Observations143

2.2.1 MicrobaseKaPlus: Liquid water content, ice water content and144

cloud fractions145

Vertically distributed cloud locations and water contents are derived from the Mi-146

crobaseKaPlus ARM synergistic retrieval (further referred to as MBase). MBase pro-147

vides profiles of liquid and ice water content, based on ceilometer, micropulse lidar, mi-148

crowave radiometer, balloon soundings and vertically pointing Ka-band cloud radar (KAZR)149

data at the ANX site with high temporal (4s) and vertical (30m) resolution (M. Wang150

et al., 2022). To compare observed vertical profiles for one location with a simulated grid151

column, the observations are averaged over the time it takes an air parcel to cross one152

model grid length of 1 km. The observed wind speeds at each model level are used to153

obtain ’grid-box’ averaged liquid and ice water content (qliq and qfro) and an ’observed’154

cloud fraction (CF). This approach has been widely used in model evaluation studies (Illingworth155

et al., 2007; Morcrette et al., 2012; Van Weverberg et al., 2015) and gives reliable results156

for low-order moments and long time series (Gruetzun et al., 2013). Zhao et al. (2014)157

estimated the random uncertainties in the retrievals of qliq and qfro to be around 15 and158

55% respectively. MBase is also used to obtain vertically integrated liquid and ice wa-159

ter paths (LWP and IWP). Note that the LWP from MBase is constrained by the mi-160

crowave radiometer retrievals with an uncertainty of about 30 gm−2 (Turner et al., 2007).161

The presence of supercooled liquid water and drizzle poses additional challenges to the162

MBase retrievals (Cadeddu et al., 2020). Therefore, these retrievals are used as a base-163

line, but we use a more advanced classification to evaluate the vertical phase distribu-164

tion, as explained in the next section.165

2.2.2 ThermoCldPhase: Cloud phase classification166

Apart from MBase, an independent algorithm is used for the identification of the167

cloud thermodynamic phase. The ARM ThermoCldPhase retrieval (Zhang & Levin, 2022),168

further referred to as TPhase, provides vertically-resolved cloud and precipitation phase169
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classifications using coincident lidar, radar, and radiometer measurements following the170

multi-sensor method developed by M. Shupe (2007). Hydrometeors are classified into liq-171

uid, drizzle, liquid + drizzle, rain, ice, snow, and mixed-phase based on lidar back-scatter172

intensity (or its gradient) and depolarization ratio, radar reflectivity, mean Doppler ve-173

locity, and Doppler spectrum width measurements. Ancillary measurements of liquid wa-174

ter path from the microwave radiometer and temperature profiles from radiosonde mea-175

surements are used to further constrain cloud hydrometeor classifications. Once cloud176

hydrometeor phases are determined, the whole cloud layer thermodynamic phase is clas-177

sified as liquid, mixed-phased, or ice following the method by Korolev et al. (2017). If178

the fraction of ice-containing hydrometeors (e.g., ice, snow, and mixed-phase) in the whole179

cloud layers (µice) is smaller than 0.1, the cloud layer is determined as a liquid layer. If180

0.1 < µice < 0.9, it is a mixed-phased cloud layer; and if µice > 0.9, it is an ice cloud181

layer. The time-averaging method described in section 2.2.1 was applied to TPhase us-182

ing liquid, mixed and ice definitions above. The classification thresholds and the use of183

constraints from ancillary measurements are based on understanding of cloud hydrom-184

eteor physical properties (e.g., particle size distribution, shape, number concentration,185

falling velocity, freezing/evaporation temperatures) and from the literature (Eloranta,186

2005; M. Shupe et al., 2004, 2006). The multi-sensor cloud thermodynamic phase clas-187

sification method has been widely used for studying various cloud phase transition pro-188

cesses (Kalesse et al., 2016; Persson et al., 2017; Silber et al., 2018) and long-term cloud189

thermodynamic phase characteristics (M. D. Shupe, 2011) and for evaluating cloud and190

climate model simulations (Solomon et al., 2011; Zhang et al., 2019). Quantitative as-191

sessment of the uncertainty of the classification algorithm is difficult due to the lack of192

a definitive validation dataset. Although the ground-based multi-sensor method has not193

been validated, a similar method using multi-sensor airborne lidar and radar measure-194

ments to identify hydrometeor particle types was compared and evaluated against air-195

craft in situ cloud probe measurements, which shows good agreement in over 70% of cases196

(Romatschke & Vivekanandan, 2022). As guidance to the sensitivity of the time-averaging197

method, we provide observed cloud-property profiles averaged using a range of 0.5−2198

times the observed wind speeds in the following analysis. For COMBLE, the TPhase data199

are not available before February 11, 2020 because the Micropulse lidar (MPL) data are200

missing at the beginning of the campaign.201

2.2.3 Vertical Profiles of wind speeds, temperature and humidity202

To obtain observed cloud fractions from MBase and TPhase, the interpolated sound-203

ing retrieval was used (Jensen et al., 2022), which interpolates observed soundings to a204

regular time-height grid with 332 levels and a 1-minute resolution. No first guess model205

data enter this retrieval and the humidity profiles are adjusted between soundings us-206

ing the microwave radiometer measurements. Typically, four soundings were launched207

daily during COMBLE. Uncertainties vary with atmospheric conditions. Sharp fronts208

might be missed by the interpolation, although most of the cases in this study are well209

within cold air masses behind cold fronts, with fairly homogeneous atmospheric condi-210

tions. Interpolated soundings are also used to calculate the observed ∆SST−Θ850 and the211

Estimated Inversion Strength (EIS; Wood and Bertherton (2006)):212

EIS = LTS − Γm
850(Z700 − LCL) (1)

Where LTS is the lower tropospheric stability (LTS = Θ700 − Θsurf ; Klein and213

Hartmann (1993)), Γm
850 is the moist-adiabatic potential temperature gradient at 850214

hPa, Z700 is the height of the 700 hPa level and LCL is the lifting condensation level (cal-215

culated following Romps (2017)).216
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2.2.4 Surface Radiation217

Surface radiation observations are obtained from the ARM Best Estimate Cloud218

and Radiation Data product (Xiao & Xie, 2022). Radiometer surface downwelling long-219

wave (LW) and shortwave (SW) radiation was used, with a temporal resolution of 60 s.220

This product averages two out of three different co-located instruments measuring ir-221

radiances that agree best with each other (Shi & Long, 2002). Uncertainties are of the222

order of 6 and 2.5% for SW and LW radiation respectively (Stoffel, 2005).223

2.2.5 Surface Precipitation224

Reliable surface precipitation data in a site like Andenes are hard to obtain, given225

the prevalence of mixed-phase and frozen precipitation. Many of the radar retrievals for226

quantitative precipitation estimates become too uncertain to be used for model evalu-227

ation. This study uses both the weighing bucket (WB) and the Present Weather Detec-228

tor (PWD) rain gauge data from the Surface Meteorological Instrumentation (Kyrouac229

& Shi, 2022), aggregated from the native resolution of 1 minute to 15 minute intervals.230

Uncertainties in these instruments are typically of the order 0.1 mm or 10% of the re-231

ported instantaneous value, whichever is larger (Jia et al., 2020).232

3 Simulations233

3.1 General Model Setup234

All simulations presented in this paper use the Global Atmosphere 7.2/Global Land235

8.1 configuration (Walters et al., 2019) of the Met Office Unified Model (UM) at N768236

resolution (≃ 25 km grid spacing near the equator) to drive a nested convection-permitting237

domain, centered around the Andenes ANX site. The limited area domain has a 0.01◦238

by 0.01◦ horizontal grid spacing on a rotated grid (≃ 1 km grid spacing at the center of239

the domain), and covers an area of 600 x 600 grid points, using 90 stretched levels in the240

vertical, with a model top at an altitude of 40 km. The simulation domain and the lo-241

cation of the ANX site are shown in Figure 1. Simulations were run for days identified242

as cold-air outbreaks (CAO) (Geerts et al., 2022) during COMBLE (see Section 2.2). Sim-243

ulations were initialized at 1200 UTC on the day preceding the CAO event and run for244

36 hours. The first 12 hours were discarded as spin-up. Throughout the analysis, only245

CAO events are included.246

The global model, initialized from the operational Met Office analysis, provided hourly247

lateral boundary data to the convection-permitting domain. Sea surface temperatures248

and sea ice coverage are obtained from the Operational Sea Surface Temperature and249

Sea Ice Analysis (OSTIA; Good et al. (2020)). The baseline convection-permitting con-250

figuration uses the Regional Atmosphere and Land 3 (RAL3) configuration at UM ver-251

sion 12.0. This configuration builds on the Regional Atmosphere 2 (RAL2) configura-252

tion described in Bush et al. (2022), using a blended turbulence boundary-layer param-253

eterization (Boutle et al., 2014). The one-moment microphysics scheme with a single com-254

bined ice-snow category in RAL2 (Wilson & Ballard, 1999), was replaced in RAL3 by255

a new two-moment bulk microphysics scheme, CASIM (Cloud AeroSol Interacting Mi-256

crophysics; Field et al. (2022)). CASIM predicts mass and number density of cloud wa-257

ter, rain, snow aggregates, ice crystals and graupel and uses in-cloud values of water con-258

tent and number concentration in its collection calculations, using cloud fractions ob-259

tained from the macrophysics parameterization. Note that the parameterization of macro-260

physics (MacP) assumes a subgrid distribution of saturation-departure to determine the261

amount of condensation and the fractional cloud cover in the grid box. The microphysics262

parameterization (MicP) treats the conversion of this condensed liquid water content to263

other hydrometeor species and ultimately surface precipitation.264
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Figure 1. Location and spatial extent of the simulation domain used in all configurations.

