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Abstract

Genome annotation is essential for understanding the functional elements within genomes. While automated methods are

indispensable for processing large-scale genomic data, they often face challenges in accurately predicting gene structures

and functions. Consequently, manual curation by domain experts remains crucial for validating and refining these

predictions. These combined outcomes from automated tools and manual curation highlight the importance of integrating

human expertise with AI capabilities to improve both the accuracy and efficiency of genome annotation. However, the

manual curation process is inherently labor-intensive and time-consuming, making it difficult to scale for large datasets. To

address these challenges, we propose a conceptual framework, Human-AI Collaborative Genome Annotation (HAICoGA),

which leverages the synergistic partnership between humans and artificial intelligence to enhance human capabilities and

accelerate the genome annotation process. Additionally, we explore the potential of integrating Large Language Models

(LLMs) into this framework to support and augment specific tasks. Finally, we discuss emerging challenges and outline

open research questions to guide further exploration in this area.
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Introduction1

Genome annotation (GA) is the process of identifying and interpreting the functional elements encoded within a genome. It2

is a critical step in understanding an organism’s biology, enabling researchers to connect genetic information to phenotypes,3

understand disease mechanisms, and uncover evolutionary relationships. GA is heavily relies on automated methods, including4

Machine Learning (ML) [1–3] and other computational methods such as rule-based and heuristic methods [4, 5]. However, automated5

methods are generally hampered by the relative scarcity of reliable labeled data and the complexity of biological systems. In fact,6

gene annotations, particularly functional annotations, are mostly transferred from one species to another in an automated manner,7

relying mainly on the similarity of underlying nucleotide sequences, or the corresponding protein sequences.8

Manual curation is widely recognized as essential for improving the reliability and accuracy of genome annotation [6–8]. It9

involves human experts reviewing and refining annotations, particularly by addressing ambiguities or gaps that automated pipelines10

may overlook. For instance, curators enhance the functional annotations of genes by incorporating new insights from scientific11

literature that detail experimental results related to gene function. Additionally, manual curation enables precise gene structure12

annotation by reviewing evidence from multiple sources, such as omics datasets and experimental outcomes, to accurately define13

gene boundaries [9].14

Despite their value, these evidence sources are often scattered across multiple platforms or embedded within vast datasets,15

making manual curation a time-consuming and labor-intensive process. Consequently, current GA practices rely heavily on16

automated annotation which is not always followed by manual curation [10].17

Manual curation has mostly been conducted in cases where teams of annotators collaborate to create accurate and up-to-date18

annotations for high-priority species or specific gene sets. Correspondingly, computational tools and platforms have been developed19

to support collaboration among annotators. These tools include algorithms that identify problematic annotations and prioritize20

them for review [11], as well as platforms that facilitate seamless communication, data sharing, and coordination among annotators,21

regardless of their geographic location [12, 13]. However, these tools operate independently and have not addressed the issue of22

dispersed data sources across various platforms. Additionally, there is a lack of dynamic interaction between the tools and users,23

i.e., the tools typically run automatically without a user in the loop.24

As highlighted by Mac et al. [14], the disconnect between AI tools and their users can potentially impact the effective utilization25

of AI. They suggest integrating scientists into the loop and combining their expertise with interactive machine learning to accelerate26

scientific progress. There is a growing body of research on how humans and AI collaborate to drive advancements in fields such as27

medicine [15–17] and chemistry [18], particularly through the adoption of LLMs (see LLM in the Glossary section). Furthermore,28

the emerging concept of human-AI collaborative intelligence focus on the combination of humans and AIs working together to29

solve problems, leveraging the strengths of both parties and enhancing each other’s capabilities [19, 20]. Although still in its early30

stages, an increasing number of studies demonstrate that human-AI collaboration can lead to superior performance in accomplishing31

complex tasks [19, 21, 22].32

Inspired by these work, we propose a conceptual framework named Human-AI Collaborative Genome Annotation (HAICoGA),33

in which humans and AI systems not only work interdependently but also collaborate over a sustained period. Collaboration in this34

context refers to effective functional integration between humans and AI systems. AI systems generate annotation suggestions by35

leveraging automated GA tools and relevant resources, while human experts review and refine these suggestions to ensure alignment36

with biological context and domain knowledge. This process is not a one-time interaction but an iterative collaboration, in which37

humans and AI systems continuously inform each other, enhancing both the accuracy and usability of AI support tools. Facilitating38

Page 2 of 47

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

Human-AI Collaborative Genome Annotation 3

this collaboration is the use of LLM-based agentic systems, which integrate multiple tools and resources into a unified, interactive39

platform, streamlining the genome annotation workflow and reducing the burden of tool switching or manual integration.40

The remainder of this paper is organized as follows. Section 2 provides the necessary background and reviews related work41

relevant to this study. Section 3 introduces the conceptual framework of HAICoGA, identifying key components, critical capabilities42

required to establish an effective and sustainable human-AI collaborative relationship. In Section 4, we explore current applications43

of LLM-based AI agents in the biological and biomedical domains and present a vision for the HAICoGA workflow. Section 544

outlines key future research directions to further realize HAICoGA. We hope this work contributes to the development of human-AI45

collaborative workflows for GA in the future.46

Background and related work47

Genome annotation48

GA can be interpreted as multi-dimensional, spanning from the nucleotide level to the biological system level [23]. Genomic49

elements of interest include, but are not limited to, single nucleotide polymorphisms (SNPs), coding genes, non-coding genes,50

regulatory elements and other non-coding regions. Structural annotation primarily focuses on delineating the physical regions of51

genomic elements. While the structural annotation offers initial clues, a definitive understanding of functions still requires in-depth52

analysis.53

GA encompasses a broad range of tasks that are now primarily accomplished through various computational approaches54

utilizing diverse data types. We provide a rough chronology of the emergence and prominence of different automated methods55

in Supplementary Note 1. These automated methods can be integrated into highly complex pipelines to perform multiple steps in56

automated GA. Although automated approaches dominate GA, they still faces serious limitations and challenges (Supplementary57

Note 1).58

Due to the limitations of current computational tools, automated genome annotation (GA) frequently produces erroneous59

results. In particular, genes from non-model organisms are often assigned functions based on homologs or labeled with vague terms60

such as “hypothetical gene” or “expressed protein”, offering little insight into their biological roles. These inaccuracies not only61

affect immediate interpretations but also propagate through downstream analyses [24], where they can be further amplified by62

machine learning or AI models trained on these data [25]. This creates a feedback loop in which low-quality annotations degrade63

the reliability of both current databases and future research that depends on them.64

Manual curation65

Manual curation has primarily been done in model species to continuously improve the accuracy and coverage of their genome66

annotations. For example, projects such as HAVANA for the human genome, TIGR for Arabidopsis thaliana, and ITAG for Solanum67

lycopersicum produce high-quality annotations manually curated by specialized experts. Manual curation is not limited to68

collaborative efforts or decentralized networks (detailed manual curation models are provided in Supplementary Note 2); it also69

plays a crucial role in individual research. Researchers may engage in manual curation before formulating hypotheses for their70

studies or when interpreting their results.71

Manual curation is an ongoing process that requires the continuous repetition of five general steps [26, 27] (see Supplementary72

Note 2). This process is time- and labour-intensive, but it can be made more efficient with the assistance of software tools.73
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For example, Apollo has been widely used in the GA community and continues to be actively updated [12, 28, 29]. Its current74

web-based interface supports real-time collaborative annotation and integrates JBrowse [30] for fast, scalable genome visualization.75

Within Apollo, users can edit gene models, adding or deleting exons, adjusting boundaries, and assigning annotations. But76

functional annotations still rely on external tools, such as text mining systems. Tools like PubTator Center [32] assist in extracting77

biological entities and gene functions from literature, yet manual curation remains challenging. This is evident in efforts like78

BioCreative IV [33], which highlight the expertise and validation required to curate functions even with automated support [34].79

More details on additional tools can be found in Supplementary Note 2. These tools are distributed across different platforms.80

Additionally, automated GA tools operate independently from these manual curation tools. As a result, humans need to spend81

a significant amount of time running and navigating multiple tools, as well as transferring data between them. To accelerate the82

GA process, an integrated system is needed, which connects all necessary automated and manual GA tools and enables seamless83

collaboration between humans and AI tools.84

Human-AI collaboration85

AI systems can play different roles in human-AI teaming, including automation, augmentation, and collaboration [35]. In86

automation, AI independently performs tasks without human intervention. In augmentation, AI enhances human experts’ abilities87

in their tasks. Collaboration refers to humans and AI working together in a coordinated effort toward overall goals, enabling better88

outcomes than either could achieve alone. Similarly, Gao et al. [15] classify AI systems into four intelligence levels based on their89

capabilities in hypothesis generation, experimentation, and reasoning. Level 0 consists of AI models used by humans as automated90

tools. Level 1 includes AI assistants that execute tasks specified by scientists. Level 2 consists of AI collaborators that work91

alongside scientists to refine hypotheses and utilize a broader array of tools for experimentation and discovery. Level 3 represents92

AI scientists, which exhibit the highest level of intelligence.93

In the current GA workflow, automated GA tools can be categorized as Level 0 AI models. Recently, LLMs have been used94

to develop various AI assistants (Level 1) in the biological and biomedical domains, which could potentially be adapted for GA.95

However, a significant gap remains due to the lack of human-AI collaboration in GA (Level 2).96

