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Abstract

Genome annotation is essential for understanding the functional elements within genomes. While automated methods are indis-
pensable for processing large-scale genomic data, they often face challenges in accurately predicting gene structures and functions.
Consequently, manual curation by domain experts remains crucial for validating and refining these predictions. These combined
outcomes from automated tools and manual curation highlight the importance of integrating human expertise with artificial
intelligence (AI) capabilities to improve both the accuracy and efficiency of genome annotation. However, the manual curation process
is inherently labor-intensive and time-consuming, making it difficult to scale for large datasets. To address these challenges, we propose
a conceptual framework, Human-AI Collaborative Genome Annotation (HAICoGA), that leverages the synergistic partnership between
humans and AI to enhance human capabilities and accelerate the genome annotation process. Additionally, we explore the potential of
integrating large language models into this framework to support and augment specific tasks. Finally, we discuss emerging challenges
and outline open research questions to guide further exploration in this area.
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Introduction
Genome annotation (GA) is the process of identifying and
interpreting the functional elements encoded within a genome. It
is a critical step in understanding an organism’s biology, enabling
researchers to connect genetic information to phenotypes,
understand disease mechanisms, and uncover evolutionary
relationships. GA is heavily relies on automated methods,
including machine learning (ML) [1–3] and other computational
methods such as rule-based and heuristic methods [4, 5]. However,
automated methods are generally hampered by the relative
scarcity of reliable labeled data and the complexity of biological
systems. In fact, gene annotations, particularly functional
annotations, are mostly transferred from one species to another
in an automated manner, relying mainly on the similarity of
underlying nucleotide sequences, or the corresponding protein
sequences.

Manual curation is widely recognized as essential for improv-
ing the reliability and accuracy of GA [6–8]. It involves human
experts reviewing and refining annotations, particularly by
addressing ambiguities or gaps that automated pipelines
may overlook. For instance, curators enhance the functional

annotations of genes by incorporating new insights from
scientific literature that detail experimental results related to
gene function. Additionally, manual curation enables precise
gene structure annotation by reviewing evidence from multiple
sources, such as omics datasets and experimental outcomes, to
accurately define gene boundaries [9].

Despite their value, these evidence sources are often scattered
across multiple platforms or embedded within vast datasets,
making manual curation a time-consuming and labor-intensive
process. Consequently, current GA practices rely heavily on
automated annotation, which is not always followed by manual
curation [10].

Manual curation has mostly been conducted in cases where
teams of annotators collaborate to create accurate and up-to-
date annotations for high-priority species or specific gene sets.
Correspondingly, computational tools and platforms have been
developed to support collaboration among annotators. These
tools include algorithms that identify problematic annotations
and prioritize them for review [11], as well as platforms that facil-
itate seamless communication, data sharing, and coordination
among annotators, regardless of their geographic location [12, 13].
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However, these tools operate independently and have not
addressed the issue of dispersed data sources across various
platforms. Additionally, there is a lack of dynamic interaction
between the tools and users, i.e. the tools typically run automati-
cally without a user in the loop.

As highlighted by Mac et al. [14], the disconnect between artifi-
cial intelligence (AI) tools and their users can potentially impact
the effective utilization of AI. They suggest integrating scientists
into the loop and combining their expertise with interactive ML to
accelerate scientific progress. There is a growing body of research
on how humans and AI collaborate to drive advancements in
fields such as medicine [15–17] and chemistry [18], particularly
through the adoption of large language model (LLMs) (see LLM
in the Glossary section). Furthermore, the emerging concept of
human–AI collaborative intelligence focus on the combination of
humans and AIs working together to solve problems, leveraging
the strengths of both parties and enhancing each other’s capabili-
ties [19, 20]. Although still in its early stages, an increasing number
of studies demonstrate that human–AI collaboration (HAIC)
can lead to superior performance in accomplishing complex
tasks [19, 21, 22].

Inspired by these work, we propose a conceptual framework
named Human-AI Collaborative Genome Annotation (HAICoGA),
in which humans and AI systems not only work interdependently
but also collaborate over a sustained period. Collaboration in
this context refers to effective functional integration between
humans and AI systems. AI systems generate annotation sugges-
tions by leveraging automated GA tools and relevant resources,
while human experts review and refine these suggestions to
ensure alignment with biological context and domain knowl-
edge. This process is not a one-time interaction but an iterative
collaboration, in which humans and AI systems continuously
inform each other, enhancing both the accuracy and usability
of AI support tools. Facilitating this collaboration is the use of
LLM-based agentic systems, which integrate multiple tools and
resources into a unified, interactive platform, streamlining the GA
workflow and reducing the burden of tool switching or manual
integration.

The remainder of this paper is organized as follows. Section
2 provides the necessary background and reviews related work
relevant to this study. Section 3 introduces the conceptual frame-
work of HAICoGA, identifying key components and critical capa-
bilities required to establish an effective and sustainable human–
AI collaborative relationship. In Section 4, we explore current
applications of LLM-based AI agents in the biological and biomed-
ical domains and present a vision for the HAICoGA workflow.
Section 5 outlines key future research directions to further realize
HAICoGA. We hope this work contributes to the development of
human–AI collaborative workflows for GA in the future.

Background and related work
Genome annotation
GA can be interpreted as multidimensional, spanning from the
nucleotide level to the biological system level [23]. Genomic ele-
ments of interest include, but are not limited to, single nucleotide
polymorphisms, coding genes, noncoding genes, regulatory ele-
ments, and other noncoding regions. Structural annotation pri-
marily focuses on delineating the physical regions of genomic
elements. While the structural annotation offers initial clues,
a definitive understanding of functions still requires in-depth
analysis.