The location of the Andenes ANX supersite (69.14N, 15.68E) is indicated by the black diamond.
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Note that two important modifications were made to CASIM compared to the de-265

fault RAL3 configuration, with the goal to make the MicP and MacP assumptions more266

consistent. These modifications are summarized in Appendix A, and include more con-267

sistent treatment of the subgrid saturation-departure distribution and the subgrid phase-268

overlap of liquid and ice between the two parameterizations. These changes are indis-269

pensable to understand the relative role of micro- and macro-physics on mixed-phase cloud270

properties. The modifications in Appendix A are applied to all model configurations in271

the following analysis.272

The SOCRATES scheme at version 21.07 (https://code.metoffice.gov.uk/trac/273

socrates, last access: 31 January 2022) (Edwards & Slingo, 1996; Manners et al., 2018)274

is used for the radiative transfer, using six SW and nine LW radiation bands. Radiative275

transfer of cloud droplets and ice crystals is treated following Edwards and Slingo (1996)276

and Baran et al. (2016) respectively. The radiation takes into account liquid and frozen277

CF calculated by the MacP, except for graupel, and additionally scales the liquid wa-278

ter content by a factor of 0.7 to represent in-cloud inhomogeneity in low clouds, follow-279

ing Cahalan et al. (1994). These radiation settings are identical to the RAL3 configu-280

ration. A 1- and 15-minute timestep was used for the dynamics and radiation respec-281

tively.282

3.2 Model Experiments283

An overview of all simulations is provided in Table 1. Simulations with a range of284

MacP setups are presented. We refer to the introduction of Van Weverberg, Morcrette,285

Boutle, Furtado, and Field (2021) for thorough discussion on MacPs and the role of the286

saturation-departure (SD) probability density function (PDF).287

The baseline configuration builds on RAL3 using the bimodal macrophysics (BM)288

parameterization described in Van Weverberg, Morcrette, Boutle, Furtado, and Field (2021),289

treating liquid and ice cloud diagnostically. This parameterization derives cloud prop-290

erties using the subgrid thermodynamic variability from the turbulence scheme, account-291

ing for the co-existence of two modes of saturation-departure variability within a grid292

box near entrainment zones. As outlined in section 3.1 and Appendix A, the baseline293

configuration shown here differs from the default RAL3 configuration in its more con-294

sistent treatment of the subgrid saturation-departure distribution between the MicP and295

MacP, and the assumption of a minimum phase overlap between liquid and ice through-296

out the model. These modifications were implemented in all simulations listed below,297

unless stated otherwise (Appendix A).298

A second configuration does not include a MacP, so grid boxes are either fully over-299

cast or fully clear (NOMACP). A third experiment (SMITH) uses the diagnostic Smith300

(1990) scheme, assuming a triangular subgrid SD PDF with a fixed width, linked to a301

time- and space-invariant profile of critical relative humidity. Note that SMITH does not302

include the empirically adjusted CF, used in the RAL2 configuration (Van Weverberg,303

Morcrette, Boutle, Furtado, & Field, 2021) and that we passed on the Smith subgrid vari-304

ability to CASIM, similar to BM and as explained in Appendix A.305

Many observational studies (McFarquhar & coauthors, 2011; Abel et al., 2017; Zhang306

et al., 2019) find alternating single-phase pockets of ice and liquid in mixed-phase clouds.307

Abel et al. (2017) show improved qliq in their mixed-phase cloud simulations when min-308

imizing the overlap between liquid and ice. Note that the baseline configuration, BM,309

already assumes a minimum overlap in the MicP and MacP. An additional experiment,310

referred to as BM-MAX, is identical to BM, but assumes a maximum overlap between311

the liquid and ice phase. This is done by setting the overlap factor Φ = 1 in Equation312

1 in Appendix A. This experiment is aimed at understanding the importance of the over-313

lap assumption relative to other modifications presented here.314
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Table 1. Experiment Overview

Experiment Description

BM

Baseline Simulation using Regional Atmosphere and Land 3
Configuration, with Bimodal macrophysics (Van Weverberg,
Morcrette, Boutle, Furtado, & Field, 2021) and CASIM micro-
physics (Field et al., 2022),
including modifications listed in Appendix A for consistent
treatment of saturation-departure between the macrophysics and
the ice nucleation and deposition in the microphysics

NOMACP As BM , but without a macrophysics parameterization

SMITH As BM , but with Smith (1990) macrophysical parameterization

BM −MAX As BM , but with a maximum phase overlap

HY B As BM , but with the Hybrid macrophysics parameterization

PC2 As BM , but with the PC2 macrophysics parameterization

HY B −RIM As HY B, but with only 1% of the snow riming rate in CASIM

HY B −DEP As HY B, but with only 1% of the snow deposition rate in
CASIM

Experiment descriptions and their acronyms used throughout this paper.

A next set of experiments revolves around the prognostic or diagnostic treatment315

of ice and liquid. BM and SMITH are fully diagnostic MacPs and treat frozen cloud frac-316

tion (CFfro) very pragmatically. They obtain CFfro by applying the diagnostic qliq-CFliq317

relation to the ice phase. (Note that ice and snow water contents are calculated in CASIM318

and (unlike for liquid) the role of the MacP is only to diagnose a CFfro).319

PC2 is a fully prognostic MacP and it uses CF tendencies from each part of the320

model that changes the thermodynamic state (Wilson et al., 2008). Hence, there are CF321

tendencies from the radiation, boundary-layer and microphysics scheme and clouds and322

condensate are advected. Furthermore, there are tendencies from the pressure change323

in the dynamics and an initiation/removal term if cloud ought to be initiated in a clear-324

sky grid box or reduced in an overcast grid box (Wilson et al., 2008).325

Mostly, PC2 implicitly assumes symmetric, unimodal SD distributions, although326

a recent change includes the BM in its initiation/removal tendency. PC2 expects ten-327

dencies from CASIM as well, and this coupling between PC2 and CASIM was developed328

as part of this study (see Appendix B). Note that while CASIM includes two separate329

categories for ice and snow water content, it only assumes a single frozen fraction (CFfro)330

for snow and ice combined. Each CASIM source term for cloud liquid or frozen conden-331

sate is assigned a CF tendency. This configuration (PC2) uses a minimum phase over-332

lap for all tendency calculations as in BM.333

Previous studies (Bush et al., 2020; Van Weverberg, Morcrette, & Boutle, 2021; Di-334

pankar et al., 2020; Van Weverberg & Morcrette, 2022) indicate that diagnostic MacPs335

better capture mid-latitude low-level cloud and surface radiation, while high-level cloud336

and surface precipitation is better captured by PC2, especially in the tropics. Indeed,337

while the concept of instantaneous saturation adjustment for liquid clouds is well estab-338

lished, for ice clouds large supersaturations exist that invalidate this diagnostic frame-339

work.340
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Therefore, Van Weverberg and Morcrette (2022) propose a hybrid approach, rep-341

resenting liquid cloud diagnostically as in BM, but representing ice prognostically as in342

PC2. From Van Weverberg and Morcrette (2022), this hybrid scheme produces less com-343

pensating errors in simulations over the tropics, midlatitudes and the arctic than fully344

diagnostic MacPs. In this hybrid cloud scheme, implemented in experiment HYB, CFfro345

is advected through the model and has microphysical tendencies as in PC2. Note that346

the CFfro tendencies from CASIM were calculated as in PC2 (see Appendix B) and a347

minimum phase overlap was assumed.348

Two last experiments have identical MacP settings as HYB, but focus on the mi-349

crophysical snow production rates. As will be shown, the previous configurations pre-350

dominantly produce large snow aggregates, while small ice crystals prevail in observa-351

tions. HYB-RIM and HYB-DEP therefore assess the impact of reducing the CASIM snow352

riming growth and deposition respectively, by a factor of 100. While not viable options353

for operational configurations, these experiments target the role of the snow growth mech-354

anisms in the overestimation of precipitation particle sizes and the depletion of qliq.355

4 Results356

4.1 Role of Using a Macrophysics Parametrization357

4.1.1 Vertically Integrated Model Biases358

To explore the benefit of using a MacP in CAO simulations, this section focuses359

on the differences between NOMACP and all other simulations combined. Figure 2 pro-360

vides an overview of the joint relative biases in downwelling SW radiation and 6 cloud-361

related variables, averaged over all cases. All biases have been reported for the STR (filled362

circles) and CNV (hollow circles) CAO modes separately as discussed in section 2.1. Fur-363

ther statistics are provided in Table 2, 3 and 4.364

NOMACP has the most positive SW bias of all model experiments for both CAO365

modes (Figure 2). The SW bias is larger for the STR mode than for the CNV mode in366

all simulations, exceeding more than 70 % of the observed value in NOMACP. A sub-367

stantial underestimation of the Liquid Water Path is present for both CAO modes and368

all simulations (LWP; Figure 2a). NOMACP has the largest LWP bias of all configu-369

rations (Table 2 and 4). The NOMACP Ice Water path (IWP) is underestimated in the370