The emergence of human-AI collaboration (HAIC) frameworks and taxonomies across various domains has advanced our97

understanding of effective human-AI collaboration. For instance, Hartikainen et al. [36] propose a framework for designing98

collaborative systems in smart manufacturing, while Viros i Martin et al. [37] present a model for human-AI co-design in Design99

Space Exploration. Dubey et al. [38] introduce a framework for successful human-AI teaming in contact centers. Despite this100

progress, applying HAIC to genome annotation presents unique challenges. We build on these frameworks to introduce HAICoGA101

and propose future research directions for collaborative genome annotation.102

A conceptual framework of human-AI collaborative genome annotation103

To support collaborative genome annotation, HAICoGA incorporates and extends key concepts from general HAIC theories [36,104

38, 39]. As shown in Figure 1, it includes seven key elements: humans, AI systems and tools, data, goals and tasks, human-machine105

interface, environment, and collaboration.106
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Goals and
Tasks Humans AI systems

and tools

Data

Human-machine
interface

Collaboration

Human-AI team

Environment

Fig. 1. Key elements in human-AI collaborative genome annotation. Humans and AI work together as a team to perceive the environment in which

they operate. To achieve the high-level goal, they decompose the task into sub-tasks and objectives. Through the human-machine interface, humans and

AI utilize the available data to carry out tasks and transition to a new state within the environment. This state may lead to updates in the list of tasks

and goals or the addition of new data until the final goal is achieved. The collaboration between humans and AI is dynamic, allowing them to perform

individual tasks independently while collaborating on shared tasks when necessary.

Key elements107

Humans108

Humans refers to individuals involved in GA, particularly those engaged in manual curation. This group may include biological109

researchers, experimental scientists, biocurators, and trained students. These individuals bring diverse backgrounds, domain110

knowledge, and methodological experience to the decision-making process [40]. Research suggests experts rely heavily on their111

previous experience on the task, as well as their deep and often tacit knowledge of the domain [41]. Decision-makers often employ112

mental shortcuts and heuristics that are efficient but can be prone to cognitive bias [42, 43].113

Collaborating with LLMs has the potential to mitigate individual biases when the complementary strengths of human judgment114

and machine predictions are effectively leveraged [44]. Still, bias in human curation remains an open and ongoing challenge in the115

biological domain. For example, the BC4GO study [45] demonstrated substantial variability in manual GO annotation, with low116

inter-annotator agreement even among trained curators, highlighting that human bias persists regardless of AI involvement and117

must be continually recognized and mitigated.118

While humans may not match AI in processing speed or handling vast datasets, they possess the ability to interpret nuanced119

context, adapt to shifting task goals, and act flexibly in dynamic environments [41]. This adaptability is crucial in GA, where120

the context and requirements may change based on new findings or experimental results. Humans can also perform sanity checks121

and intervene when AI-generated annotations deviate from established rules or expectations, helping to limit the propagation of122

errors throughout the system [46]. Consequently, while AI can assist and augment decision-making, the role of experienced human123

curators remains indispensable [47].124
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AI systems and tools125

The AI element consists of a collection of systems and tools designed to perform or assist in GA. By using the term “AI”,126

we encompass a broad range of computational tools that can be integrated into intelligent systems to enhance collaboration with127

humans during GA tasks. Ideally, the AI component should consist of an ecosystem of tools with diverse designs and functionalities,128

each contributing uniquely to the annotation process.129

Automation-focused AI tools streamline the multi-step process of identifying and classifying genes and other functional genomic130

elements, as seen in established GA pipelines and automation methods [5, 48]. In contrast, augmentation tools are designed to131

assist human annotators by enhancing their efficiency and effectiveness, for example, Apollo [12]. Collaboration tools could support132

bidirectional interaction between humans and AI systems.133

While certain biases inherent in AI systems (discussed in Supplementary Note 1) cannot be eliminated, they can be mitigated134

through “the wisdom of the crowd” approach that combines the complementary strengths of both humans and diverse AI systems.135

Data136

HAICoGA involves two main types of data: those used for GA and those that support human-AI collaboration. Genomic sequence137

data play an important role in GA, including genome assemblies, expressed sequence tags (ESTs), complementary DNAs (cDNAs),138

RNA-seq data, and protein sequences [10]. Biological databases, such as UniProt [49] and Gene Ontology (GO) [50], aggregate139

knowledge from experiments and studies, providing labeled data for GA. Knowledge graphs (KGs) further enrich GA by integrating140

heterogeneous biological data into structured formats [51]. Scientific publications serve as contextual evidence for gene annotations.141

Grounding annotations in traceable literature evidence ensures that final annotations are supported by verifiable sources.142

Collaboration-related data capture how users engage with AI systems, for instance, the queries they enter, options they choose,143

and feedback they provide. These data help refine AI algorithms to better suit user needs.144

Goals and Tasks145

Recent research in human-AI collaboration (HAIC) highlights that effective teamwork involves aligning AI behavior with human146

objectives, enabling both to contribute toward common goals [52]. These goals can be achieved through structured plans composed147

of subtasks. In hierarchical task analysis, a task is broken down into subtasks until a stop criterion is reached, often when the148

subtask consists of only a single operation [53]. For example, a single operation such as gene prediction may be performed by an149

AI tool, while others may be handled by humans, such as reviewing predictions. Plans define the sequence and structure of tasks,150

whether sequential or hierarchical, and help allocate specific subtasks to either human experts or AI systems [53].151

Human-machine interface152

The human-machine interface serves as the bridge enabling interaction between humans and AI systems. It includes various forms153

of interfaces, including command-line interfaces (CLIs), graphical user interfaces (GUIs), and conversational user interfaces (CUIs).154

CLIs provide users with greater flexibility through programmatic access, customization options, and the ability to perform155

batch operations or access raw data directly. However, they can be challenging for users without programming experience. In156

contrast, GUIs provide a more user-friendly experience by allowing users to interact with AI systems through visual elements.157

GUIs are widely adopted in genome annotation tools for tasks like visualizing feature locations, displaying evidence alignments,158

and presenting other relevant information. Genome browsers such as JBrowse [30] provide graphical interfaces for viewing genome159
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annotations alongside supporting evidence tracks, while annotation platforms like Apollo [12] extend this functionality by enabling160

users to collaboratively edit and curate the annotations.161

While GUIs are indispensable for the curation of structural annotations, CUIs backed by tool-wielding AI agents have the162

potential to fulfill an analogous role in functional annotation. Recent advancements in LLMs have significantly contributed to the163

growing interest in CUIs. CUIs allow users to interact with machines using natural language, making it easier to access information164

and perform tasks without needing to memorize complex commands or navigate intricate menus. For certain tasks, CUIs enhance165

human-AI collaboration by enabling effective and intuitive interactions between humans and AI [54].166

Environment167

Environment plays a critical role in shaping human perceptions of AI, influencing interaction dynamics, and affecting the AI system’s168

capacity to interpret and respond to human input. It can be broadly categorized into digital, task, and team environments. The169

digital environment includes conditions and factors such as software platforms, interface design, and the availability of data for170

both humans and AI [55]. The task environment pertains to the tasks that need to be completed, the constraints and limitations171

involved, and the desired outcomes [56]. The team environment refers to the dynamics and structures within a group of individuals172

(including both human and AI) working together [57]. It is characterized by the roles and relationships established among team173

members, communication patterns, and the level of cooperation and collaboration required to achieve overall goals.174

Collaboration175

Whether human-AI interaction constitutes true collaboration remains a subject of ongoing debate [58, 59]. In the HAICoGA176

framework, we use the term collaboration to refer to a structured interaction between human experts and AI systems, wherein177

complementary strengths are integrated to improve genome annotation workflows. Effective human-AI collaboration relies on178

meaningful interaction and strategic alignment of distinct capabilities [20, 60]. Understanding these respective strengths is essential179

for designing effective collaborative systems in genome annotation (Figure 2; Supplementary Notes 3-4).180

Human capabilities include abstract reasoning, situational awareness, and nuanced decision-making–capabilities that AI does181

not inherently possess, but may emulate to a limited extent through task conditioning and model fine-tuning. In contrast, AI offers182

scalable computation, rapid pattern recognition, and the efficient execution of repetitive or high-volume tasks such as candidate183

gene prioritization and evidence retrieval.184

While automated GA tools can be error-prone, collaboration between humans and AI can improve the accuracy and reliability of185

the final outputs. AI systems should be designed to recognize tasks that exceed their confidence thresholds, such as annotating short186

genes or resolving complex duplications, and defer these cases to human curators for review. In turn, humans provide feedback by187

correcting errors, validating results, or suggesting alternative approaches. AI systems can then incorporate this feedback to refine188

their outputs, aligning more closely with human expectations and the dynamic context of the annotation process. This adaptive189

capability is referred to as contextual awareness. Bi-directional feedback mechanisms of this kind help prevent erroneous predictions190

and reduces the risk of propagating errors in genome annotations. Moreover, ongoing efforts to improve AI explainability are critical191

to fostering effective collaboration, as they enhance transparency and build trust in automated systems.192
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Learning Learning

Reasoning Reasoning

Decision Prediction

Delegation Deferral

Trust Explainability

Co-learning

Situational awareness Contextual awareness

Fig. 2. Key competencies for effective human-AI collaboration. Human competencies include learning, reasoning, situational awareness, decision-

making, delegation, and trust. AI competencies mirror and complement these with learning, reasoning, contextual awareness, prediction, deferral, and

explainability. Co-learning supports mutual adaptation. The dashed line represents an iterative feedback loop between humans and AI. See Supplementary

Note 4 for details.