GA encompasses a broad range of tasks that are now pri-
marily accomplished through various computational approaches

utilizing diverse data types. We provide a rough chronology of
the emergence and prominence of different automated meth-
ods in Supplementary Note 1. These automated methods can
be integrated into highly complex pipelines to perform mul-
tiple steps in automated GA. Although automated approaches
dominate GA, they still face serious limitations and challenges
(Supplementary Note 1).

Due to the limitations of current computational tools, auto-
mated GA frequently produces erroneous results. In particular,
genes from non-model organisms are often assigned functions
based on homologs or labeled with vague terms such as “hypo-
thetical gene” or “expressed protein,” offering little insight into
their biological roles. These inaccuracies not only affect imme-
diate interpretations but also propagate through downstream
analyses [24], where they can be further amplified by ML or AI
models trained on these data [25]. This creates a feedback loop
in which low-quality annotations degrade the reliability of both
current databases and future research that depends on them.

Manual curation
Manual curation has primarily been done in model species to
continuously improve the accuracy and coverage of their GAs. For
example, projects such as HAVANA for the human genome, TIGR
for Arabidopsis thaliana, and ITAG for Solanum lycopersicum pro-
duce high-quality annotations manually curated by specialized
experts. Manual curation is not limited to collaborative efforts
or decentralized networks (detailed manual curation models are
provided in Supplementary Note 2); it also plays a crucial role in
individual research. Researchers may engage in manual curation
before formulating hypotheses for their studies or when interpret-
ing their results.

Manual curation is an ongoing process that requires the contin-
uous repetition of five general steps [26, 27] (see Supplementary
Note 2). This process is time- and labor-intensive, but it can be
made more efficient with the assistance of software tools.

For example, Apollo has been widely used in the GA community
and continues to be actively updated [12, 28, 29]. Its current web-
based interface supports real-time collaborative annotation and
integrates JBrowse [30] for fast, scalable genome visualization.
Within Apollo, users can edit gene models, adding or deleting
exons, adjusting boundaries, and assigning annotations. But
functional annotations still rely on external tools, such as
text mining systems. Tools like PubTator Center [31] assist in
extracting biological entities and gene functions from literature,
yet manual curation remains challenging. This is evident in
efforts like BioCreative IV [32], which highlight the expertise
and validation required to curate functions even with automated
support [33].

More details on additional tools can be found in Supplementary
Note 2. These tools are distributed across different platforms.
Additionally, automated GA tools operate independently from
these manual curation tools. As a result, humans need to spend
a significant amount of time running and navigating multiple
tools, as well as transferring data between them. To accelerate the
GA process, an integrated system is needed, which connects all
necessary automated and manual GA tools and enables seamless
collaboration between humans and AI tools.

Human–AI collaboration
AI systems can play different roles in human–AI teaming,
including automation, augmentation, and collaboration [34]. In
automation, AI independently performs tasks without human
intervention. In augmentation, AI enhances human experts’
abilities in their tasks. Collaboration refers to humans and AI
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working together in a coordinated effort toward overall goals,
enabling better outcomes than either could achieve alone.
Similarly, Gao et al. [15] classify AI systems into four intelligence
levels based on their capabilities in hypothesis generation,
experimentation, and reasoning. Level 0 consists of AI models
used by humans as automated tools. Level 1 includes AI assistants
that execute tasks specified by scientists. Level 2 consists of AI
collaborators that work alongside scientists to refine hypotheses
and utilize a broader array of tools for experimentation and
discovery. Level 3 represents AI scientists, which exhibit the
highest level of intelligence.

In the current GA workflow, automated GA tools can be cat-
egorized as Level 0 AI models. Recently, LLMs have been used
to develop various AI assistants (Level 1) in the biological and
biomedical domains, which could potentially be adapted for GA.
However, a significant gap remains due to the lack of HAIC in GA
(Level 2).

The emergence of HAIC frameworks and taxonomies across
various domains has advanced our understanding of effective
HAIC. For instance, Hartikainen et al. [35] propose a framework for
designing collaborative systems in smart manufacturing, while
Martin et al. [36] present a model for human–AI co-design in
Design Space Exploration. Dubey et al. [37] introduce a framework
for successful human–AI teaming in contact centers. Despite this
progress, applying HAIC to GA presents unique challenges. We
build on these frameworks to introduce HAICoGA and propose
future research directions for collaborative GA.

A conceptual framework of human–AI
collaborative GA
To support collaborative GA, HAICoGA incorporates and extends
key concepts from general HAIC theories [35, 37, 38]. As shown
in Fig. 1, it includes seven key elements: humans, AI systems
and tools, data, goals and tasks, the human–machine interface,
environment, and collaboration. Humans and AI operate as a
collaborative team within a dynamic environment. Tasks and
goals are continuously updated as they interact via a shared
interface, leveraging available data to achieve genome annotation
outcomes.

Key elements
Humans
Humans refers to individuals involved in GA, particularly those
engaged in manual curation. This group may include biological
researchers, experimental scientists, biocurators, and trained
students. These individuals bring diverse backgrounds, domain
knowledge, and methodological experience to the decision-
making process [39]. Research suggests experts rely heavily on
their previous experience on the task, as well as their deep and
often tacit knowledge of the domain [40]. Decision-makers often
employ mental shortcuts and heuristics that are efficient but can
be prone to cognitive bias [41, 42].