STR mode, but is better captured in the CNV mode, hence the more modest SW bias371

in the latter (Table 2 and 4). Note that the simulated IWP in Table 2 includes all frozen372

hydrometeors, including ice, graupel and snow. All MacP configurations produce a sim-373

ilar shift in the IWP bias from the STR to the CNV mode, often flipping a negative bias374

into a positive bias (Figure 2b). Note that most IWP biases are within the observational375

uncertainty range. Low and high-level cloud cover is slightly overestimated by NOMACP376

(Figure 2c and d).377

Table 3 reports two measures of stability, often used in shallow stratocumulus stud-378

ies, as defined in Section 2.2. All simulations overestimate both the ∆SST−Θ850 and the379

EIS. While the former is a measure of the low-level instability, the latter provides an es-380

timate of the inversion strength. In Figure 3, thermodynamic profiles are shown at ANX381

for all simulations. NOMACP, like most simulations, produces too cold and dry bound-382

ary layers, possibly related to the small LWP and reduced downwelling LW at this po-383

lar site. The EIS is defined as the contrast between the 700 hPa level and the surface.384

Most simulations have smaller biases near the 700 hPa level than at the surface, in par-385

ticular for the CNV mode (Figure 3d), hence the generally stronger inversions. Mid-level386

latent heat release from vigorous glaciation could explain the difference between the CNV387

and STR mode biases.388
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Figure 2. Joint downwelling shortwave (X-axis) and cloud property (Y-axis) relative biases

for all model simulations, averaged over all CAO cases for the CNV (hollow circles) and STR

(full circles) mode. Shown are (a) the liquid water path, (b) low cloud cover, (c) ice water path,

(d) high cloud cover, (e) total water path, and (f) total cloud fraction. The boundary between

low and high cloud is set to 3 km above ground level. Vertical and horizontal bars extending

from the mean bias show the standard error of mean (SEM). The observational uncertainty, if

known, is indicated by the black thick error bars extending from the origin. Observation sources

include the ARM Best Estimate Cloud and Radiation Data product for radiation and the Mi-

crobaseKaPlus for cloud properties. We refer to Section 2.2 for detailed information about these

products and their processing. Dotted lines connect the CNV and STR bias for each model.
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Table 2. Model evaluation statistics

Experiment SW LW LWP IWP TWP Low CF High CF
(W m−2) (W m−2) (kg m−2) (kg m−2) (kg m−2) % %

OBS 78.2 276.3 (275.8) 0.150 (0.160) 0.379 (0.347) 0.528 (0.507) 94.8 (91.9) 69.0 (56.4)

Experiment SW Bias LW Bias LWP Bias IWP Bias TWP Bias Low CF Bias High CF Bias
(W m−2) (W m−2) (kg m−2) (kg m−2) (kg m−2) % %

NOMACP 11.7 -3.6 ( -1.1 ) -0.136 (-0.144) -0.006 (0.060) -0.142 (-0.084) 5.2 (8.1) 16.6 (20.8)
SMITH -5.6 6.2 (7.5) -0.120 (-0.131) 0.187 (0.127) 0.067 (-0.004 ) -8.4 (-6.6) -24.5 (-19.6)
BM -8.5 11.9 (14.1) -0.125 (-0.135) 0.063 (0.049) -0.062 (-0.085) 1.3 (3.0) -3.1 (-3.4)
BM −MAX 6.0 3.2 (6.5) -0.138 (-0.145) 0.024 (0.038 ) -0.114 (-0.108) -4.6 (-2.8 ) -8.5 (-7.3)
HY B -3.3 5.7 (8.3) -0.124 (-0.132) 0.072 (0.050) -0.052 (-0.083) 3.1 (6.3) 7.0 (6.7)
PC2 -25.4 9.9 (11.4) -0.070 (-0.084) 0.272 (0.178) 0.202 (0.093) 1.5 (4.4) 4.7 (7.5)
HY B −RIM -11.3 7.3 (9.0) -0.114 (-0.119) 0.083 (0.063) -0.032 (-0.055) 3.8 (6.5) 6.3 (6.3)
HY B −DEP -37.3 14.7 (16.5) -0.037 (-0.032 ) 0.244 (0.231) 0.207 (0.199) 4.9 (7.3) 15.5 (18.5)

Experiment SW RMSE LW RMSE LWP RMSE IWP RMSE TWP RMSE Low CF RMSE High CF RMSE
(W m−2) (W m−2) (kg m−2) (kg m−2 (kg m−2) % %

NOMACP 106.7 37.2 (36.6) 0.188 (0.216) 1.216 (1.140) 1.231 (1.148) 19.7 (25.1) 49.4 (54.2)
SMITH 98.5 30.8 (31.8) 0.181 (0.204) 1.344 (1.143) 1.343 (1.151) 31.2 (33.6) 55.7 (52.4)
BM 81.8 28.5 (31.4) 0.175 (0.203) 1.179 (1.020 ) 1.171 (1.028 ) 21.4 (26.6) 45.3 (48.1)
BM −MAX 93.6 30.0 (30.2) 0.183 (0.209) 1.156 (1.053) 1.156 (1.065) 25.0 (28.2) 50.9 (50.6)
HY B 88.2 27.2 (29.2) 0.179 (0.203) 1.166 (1.066) 1.176 (1.081) 20.5 (25.4) 44.8 (48.1)
PC2 87.3 26.4 (28.8) 0.142 (0.173 ) 1.459 (1.231) 1.457 (1.246) 21.2 (26.0) 44.1 (48.2)
HY B −RIM 90.2 26.5 (28.5 ) 0.171 (0.192) 1.174 (1.081) 1.181 (1.093) 20.3 (25.0 ) 43.7 (47.9 )
HY B −DEP 89.4 27.0 (29.4) 0.165 (0.193) 1.229 (1.099) 1.257 (1.141) 19.7 (25.1) 45.9 (50.6)

Overview of model evaluation statistics for the CNV CAO mode at the ANX supersite. Provided are (first row) the time-averaged observed value of
surface downwelling shortwave radiation (SW), surface downwelling longwave radiation (LW), liquid water path (LWP), ice water path (IWP), total
water path (TWP), low-level cloud fraction (Low CF) and high-level cloud fraction (High CF). The boundary between low and high cloud is set to
3 km above ground level. Data provided is for times with zenith angles smaller than 90◦ only, although statistics for the full dataset are provided in
brackets. Observation sources include the ARM Best Estimate Cloud and Radiation Data product for radiation and the MicrobaseKaPlus for cloud
properties. We refer to Section 2.2 for detailed information about these products and their processing. Furthermore, the absolute time-averaged bias
and root-mean squared error (RMSE) between each of the model simulations and the observations are provided. The largest and smallest bias magni-
tude for each variable are highlighted in boldface and italic respectively.
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Table 3. Stability evaluation statistics

Experiment CNV EIS CNV ∆SST−Θ850 STR EIS STR ∆SST−Θ850

K K K K

OBS -17.4 (-17.2) 0.5 (0.5) -19.1 (-18.0) 4.1 (4.0)

Experiment CNV EIS Bias STR ∆SST−Θ850 Bias STR EIS Bias STR ∆SST−Θ850 Bias
K K K K

NOMACP 3.2 (2.4) 0.8 (0.9) 4.0 (3.8) 0.5 (0.7)
SMITH 3.9 (3.2) 0.7 (0.8) 4.8 (4.4) 0.4 (0.6)
BM 4.1 (3.4) 0.6 (0.7) 5.0 (4.7) 0.4 (0.5)
BM −MAX 4.2 (3.5) 0.7 (0.7) 5.0 (4.6) 0.4 (0.5)
HY B 2.7 (1.9) 0.7 (0.8) 4.1 (3.9) 0.6 (0.6)
PC2 2.8 (2.1) 0.5 (0.6 ) 4.2 (3.9) 0.3 (0.4 )
HY B −RIM 2.7 (2.0) 0.8 (0.8) 4.2 (3.9) 0.6 (0.7)
HY B −DEP 1.2 (0.8 ) 0.8 (0.8) 3.4 ( 3.1 ) 0.4 (0.5)

Overview of model evaluation statistics of two stability measures for the STR and CNV
CAO mode at the ANX supersite. Provided are the Estimated Inversion Strength (EIS),
and ∆SST−Θ850. Observed values are calculated from the interpolated sounding product.
We refer to Section 2.2 for detailed information about these products and their process-
ing. The absolute time-averaged bias is provided for all simulations and the largest and
smallest bias magnitude for each variable are highlighted in boldface and italic respec-
tively.