AI agents bring opportunities to realize the HAICoGA framework193

LLM-based AI assistants in biological and biomedical domains194

There is an emerging trend of using LLM-backed AI assistants for research in biological and biomedical domains. These AI assistants195

can process human language inputs and generate responses that are coherent and contextually relevant within the interaction. We196

categorize these research based on the number of agents involved (Table 1). An agent refers to an AI system capable of interacting197

with humans or other agents and using tools to accomplish its tasks.198

Some works in Table 1, such as ChatNT, DRAGON-AI, and GeneGPT, are LLM-based models that take human language as input199

and generate direct answers without involving a agent. ChatNT is a multimodal AI system that integrates DNA, RNA, and protein200

sequences with neural language processing to solve various genomics tasks. ChatNT employs a modular LLM architecture that201

integrates a bidirectional DNA encoder with a unidirectional language decoder, enabling the interpretation of biological sequences202

in natural language. Similar architectures are discussed by Zhang et al. [61], who compare unidirectional and bidirectional LLMs in203

biological and chemical domains. Bidirectional models (e.g., BERT [62]) excel at encoding sequences for classification tasks, while204

unidirectional models (e.g., GPT [63]) are well-suited for generative tasks like text generation.205

DRAGON-AI is a method that automatically generates ontology objects based on partial information from a user. All ontology206

terms and additional contextual information are translated into vector embeddings and indexed. Relevant contextual information is207

retrieved using a retrieval-augmented generation (RAG) approach and added to construct a prompt, which is then passed as input208

to an LLM. The LLM completes the term object accordingly. GeneGPT uses few-shot learning to teach LLMs how to generate web209

APIs for accessing the National Center for Biotechnology Information (NCBI) databases and to answer biological questions based210

on the retrieved information. It handles both single-hop questions, which require a single API call, and more complex multi-hop211

questions that necessitate sequential API calls. For multi-hop questions, GeneGPT decomposes them into sub-questions, executing212
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a chain of API calls to retrieve and integrate information step by step. While GeneGPT automates this process, its authors213

acknowledge that different types of errors are enriched in different tasks. Given the complexity inherent in multi-hop reasoning,214

such cases may still benefit from human oversight to ensure the accuracy and reliability of the results.215

Phenomics Assistant builds an agent to call external tools based on user queries. It helps non-expert users query and interact216

with complex data from the Monarch Knowledge Graph. VarChat supports genetic professionals by providing concise summaries217

of scientific literature related to specific genomic variants. It interacts with external databases and utilizes user inputs to guide218

its querying and summarization processes. Both Phenomics Assistant and VarChat use a single-agent framework to provide a CUI219

that interacts with users and has the ability to use tools to solve user questions based on dynamic situations. The conversation220

history in the chat allows the agent to be aware of the user’s state within tasks and incorporate feedback from external tools. Both221

systems also provide sources for the information in their responses, improving transparency in their processes.222

Two-agent systems, ChatGSE, BioDiscoveryAgent, and GeneAgent, consist of a primary agent that interprets the user’s query223

and selects appropriate tools to solve the problem, and a secondary agent that critically evaluates the results or verifies the224

factual accuracy of the output. The tools either retrieve and process information from various APIs to access online databases225

or scientific literature. The retrieved information is treated as a source to determine whether the answer is factually accurate226

compared to the original data. Keeping track of intermediate results from tools and the verification process enhances the agent’s227

awareness of the current task status, potentially allowing it to adjust its actions accordingly in the next round of experiments.228

ChatGSE employs chain-of-thought reasoning to improve its problem-solving success. BioDiscoveryAgent follows the Reflection-229

Research Plan-Solution framework to enhance its reasoning capabilities. Both ChatGSE and BioDiscoveryAgent also incorporate230

self-verification mechanisms. These two agents operate in a sequential manner. All three systems provide some level of explainability231

by delivering context-rich answers that include references to data sources, literature, or verification reports. GeneAgent, which232

applies an AI agent for gene set enrichment analysis, focuses on autonomous interactions with domain-specific databases, followed233

by subsequent LLM verification.234

Multi-agent systems are becoming increasingly popular for solving complex problems. These systems integrate multiple AI235

agents to automate and enhance critical workflows, significantly improving the speed and efficacy of tasks such as gene enrichment236

analysis, literature searches, and software pipeline executions. For instance, the BRAD system employs a hierarchical structure of237

agents to manage tasks like literature retrieval and enrichment analysis automation. These agents use a combination of in-context238

learning and a specialized planner to distribute and organize tasks efficiently. Another example is the BKGAgent, which focuses239

on knowledge graph checking by querying knowledge graphs, verifying the accuracy of information through external literature or240

databases, and identifying factual discrepancies. The system’s ability to dynamically query and cross-reference structured knowledge241

graphs and unstructured scientific texts illustrates the integration of RAG, ensuring relevance and contextual awareness throughout242

the information processing stages.243

Similarly, GenoAgent and TAIS are tailored for analyzing gene expression data from sources like the Gene Expression Omnibus244

(GEO) and The Cancer Genome Atlas (TCGA). These systems leverage instruction learning and structured prompting to adapt245

their actions based on feedback and intermediate results, facilitating an iterative correction process that ensures the reliability and246

explainability of analytical outputs.247
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Method Number of agents Data Task and goal Team structure Tool use Explainability

ChatNT[64] No agent DNA, RNA, protein sequences

and text data

Interpret biological information encoded in genome

sequences and provide accurate predictions for

various biological functions, such as gene expression

prediction, DNA methylation, RNA stability, and

protein properties.

NA NA NA

DRAGON-AI[65] No agent Structured data from existing

ontologies and unstructured

textual data from sources like

GitHub issues

Generate ontological terms. NA NA NA

GeneGPT[66] No agent Text data Answer genomics-related questions by directly

generating API request URLs to access and retrieve

relevant biomedical information.

NA NA NA

Phenomics

Assistant[67]

Single AI agent Monarcha knowledge graph Enhance accessibility to complex genomic information

by enabling natural language querying of the Monarch

knowledge graph.

NA Monarch Initiative API The explainability of AI-generated answers by

grounding them in data retrieved from the

Monarch KG.

VarChat[68] Single AI agent Scientific literature and

human genomic variants

Support genetic professionals by providing concise

summaries of scientific literature related to specific

genomic variants.

NA Query genomic databases; find

and summarize the fragmented

scientific literature

Informing users about the sources of its

responses.

ChatGSE/

biochatter[69]

Two AI agents Knowledge graph and

scientific articles

Answer user’s questions using context from knowledge

graphs and scientific papers; demonstrate the

usability in cell type annotation task.

Sequential Information retrieval from

knowledge graphs and the

literature

Fact-checked and supplemented with context-

specific information from documented sources.

BioDiscoveryAgent[70] Two AI agents Biological database

(Reactomeb 2022 database)

and literature

Design genetic perturbation experiments that

efficiently navigate the hypothesis space to identify a

small subset of genes resulting in specific phenotypes.

Sequential Search the biomedical

literature and execute code to

analyze biological datasets

Detailed explanations for its choices,

including citing relevant literature and

detailing the reasoning behind selecting

specific genes for perturbation.

GeneAgent[71] Two AI agents GO, Molecular Signature

Database (MSigDBc), and a

proteomics analysis system

(NeSTd)

Generate biological process names for gene sets. Sequential Call web APIs that connect to

biological databases

Providing verification reports that detail

the evidence supporting or refuting each

generated name.

BRAD[72] Multiple AI agents Online literature repositories,

Enrichre and Gene Ontology

databases

Automate bioinformatics workflows, enhancing the

speed and efficacy of tasks such as gene enrichment

analysis, literature searching, and running software

pipelines.

Hierarchical Search online literature,

execute code to run software

pipelines, such as enrichment

analyze and visualization

Providing context-rich answers that include

references to data sources and literature.

BKGAgent[73] Multiple AI agents Clinical Knowledge and

academic literature Graph

The primary task is Knowledge Graph Checking,

which involves querying KGs, verifying the

correctness of the information using external

literature or databases, and identifying factual

errors.

Hierarchical Specific tools for interacting

with knowledge graphs and

scientific literature

Agent actions and decisions are traceable

and justifiable, particularly in the context

of verifying scientific claims and correcting

knowledge graph data.

GenoAgent[74] Multiple AI agents GEOf and TCGAg databases Automate the analysis of gene expression data to

identify disease-associated genes.

Hierarchical Various bioinformatics tools,

such as those for data

normalization and statistical

analysis

Provide explainable results by documenting

the decision-making process and the steps

followed in the data analysis.

ProtAgents[75] Multiple AI agents Protein sequences, structural

data, simulations and external

databases

Automate and enhance the design of novel proteins

with specific mechanical properties. This involves

generating new proteins, analyzing their structures,

and obtaining new first-principles data through

physics simulations.

Hierarchical

(dynamic,

collaborative

multi-agent

environment)

Physics simulators and

generative AI models, to

perform tasks ranging from

data retrieval to complex

simulations of protein

behaviors.

Provide explainable results by detailing the

reasoning behind its decisions, the data used,

and the methodologies applied.