Collaborating with LLMs has the potential to mitigate individ-
ual biases when the complementary strengths of human judg-
ment and machine predictions are effectively leveraged [43]. Still,
bias in human curation remains an open and ongoing challenge
in the biological domain. For example, the BC4GO study [44]
demonstrated substantial variability in manual GO annotation,
with low inter-annotator agreement even among trained curators,
highlighting that human bias persists regardless of AI involve-
ment and must be continually recognized and mitigated.

While humans may not match AI in processing speed or han-
dling vast datasets, they possess the ability to interpret nuanced

context, adapt to shifting task goals, and act flexibly in dynamic
environments [40]. This adaptability is crucial in GA, where the
context and requirements may change based on new findings
or experimental results. Humans can also perform sanity checks
and intervene when AI-generated annotations deviate from estab-
lished rules or expectations, helping to limit the propagation of
errors throughout the system [45]. Consequently, while AI can
assist and augment decision-making, the role of experienced
human curators remains indispensable [46].

AI systems and tools
The AI element consists of a collection of systems and tools
designed to perform or assist in GA. By using the term “AI,” we
encompass a broad range of computational tools that can be
integrated into intelligent systems to enhance collaboration with
humans during GA tasks. Ideally, the AI component should consist
of an ecosystem of tools with diverse designs and functionalities,
each contributing uniquely to the annotation process.

Automation-focused AI tools streamline the multi-step process
of identifying and classifying genes and other functional genomic
elements, as seen in established GA pipelines and automation
methods [5, 47]. In contrast, augmentation tools are designed
to assist human annotators by enhancing their efficiency and
effectiveness, for example, Apollo [12]. Collaboration tools
could support bidirectional interaction between humans and
AI systems.

While certain biases inherent in AI systems (discussed in
Supplementary Note 1) cannot be eliminated, they can be miti-
gated through “the wisdom of the crowd” approach that combines
the complementary strengths of both humans and diverse
AI systems.

Data
HAICoGA involves two main types of data: those used for GA
and those that support HAIC. Genomic sequence data play an
important role in GA, including genome assemblies, expressed
sequence tags (ESTs), complementary DNAs (cDNAs), RNA-
seq data, and protein sequences [10]. Biological databases,
such as UniProt [48] and Gene Ontology (GO) [49], aggregate
knowledge from experiments and studies, providing labeled
data for GA. Knowledge graphs (KGs) further enrich GA by
integrating heterogeneous biological data into structured formats
[50]. Scientific publications serve as contextual evidence for gene
annotations. Grounding annotations in traceable literature evi-
dence ensures that final annotations are supported by verifiable
sources.

Collaboration-related data capture how users engage with AI
systems, for instance, the queries they enter, options they choose,
and feedback they provide. These data help refine AI algorithms
to better suit user needs.

Goals and tasks
Recent research in HAIC highlights that effective teamwork
involves aligning AI behavior with human objectives, enabling
both to contribute toward common goals [51]. These goals can
be achieved through structured plans composed of subtasks. In
hierarchical task analysis, a task is broken down into subtasks
until a stop criterion is reached, often when the subtask consists
of only a single operation [52]. For example, a single operation
such as gene prediction may be performed by an AI tool, while
others may be handled by humans, such as reviewing predictions.
Plans define the sequence and structure of tasks, whether
sequential or hierarchical, and help allocate specific subtasks
to either human experts or AI systems [52].
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Figure 1. Key elements in human–AI collaboration for genome annotation.

Human–machine interface
The human–machine interface serves as the bridge enabling inter-
action between humans and AI systems. It includes various forms
of interfaces, including command-line interfaces (CLIs), graphical
user interfaces (GUIs), and conversational user interfaces (CUIs).

CLIs provide users with greater flexibility through program-
matic access, customization options, and the ability to perform
batch operations or access raw data directly. However, they can
be challenging for users without programming experience. In
contrast, GUIs provide a more user-friendly experience by allow-
ing users to interact with AI systems through visual elements.
GUIs are widely adopted in GA tools for tasks like visualizing
feature locations, displaying evidence alignments, and presenting
other relevant information. Genome browsers such as JBrowse [30]
provide graphical interfaces for viewing GAs alongside support-
ing evidence tracks, while annotation platforms like Apollo [12]
extend this functionality by enabling users to collaboratively edit
and curate the annotations.

While GUIs are indispensable for the curation of structural
annotations, CUIs backed by tool-wielding AI agents have the
potential to fulfill an analogous role in functional annotation.
Recent advancements in LLMs have significantly contributed to
the growing interest in CUIs. CUIs allow users to interact with
machines using natural language, making it easier to access infor-
mation and perform tasks without needing to memorize complex
commands or navigate intricate menus. For certain tasks, CUIs
enhance HAIC by enabling effective and intuitive interactions
between humans and AI [53].

Environment
Environment plays a critical role in shaping human perceptions
of AI, influencing interaction dynamics, and affecting the AI
system’s capacity to interpret and respond to human input. It can
be broadly categorized into digital, task, and team environments.
The digital environment includes conditions and factors such
as software platforms, interface design, and the availability of
data for both humans and AI [54]. The task environment pertains

to the tasks that need to be completed, the constraints and
limitations involved, and the desired outcomes [55]. The team
environment refers to the dynamics and structures within a group
of individuals (including both human and AI) working together
[56]. It is characterized by the roles and relationships established
among team members, communication patterns, and the level of
cooperation and collaboration required to achieve overall goals.

Collaboration
Whether human–AI interaction constitutes true collaboration
remains a subject of ongoing debate [57, 58]. In the HAICoGA
framework, we use the term collaboration to refer to a struc-
tured interaction between human experts and AI systems,
wherein complementary strengths are integrated to improve GA
workflows. Effective HAIC relies on meaningful interaction and
strategic alignment of distinct capabilities [20, 59]. Understanding
these respective strengths is essential for designing effective
collaborative systems in GA (Fig. 2; Supplementary Notes 3 and 4).