Simulations presented here use the OSTIA SSTs, which are generated by ingest-389

ing observations. The contrast between the SST and the cold bias near the 850 hPa level390

increases instability in the lower troposphere and hence the (∆SST−Θ850; Figure 3d). The391

cold boundary-layer bias over a relatively warm sea could invigorate updrafts and en-392

hance glaciation, which would then further deplete liquid water and possibly further cool393

the boundary layer. It is worth exploring this possible feedback mechanism in future stud-394

ies.395

4.1.2 Cloud regime analysis396

To disentangle which of the cloud biases matter most from a cloud-radiative per-397

spective, a detailed cloud-radiation regime analysis is performed. Cloud optical thick-398

ness is affected by cloud fraction, cloud phase, cloud water content and cloud particle399

scattering properties (e.g. size and shape). Data on biases in the first three of these de-400

termining factors are available each 15 minutes for all simulations. Each data point can401

be assigned to a negative, neutral or positive relative bias in the cloud fraction (CF), liq-402

uid fraction (LF; defined as qliq/(qliq + qfro)) and total water path (TWP = IWP +403

LWP ), respectively, yielding 27 possible combined cloud property bias regimes. Neg-404

ative and positive cloud property biases are defined as respectively an underestimation405

and overestimation by at least 50%. The average radiation bias can be calculated for each406

of these 27 regimes. Multiplication of these radiation biases with their relative regime407

frequencies yields the contribution of each regime to the total radiation bias. The total408

radiation bias consists of the sum of all 27 radiation biases multiplied by their respec-409

tive regime frequencies.410

Figure 4 shows a decomposition of the SW (left) and LW (right) downwelling bias411

into the cloud property bias regimes, for the all CNV (top) and STR (bottom) CAO events412

during COMBLE. Note that we first split between the regimes having a negative and413
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Table 4. Model evaluation statistics

Experiment SW LW LWP IWP TWP Low CF High CF
(W m−2) (W m−2) (kg m−2) (kg m−2) (kg m−2) % %

OBS 119.3 298.2 (298.2) 0.190 (0.237) 0.231 (0.250) 0.420 (0.487) 94.2 (91.7) 35.8 (39.5)

Experiment SW Bias LW Bias LWP Bias IWP Bias TWP Bias Low CF Bias High CF Bias
(W m−2) (W m−2) (kg m−2) (kg m−2) (kg m−2) % %

NOMACP 84.8 -21.5 (-20.9) -0.172 (-0.219) -0.031 (-0.037) -0.202 (-0.256) 5.8 (7.9) 10.4 (12.1)
SMITH 60.0 -11.7 (-10.9) -0.155 (-0.201) -0.027 (-0.039) -0.181 (-0.240) -21.8 (-19.3) -21.1 (-19.6)
BM 49.3 -3.7 (-4.2) -0.160 (-0.204) -0.075 (-0.104) -0.234 (-0.308) -3.2 (-0.9 ) 1.0 (5.6)
BM −MAX 80.1 -14.8 (-12.3) -0.169 (-0.213) -0.056 (-0.058) -0.224 (-0.270) -10.9 (-6.5) -1.1 (4.8 )
HY B 40.6 -3.0 (-2.3) -0.155 (-0.199) -0.092 (-0.107) -0.247 (-0.306) 4.4 (6.4) 9.7 (14.3)
PC2 -1.7 4.9 (5.2) -0.113 (-0.153) 0.035 (0.024) -0.077 (-0.129) 4.6 (6.6) 10.9 (15.1)
HY B −RIM 33.1 -0.6 (0.2 ) -0.137 (-0.176) -0.091 (-0.099) -0.228 (-0.275) 4.6 (6.6) 9.2 (13.8)
HY B −DEP -13.3 3.9 (4.1) -0.051 ( -0.092 ) -0.028 (-0.000 ) -0.079 (-0.093 ) 1.9 (4.4) 9.3 (14.7)

Experiment SW RMSE LW RMSE LWP RMSE IWP RMSE TWP RMSE Low CF RMSE High CF RMSE
(W m−2) (W m−2) (kg m−2) (kg m−2 (kg m−2) % %

NOMACP 169.3 40.7 (40.1) 0.190 (0.272) 0.864 (0.856) 0.889 (0.912) 21.1 (25.8) 51.3 (50.5)
SMITH 132.8 29.4 (28.8) 0.176 (0.257) 0.774 (0.772) 0.804 (0.835) 38.5 (38.2) 50.3 (47.1 )
BM 136.9 27.4 (26.7) 0.179 (0.259) 0.630 (0.622 ) 0.669 (0.709 ) 26.1 (27.8) 50.8 (49.7)
BM −MAX 148.6 30.7 (29.6) 0.186 (0.266) 0.696 (0.731) 0.733 (0.796) 30.6 (31.0) 51.6 (50.4)
HY B 125.2 25.8 (26.1) 0.177 (0.257) 0.614 (0.639) 0.656 (0.721) 21.3 (25.3 ) 51.8 (51.3)
PC2 106.8 22.5 (23.6 ) 0.148 (0.228 ) 0.858 (0.856) 0.884 (0.902) 21.2 (25.6) 48.0 (49.3)
HY B −RIM 120.9 23.4 (24.0) 0.176 (0.258) 0.635 (0.711) 0.676 (0.776) 21.5 (25.7) 52.0 (51.1)
HY B −DEP 134.5 25.0 (24.2) 0.172 (0.235) 0.614 (0.710) 0.675 (0.790) 23.3 (25.8) 47.1 (48.6)

As Table 2, but for the STR CAO mode.
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Figure 3. Vertical profiles of (a) specific humidity (qv) and (b) temperature (T) and (c)

and (d) their bias against the interpolated sounding data for the location of the ANX supersite,

averaged over all CNV (dashed lines) and STR (solid lines) CAO cases during COMBLE. The

horizontal dotted lines in panel c and d show the mean altitude of the 700 hPa (top) and 850 hPa

levels, used in the calculation of the stability metrics discussed in the text.
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positive radiation bias, and then stack each of their radiation contributions. A combi-414

nation of three hatching/shading patterns describes which cloud property bias combi-415

nations explain most of the total radiation bias, as outlined in the legend above the fig-416

ure. From this figure, it becomes immediately clear that the WP bias determines the ra-417

diation biases to a large extent in all simulations. Indeed, positive SW biases (bars above418

the zero line in the left hand panels) are predominantly associated with negative WP bi-419

ases (blue colors), and vice versa (red bars below the zero line). Furthermore, negative420

LF biases (indicated by loose stippling) prevail, regardless of the sign of the SW and LW421

biases. However, there are notable differences between the different simulations that will422

be explored in the next sections.423

The positive SW bias in the NOMACP CNV mode hides a partial bias compen-424

sation. Times when the SW bias is positive prevail and are associated with mostly too425

small WP (blue bars), as well as too small LF (loose stippling). The CF in NOMACP426

is well captured and not responsible for radiation biases (no diagonal or crossed hatch-427

ing). Times with negative SW biases exist as well, and are always due to excessive WP428

(red bars), while these clouds still lack liquid (loose stippling).429

The SW biases in the NOMACP STR mode are more decidedly positive with lit-430

tle bias compensation. The radiation biases in this case are predominantly explained by431

the cloud phase (loose stippling), although still half of the SW bias is related with a sig-432

nificant underestimation of the WP (blue bars).433

4.1.3 Vertical Profiles434

Unfortunately, no aircraft measurements were collected during COMBLE. How-435

ever, two phase-identification algorithms were applied using ground-based remote sens-436

ing measurements that could provide insight in vertical phase distribution, as described437

in Section 2.2. While MBase identifies the phase mainly using temperature thresholds438

and is therefore less reliable in its detection of supercooled qliq at cold temperatures, TPhase439

uses Doppler velocities and spectra in its phase detection (Section 2.2). Liquid, mixed-440

phase and ice clouds in both retrievals and the simulations are defined consistently as441

having CFliq > 0.1, CFliq > 0.1 and CFfro > 0.1, and CFfro > 0.1 respectively.442

Figure 5 shows the frequency of liquid, ice and mixed-phase in the simulations and443

the two retrievals. Note that the observed profiles were constructed using the time-averaging444

technique outlined in section 2.2. The grey shading surrounding the TPhase and MBase445

profiles in Figure 5 indicates the sensitivity to doubling and halving the environmental446

wind speeds in the time averaging method. There are some notable differences between447

the CNV and STR modes in the observations. The CNV mode has more mixed-phase448

cloud at mid-levels than the STR mode, at least according to TPhase (Figure 5a-d). Close449

to the surface, ice is prevalent in TPhase, while mixed-phase is predominantly identi-450

fied by MBase. Figure 5 confirms the lack of mixed-phase and liquid in NOMACP, and451

its excessive glaciation, in particular in the lowest 2 km of the atmosphere (Figure 5c and452

g).453

Figure 6 shows the frequency of small ice and snow aggregates separately. Note that454

TPhase and the simulations employ different definitions of the boundary between small455

and large ice, and hence caution is needed when directly comparing the model and the456

observations. Nevertheless, all configurations hardly produce any ice crystals and trans-457

fer all frozen condensate into the large snow aggregate category. Even with the caveat458

of inconsistent definitions, this difference is remarkable. Additional evidence for too large459

precipitation particles will be given in the next sections. From Figure 6b, NOMACP has460

by far the largest frequency of large snow aggregates near the surface.461
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Figure 4. Cloud regime analysis for all simulations, averaged over all CNV (top) and STR

(bottom) CAO events during COMBLE. Cloud regimes are based on negative, neutral and pos-

itive biases in CF, TWP, and LF respectively (using a relative bias of ± 50% to discriminate

between the bias regimes). More detailed definitions of the regimes are provided in the text. Pan-

els on the left and right show the decomposition of respectively the average surface downwelling

shortwave (SW) and longwave (LW) bias in cloud-bias regimes, using three different hatching

patterns as outlined in the legend. The bold black horizontal lines overlaid over each of the bias

decompositions denotes the total radiation bias for each simulation.
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Figure 5. Time-average vertical profiles of cloud phase as observed by MBase and TPhase

and as simulated by all configurations for the CNV (a, b, c, d) and STR (e, f, g, h) CAO events

during COMBLE. Note that TPhase profiles are provided with and without temporal averaging

to provide an estimate of the uncertainty. As outlined in the text, if the fraction of ice- (liquid-)

containing hydrometeors is larger than 0.1 in the model grid box, or the observed time-window

representative of a model grid length, the cloud is defined as a frozen (liquid) cloud. If both the

ice and liquid-containing hydrometeor fraction are larger than 0.1, the cloud is assumed to be

mixed-phase.
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Figure 6. Time-average vertical profiles of (a) Ice and (b) Snow frequencies observed by

TPhase and simulated by all configurations for all CAO events during COMBLE. Note that the

ice and snow definitions between the observations and the simulations are not entirely consistent.