[76] Multiple AI agents Single-cell RNA sequencing

(scRNA-seq) data and

literature

Replicate the experimental and analysis process of a

scientific publication that explored gene expression

relevant to SARS-CoV-2 entry into human cells. The

goal is to validate the methods used in the original

publication and to enhance the reproducibility and

transparency of scientific research using AI.

Hierarchical Software tools for data

analysis and paper summary

Providing detailed breakdowns of its

analytical processes and how decisions

and analyses are derived, allowing for

a transparent review of its methodology

replication.

TAIS[77] Multiple AI agents TCGA, NCBI Gene and GEO

databases

Identify disease-predictive genes from gene expression

data.

Hierarchical Various computational tools

and methods integrated into

the data processing and

analysis workflows

Not detailed in the paper.

Virtual Lab[78] Multiple AI agents Public protein databases and

SARS-CoV-2 variant data

Design and validate nanobody binders for SARS-

CoV-2 variants using AI-driven workflows.

Hierarchical Bioinformatics tools for

protein analysis

Providing explainability by structuring AI-

agent meetings, documenting decisions, and

presenting clear computational workflows.

Table 1. AI assistants in biological and biomedical domains. NA: not applicable. a https://monarchinitiative.org/. b https://reactome.org/. c https://www.gsea-msigdb.org/gsea/msigdb. d

https://idekerlab.ucsd.edu/nest/. e https://maayanlab.cloud/Enrichr/. f https://www.ncbi.nlm.nih.gov/geo/. g https://www.cancer.gov/ccg/research/genome-sequencing/tcga.
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Beyond genomics, Virtual Lab exemplifies the application of multi-agent AI systems in experimental biomedical research. This248

system utilizes an AI-driven research framework, where a Principal Investigator AI leads a team of specialized agent, including249

a Machine Learning Specialist, Immunologist, and Computational Biologist, to design and validate nanobody binders for SARS-250

CoV-2 variants. The system’s ability to document decision-making steps and optimize AI-driven workflows highlights the growing251

role of multi-agent systems in interdisciplinary research.252

Lastly, ProtAgents showcases a multi-agent application in the design and analysis of novel proteins. By integrating real-time253

data from experiments and simulations, these agents can generate and analyze new proteins, adjusting their outputs based on254

dynamic inputs. The multi-agent system developed by Bersenev et al. [76] facilitates the replication of high-impact scientific255

studies by processing research papers and generating code to reproduce experiments, streamlining experimental validation and256

iterative scientific discovery.257

Table 1 summarizes information from these studies, aligning certain elements with the HAIGoGA framework, including data,258

tasks, goals, AI systems and tools, and team structure (environment). The data, tasks, goals, and tools are customized for different259

AI assistants. In studies involving multiple agents, these agents are often organized hierarchically, with a high-level agent (e.g.,260

planner, leader, or manager) responsible for task distribution and coordination of the analysis process. Regarding the human-261

machine interface, three studies provide both GUI and CUI to facilitate human interaction with AI agents [67–69]. The most recent262

work, Virtual Lab [78], demonstrates the impact of human-AI collaboration through experiential evidence. In this framework,263

agents can defer tasks to other agents, as well as humans.264

Cognitive functions, such as perception, reasoning, planning, and memory, are essential for enabling LLM-based agents to265

maintain contextual awareness and generate relevant responses in human-AI interactions. For example, the ReAct agent integrates266

reasoning and action, iteratively repeating this process until it determines a final response. The agent evaluates the current input267

along with past observations to decide the next step [79]. Some AI systems incorporate memory management to continuously track268

user interactions and dynamically recalibrate the agent’s actions based on intermediate results and feedback [67–69, 72]. Table 1269

shows that most studies support explainability through tracing agent actions, predictions, and the external data sources used.270

Vision for the HAICoGA framework271

Multi-agent system design in the HAICoGA framework272

Through our review of current LLM agents in the biological and biomedical domains, we identified multi-agent systems as273

a promising approach for realizing the HAICoGA framework. Existing research primarily focuses on developing autonomous274

systems that minimize or even eliminate human intervention. However, such fully autonomous systems have demonstrated limited275

effectiveness in real-world applications [78, 80]. It is essential to keep humans in the loop to enhance system performance and276

reliability [18, 78].277

Figure 3A illustrates an example of users collaborating with a multi-agent system to annotate gene functions. Based on the278

user’s input query, the manager agent could use a method (e.g., ReAct) for breaking down the query into subtasks and assigns279

them to other agents according to their capabilities (Figure 3C-D). The critique agent evaluates the quality of task results using280

metrics such as completeness, relevance, and other task-specific criteria, providing feedback and indicating the task’s status. If281

necessary, agents can request additional input from the user. Once all tasks are completed, the manager agent compiles the final282

response and presents it to the user.283
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Building on the GA workflow described in the review by Ejigu et al. [10], we propose an automated GA agent along with several284

agents for manual annotation (categorized as manual curation agents in Figure 3B, each assigned distinct roles, as detailed in285

Figure 3D). While manual annotation is often performed based on the results of automated GA, newly added manual annotations286

can also enhance the automated GA system by providing additional gold-standard data, enabling continuous refinement of gene287

annotations.288

Another key strength of multi-agent systems is that it allows for the internal refinement of answers. In the automated GA289

phase (Figure 3C), the automated GA agent executes AI models and pipelines to perform specific tasks using genome data, such290

as predicting gene functions. The manager agent and critique agent contribute by summarizing results and providing feedback to291

the automated GA agent, which may prompt it to select alternative models or pipelines for gene function prediction. This iterative292

process enhances the quality of gene annotation. The self-improving loop continues until either the user or the manager agent293

decides to finalize the process and provide the final answer for the task.294

The use of multiple agents also allows for specialization in the manual annotation system (Figure 3D), each assigned distinct295

attributes, including role, perception, and actions (tool use). These attributes enable agents to be optimized for specific domains or296

functions [81]. To manually annotate an uncharacterized gene, several guidelines recommend a workflow that involves using a tool297

(e.g., BLAST) to identify homologous proteins, retrieving functional annotations from existing databases and recent literature, and298

assigning these functions to the target protein [7, 34, 82]. Following these guidelines, the manager agent is responsible for designing299

this workflow and distributing tasks among specialized agents, including the sequence search agent, database agent, literature300

search agent, and document summary agent. The synthesis agent then aggregates the results, while the critique agent evaluates301

the output and provides feedback to the manager agent. Similar to the automated GA phase, the user could interrogate the results302

and refine prompts to continuously refine the quality of gene annotation.303

Illustrative use cases of the HAICoGA framework304

To demonstrate the practical use cases of the HAICoGA framework, we highlight the application of the GeneWhisperer system for305

gene annotation [83].306

GeneWhisperer employs an LLM agent integrated with domain-specific tools to assist in generating functional hypotheses for307

genes, particularly uncharacterized genes in a reference genome. The system synthesizes multiple forms of evidence by identifying308

homologous proteins through sequence alignment, proposing relevant Gene Ontology (GO) terms based on functional similarity,309

and extracting gene-trait associations from scientific literature.310

Following AI-assisted annotation, domain experts would review the generated hypotheses, validating them against species-311

specific literature and related annotations in other genomes. While experts do not generate annotations entirely from scratch,312

they are able to refine, correct, or reject AI-suggested annotations based on domain knowledge. As noted by Kudiabor et al.[84],313

AI-assisted annotations, particularly for novel genes, should not be considered definitive without supporting wet-lab experiments.314

Furthermore, we acknowledge that for certain genes, neither the user nor the AI system may be able to produce a meaningful315

annotation when no relevant information currently exists.316

Another use case of the HAICoGA framework involves an AI assistant designed to improve consistency in gene function317

annotation. Manual curation often results in variability due to the difficulty in selecting standardized GO terms and corresponding318

Evidence and Conclusion Ontology (ECO) codes.319

The AI assistant would analyze user-provided inputs, e.g., literature excerpts, and suggests appropriate GO and ECO terms.320

Users would review and refine these suggestions, maintaining expert oversight throughout the process. We demonstrated an examples321
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Fig. 3. (A) Overall multi-agent system design for human-AI collaborative genome annotation. Users submit a genome annotation query through an

interactive user interface (UI). The UI requests the manager agent to analyze the task, decompose it into subtasks, and assign them to appropriate

agents. While assisting with a subtask, an agent may request additional input from the user to complete the task successfully. The critique agent

provides feedback on the outcomes, guiding the system’s next steps. The manager agent monitors the global conversation history and intermediate

results, updating the task plan as needed or finalizing the task and delivering the results to the user. (B) The top synergy layer of the multi-agent

system designed for HAICoGA. Following the practical GA workflow [10], the multi-agent system consists of a user, a manager agent, an automated GA

agent, multiple manual curation agents, and a critique agent. (C) Workflow of multi-agent collaboration in automated GA phase. The manager agent

delegates the automated GA task to the automated GA agent, which manages a customized pipeline (or an AI model) using genome data to perform

specific tasks. The critique agent analyzes the results, evaluates their quality, and suggests the next steps to the manager agent. This process can be

repeated iteratively until the desired outcome is achieved. (D) Workflow of multi-agent collaboration in manual curation phase. A manual annotation

process follows the automated GA phase. Due to the complexity of manual curation, the system includes several specialized agents performing distinct

roles. The sequence search agent identifies homologous genes for a target gene, for example, by running BLAST against genome sequence data. The

database agent retrieves gene function annotations from various databases. The literature search agent identifies relevant scientific papers for further

analysis, while the document summarization agent extracts key information from these papers. The synthesis agent compiles all relevant data and

submits it to the critique agent, which reviews the information and provides suggestions, such as whether the data is sufficient to address the user’s

query. Finally, the manager agent either updates the task plan or generates the final response.
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using ChatGPT as an LLM-based agent to assist in selecting GO and ECO terms (see Supplementary Note 5). While preliminary,322

this example illustrates the potential of general-purpose LLMs like ChatGPT can serve as accessible annotation assistants. It also323

highlights the limitations of such models in domain-specific tasks, underscoring the need for future development of specialized AI324

assistants built on the HAICoGA framework.325

These illustrative use cases demonstrate the practical viability of the HAICoGA framework in supporting genome annotation326

tasks through synergistic human-AI workflows. Similar ideas have been implemented in other scientific domains. For example, the AI327