Human capabilities include abstract reasoning, situational
awareness, and nuanced decision-making—capabilities that AI
does not inherently possess, but may emulate to a limited extent
through task conditioning and model fine-tuning. In contrast, AI
offers scalable computation, rapid pattern recognition, and the
efficient execution of repetitive or high-volume tasks such as
candidate gene prioritization and evidence retrieval.

While automated GA tools can be error-prone, collaboration
between humans and AI can improve the accuracy and reliability
of the final outputs. AI systems should be designed to recognize
tasks that exceed their confidence thresholds, such as annotating
short genes or resolving complex duplications, and defer these
cases to human curators for review. In turn, humans provide
feedback by correcting errors, validating results, or suggesting
alternative approaches. AI systems can then incorporate this feed-
back to refine their outputs, aligning more closely with human
expectations and the dynamic context of the annotation process.
This adaptive capability is referred to as contextual awareness.
Bidirectional feedback mechanisms of this kind help prevent
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Figure 2. Key competencies for effective HAIC. Human competencies include learning, reasoning, situational awareness, decision-making, delegation,
and trust. AI competencies mirror and complement these with learning, reasoning, contextual awareness, prediction, deferral, and explainability. Co-
learning supports mutual adaptation. The dashed line represents an iterative feedback loop between humans and AI. See Supplementary Note 4 for
details.

erroneous predictions and reduces the risk of propagating errors
in GAs. Moreover, ongoing efforts to improve AI explainability
are critical to fostering effective collaboration, as they enhance
transparency and build trust in automated systems.

AI agents bring opportunities to realize the
HAICoGA framework
LLM-based AI assistants in biological and
biomedical domains
There is an emerging trend of using LLM-backed AI assistants for
research in biological and biomedical domains. These AI assis-
tants can process human language inputs and generate responses
that are coherent and contextually relevant within the inter-
action. We categorize these research based on the number of
agents involved (Table 1). An agent refers to an AI system capable
of interacting with humans or other agents and using tools to
accomplish its tasks.

Some works in Table 1, such as ChatNT, DRAGON-AI, and
GeneGPT, are LLM-based models that take human language as
input and generate direct answers without involving a agent.
ChatNT is a multimodal AI system that integrates DNA, RNA,
and protein sequences with neural language processing to
solve various genomics tasks. ChatNT employs a modular LLM
architecture that integrates a bidirectional DNA encoder with a
unidirectional language decoder, enabling the interpretation of
biological sequences in natural language. Similar architectures
are discussed by Zhang et al. [60], who compare unidirectional
and bidirectional LLMs in biological and chemical domains.
Bidirectional models (e.g. BERT [61]) excel at encoding sequences
for classification tasks, while unidirectional models (e.g. GPT [62])
are well-suited for generative tasks like text generation.

DRAGON-AI is a method that automatically generates ontology
objects based on partial information from a user. All ontology
terms and additional contextual information are translated
into vector embeddings and indexed. Relevant contextual
information is retrieved using a retrieval-augmented generation

(RAG) approach and added to construct a prompt, which is then
passed as input to an LLM. The LLM completes the term object
accordingly. GeneGPT uses few-shot learning to teach LLMs
how to generate web APIs for accessing the National Center
for Biotechnology Information (NCBI) databases and to answer
biological questions based on the retrieved information. It handles
both single-hop questions, which require a single API call, and
more complex multi-hop questions that necessitate sequential
API calls. For multi-hop questions, GeneGPT decomposes them
into sub-questions, executing a chain of API calls to retrieve and
integrate information step by step. While GeneGPT automates
this process, its authors acknowledge that different types of
errors are enriched in different tasks. Given the complexity
inherent in multi-hop reasoning, such cases may still benefit
from human oversight to ensure the accuracy and reliability of the
results.

Phenomics Assistant builds an agent to call external tools
based on user queries. It helps non-expert users query and inter-
act with complex data from the Monarch Knowledge Graph. Var-
Chat supports genetic professionals by providing concise sum-
maries of scientific literature related to specific genomic variants.
It interacts with external databases and utilizes user inputs to
guide its querying and summarization processes. Both Phenomics
Assistant and VarChat use a single-agent framework to provide a
CUI that interacts with users and has the ability to use tools to
solve user questions based on dynamic situations. The conversa-
tion history in the chat allows the agent to be aware of the user’s
state within tasks and incorporate feedback from external tools.
Both systems also provide sources for the information in their
responses, improving transparency in their processes.

Two-agent systems, ChatGSE, BioDiscoveryAgent, and Gene
Agent, consist of a primary agent that interprets the user’s
query and selects appropriate tools to solve the problem, and
a secondary agent that critically evaluates the results or verifies
the factual accuracy of the output. The tools either retrieve and
process information from various APIs to access online databases
or scientific literature. The retrieved information is treated as a
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source to determine whether the answer is factually accurate
compared with the original data. Keeping track of intermediate
results from tools and the verification process enhances the
agent’s awareness of the current task status, potentially allowing
it to adjust its actions accordingly in the next round of
experiments. ChatGSE employs chain-of-thought reasoning to
improve its problem-solving success. BioDiscoveryAgent follows
the Reflection-Research Plan-Solution framework to enhance
its reasoning capabilities. Both ChatGSE and BioDiscoveryAgent
also incorporate self-verification mechanisms. These two agents
operate in a sequential manner. All three systems provide some
level of explainability by delivering context-rich answers that
include references to data sources, literature, or verification
reports. GeneAgent, which applies an AI agent for gene set
enrichment analysis, focuses on autonomous interactions
with domain-specific databases, followed by subsequent LLM
verification.