4.1.4 Surface Precipitation462

Given the excessive glaciation in NOMACP, it is worth exploring the implications463

for surface precipitation. Statistics using two observational sources of surface precipi-464

tation (PWD and WB) are shown Table 5. Note that due to the frequent mixed-phase465

precipitation at ANX, quantitative precipitation retrievals from radar (i.e. conventional466

empirical Z-R relationships), disdrometer or optical rain gauges are often unreliable. Rain467

gauge data will also be associated with considerable uncertainty in these mixed-phase468

conditions. All simulations replicate the heavier and more frequent precipitation in the469

CNV CAO mode and produce precipitation rates within the observational uncertainty470

for both modes. NOMACP has slightly heavier precipitation than many other simula-471

tions in the CNV mode, consistent with its more excessive glaciation (Table 5).472

4.2 Role of Subgrid PDF in diagnostic MacPs473

4.2.1 Vertically Integrated Model Biases474

Ignoring subgrid cloud variability (NOMACP) leads to a lack of supercooled liq-475

uid, excessive glaciation, and large radiation biases. However, from Figure 2, the use of476

a MacP does not automatically lead to improved cloud properties. The diagnostic MacPs477

(BM and SMITH) still exhibit considerable radiation biases, in particular in the STR478

mode.479

This section concentrates on the difference between BM and SMITH and the role480

of their subgrid SD PDF. As mentioned in Section 3, SMITH assumes a unimodal, sym-481

metric and triangular subgrid SD PDF with a fixed variance. BM assumes a combina-482

tion of two Gaussian PDFs with variance linked to the turbulent properties, allowing for483

skewed mixture distributions (Van Weverberg, Morcrette, Boutle, Furtado, & Field, 2021).484
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Table 5. Surface precipitation evaluation statistics

Experiment Mean CNV STD CNV Mean STR STD STR
(mm day−1) (mm day−1) (mm day−1) (mm day−1)

PWD 1.61 ± 0.16 7.17 0.49 ± 0.05 3.74
WB 0.92 ± 0.55 6.44 0.11 ± 0.06 2.04

NOMACP 1.37 7.94 0.25 2.44
SMITH 1.38 6.63 0.33 2.47
BM 1.28 6.08 0.31 2.64
BM −MAX 1.34 5.98 0.34 3.00
HY B 1.26 7.76 0.27 2.79
PC2 1.07 6.37 0.28 2.91
HY B −RIM 1.28 7.74 0.26 2.66
HY B −DEP 0.82 4.99 0.17 2.02

Surface Precipitation statistics for (left) the CNV and (right) the STR CAO mode at the
location of the ANX supersite for the observations and all simulations. Provided are the
time-averaged precipitation rate (Mean) and the Standard Deviation of the hourly pre-
cipitation rate (STD). Two observational sources are shown: the present weather detector
(PWD) and the weighing bucket pluviometer (WB). Observational uncertainty for PWD
and WB is indicated with the ± symbol, indicating the confidence interval

Both schemes exhibit a similarly negative LWP bias (Figure 2a). From Figure 2485

and Tables 2 and 4, the radiation bias in BM is only slightly smaller than in SMITH.486

CF in SMITH is underestimated but better captured in BM (Figure 2b, d and f). Con-487

versely, the IWP is underestimated in BM and overestimated in SMITH (Figure 2a and488

c). The next section discusses which of these contrasting cloud biases contributes most489

to the radiation bias differences between BM and SMITH.490

4.2.2 Cloud regime analysis491

Cloud regime analysis for the diagnostic MacPs is shown in Figure 4. In the CNV492

mode, the mean SW bias magnitude is smaller in SMITH than in BM, although there493

is more error compensation (Figure 4a). Compared to BM, SMITH exhibits more fre-494

quent positive SW biases (particularly when CF is biased low; diagonal hatching). Con-495

versely, SMITH also experiences more frequent negative SW biases associated with over-496

estimating the WP (but still underestimating the LF).497

SW radiation in both SMITH and BM is underestimated in the CNV mode, de-498

spite underestimated LWP and/or CF (although IWP is overestimated in SMITH). This499

might point to further errors in the cloud radiative properties (e.g. the effective radii or500

scattering properties in the radiation parameterization) that should be investigated in501

future studies.502

In the STR mode, less bias compensation is present and SW radiation is persis-503

tently overestimated (Figure 4c). In both SMITH and BM, this predominantly related504

to underestimating the LF (loose stippling), although at least half the bias is also asso-505

ciated with too small WP. The positive SW bias is larger in SMITH, which can be linked506

to more frequent CF underestimations (diagonal hatching), consistent with Figure 2b,507

d and f. Compared to NOMACP both diagnostic schemes have smaller contributions to508

the radiation biases from LF biases, indicating the improved representation of mixed-509

phase conditions from using a MacP.510
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Figure 7. Vertical profiles of cloud properties in BM and SMITH, averaged over all STR

CAO cases during COMBLE. Panel (a) shows the average total cloud fraction (black) for BM

(solid) and SMITH (dashed). Panel (b) shows the average saturation-departure standard devia-

tion (black) in BM (solid) and as obtained from the critical relative humidity profile in SMITH

(dashed). The shaded areas denote the 10th and 90th percentiles of the standard deviations.

Panel (c) shows the average saturation-departure skewness associated with the BM. The Liquid

Water Content (qliq) for BM (solid) and SMITH (dashed) are overlayed in each plot as the grey

lines. The dotted horizontal line shows the average boundary layer height.

4.2.3 Vertical Profiles511

The two diagnostic MacPs produce less frequent pure frozen and more frequent mixed-512

phase conditions than the NOMACP in both the CNV and STR mode (Figure 5), in par-513

ticular between 1 and 2 km above ground level. Mid-level CNV and STR clouds and near-514

surface STR clouds are still too glaciated in SMITH and BM, while the frequency of mixed-515

phase near the boundary-layer top appears better captured compared to TPhase. Near516

the surface in the STR mode, observed clouds are often identified to be pure liquid, while517

pure frozen condensate dominates the lower levels in the diagnostic MacPs (note again518

the higher confidence in TPhase than in MBase for observed vertical phase distribution).519

To explore the reasons for the smaller CF in SMITH compared to BM, causing more520

positive SW biases in the former (see previous sections), Figure 7 shows vertical profiles521

of the macrophysical cloud properties of both schemes. The SD variance in SMITH can522

be obtained from the time- and space- invariant critical relative humidity profile (and523

assuming a triangular SD PDF). In contrast to midlatitude regions (Van Weverberg, Mor-524

crette, & Boutle, 2021), the SMITH variance in the arctic is larger than the turbulence-525

based BM variance (Figure 7b), even near the entrainment zone. In a unimodal PDF,526

larger variances are associated with larger qliq, but also more partial cloudiness. The large527

SD variance in SMITH prevents cloud from becoming overcast (Figure 7a). Linking the528

underlying SD distribution to turbulent properties, as in BM, gives more realistic be-529

havior of large variability in mid-latitude stratocumulus, but more quiescent conditions530

in polar regions.531

It is also noteworthy that SMITH has a smaller overall condensate frequency than532

BM (Figure 5d and h), but large TWP (Figure 2e). In combination with its smaller CF,533

this increases in-cloud water paths, with important implications for the microphysical534
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Table 6. Ice-phase production rates

Experiment Riming Deposition Nucleation
% (108kgkg−1s−1) % (108kgkg−1s−1) % (108kgkg−1s−1)

NOMACP 15.6 (0.21) 84.4 (1.16) 0.0 (0.00)
SMITH 34.4 (0.51) 65.6 (0.98) 0.0 (0.00)
BM 10.2 (0.13) 89.8 (1.12) 0.0 (0.00)
BM −MAX 12.5 (0.16) 87.5 (1.15) 0.0 (0.00)
HY B 10.5 (0.15) 89.5 (1.32) 0.0 (0.00)
PC2 39.3 (0.83) 60.5 (1.28) 0.2 (0.00)
HY B −RIM 0.2 (0.00) 99.7 (1.49) 0.0 (0.00)
HY B −DEP 31.1 (0.40) 68.9 (0.88) 0.0 (0.00)

Fraction of total microphysical production, and average production rate (parentheses)
of the ice phase from riming, deposition and nucleation for all experiments. Riming and
deposition rates for ice, snow and graupel are combined in the Table.