Co-Scientist system leverages a multi-agent architecture to collaborate with scientists in hypothesis generation, drug repurposing,328

and biomedical discovery [85]. This iterative collaboration between AI systems and domain experts reflects the same core principles329

underpinning HAICoGA.330

By optimizing agents for specific annotation tasks and integrating expert feedback, HAICoGA aims to extend these advances331

into the genomics space. In the following section, we discuss the remaining challenges and technical considerations in building such332

systems.333

Challenges in Building the HAICoGA Framework334

Designing the architectural of a multi-agent system335

The design of LLM-based multi-agent systems requires a modular and adaptive architecture in which specialized agents collaborate336

dynamically through structured interaction layers. These agents, each with distinct roles, leverage LLM capabilities for reasoning337

and task execution while interoperating with external resources such as datasets and tools to maintain contextual awareness.338

Achieving this requires balancing autonomy and alignment, as excessive autonomy may lead to goal deviations, whereas strict339

alignment can hinder adaptability [86]. Furthermore, managing dependencies among agents and ensuring scalability in resource340

usage are critical, especially as tasks grow more complex. Mechanisms for real-time adaptation and error correction are also341

essential to address inconsistencies and ensure robust, goal-oriented outcomes in complex environments. Finally, challenges remain342

in optimizing task allocation, fostering robust reasoning through iterative debates, managing complex contextual information, and343

enhancing memory management [87].344

Developing novel ML/AI methods for enhancing human-AI collaboration345

LLM agents, particularly unidirectional models, facilitate dynamic communication with users, but recent research highlights several346

critical challenges that may affect their collaborative effectiveness. Hallucination remains a significant concern, in which models347

generate plausible-sounding but factually unsupported content [88]. As such outputs can influence decision-making, they risk348

propagating false beliefs or even causing harm, underscoring the need for robust mitigation strategies. Fine-tuning bidirectional349

models with sufficient domain-specific training data can significantly improve their performance in tasks such as information350

extraction and classification. To further enhance reliability, systems could support continuous learning, enabling dynamic updates351

through human feedback and evolving contexts, as exemplified by reinforcement learning from human feedback (RLHF) [81].352

Maintaining context over extended interactions is another area where LLMs often falter, leading to incoherent responses or353

an inability to recall previous discussions. Vector databases offer a potential solution by enabling long-term memory management354

in LLM agents, allowing them to accumulate and organize memories over time. However, efficiently searching and retrieving355

relevant information from extensive memory stores remains challenging. Further advancements are needed to develop mechanisms356

for learning and updating metadata attributes across both procedural and semantic memory types [89]. MemGPT [90] exemplifies357
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progress in this domain by intelligently managing different memory tiers to store and retrieve information effectively during358

long-term conversations.359

Reasoning capabilities are pivotal for LLM agents to perform complex and nuanced tasks such as problem-solving, decision-360

making, and planning. Explicit reasoning steps not only improve task performance but also enhance model explainability and361

interpretability by providing rationales for predictions. While LLMs are primarily trained for next-token prediction, strategies362

like Chain of Thought (CoT) have demonstrated improvements in reasoning tasks by guiding models to articulate their reasoning363

explicitly. However, LLMs still face challenges in handling highly complex reasoning tasks or those involving subtle implicatures,364

necessitating ongoing research [91].365

Requiring multi-dimensional evaluation methods to assess the HAICoGA workflow366

Traditional GA evaluation metrics, such as coverage, precision, and accuracy, remain fundamental for assessing annotation quality367

[3, 92]. These measures indicate better outcomes when higher values are achieved; however, they provide relative rather than368

absolute benchmarks due to the absence of a comprehensive genome-wide gold standard. Many annotations remain provisional,369

relying on computational predictions or homologous transfers from model organisms.370

In HAICoGA workflows, additional dimensions, such as explainability, are crucial for evaluation. Integrating orthologous371

information, along with detailed protein family and domain characterizations from diverse sources, enhances the explanatory372

depth and reliability of annotations [93]. Metrics that assess explanation generation and evidence quality are essential to ensuring373

the transparency of AI-assisted workflows. This aligns with frameworks for evaluating HAIC, which emphasize not only task success374

but also interaction quality, process dynamics, and ethical considerations [94].375

Furthermore, optimizing the performance of human-AI teams requires a paradigm shift from individual AI optimization to376

assessing team-level outcomes. Evidence suggests that the most accurate AI system does not necessarily yield the best collaborative377

performance [95]. Effective collaboration depends on dynamic task allocation, mutual learning, and trust between human and378

AI agents. Metrics for evaluating such interactions must consider both qualitative factors, such as trust and satisfaction, and379

quantitative measures, such as decision impact and task completion time [94].380

Adopting multi-dimensional evaluation frameworks, such as those emphasizing symbiotic HAIC modes, can provide holistic381

insights [94]. These frameworks should capture the dynamic, reciprocal nature of collaboration, extending beyond task success to382

evaluate how well humans and AI adapt to each other’s strengths and limitations over time. Such comprehensive approaches are383

crucial for advancing the HAICoGA workflow and ensuring its alignment with both scientific rigor and practical utility.384

Designing intuitive and interactive interfaces to facilitate human-AI collaboration385

To investigate the challenges and opportunities in CUIs, we developed a chatbot prototype for curating information in gene386

functional annotation [83]. Additionally, we proposed applying conjoint analysis, a behavioral science method, to quantify the387

relative importance of four design features that influence users’ trust in the system [96].388

Initial testing of the prototype suggests that LLM agents have the potential to serve as valuable tools for collaborative genome389

annotation (GA) when combined with human expertise. However, further research is needed to enhance their trustworthiness,390

particularly by improving explainability and providing confidence measures for AI-generated predictions [96].391

To support these capabilities, future work will focus on integrating a dedicated graphical user interface (GUI) with the chatbot,392

particularly for structural annotation. Developing the right interface will be best served by taking a participatory or user-centred393

design approach and incorporating input from GA experts from the outset.394
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Risks and safeguards395

The integration of LLM agents into scientific workflows introduces a set of risks that necessitate proactive and comprehensive396

mitigation strategies. The risks include the potential for generating misleading or harmful content, propagating biases, and397

compromising data privacy and security. These risks can arise from the inherent limitations of LLMs, such as their susceptibility398

to hallucination, over-reliance on training data, and the challenges of ensuring alignment with human values and ethical standards399

[97].400

To mitigate these risks, a triadic framework involving human regulation, agent alignment, agent regulation and environmental401

feedback has been proposed [97]. Human regulation involves establishing clear guidelines and protocols for the responsible use402

and development of LLM agents in scientific contexts. This ensures ongoing human oversight and supports human-in-the-loop403

validation [98]. Agent alignment means that LLM agents are designed and trained to align with human intents and ethical standards,404

minimizing the risk of generating misleading or harmful content. Widely adopted safety mechanisms, such as those implemented405

in ChemCrow [18] and SafeScientist [99], can help ensure that agents operate within predefined boundaries and do not produce406

harmful outputs. Agent regulation and environmental feedback refer to the continuous monitoring and evaluation of LLM agent407

performance in real-world applications, enabling iterative refinement of their behavior. Feedback in multi-agent systems comes408

not only from human users but also from critique agents, external tools, and structured knowledge sources. Techniques like RAG409

exemplify how agents can be designed to incorporate trusted external knowledge sources, improving reliability and reducing the410

risk of hallucinated content [98].411

Conclusion412

In this paper, we first analyzed the pros and cons of automated GA methods and manual curation tools. We found that while413

automated GA methods generate annotations quickly, they have limitations, such as inaccurate gene predictions. On the other414

hand, manual curation can be highly accurate but requires intensive human labor and time. A human-AI collaborative genome415

annotation approach is necessary to leverage the strengths of both humans and AI, leading to more accurate and efficient GA.416

Bringing together prior work in automated GA and manual curation, we then proposed the conceptual framework of417

HAICoGA. Our work bridges the gap between GA and human-AI collaborative communities, envisioning new possibilities in418

this multidisciplinary field. The emergence of LLM agents presents significant opportunities to realize HAICoGA workflows.419

However, many challenges and open questions remain in LLM agent research. The HAICoGA framework is still in its early stages420

of development, but it represents a step toward a comprehensive and efficient human-AI collaborative workflow for real-world421

applications in the future.422

Glossary423

Genome annotation (GA) is the process of identifying and characterizing functional elements within a genome, including genes,424

regulatory regions, and other biologically significant sequences. It involves the use of computational methods, such as machine425

learning (ML) and heuristic-based approaches, as well as manual curation by experts to improve accuracy. GA is essential for426

understanding gene functions, predicting protein structures, and exploring evolutionary relationships across species.427