Multi-agent systems are becoming increasingly popular for
solving complex problems. These systems integrate multiple AI
agents to automate and enhance critical workflows, significantly
improving the speed and efficacy of tasks such as gene enrich-
ment analysis, literature searches, and software pipeline exe-
cutions. For instance, the BRAD system employs a hierarchical
structure of agents to manage tasks like literature retrieval and
enrichment analysis automation. These agents use a combination
of in-context learning and a specialized planner to distribute
and organize tasks efficiently. Another example is the BKGA-
gent, which focuses on knowledge graph checking by querying
knowledge graphs, verifying the accuracy of information through
external literature or databases, and identifying factual discrep-
ancies. The system’s ability to dynamically query and cross-
reference structured knowledge graphs and unstructured scien-
tific texts illustrates the integration of RAG, ensuring relevance
and contextual awareness throughout the information processing
stages.

Similarly, GenoAgent and TAIS are tailored for analyzing gene
expression data from sources like the Gene Expression Omnibus
(GEO) and The Cancer Genome Atlas (TCGA). These systems lever-
age instruction learning and structured prompting to adapt their
actions based on feedback and intermediate results, facilitating
an iterative correction process that ensures the reliability and
explainability of analytical outputs.

Beyond genomics, Virtual Lab exemplifies the application of
multi-agent AI systems in experimental biomedical research. This
system utilizes an AI-driven research framework, where a Princi-
pal Investigator AI leads a team of specialized agent, including
a ML specialist, immunologist, and computational biologist, to
design and validate nanobody binders for SARS-CoV-2 variants.
The system’s ability to document decision-making steps and opti-
mize AI-driven workflows highlights the growing role of multi-
agent systems in interdisciplinary research.

Lastly, ProtAgents showcases a multi-agent application in the
design and analysis of novel proteins. By integrating real-time
data from experiments and simulations, these agents can gener-
ate and analyze new proteins, adjusting their outputs based on
dynamic inputs. The multi-agent system developed by Bersenev
et al. [75] facilitates the replication of high-impact scientific stud-
ies by processing research papers and generating code to repro-
duce experiments, streamlining experimental validation and iter-
ative scientific discovery.

Table 1 summarizes information from these studies, aligning
certain elements with the HAIGoGA framework, including data,

tasks, goals, AI systems and tools, and team structure (envi-
ronment). The data, tasks, goals, and tools are customized for
different AI assistants. In studies involving multiple agents, these
agents are often organized hierarchically, with a high-level agent
(e.g. planner, leader, or manager) responsible for task distribution
and coordination of the analysis process. Regarding the human–
machine interface, three studies provide both GUI and CUI to facil-
itate human interaction with AI agents [66–68]. The most recent
work, Virtual Lab [77], demonstrates the impact of HAIC through
experiential evidence. In this framework, agents can defer tasks
to other agents, as well as humans.

Cognitive functions, such as perception, reasoning, planning,
and memory, are essential for enabling LLM-based agents to main-
tain contextual awareness and generate relevant responses in
human–AI interactions. For example, the ReAct agent integrates
reasoning and action, iteratively repeating this process until it
determines a final response. The agent evaluates the current
input along with past observations to decide the next step [78].
Some AI systems incorporate memory management to contin-
uously track user interactions and dynamically recalibrate the
agent’s actions based on intermediate results and feedback [66–
68, 71]. Table 1 shows that most studies support explainability
through tracing agent actions, predictions, and the external data
sources used.

Vision for the HAICoGA framework
Multi-agent system design in the HAICoGA framework
Through our review of current LLM agents in the biological
and biomedical domains, we identified multi-agent systems as
a promising approach for realizing the HAICoGA framework.
Existing research primarily focuses on developing autonomous
systems that minimize or even eliminate human intervention.
However, such fully autonomous systems have demonstrated
limited effectiveness in real-world applications [77, 79]. It is
essential to keep humans in the loop to enhance system
performance and reliability [18, 77].

Figure 3A illustrates an example of users collaborating with
a multi-agent system to annotate gene functions. Based on the
user’s input query, the manager agent could use a method (e.g.
ReAct) for breaking down the query into subtasks and assigns
them to other agents according to their capabilities (Fig. 3C and
D). The critique agent evaluates the quality of task results using
metrics such as completeness, relevance, and other task-specific
criteria, providing feedback and indicating the task’s status. If
necessary, agents can request additional input from the user. Once
all tasks are completed, the manager agent compiles the final
response and presents it to the user.

Building on the GA workflow described in the review by Ejigu
et al. [10], we propose an automated GA agent along with sev-
eral agents for manual annotation (categorized as manual cura-
tion agents in Fig. 3B, each assigned distinct roles, as detailed
in Fig. 3D). While manual annotation is often performed based
on the results of automated GA, newly added manual annota-
tions can also enhance the automated GA system by providing
additional gold-standard data, enabling continuous refinement of
gene annotations.