conversion rates. Indeed, from the relative importance of riming, deposition and nucle-535

ation in the frozen-condensate production rates, it is clear that SMITH is much more536

riming-dominated compared to BM.537

4.2.4 Role of Phase Overlap538

A next sensitivity experiment involves the role of the phase overlap. While MacPs539

predict the CFliq and CFfro, they usually make fairly crude assumptions on how these540

phases overlap within a grid box. This can potentially have important repercussions as541

observations suggest that mixed-phase clouds often show alternating pockets of single-542

phase liquid or frozen condensate. This phase separation can put breaks on the glacia-543

tion as less liquid is readily available for consumption by ice through riming or the Berg-544

eron process.545

As outlined in section 3, BM-MAX assumes a maximum phase overlap (hence min-546

imizing the amount of mixed-phase), in contrast to the minimal phase overlap in BM (Ap-547

pendix A). From Figure 2 and Table 2 and 4, SW radiation is considerably degraded in548

BM-MAX. This is due to a further reduction in LWP (most obvious in the CNV mode)549

and a negative bias in CF. As expected, this leads to a reduction of mixed-phase con-550

ditions (Figure 5c and g) compared to BM. The SW bias is more positive in BM-MAX551

than in BM, which is mainly associated with a more frequent bias in LF, but - in par-552

ticular in the CNV mode - also with more important underestimations of the WP. The553

enhanced glaciation in BM-MAX also leads to slightly larger precipitation rates (Table554

5), consistent with findings of Abel et al. (2017).555

4.3 Role of Diagnostic versus Prognostic MacP Approach556

4.3.1 Vertically Integrated Model Biases557

Different approaches exist to represent subgrid CF in numerical models, as outlined558

in section 3. BM is fully diagnostic and calculates qliq, CFliq and CFfro at each time step559

from the large-scale state, without memory of previous timesteps. Conversely, the prog-560

nostic PC2 predicts CF tendencies of the liquid and frozen cloud phase (Wilson et al.,561

2008). A newly designed hybrid approach, implemented in HYB, combines prognostic562

CFfro as in PC2 with diagnostic CFliq as in BM (Section 3 and Van Weverberg and Mor-563

crette (2022)).564
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Note that BM, HYB and PC2 all include the improved coupling between the MicP565

and MacP as outlined in Appendix A. Of all the sensitivities shown so far, the inclusion566

of memory has the most pronounced impact on qliq (Figure 2a). For the CNV mode, HYB567

has the most modest SW bias, while PC2 exhibits a substantial negative SW bias. A large568

positive SW bias exists in the STR mode with BM and HYB, while in this case, PC2569

performs much better.(Figure 2 and Table 2 and 4). PC2 has significantly larger LWP570

and IWP compared to HYB and BM (Figure 2a and c).571

4.3.2 Cloud regime analysis572

The cloud radiation regime analysis yields fairly similar results for BM and HYB,573

although the SW bias is slightly improved in both the CNV and STR modes in the HYB574

configuration (Figure 4a and c). PC2 on the other hand has an important negative SW575

bias in the CNV mode, associated with too large WP, even if the clouds still lack liq-576

uid (red shading and loose stippling in Figure 4a). For the STR mode, PC2 has the small-577

est SW bias and by far the least bias compensation of all configurations (Figure 4c).578

4.3.3 Vertical Profiles579

From Figure 5b and f, a prognostic representation of the frozen CF (as in HYB and580

PC2) drastically changes the pure frozen hydrometeor frequencies in the lower atmosphere,581

compared to the diagnostic schemes. Indeed, there is relatively less frozen condensate582

(and indeed, total condensate) near the surface, and relatively more condensate near the583

boundary-layer top. In PC2, much more frequent mixed-phase conditions are present at584

all levels (Figure 5c and g). At least for the mid-levels of the atmosphere the latter is585

in better agreement with the benchmark observation TPhase.586

Figure 8 shows joint probability density functions of qliq and qfro and CF as ob-587

served in MBase, and as simulated by BM, HYB and PC2. As noted in Section 2.2, con-588

fidence in MBase for the liquid versus frozen condensate partitioning is rather small for589

polar clouds, although the vertically distributed cloud mask and the liquid water paths590

should be more reliable (which are constrained by radar reflectivities and the ground-591

based microwave radiometers respectively). This is also evident from Figure 5 showing592

a very limited height range for the occurrence of liquid in MBase compared to TPhase,593

related to the temperature-dependency in the latter.594

Hence, while the observed CF distributions in Figure 8 are fairly reliable, compar-595

ison with the ice and liquid water contents between the model and the observations re-596

quires serious caution. We will therefore focus on the differences between the model sim-597

ulations rather than on an evaluation against observations in the following analysis.598

BM produces a tight relation between the qliq and CFliq and qfro and CFfro (Fig-599

ure 8b and f). Furthermore, liquid clouds mostly have partial cloud cover, and even ice600

clouds are frequently broken (histograms to the right of the panels in Figure 8). While601

there is considerable uncertainty in the partitioning of ice and liquid in MBase, there is602

more confidence in the typically near-overcast observed conditions (Figure 8a and e). Given603

the relatively small variances associated with the BM in this polar environment (Figure604

7), it is remarkable that liquid clouds struggle to reach overcast conditions. It is possi-605

ble that the competition for water vapour from the ice phase, as formulated following606

Furtado et al. (2016) prevents liquid cloud from reaching larger cloud cover. Frozen CF607

in BM is diagnosed using the qliq-CFliq relation and this clearly leads to the same tight608

coupling between qfro and CFfro (Figure 8f), although full frozen cloud cover is often achieved.609

The qliq distribution is weighted to too small values (bottom histogram in Figure 8c; note610

that these observations are constrained by the microwave radiometer LWP measurements611

(Section 2.2). The qfro appears well-captured (Figure 8f), although note that its observed612

values are less reliable.613
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Figure 8. Normalized joint distribution of liquid (cloud + rain) water content versus CFliq

(top row) and frozen (ice + snow) water content versus CFfro (bottom row) as obtained from the

MBase (a,e) and as simulated by BM (b, f), HYB (c, g) and PC2 (d, h). Shading is on a loga-

rithmic scale. Histograms to the right and the bottom of the joint distributions show the CF and

water content distributions, respectively. The grey lines on the simulation histograms denote the

observations for reference.
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Figure 9. Vertical profiles of the time-averaged liquid water source terms in PC2 at the loca-

tion of the ANX site for (left) the CNV and (right) the STR CAO events and for mid-level (top)

and low-level (bottom) clouds.

A prognostic representation of CFfro, as in HYB (Figure 8g) achieves more spread614

in the joint qfro-CFfro relation. However, given its diagnostic treatment, the tight rela-615

tion for liquid as in BM persists. Prognostic treatment of liquid (PC2) increases qliq and616

CFliq, although even in this case, full cloud cover is seldom reached. We note again that617

due to the uncertainties in MBase, no firm conclusions should be drawn from the com-618

parison against the observed CFliq. Nevertheless, the enhanced qliq, for which observa-619

tions are more reliable, is a significant model improvement in PC2 (bottom histograms620

in Figure 8d).621

Given the apparent benefit of prognostic liquid in PC2, it is instructive to inves-622

tigate the individual liquid water source terms for PC2. These are shown as vertical pro-623

files in Figure 9 . We refer to Wilson et al. (2008) and Furtado et al. (2016) for more de-624

tailed descriptions of the source terms. For mid-level clouds (Figure 9a and b), the main625

sources of qliq are adjustments following the pressure solver and the mixed-phase gen-626

eration of liquid as described in Furtado et al. (2016). Liquid is mainly consumed by the627
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microphysics and by cloud erosion, which represents dry air entrainment near cloud edges628

(Morcrette, 2012). The pressure solver term is particularly associated with updraft re-629

gions, while the mixed-phase term becomes dominant in downdraft regions (not shown).630

Hence, liquid in mid-level updrafts in the CNV mode originate mostly from the pressure631

term and from upward advection (not shown). At lower tropospheric levels (Figure 9c632

and d), the STR and CNV mode are more different in terms of PC2 tendencies. The CNV633

mode has smaller production term magnitudes than the STR mode. Mixed-phase gen-634

eration of liquid is the dominant source of qliq, in particular in the STR mode. Conversely,635

PC2 initiation and boundary-layer mixing remove a lot of the liquid produced by the mixed-636

phase term. Note that the initiation term is a source term if some cloud ought to form637

in a clear-sky grid box, but becomes a sink when some cloud ought to be removed from638

an overcast grid box, consistent with the underlying BM PDF assumptions.639

It should be mentioned that there are some aspects of the design of PC2 that war-640

rant further research. The PC2 pressure forcing and the mixed-phase generation of liq-641

uid terms both act on cloud fields at the end of the pressure solver, while ideally they642

should be integrated in a single term. In its current formulation, they both act to remove643

some supersaturation, but with inconsistent underlying assumptions of their SD PDF.644

More detailed analysis is required to verify whether the improved qliq in PC2 occurs for645

the right reasons.646

Additional sensitivity tests removing the erosion term and the mixed-phase gen-647

eration of liquid term, respectively led to a big increase and decrease by a factor of 2 of648

qliq in PC2. Revisiting the formulations of cloud erosion in the context of mixed-phase649

clouds would be highly recommended to explore potential further improvements in PC2.650