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines, enabling them to perform tasks such as428

reasoning, learning, problem-solving, and decision-making. AI encompasses various techniques, including ML, deep learning, and429
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natural language processing (NLP), to analyze complex data and automate decision-making. In GA, AI is used to enhance the430

efficiency of gene prediction, functional annotation, and data integration by processing large-scale biological datasets with minimal431

human intervention.432

Machine Learning (ML) is a subset of AI that enables computers to learn patterns from data and make predictions or decisions433

without being explicitly programmed. In GA, ML algorithms are used to classify genes, predict functional elements, and enhance434

annotation accuracy by analyzing large-scale genomic datasets. ML approaches include supervised, unsupervised, and reinforcement435

learning, leveraging statistical models and neural networks to improve biological data interpretation.436

Manual curation, also known as manual annotation, refers to the process in which human experts review, refine, and validate437

genome annotations to ensure accuracy and biological relevance. This process involves analyzing computationally generated438

annotations, resolving ambiguities, and incorporating insights from experimental data and scientific literature.439

Human-AI collaboration (HAIC) refers to the dynamic interaction between humans and AI systems, where both work together440

toward overall goals by leveraging their complementary strengths. Unlike automation, where AI operates independently, or441

augmentation, where AI enhances human capabilities, HAIC involves a continuous exchange of information, decision-making,442

and adaptation over time.443

Knowledge graphs (KGs) are structured representations of relationships between biological entities, such as variants, genes,444

proteins, pathways, phenotypes, and diseases. They encode known interactions and associations in a graph format, where nodes445

represent entities and edges denote relationships. KGs facilitate data integration, reasoning, and discovery in genomics by linking446

heterogeneous biological information sources.447

Large language models (LLMs) are AI models trained on massive datasets of text and code. They can generate human-448

quality text, translate languages, follow user instructions for task procedures [100, 101], use external tools [102], and answer user449

questions based on specific contexts [103]. A common architectural foundation for LLMs is the Transformer [104], which enables450

efficient modeling of long-range dependencies in sequences through self-attention mechanisms. Variations of this architecture include451

encoder-only models (e.g., BERT [62]), decoder-only models (e.g., GPT [63]), and encoder-decoder hybrids (e.g., T5 [105]). These452

architectures may be bidirectional, capturing context from both preceding and following tokens (as in BERT), or unidirectional,453

processing text left-to-right to generate coherent outputs (as in GPT models).454

AI agent is an autonomous or semi-autonomous entity within a multi-agent system that performs specific tasks, interacts with455

other agents, and operates based on predefined rules, learned behaviors, or external inputs. Agents may specialize in different roles,456

such as task management, data retrieval, reasoning, or quality assessment, and they communicate within structured frameworks457

to enhance human-AI collaboration.458
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Key points461

• While genome annotation is complex and challenging, heavy reliance on automated methods can introduce errors.462

• Manual curation is necessary for accurate annotations but requires significant time and effort.463

• Our novel contribution is HAICoGA, the first conceptual framework for human-AI collaborative genome annotation.464
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• We further present a example of HAICoGA framework and future research directions in realize this framework.465
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1. Gökcen Eraslan, Žiga Avsec, Julien Gagneur, and Fabian J Theis. Deep learning: new computational modelling techniques467

for genomics. Nature Reviews Genetics, 20(7):389–403, 2019.468

2. James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali Torkamani, and Amalio Telenti. A primer on deep learning469

in genomics. Nature genetics, 51(1):12–18, 2019.470

3. Elizabeth H Mahood, Lars H Kruse, and Gaurav D Moghe. Machine learning: a powerful tool for gene function prediction in471

plants. Applications in Plant Sciences, 8(7):e11376, 2020.472

4. Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic local alignment search tool.473

Journal of molecular biology, 215(3):403–410, 1990.474

5. Mario Stanke, Oliver Keller, Irfan Gunduz, Alec Hayes, Stephan Waack, and Burkhard Morgenstern. Augustus: ab initio475

prediction of alternative transcripts. Nucleic acids research, 34(suppl 2):W435–W439, 2006.476

6. Mark Yandell and Daniel Ence. A beginner’s guide to eukaryotic genome annotation. Nature Reviews Genetics, 13(5):329–342,477

2012.478

7. Ramana Madupu, Lauren M Brinkac, Jennifer Harrow, Laurens G Wilming, Ulrike Böhme, Philippe Lamesch, and Linda I479
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Supplementary Notes of ‘A Conceptual Framework for
Human-AI Collaborative Genome Annotation’

Supplementary Note 1: Automated genome annota-
tion
Evolution of automated genome annotation
Automated genome annotation usually consists of several steps, including sequence align-
ment, masking repeat sequences, identifying genomic elements, predicting their functions,
and performing quality control (McEntyre and Ostell, 2002). Numerous computational
methods have been developed for each step of the genome annotation process. A rough
chronology can be outlined based on the emergence and prominence of various methods.

In the 1990s and 2000s, rule-based and heuristic methods were the most common ap-
proaches for genome annotation. These methods relied on predefined rules or heuristics
to identify genes in genome sequences. Tools like BLAST (Altschul et al., 1990) became
essential for similarity-based annotations, while gene prediction software such as Glimmer
(Delcher et al., 1999) for prokaryotes and AUGUSTUS (Stanke et al., 2003) for eukary-
otes utilized statistical models like hidden Markov models (HMMs). These methods are
commonly referred to as homology-based (e.g., BLAST) and ab initio (e.g., Glimmer and
AUGUSTUS) approaches in the literature. Homology-based methods compare the target
genome sequence to a database of known genes, which serve as templates. If the target
sequence is similar to a known gene, it is likely that the sequence also encodes a gene
with similar functions. Ab initio methods, on the other hand, detect protein-coding genes
by identifying conserved features within the target genome. These conserved features in-
clude statistical properties of protein-coding sequences and regulatory signals surrounding
protein-coding genes (Tiwari et al., 1997).

In the 2000s and 2010s, integrated and ensemble methods became increasingly popular.
These approaches combined multiple sources of evidence to improve prediction accuracy.
Tools like MAKER (Holt and Yandell, 2011) integrated ab initio gene predictions, protein
homology, and transcript evidence. Meanwhile, ensemble methods such as EVidence-
Modeler (Haas et al., 2008) combined outputs from multiple annotation tools to derive
consensus annotations.

In the 2010s and 2020s, ML and deep learning methods have been used to improve the
accuracy of genome annotation. Traditional ML techniques, including support vector
machines (SVMs) and random forest (RFs), began to be used for various tasks in GA
(Mahood et al., 2020). Deep learning methods, such as convolutional neural networks
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(CNNs), have been employed for predicting gene structures, regulatory elements, and
other genomic features (Mahood et al., 2020; Sapoval et al., 2022; Zou et al., 2019). Well-
known examples include AlphaFold3 (Abramson et al., 2024) for biomolecular structure
prediction and SpliceAI (Jaganathan et al., 2019) for splice site prediction.

The 2020s have marked a revolutionary era in genome annotation with the rise of Gen-
erative AI and advanced machine learning technologies. One prominent example is Al-
phaFold3 (Abramson et al., 2024), which continues to redefine biomolecular structure pre-
diction with unprecedented accuracy and scalability. Generative AI has further expanded
its capabilities with diffusion models that can design proteins with desired properties
(Watson et al., 2023). These advancements have significant implications for understand-
ing complex biological processes and engineering novel biomolecules. Large Language
Models (LLMs), such as ChatGPT, have gained global attention for their ability to pro-
cess and generate human language. Their applications extend beyond language processing
to the analysis of sequential biological data, including DNA, proteins, and gene expression.
In the life sciences, LLMs have been trained on diverse datasets encompassing natural
language, molecular sequences, protein structures, and genomic information (Zhang et al.,
2024).

New methods are constantly being developed, and existing methods are continually re-
fined in response to growing datasets, our ever-expanding understanding of genomics,
and emerging biotechnologies. For example, long-read sequencing techniques, such as
those offered by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT),
have dramatically improved genome assembly (Logsdon et al., 2020). New computational
methods are required to process long-read sequencing data (Amarasinghe et al., 2020) or
integrate short- and long-read sequencing data (Olson et al., 2022).

Automated genome annotation pipeline
In practice, genome annotation is performed using a genome annotation pipeline, which
consists of a series of computational tools. One or more specialized computational tools
are employed at each step of the process. These multiple computationally intensive
steps are executed in a predefined order, handling various data sources such as aligned
sequences, RNA-seq data, and protein information (Holt and Yandell, 2011; McEntyre
and Ostell, 2002; Fiddes et al., 2018; Banerjee et al., 2021; Solovyev et al., 2006). Many
biological analyses rely on pipelines that have been established and validated over many
years. The adoption of new methodologies requires rigorous validation to ensure that
new pipelines are both accessible and reliable. While deep learning and advanced AI
techniques have seen significant advances and applications in many fields, their full-scale
adoption in genome annotation may still be ahead of us.