Another key strength of multi-agent systems is that it allows
for the internal refinement of answers. In the automated GA
phase (Fig. 3C), the automated GA agent executes AI models and
pipelines to perform specific tasks using genome data, such as
predicting gene functions. The manager agent and critique agent
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Figure 3. Multi-agent system design in the HAICoGA framework. (A) Overall multi-agent system design for human–AI collaborative GA. Users submit
a GA query through an interactive user interface (UI). The UI requests the manager agent to analyze the task, decompose it into subtasks, and assign
them to appropriate agents. While assisting with a subtask, an agent may request additional input from the user to complete the task successfully. The
critique agent provides feedback on the outcomes, guiding the system’s next steps. The manager agent monitors the global conversation history and
intermediate results, updating the task plan as needed or finalizing the task and delivering the results to the user. (B) The top synergy layer of the multi-
agent system designed for HAICoGA. Following the practical GA workflow [10], the multi-agent system consists of a user, a manager agent, an automated
GA agent, multiple manual curation agents, and a critique agent. (C) Workflow of multi-agent collaboration in automated GA phase. The manager agent
delegates the automated GA task to the automated GA agent, which manages a customized pipeline (or an AI model) using genome data to perform
specific tasks. The critique agent analyzes the results, evaluates their quality, and suggests the next steps to the manager agent. This process can be
repeated iteratively until the desired outcome is achieved. (D) Workflow of multi-agent collaboration in manual curation phase. A manual annotation
process follows the automated GA phase. Due to the complexity of manual curation, the system includes several specialized agents performing distinct
roles. The sequence search agent identifies homologous genes for a target gene, for example, by running BLAST against genome sequence data. The
database agent retrieves gene function annotations from various databases. The literature search agent identifies relevant scientific papers for further
analysis, while the document summarization agent extracts key information from these papers. The synthesis agent compiles all relevant data and
submits it to the critique agent, which reviews the information and provides suggestions, such as whether the data is sufficient to address the user’s
query. Finally, the manager agent either updates the task plan or generates the final response.
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contribute by summarizing results and providing feedback to
the automated GA agent, which may prompt it to select alter-
native models or pipelines for gene function prediction. This
iterative process enhances the quality of gene annotation. The
self-improving loop continues until either the user or the manager
agent decides to finalize the process and provide the final answer
for the task.

The use of multiple agents also allows for specialization in
the manual annotation system (Fig. 3D), each assigned distinct
attributes, including role, perception, and actions (tool use). These
attributes enable agents to be optimized for specific domains or
functions [80]. To manually annotate an uncharacterized gene,
several guidelines recommend a workflow that involves using a
tool (e.g. BLAST) to identify homologous proteins, retrieving func-
tional annotations from existing databases and recent literature,
and assigning these functions to the target protein [7, 33, 81].
Following these guidelines, the manager agent is responsible for
designing this workflow and distributing tasks among specialized
agents, including the sequence search agent, database agent,
literature search agent, and document summary agent. The syn-
thesis agent then aggregates the results, while the critique agent
evaluates the output and provides feedback to the manager agent.
Similar to the automated GA phase, the user could interrogate the
results and refine prompts to continuously refine the quality of
gene annotation.

Illustrative use cases of the HAICoGA framework
To demonstrate the practical use cases of the HAICoGA frame-
work, we highlight the application of the GeneWhisperer system
for gene annotation [82].

GeneWhisperer employs an LLM agent integrated with domain-
specific tools to assist in generating functional hypotheses for
genes, particularly uncharacterized genes in a reference genome.
The system synthesizes multiple forms of evidence by identifying
homologous proteins through sequence alignment, proposing rel-
evant Gene Ontology (GO) terms based on functional similarity,
and extracting gene-trait associations from scientific literature.

Following AI-assisted annotation, domain experts would
review the generated hypotheses, validating them against species-
specific literature and related annotations in other genomes.
While experts do not generate annotations entirely from scratch,
they are able to refine, correct, or reject AI-suggested annotations
based on domain knowledge. As noted by Kudiabor et al. [83], AI-
assisted annotations, particularly for novel genes, should not be
considered definitive without supporting wet-lab experiments.
Furthermore, we acknowledge that for certain genes, neither the
user nor the AI system may be able to produce a meaningful
annotation when no relevant information currently exists.

Another use case of the HAICoGA framework involves an AI
assistant designed to improve consistency in gene function anno-
tation. Manual curation often results in variability due to the
difficulty in selecting standardized GO terms and corresponding
Evidence and Conclusion Ontology (ECO) codes.

The AI assistant would analyze user-provided inputs, e.g.
literature excerpts, and suggests appropriate GO and ECO terms.
Users would review and refine these suggestions, maintaining
expert oversight throughout the process. We demonstrated an
examples using ChatGPT as an LLM-based agent to assist in
selecting GO and ECO terms (see Supplementary Note 5). While
preliminary, this example illustrates the potential of general-
purpose LLMs like ChatGPT can serve as accessible annotation

assistants. It also highlights the limitations of such models
in domain-specific tasks, underscoring the need for future
development of specialized AI assistants built on the HAICoGA
framework.

These illustrative use cases demonstrate the practical viability
of the HAICoGA framework in supporting GA tasks through syner-
gistic human–AI workflows. Similar ideas have been implemented
in other scientific domains. For example, the AI Co-Scientist sys-
tem leverages a multi-agent architecture to collaborate with sci-
entists in hypothesis generation, drug repurposing, and biomedi-
cal discovery [84]. This iterative collaboration between AI systems
and domain experts reflects the same core principles underpin-
ning HAICoGA.

By optimizing agents for specific annotation tasks and inte-
grating expert feedback, HAICoGA aims to extend these advances
into the genomics space. In the following section, we discuss the
remaining challenges and technical considerations in building
such systems.