4.4 Microphysical Considerations651

While previous analysis shows that the MacP matters for mixed-phase cloud-radiative652

effects, qliq is widely underestimated in all configurations, consistent with previous stud-653

ies (Klein et al., 2009; Solomon et al., 2009; Forbes & Ahlgrimm, 2014; Field et al., 2017).654

From Figure 6, simulations struggle to capture the observed partitioning of frozen655

condensate in small crystals and large snow aggregates. This is consistent with Solomon656

et al. (2009), finding underestimated ice number concentrations in mixed-phase simu-657

lations using a two-moment MicP.658

While no research aircraft were flown during COMBLE to obtain direct measure-659

ments of ice number concentrations, some additional indirect evidence of too large pre-660

cipitation particles can be obtained from the Laser disdrometer (D. Wang et al., 2022),661

as shown in Figure 10. From this figure, raindrop numbers for a given rain rate tend to662

be too small in the model (and hence raindrops too large). These large raindrops likely663

originate from large melting snowflakes in CASIM.664

While additional observational evidence for the excessive particle sizes is highly de-665

sirable, two additional experiments investigate the contribution of two major snow growth666

mechanisms to the inception of the particle size bias and their role in the qliq depletion.667

Vastly reducing riming growth (HYB-RIM), only alleviates the qliq bias slightly (Fig-668

ure 2a), while also reducing the qfro considerably (Figure 2c). From Table 6, virtually669

all ice and snow in this experiment is produced through depositional growth. Despite670

the reduction in snow production through riming, HYB-RIM has very similar profiles671

for snow and ice water content and number concentration compared to HYB (Figure 11).672

The representation of riming therefore does not appear to have a major impact on the673

ice and snow properties in these simulations, or on the qliq bias.674

In contrast, reducing the depositional growth rate of snow (HYB-DEP) brings the675

LWP bias close the observational uncertainty range in both modes (Figure 2a). Unsur-676
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Figure 10. Joint distribution of rain rate and raindrop number concentration as (a) observed

during COMBLE with the Laser disdrometer, and as simulated by (b) HYB and (c) HYB-DEP.

Note that observations were screened for the occurrence of any frozen or mixed-phase precipita-

tion using the reported World Meteorological Organization weather codes, and the model only

contains liquid rain rates. Shading is on a logarithmic scale. Histograms to the right and the

bottom of the joint distributions are for the rain number and rain rates respectively. Black lines

are for the observations in the left panel, for HYB in the middle panel and for HYB-DEP in the

right panel. Grey lines show the other panel’s histograms for reference.

prisingly, riming becomes relatively more important in this experiment (Table 6). HYB-677

DEP experiences greatly increased snow number concentrations, and surprisingly, an in-678

crease in snow water content (Figure 11c, f, i, l). The latter can be explained by the more679

numerous, smaller particles and hence smaller fall speeds. Total snow production in this680

experiment is indeed much reduced compared to the other experiments (Table 6). The681

one order-of-magnitude larger snow number concentrations imply much smaller parti-682

cles in HYB-DEP. Figure 6 suggests that this is in better agreement with observations.683

From Figure 10c, the smaller snow particles now also melt into smaller (more numerous)684

raindrops, again in closer agreement to the observations and providing additional evi-685

dence for improved precipitation size distributions in HYB-DEP.686

Thus, HYB-DEP suggests that depositional growth rates in the default CASIM con-687

figurations may be excessive and that this possibly plays a significant role in liquid wa-688

ter depletion. Indeed, if the ice phase grows too excessively through deposition, much689

of the ice supersaturation will be consumed, depleting liquid water through the Berg-690

eron process. Further research into the role of snow depositional growth in CAO events691

is needed, e.g. through comparison against observations of snow and ice particle habits692

and particle fall speeds. Indeed, simulating incorrect particle size distributions, habits693

or surface area, will greatly affect the depositional growth rates in the simulations.694

Note that HYB-DEP alleviates the dry bias in the lower-troposphere somewhat in695

the simulations shown here (likely due less to vigorous consumption of water vapour through696

depositional growth). However, a cold, wet bias now emerges in the mid-levels. Further,697

while the cloud-radiative properties largely improve in the STR mode, excessive ice in698

the CNV mode in HYB-DEP (Figure 2c), leads to a significant negative SW radiation699

bias (Figure 4a). HYB-DEP also produces smaller surface precipitation rates than the700
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Figure 11. Contoured Frequency by Altitude Diagrams (CFADS) of (a-c) snow and (d-f) ice

water content and (g-i) snow and ice (j-l) number concentration, for all CAO events at the loca-

tion of the ANX site. Shown are (left) HYB, (middle) HYB-RIM and (right) HYB-DEP. Shading

of relative frequencies is on a logarithmic scale. The black-and-white line denotes the domain-

and time average profile of the experiment indicated in the title of the panel, while the grey lines

show the profile for the other two experiments for reference.
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other configurations, at the lower boundary of the observational uncertainty (Table 5).701

It is interesting to note that PC2, which also produces enhanced LWP, has a similar rim-702

ing fraction (larger than most other configurations) than HYB-DEP, although its total703

production rates are much larger.704

5 Discussion and Conclusions705

Cold air outbreak clouds (CAO) in high latitude regions pose a major challenge706

for regional Numerical Weather Prediction and climate models. These clouds often con-707

tain substantial liquid despite their low temperatures. The production and maintenance708

of this liquid involves processes at scales ranging from microphysics, to meter-scale tur-709

bulent motions and mesoscale cloud organization.710

Most models underestimate supercooled liquid in these mixed-phase conditions and711

consequently misrepresent cloud-radiative effects and possibly climate-change feedbacks712

over polar regions (Klein et al., 2009; Solomon et al., 2009; Field et al., 2017). Many stud-713

ies so far have looked at aerosol (Tornow et al., 2021), microphysics (Solomon et al., 2009;714

Abel et al., 2017) and boundary-layer processes (Field, Cotton, et al., 2014; Field et al.,715

2017) to explore the reasons for this model deficiency. Some of these studies suggest that716

the maintenance of liquid in mixed-phase clouds involves subgrid-scale phase separation717

of liquid and ice, justifying a closer look at the role of the subgrid macrophysics param-718

eterization (MacP).719

This is done through km-scale simulations of 47 well-observed CAO cases during720

the Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) in Nor-721

way in 2020 (Geerts et al., 2022). All simulations were performed using a recently de-722

veloped two-moment microphysics scheme, CASIM (Field et al., 2022) in the UK Met723

Office Unified Model. The continuous ground-based observations, collected at one site724

over a multi-month period, provide a unique opportunity for a more statistically robust725

analysis, compared to single case studies observed by aircraft.726

Key findings of this study are:727

• (1) Even at km-scale, using a MacP is beneficial to represent cloud-radiative ef-728

fects in simulations of convective and stratiform CAO events, although many MacPs729

suffer from compensating biases. This finding is likely very resolution-dependent730

and it would be interesting to explore whether this still holds at sub-kilometer scales.731

• (2) All diagnostic MacPs using the default CASIM microphysics scheme largely732

underestimate liquid water path (LWP). In stratiform CAO events, they also un-733

derestimate the ice water path (IWP), leading to large SW radiation biases, but734

in convective CAO events, the IWP is generally better captured, producing smaller735

radiation errors.736

• (3) Of all MacP experiments, only the introduction of prognostic liquid fraction737

could substantially reduce the LWP bias, but even this configuration produced less738

than 50% of the observed LWP in convective and Stratiform CAO events. Fur-739

thermore, given inconsistent subgrid assumptions for moisture variability between740

its different components (asymmetric bimodal Gaussian distributions for the ini-741

tiation term, and symmetric combinations of power law distributions for the other742

terms), it is hard to determine whether the increase in LWP occurs for the right743

reasons.744

• (4) Phase-overlap and subgrid variability assumptions hardly affect the LWP bias,745

but produce vastly different IWP and high cloud cover, hence producing very dif-746

ferent cloud-radiative effects, in particular in stratiform CAO conditions. Gener-747

ally, more advanced approaches and minimal overlap produce better cloud-radiative748

effects and less error compensation.749
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• (5) Boundary layers in the simulations are too cold, destabilizing the lower tro-750

posphere over the relatively warm ocean surface. This could possibly feed back751

into too rapid glaciation, further exacerbating the cold bias and destabilizing the752

atmosphere. While it is hard to disentangle cause and effect, this possible liquid-753

depleting feedback mechanism should be explored in future studies.754

• (6) The largest improvement in LWP occurs when greatly reducing the snow de-755

positional growth rate, leading to smaller and more numerous snow particles, in756

better agreement with observations. Depositional growth in the other configura-757

tions appears to consume much of the ice supersaturation, depleting liquid wa-758

ter through the Bergeron process.759

This study also highlights the need for a greater effort to unify assumptions across760

parameterizations. This is an important prerequisite for reducing error compensation761

and to help disentangle the origin of model biases. For instance, it is hard to understand762

the reason for enhanced LWP in the prognostic scheme tested here, since various com-763

ponents of the scheme have inconsistent subgrid-variability assumptions.764

A new, hybrid cloud scheme is proposed in this paper, building on Van Weverberg765

and Morcrette (2022). This scheme uses diagnostic liquid cloud, following Van Wever-766

berg, Morcrette, Boutle, Furtado, and Field (2021), but prognostic ice-phase cloud with767

cloud-fraction tendencies from each microphysical source term. This scheme was found768

to replicate some of the improved joint cloud fraction - cloud water distributions of the769

fully prognostic scheme, but at a reduced cost and complexity. However, it was not ca-770

pable of significantly improving the LWP.771

This study accentuates the need for in-situ observations of ice particle sizes and772

habits. Indeed, more observational evidence would shed light on the role of ice nuclei,773

snow habit and particles sizes on the possibly excessive depositional growth rate. A caveat774

of our results is the large observational uncertainty associated with the hydrometeor/phase775

classification algorithm or other methods to differentiate phase (i.e., simple temperature-776

based partitioning). A detailed evaluation of these phase identifications against in-situ777

aircraft observations into regimes similar to those found during COMBLE is highly de-778

sirable to enhance the confidence in the results/designations presented here. Neverthe-779

less, it should be emphasized that the evaluation against ground-based measurements780

during 47 convective and stratiform CAO events during COMBLE has confirmed model781

biases reported previously for single case studies in a more statistically robust manner.782