Challenges in automated genome annotation
Lack of gold-standard data

Since computational tools, particularly ML/AI models, learn from data, the quality of
input data directly affects the effectiveness and reliability of the resulting models. How-
ever, genome databases, especially those for non-model species, often contain incomplete
or inaccurate data. Even in well-studied model species such as Arabidopsis thaliana, a
substantial proportion of genes (36%) still lack molecular function or biological process

2
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annotations (TAIR database, as of July 2016) (Bolger et al., 2018). The challenge is
even greater for non-model species, where annotations are primarily inferred from model
organisms without species-specific experimental validation.

Additionally, public genome databases have been found to contain substantial errors
(Bolger et al., 2018; Schnoes et al., 2009). Such errors include, but are not limited to,
incorrect gene boundaries, inaccurate exon-intron structures, misidentification of pseudo-
gene regions as genes, and improper functional assignments. Errors can arise at various
stages of genome analysis (Bolger et al., 2018; Müller et al., 2003). One of the primary
causes of annotation errors is contamination within assemblies, which has been detected
in nearly all major databases (Bensch et al., 2021; Bolger et al., 2018). These errors prop-
agate through downstream analyses (Kyrpides, 2009) and are amplified by other ML/AI
models (Hall et al., 2022).

Generalizing a model to a new species

The scarcity of diverse datasets significantly hampers a models’ ability to generalize and
perform effectively across a wide range of genomic contexts. This limitation not only
restricts models’ training but also undermines their capacity to discover novel patterns
and make accurate predictions in less-studied species.

For example, homology-based models transfer the annotations of homologous genes to
target genes based on sequence or structural similarity (Korf et al., 2001; Keilwagen
et al., 2016; van Baren and Brent, 2006). However, these models struggle to recognize
novel genomic elements that lack homologous sequences in existing databases, such as
species-specific genes and newly sequenced genomes with long evolutionary distances
from reference genomes. The performance of homologous gene annotation depends on
the completeness and quality of genome assemblies and the accuracy of reference genome
annotations.

Ab initio models are often trained on a specific species (Lomsadze et al., 2005; Burge and
Karlin, 1997; Salamov and Solovyev, 2000). They optimize performance by leveraging
available signals in the training data, which may be specific to that dataset. As a result,
their ability to generalize to new species is impaired.

Integrating multi-omics data.

An increasing number of innovative approaches, including integrated methods (Holt and
Yandell, 2011) and hybrid methods (Bruna et al., 2020; Stanke et al., 2006; Solovyev
et al., 2006), combine multiple omics data to achieve more accurate and comprehensive
genome annotation. However, these methods are often limited by incomplete evidence or
insufficient training data, particularly in non-model species, where the quantity and qual-
ity of available data for each omic may vary. Additionally, integrating multi-omics data
into ML/AI models remains challenging due to the high-dimensional and heterogeneous
nature of such data (Barua et al., 2023).

Interpreting ML/AI models.

ML/AI, particularly deep learning algorithms, have recently garnered increasing interest
in various genome annotation tasks (Eraslan et al., 2019; Zou et al., 2019). Deep learning
methods can significantly improve genome annotation accuracy (Abramson et al., 2024),
but their results are more challenging to interpret than those of traditional ML/AI ap-
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proaches (Talukder et al., 2021). This complexity obscures the understanding of deep
learning models’ predictive mechanisms and makes pinpointing potential inaccuracies in
the annotation process more difficult.

Supplementary Note 2: Manual curation
Overview of manual curation
Manual genome curation can be categorized into three primary approaches: museum, cot-
tage industry and jamboree (Stein, 2001). The museum approach relies on a centralized
team of experts responsible for curating the entire genome, usually for well-studied model
species. In the cottage industry approach, multiple independent curators contribute to
different regions of the genome. The jamboree approach brings together a large group
of participants to collaborate on a genome annotation project. While this approach can
expedite the process and reduce costs, it requires robust quality control mechanisms to
ensure consistency. Community-based curation (Rödelsperger et al., 2019) and crowd-
sourcing biocuration (Ramsey et al., 2021) are examples of the jamboree approach.

The manual curation process may vary depending on the specific project. However, some
common steps can be followed in manual curation, as shown in Figure 1.

4

5
Publishing

    the

 changes
 Manual

curation

 Evaluating

     the

annotations

 Updating

     the

annotations

Collecting

 evidence

Identifying

 potential

   errors

1

2

3

Figure 1: Overview of manual curation.

Step 1: Identifying potential errors in genome annotation Potential errors may occur
in features such as assembly gap regions, non-canonical splice sites, multiple alternative
splicing forms, trans-spliced genes, and putative gene functions lacking sufficient evidence.
Curators can compare genome annotations against external evidence to detect regions
that deviate from the expected structure or function of known genes. They can also
identify discrepancies where predicted gene models are annotated differently by various
pipelines (McDonnell et al., 2018).

Step 2: Collecting evidence to enhance genome annotation To improve the understand-
ing of genomic elements, curators can gather diverse lines of evidence. For instance,
experimental data, such as RNA and protein sequences, are useful for confirming the
presence or absence of transcripts and determining the exon-intron structure of genes
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(Cheng et al., 2017). Furthermore, public databases such as GenBank (Sayers et al.,
2020), RefSeq (O’Leary et al., 2016), UniProt (The UniProt Consortium, 2023), InterPro
(Paysan-Lafosse et al., 2023), Pfam (Mistry et al., 2021), GO (Gene Ontology Consor-
tium, 2021), and KEGG (Kanehisa and Goto, 2000) provide invaluable information on
nucleotide and protein sequences, as well as various functional annotations. Finally, exten-
sive research literature can offer additional experimental gene annotations and sequences
that may not be available in public databases.

Step 3: Updating the annotations based on evidence Once evidence is collected, curators
can update genome annotations accordingly. For example, gene boundaries can be refined
by reviewing RNA or protein sequence alignments. Multiple alternative splicing forms
can be identified using RNA-Seq data from various conditions and tissues. Untranslated
regions (UTRs) missing from automated GA can be recovered using short peptide data
(Madupu et al., 2010). Pseudogenes can be detected by identifying incomplete protein
domains in predicted gene models (McDonnell et al., 2018). Such manual curation helps
reduce error rates in genome annotation.

Step 4: Evaluating the updated annotations To ensure annotation accuracy, curators
should identify any inconsistencies (McDonnell et al., 2018). For example, they can search
for homologous genes and assess their functional relationships. Genes with high similarity,
belonging to the same gene families or a particular group, should be assigned the same
functional annotation. While not an absolute rule, this guideline helps curators maintain
consistency in annotations.

Step 5: Publishing the updated annotations and corresponding evidence to public
databases Publishing updated annotations in public databases is crucial for enriching
scientific knowledge and advancing research (Ramsey et al., 2021). While large-scale
projects typically share their updated annotations, smaller projects may focus on identi-
fying genes of interest without immediately submitting their changes to public databases.

Support tools and systems
Online platforms such as GeneDB (Manske et al., 2019) and other Wiki-based systems
(listed at https://ngdc.cncb.ac.cn/sciencewikis/index.php/Biological_Wikis) allow reg-
istered users to collaboratively create and edit genome annotation pages in real time
(Ramsey et al., 2021). This approach decentralizes the curation process and leverages the
collective expertise of the global community. However, a key concern with Wiki-based
systems is that open editing may introduce errors and biases.

In contrast, standalone and web-based curation systems can be used within more defined
teams and projects. For example, the AceDB annotation editor and its variants have been
used for C. elegans, the human genome sequence, and the Berkeley Drosophila Genome
Project (Consortium, 1999; Frankish and Harrow, 2014). Artemis and the Artemis Com-
parison Tool (ACT) were primarily designed for reviewing smaller prokaryotic or eukary-
otic genomes (Rutherford et al., 2000) but have since been extended to more complex
genomes (Carver et al., 2008, 2012). Neomorphic’s Annotation Station gene editor was
used in The Institute for Genomic Research (TIGR) program for the re-annotation of the
Arabidopsis genome (Haas et al., 2005). yrGATE has been used to correct exon-intron
structures of genes in several plant-specific databases (Wilkerson et al., 2006). Manual
Annotation Studio (MAS) was developed to improve the efficiency of manual functional
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annotation of prokaryotic and viral genomes (Lueder et al., 2021). DNA Master has
been used for bacteriophage genome annotation (Salisbury and Tsourkas, 2019). MaGe
has been used to refine the automatic prediction of gene product functions in bacterial
genomes (Vallenet et al., 2006). PeerGAD was a peer-review-based, community-centric
web application for viewing and annotating prokaryotic genome sequences (D’Ascenzo
et al., 2004). Manatee, developed by The Institute for Genomic Research (TIGR), has
been widely used for microbial genome annotation (Haas et al., 2005).

Recently, Apollo has gained widespread adoption within the genome annotation (GA)
community (Dunn et al., 2019). Many GA projects integrate this editing tool and use it
to annotate various genomes, including GadFly (Mungall et al., 2002), Galaxy (Ramsey
et al., 2020) (e.g., G-OnRamp (Liu et al., 2019)), GeneSAS (Humann et al., 2019), DNA
Subway (Hilgert et al., 2014), Bovine [Childers et al. (2011); triant2020using], VectorBase
(Giraldo-Calderón et al., 2022), VEuPathDB (Amos et al., 2022), and the i5k workspace
(Poelchau et al., 2015). Apollo also plays a crucial role in community-driven GA projects,
such as the “Genome Decoders” initiative by the Sanger Institute and WormBase, where
school students collaborate to annotate the human whipworm genome (Dunn et al., 2019).