Challenges in building the HAICoGA
framework
Designing the architectural of a multi-agent
system
The design of LLM-based multi-agent systems requires a modular
and adaptive architecture in which specialized agents collab-
orate dynamically through structured interaction layers. These
agents, each with distinct roles, leverage LLM capabilities for
reasoning and task execution while interoperating with exter-
nal resources such as datasets and tools to maintain contex-
tual awareness. Achieving this requires balancing autonomy and
alignment, as excessive autonomy may lead to goal deviations,
whereas strict alignment can hinder adaptability [85]. Further-
more, managing dependencies among agents and ensuring scala-
bility in resource usage are critical, especially as tasks grow more
complex. Mechanisms for real-time adaptation and error cor-
rection are also essential to address inconsistencies and ensure
robust, goal-oriented outcomes in complex environments. Finally,
challenges remain in optimizing task allocation, fostering robust
reasoning through iterative debates, managing complex contex-
tual information, and enhancing memory management [86].

Developing novel ML/AI methods for enhancing
HAIC
LLM agents, particularly unidirectional models, facilitate dynamic
communication with users, but recent research highlights sev-
eral critical challenges that may affect their collaborative effec-
tiveness. Hallucination remains a significant concern, in which
models generate plausible-sounding but factually unsupported
content [87]. As such outputs can influence decision-making,
they risk propagating false beliefs or even causing harm, under-
scoring the need for robust mitigation strategies. Fine-tuning
bidirectional models with sufficient domain-specific training data
can significantly improve their performance in tasks such as
information extraction and classification. To further enhance
reliability, systems could support continuous learning, enabling
dynamic updates through human feedback and evolving con-
texts, as exemplified by reinforcement learning from human
feedback [80].

Maintaining context over extended interactions is another area
where LLMs often falter, leading to incoherent responses or an
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inability to recall previous discussions. Vector databases offer a
potential solution by enabling long-term memory management in
LLM agents, allowing them to accumulate and organize memories
over time. However, efficiently searching and retrieving relevant
information from extensive memory stores remains challenging.
Further advancements are needed to develop mechanisms for
learning and updating metadata attributes across both procedu-
ral and semantic memory types [88]. MemGPT [89] exemplifies
progress in this domain by intelligently managing different mem-
ory tiers to store and retrieve information effectively during long-
term conversations.

Reasoning capabilities are pivotal for LLM agents to perform
complex and nuanced tasks such as problem-solving, decision-
making, and planning. Explicit reasoning steps not only improve
task performance but also enhance model explainability and
interpretability by providing rationales for predictions. While
LLMs are primarily trained for next-token prediction, strategies
like Chain of Thought (CoT) have demonstrated improvements in
reasoning tasks by guiding models to articulate their reasoning
explicitly. However, LLMs still face challenges in handling highly
complex reasoning tasks or those involving subtle implicatures,
necessitating ongoing research [90].

Requiring multidimensional evaluation methods
to assess the HAICoGA workflow
Traditional GA evaluation metrics, such as coverage, precision,
and accuracy, remain fundamental for assessing annotation
quality [3, 91]. These measures indicate better outcomes when
higher values are achieved; however, they provide relative
rather than absolute benchmarks due to the absence of a
comprehensive genome-wide gold standard. Many annotations
remain provisional, relying on computational predictions or
homologous transfers from model organisms.

In HAICoGA workflows, additional dimensions, such as
explainability, are crucial for evaluation. Integrating orthologous
information, along with detailed protein family and domain
characterizations from diverse sources, enhances the explanatory
depth and reliability of annotations [92]. Metrics that assess
explanation generation and evidence quality are essential to
ensuring the transparency of AI-assisted workflows. This aligns
with frameworks for evaluating HAIC, which emphasize not only
task success but also interaction quality, process dynamics, and
ethical considerations [93].

Furthermore, optimizing the performance of human–AI teams
requires a paradigm shift from individual AI optimization to
assessing team-level outcomes. Evidence suggests that the most
accurate AI system does not necessarily yield the best collabora-
tive performance [94]. Effective collaboration depends on dynamic
task allocation, mutual learning, and trust between human and
AI agents. Metrics for evaluating such interactions must consider
both qualitative factors, such as trust and satisfaction, and quan-
titative measures, such as decision impact and task completion
time [93].

Adopting multi-dimensional evaluation frameworks, such
as those emphasizing symbiotic HAIC modes, can provide
holistic insights [93]. These frameworks should capture the
dynamic, reciprocal nature of collaboration, extending beyond
task success to evaluate how well humans and AI adapt to each
other’s strengths and limitations over time. Such comprehensive
approaches are crucial for advancing the HAICoGA workflow and
ensuring its alignment with both scientific rigor and practical
utility.

Designing intuitive and interactive interfaces to
facilitate HAIC
To investigate the challenges and opportunities in CUIs, we devel-
oped a chatbot prototype for curating information in gene func-
tional annotation [82]. Additionally, we proposed applying con-
joint analysis, a behavioral science method, to quantify the rela-
tive importance of four design features that influence users’ trust
in the system [95].

Initial testing of the prototype suggests that LLM agents have
the potential to serve as valuable tools for collaborative GA when
combined with human expertise. However, further research is
needed to enhance their trustworthiness, particularly by improv-
ing explainability and providing confidence measures for AI-
generated predictions [95].

To support these capabilities, future work will focus on
integrating a dedicated graphical user interface (GUI) with the
chatbot, particularly for structural annotation. Developing the
right interface will be best served by taking a participatory or
user-centered design approach and incorporating input from GA
experts from the outset.

Risks and safeguards
The integration of LLM agents into scientific workflows intro-
duces a set of risks that necessitate proactive and comprehensive
mitigation strategies. The risks include the potential for gen-
erating misleading or harmful content, propagating biases, and
compromising data privacy and security. These risks can arise
from the inherent limitations of LLMs, such as their suscepti-
bility to hallucination, over-reliance on training data, and the
challenges of ensuring alignment with human values and ethical
standards [96].