While this study is based on the UK Unified Model, the results should be relevant783

to other regional models, given that liquid water depletion in mixed-phase clouds is a784

widely shared model bias (Klein et al., 2009; Abel et al., 2017; Field et al., 2017). It would785

be interesting to repeat this analysis for other models and other microphysics schemes786

to investigate the robustness of the insensitivity to the macrophysics parameterization,787

and the sensitivity to the formulation of the snow depositional growth rate.788

Appendix A Consistent Treatment of Saturation-Departure in Micro-789

and Macrophysics790

The CASIM microphysics and the macrophysics parameterizations (MacPs) were791

developed independently of one another, and their assumptions are not necessarily con-792

sistent. This Appendix discusses the improved coupling between all MacPs and CASIM793

in all configurations discussed in this paper. Firstly, all MacPs assume liquid (CFliq) and794

ice clouds (CFfro) to be minimally overlapped, while the cloud-overlap in CASIM is pa-795

rameterized as follows:796

CFmix = min(1,max(0,Φmin(CF liq, CF fro)+max(0, (1−Φ)(CF liq+CF fro−1)))) (A1)
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Where the overlap parameter Φ = 0 for a minimal overlap (minimal mixed-phase)797

and Φ = 1 for a maximal overlap (maximal mixed-phase). The default RAL3 config-798

uration uses a value of Φ = 0.5, implying a random phase overlap. This leads to the799

following combined cloud fraction CFtot:800

CF tot = max(0,min(1, CF liq + CF fro − CFmix)) (A2)

All configurations in this manuscript use a consistent phase overlap in all MacPs801

and CASIM with Φ = 0 (minimal overlap), unless mentioned otherwise.802

BM and PC2 initiation calculate the liquid water content (qliq) and liquid water803

fraction (CFliq) assuming a subgrid SD variability following Field, Hill, et al. (2014) and804

Furtado et al. (2016). The qliq and CFliq are reduced in the presence of ice, leaving some805

supersaturation for ice depositional growth in CASIM, as outlined in Field, Hill, et al.806

(2014); Furtado et al. (2016). This could be seen as a more explicit treatment of the Berg-807

eron process. Smith assumes a triangular subgrid SD distribution, with the width de-808

termined by a prescribed profile of critical relative humidity. However, by default CASIM809

only accounts for grid-mean ice-supersaturation and ignores any subgrid variability as-810

sumed by the MacP. This could lead to a situation where a grid box is diagnosed par-811

tially liquid-saturated by e.g. BM, but treated as entirely ice-sub-saturated by CASIM.812

Therefore, a modification was made to pass on the subgrid ice-supersaturation from the813

MacPs to CASIM, calculated as follows (note that in case of Smith qliq is the entire su-814

persaturation w.r.t liquid):815

qsi = qst − qliq (A3)

Where qliq is calculated as in Furtado et al. (2016) for BM and PC2. In BM and816

PC2, the grid-box total supersaturation qst is given by817

qst =
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This Equation is obtained by integrating under the saturated part of a Gaussian820

ice-saturation departure PDF with first moment µice and second moment σturb (see Van We-821

verberg, Morcrette, Boutle, Furtado, and Field (2021) for more detail). The grid-mean822

total ice saturation departure (SD) µice is given by:823

µice = ai(qT − qsi(Tfro)) (A4)

Where qT represents the total (liquid + frozen) water content, and qsi(Tfro) is the824

saturation specific humidity w.r.t ice using the frozen temperature (Tfro = T−Lv

cp
qliq−825

Lf

cp
qice). The turbulence-based variance σturb

2 is given by:826

σ2
turb = (1/2)(aiαice

g

cp
)
2

σw
2τLτE (A5)

αice is the linear approximation to the local change of qsi w.r.t. frozen tempera-827

ture Tfro and the factor ai accounts for changes in qsi(Tfro) due to latent heating, given828

by:829
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ai = (1 + αice

Lf

cp
)−1 (A6)

The time scales for the Lagrangian turbulence de-correlation (τL) and homogeniza-830

tion of the turbulent layer (τE) are calculated as outlined in Van Weverberg, Morcrette,831

Boutle, Furtado, and Field (2021). Passing on the subgrid ice supersaturation to CASIM832

allows depositional growth to take place before a grid-box mean becomes supersaturated833

and should be more physically consistent with the assumptions made in the MacP.834

In Smith, the grid-box total supersaturation qst is given by integrating under a tri-835

angular subgrid PDF, yielding (Smith, 1990):836

qst =



















0 QN <= −1
bs
6
(1 +QN )3 −1 < QN <= 0

bs(QN + 1
6
(1−QN )3) 0 < QN <= 1

bsQN 1 < QN

837

838

Where QN is defined as:839

QN =
ai(qT − qsi(Tfro))

bs
(A7)

and the width of the triangular PDF bs is given by:

bs = ai(1−RHcritqsi(Tfro)) (A8)

It should be said that the impact of the above modifications was generally small840

with a tendency for simulations to be more glaciated, but little impact on the CF and841

overall water content. The increased glaciation is not surprising given that depositional842

growth now can take place before grid-mean saturation is attained.843

Appendix B Prognostic cloud fraction tendencies associated with mi-844

crophysics845

Prognostic CF schemes, such as PC2 (Wilson et al., 2008), calculate tendencies of846

CF from each model component changing the thermodynamic state of the atmosphere.847

Originally, the PC2 scheme was coupled to the one-moment microphysics scheme of Wilson848

and Ballard (1999), with CFfro tendencies from nucleation, deposition, melting and sub-849

limation, and liquid cloud (CFliq) tendencies from nucleation, deposition and evapora-850

tion. This appendix provides PC2 tendency formulations when coupled to CASIM (Field851

et al., 2022). Note that while CASIM includes two separate categories for small ice and852

large aggregates, it only includes a single CFfro for both categories combined.853

Homogeneous (pihom) and heterogeneous nucleation (pinuc) are a CFliq sink and854

a CFfro source, proportional to the qliq fraction that has been converted to ice at the timestep:855

∆CF fro = CF liq(∆qice(pihom) + ∆qice(pinuc))/qliq (B1)856

Melting of ice (pimlt) and snow (psmlt) are a sink for CFfro and are assumed to857

be added to the rain category (hence not affecting CFliq): Again, the fraction tendency858

is proportional to the water content tendencies:859

∆CF fro = −CF fro(∆qrain(pimlt) + ∆qrain(psmlt))/(qice + qsnow) (B2)860
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Riming of cloud water onto ice (piacw), snow (psacw) or graupel (pgacw) is a CFliq861

sink, but not a CFfro source, since riming only occurs in the mixed-phase grid-box por-862

tion, which, by definition is already covered in frozen condensate: The CFliq sink is pro-863

portional to the riming rate:864

∆CF liq = −CFmix(∆qice(piacw) + ∆qsnow(psacw) + ∆qgraupel(pgacw))/qliq (B3)865

Autoconversion (praut) and accretion (pracw) of cloud by rain reduces CFliq, pro-866

portional to the qliq loss:867

∆CF liq = −CF liq(∆qrain(piacw) + ∆qrain(pracw))/qliq (B4)868

For depositional growth of ice (pidep) and snow (psdep), a slightly different approach869

was taken, and it is assumed that these processes fill the entire supersaturated portion870

of the grid box with ice cloud:871

∆CF fro = areasi(∆qice(pidep) + ∆qsnow(psdep)/qsi (B5)872

where qsi is calculated as in Equation A3 and the supersaturated grid-box fraction873

(areasi) is calculated as:874

areasi =











0 µice < −3σturb

1
2
(1 + erf( µice√

2σturb
)) −3 ∗ σturb <= µice <= 3σturb

1 µice > 3σturb

875

876

Where the first (µice) and second (σturb) moments are given by Equation A4 and877

A5.878

The CFfro sedimentation tendency is described in Walters et al. (2019), taking into879

account vertical windshear.880
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Appendix C Open Research888

This work is conducted in the framework of the UK Unified Model, for which the889

code is available on a password-protected repository (Met Office Science Repository , 2022).890

All model output fields used in the analysis presented in this paper is available via https://891

zenodo.org/record/7422826. All observational sources (M. Wang et al., 2022; Zhang892

& Levin, 2022; Jensen et al., 2022; Xiao & Xie, 2022; Kyrouac & Shi, 2022; D. Wang et893

al., 2022) are available via https://adc.arm.gov/discovery/.894
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