To mitigate these risks, a triadic framework involving human
regulation, agent alignment, agent regulation and environmental
feedback has been proposed [96]. Human regulation involves
establishing clear guidelines and protocols for the responsible
use and development of LLM agents in scientific contexts. This
ensures ongoing human oversight and supports human-in-the-
loop validation [97]. Agent alignment means that LLM agents
are designed and trained to align with human intents and
ethical standards, minimizing the risk of generating misleading
or harmful content. Widely adopted safety mechanisms, such as
those implemented in ChemCrow [18] and SafeScientist [98], can
help ensure that agents operate within predefined boundaries
and do not produce harmful outputs. Agent regulation and
environmental feedback refer to the continuous monitoring and
evaluation of LLM agent performance in real-world applications,
enabling iterative refinement of their behavior. Feedback in
multi-agent systems comes not only from human users but also
from critique agents, external tools, and structured knowledge
sources. Techniques like RAG exemplify how agents can be
designed to incorporate trusted external knowledge sources,
improving reliability and reducing the risk of hallucinated content
[97].

Conclusion
In this paper, we first analyzed the pros and cons of automated GA
methods and manual curation tools. We found that while auto-
mated GA methods generate annotations quickly, they have lim-
itations, such as inaccurate gene predictions. On the other hand,
manual curation can be highly accurate but requires intensive
human labor and time. A human–AI collaborative GA approach
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is necessary to leverage the strengths of both humans and AI,
leading to more accurate and efficient GA.

Bringing together prior work in automated GA and manual
curation, we then proposed the conceptual framework of
HAICoGA. Our work bridges the gap between GA and human–AI
collaborative communities, envisioning new possibilities in this
multidisciplinary field. The emergence of LLM agents presents
significant opportunities to realize HAICoGA workflows. However,
many challenges and open questions remain in LLM agent
research. The HAICoGA framework is still in its early stages of
development, but it represents a step toward a comprehensive
and efficient human–AI collaborative workflow for real-world
applications in the future.

Glossary
Genome annotation (GA) is the process of identifying and charac-
terizing functional elements within a genome, including genes,
regulatory regions, and other biologically significant sequences.
It involves the use of computational methods, such as machine
learning (ML) and heuristic-based approaches, as well as man-
ual curation by experts to improve accuracy. GA is essential for
understanding gene functions, predicting protein structures, and
exploring evolutionary relationships across species.

Artificial Intelligence (AI) refers to the simulation of human
intelligence in machines, enabling them to perform tasks such
as reasoning, learning, problem-solving, and decision-making. AI
encompasses various techniques, including ML, deep learning,
and natural language processing (NLP), to analyze complex data
and automate decision-making. In GA, AI is used to enhance
the efficiency of gene prediction, functional annotation, and data
integration by processing large-scale biological datasets with min-
imal human intervention.

Machine Learning (ML) is a subset of AI that enables computers
to learn patterns from data and make predictions or decisions
without being explicitly programmed. In GA, ML algorithms are
used to classify genes, predict functional elements, and enhance
annotation accuracy by analyzing large-scale genomic datasets.
ML approaches include supervised, unsupervised, and reinforce-
ment learning, leveraging statistical models and neural networks
to improve biological data interpretation.

Manual curation, also known as manual annotation, refers to
the process in which human experts review, refine, and validate
genome annotations to ensure accuracy and biological relevance.
This process involves analyzing computationally generated anno-
tations, resolving ambiguities, and incorporating insights from
experimental data and scientific literature.

Human–AI collaboration (HAIC) refers to the dynamic interaction
between humans and AI systems, where both work together
toward overall goals by leveraging their complementary strengths.
Unlike automation, where AI operates independently, or augmen-
tation, where AI enhances human capabilities, HAIC involves a
continuous exchange of information, decision-making, and adap-
tation over time.

Knowledge graphs (KGs) are structured representations of rela-
tionships between biological entities, such as variants, genes, pro-
teins, pathways, phenotypes, and diseases. They encode known
interactions and associations in a graph format, where nodes
represent entities and edges denote relationships. KGs facilitate
data integration, reasoning, and discovery in genomics by linking
heterogeneous biological information sources.

Large language models (LLMs) are AI models trained on massive
datasets of text and code. They can generate human-quality text,

translate languages, follow user instructions for task procedures
[99, 100], use external tools [101], and answer user questions based
on specific contexts [102]. A common architectural foundation for
LLMs is the Transformer [103], which enables efficient modeling
of long-range dependencies in sequences through self-attention
mechanisms. Variations of this architecture include encoder-only
models (e.g. BERT [61]), decoder-only models (e.g. GPT [62]), and
encoder–decoder hybrids (e.g. T5 [104]). These architectures may
be bidirectional, capturing context from both preceding and follow-
ing tokens (as in BERT), or unidirectional, processing text left-to-
right to generate coherent outputs (as in GPT models).

AI agent is an autonomous or semi-autonomous entity within
a multi-agent system that performs specific tasks, interacts with
other agents, and operates based on predefined rules, learned
behaviors, or external inputs. Agents may specialize in different
roles, such as task management, data retrieval, reasoning, or
quality assessment, and they communicate within structured
frameworks to enhance human–AI collaboration.

Key Points

• While genome annotation is complex and challenging,
heavy reliance on automated methods can introduce
errors.

• Manual curation is necessary for accurate annotations
but requires significant time and effort.

• Our novel contribution is HAICoGA, the first conceptual
framework for human–AI collaborative genome annota-
tion.

• We further present a example of HAICoGA framework
and future research directions in realize this framework.
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