These systems provide a platform for aggregating information from diverse databases
and curators. While they integrate multiple tools designed for specific tasks, they may
still require external tools to support additional functions, particularly for curating infor-
mation from scientific literature. Scientific literature is invaluable for identifying genes
extensively studied in wet-lab experiments, where gene labels are considered the gold
standard for gene functions.

Text mining tools have been employed to accelerate two key processes in manual curation:
literature searching and information retrieval (Drabkin et al., 2012).

Literature searching tools, such as Textpresso (Müller et al., 2018) and PubSearch (Yoo
et al., 2006), identify the most relevant publications related to genes of interest. Users
can search the literature using keywords, including gene names, article metadata, and
ontology terms. These tools generate indexes that link keywords to articles, enabling
curators to efficiently review target genes and their associated publications.

Information retrieval tools extract key concepts for users to review, such as PubTator
(Wei et al., 2019), NCBOAnnotator (Tchechmedjiev et al., 2018), Canto (Rutherford
et al., 2014), and OntoMate (Liu et al., 2015). Additionally, various natural language
processing (NLP) methods can be incorporated into these systems for biological entity
recognition, entity linking, and relation extraction (Luo et al., 2023; Lee et al., 2020; Li
et al., 2019; Fang et al., 2023). For example, biological entity recognition extracts gene
names, mutations, and species from the text; entity linking connects these entities to their
corresponding entries in a knowledge base or ontology; and relation extraction identifies
relationships between entities, such as gene-disease associations, which are crucial for
knowledge discovery.

Supplementary Note 3: Humans competencies
Learning. Human curators engage in domain learning in genomics to make accurate
annotation judgement. Additionally, through experience on a task, humans build “mental
models”, mental representations of the key elements of a task (e.g., theoretical concepts,
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task steps and actors) and how these components interact (Cannon-Bowers et al., 1993).
This includes an understanding of their teammates and how the team works together to
achieve the goal. In the HAICoGA context, humans learn from their experiences working
with AI to help understand the strengths and limitations of AI and themselves (Andrews
et al., 2022).

Reasoning. Human reasoning is characterized by creativity, intuition, and the ability to
deal with unstructured information through experience and learning. (Patterson, 2017,
Zheng et al. (2017)). Unlike AI systems, human reasoning excels in abstract thinking
and dynamic problem-solving. This ability stems from the human brain’s intricate neu-
ral structure, enabling the integration of past experiences, contextual understanding, and
intuitive judgment. Humans can synthesize disparate pieces of information, make deci-
sions in uncertain conditions, and adapt to new situations swiftly, showcasing a level of
flexibility and depth that current AI systems struggle to replicate. This inherent com-
plexity and adaptability make human reasoning an invaluable component in collaborative
human-AI systems (Zheng et al., 2017).

Situational awareness. Human situational awareness, as it is commonly defined, refers
to an agent’s (1) perception of the key information or elements in the task, (2) comprehen-
sion of their meaning and (3) predictions about how the situation will unfold (Endsley,
1995). Situational awareness develops dynamically during a task as humans engage in
“sense-making” (Klein et al., 2006), and it plays a critical role in task performance (End-
sley, 1995). When working with AI, situational awareness includes the ability to monitor
the actions of AI and execute corresponding responses, which can increase the effective-
ness of collaborations (Jiang et al., 2022). For example, humans will know how best to
put prompts to a chatbot by investigating information in conversations (Lou et al., 2023).

Decision Humans make decisions based on their judgment, situation, knowledge or a
combination of available data. Considering functional annotations of genes by GO, all
annotations need to be supported with statements of evidence and source publications
(McDonnell et al., 2018). Human curators need to decide the GO term and evidence code
for each annotation using their expertise and a variety of data from the peer-reviewed
literature. Humans utilize their judgment in decision-making to navigate complex situa-
tions. For example, even with curator expertise and supporting evidence, full certainty
cannot be achieved. Curators’ judgments lead them to make decisions under some uncer-
tainty (with lower confidence) or postpone decision-making until new evidence is available.
Moreover, whether to accept an AI’s suggestion is often left to individual curators’ judg-
ments and is likely not very standardized.

Delegation. Humans can delegate tasks to leverage complementary AI competen-
cies(Pinski et al., 2023). Deciding to delegate to AI is based on, among other things,
the human’s assessment of the AI’s ability and confidence in their own (Fügener et al.,
2019). Due to the speed, scalability and quantitative capabilities of AI, humans usually
make AI automatically annotate a large scale of the genome, or require AI to provide
relevant information about gene annotations by searching databases and literature.

Trust. Ensuring appropriate levels of trust is particularly important to establish success-
ful collaborative relationships between humans and AI. Ideally, the human-AI system
should support “calibrated” trust that aligns accurately with the AI’s capabilities (Lee
and See, 2004). In long-term collaborations, this calibrated trust becomes even more
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critical, as it ensures a balanced reliance on AI over time. Trust should be neither too
low, causing humans to disengage from the AI, nor too high, leading to overreliance and
potential failure to detect errors. Maintaining this balance is essential for sustained col-
laboration, where the dynamics of trust evolve with ongoing interactions and experiences.

Supplementary Note 4: AI competencies
Learning. AI systems are designed to learn from data and develop their ability to
perform tasks using various strategies, such as supervised (Scalzitti et al., 2020), semi-
supervised (Jia et al., 2021), and unsupervised learning (Abeel et al., 2008), all of which
have already been applied in genome annotation. In HAICoGA, we may leverage addi-
tional AI learning strategies, such as reinforcement learning, continuous learning, and
active learning, to enhance AI-human collaboration.

Reinforcement learning is a valuable strategy for enhancing human-AI collaboration by
enabling AI to learn from and work alongside humans (Navidi and Landry Jr, 2021).
It can help AI make decisions and take actions aligned with team goals, adapt to the
environment, and improve overall team performance.

Continuous learning refers to an AI system’s ability to learn from new data streams in
real time without requiring complete retraining (Wang et al., 2022). This capability is
crucial for human-AI collaboration, particularly in dynamic environments where condi-
tions and information constantly evolve. Through continuous learning, AI can adapt to
new scenarios, update its knowledge, and refine its decision-making processes in response
to changing inputs. This flexibility ensures that AI remains relevant and effective over
time, enhancing its ability to support humans.

Active learning involves the strategic selection of data samples for human labeling to
maximize information gain while minimizing human effort (van der Wal et al., 2021). A
potential use case is AI identifying genomic regions with high uncertainty but significant
relevance to GA. Humans can then focus their efforts on these informative regions rather
than the entire genome.

Co-learning. Co-learning refers to the process in which humans and AI learn from
each other through collaborative interactions (van den Bosch et al., 2019). The bene-
fits of human-AI co-learning have been demonstrated in various studies. For example,
one study proposed that co-learning fosters mutual understanding, mutual benefits, and
mutual growth between humans and AI, ultimately enhancing productivity and creativ-
ity (Huang et al., 2019). Another study suggested that co-learning enables humans and
AI to discover and understand the task, environment, themselves, and their teammates
(Schoonderwoerd et al., 2022). Several methods have been developed to facilitate AI co-
learning with humans and achieve optimal performance by integrating various learning
strategies (Mozannar and Sontag, 2020; van der Wal et al., 2021).

Reasoning. AI reasoning usually excels in logicality, repeatability, and the efficient
processing of structured data through predefined rules and machine learning algorithms
(Zheng et al., 2017). This enables AI systems to handle large volumes of data and perform
complex calculations at speeds unattainable by humans. In the context of human-AI col-
laboration, enhancing AI reasoning involves developing systems capable of learning from
diverse, dynamic, and unstructured environments. Another critical aspect of improving
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AI reasoning is the development of causal models, which allow AI to predict relationships
between variables beyond mere correlations (Shipley, 2016; Hill et al., 2016). Causal
reasoning helps AI interpret cause-effect relationships, making decision-making processes
more transparent and explainable (Zheng et al., 2017). Causal modeling has been instru-
mental in mitigating selection bias, particularly in genome annotation, by enabling the
identification of true causal variants and reducing false positive predictions (Ramstein
and Buckler, 2022).

Contextual awareness. AI’s contextual awareness refers to its ability to adapt outputs
based on the specific task, input data, and surrounding context within a given domain.
Context-aware AI systems are designed to dynamically adjust their behavior, defer uncer-
tain cases to human experts, and incorporate user feedback to refine future predictions
(Jiang et al., 2023). This capability is essential for ensuring that AI-generated annota-
tions are not only accurate but also biologically meaningful and relevant to the task at
hand.

Prediction. AI systems play a critical role in predicting gene structures and functions,
while human experts review and refine these predictions to ensure they align with exist-
ing evidence and domain knowledge. Beyond prediction, AI also supports tasks such as
clustering, information retrieval, processing user queries, and generating context-relevant
text, each contributing to different aspects of genome annotation. Additionally, AI sys-
tem are expected to help flag potential error. Tools like quality metrics and gene tree
visualizers exemplify this function by helping to identify misannotations that require
human correction (Tello-Ruiz et al., 2019).

Deferral. AI systems are expected to defer certain tasks to humans rather than risk gen-
erating incorrect annotations. For example, when encountering challenging cases, such
as very short genes, pseudogenes, or tandem gene duplications, AI can defer them to
human experts (Madupu et al., 2010). In the current manual curation process, genes
lacking GO annotations, those with non-canonical splice sites, or poorly annotated genes
are already commonly assigned to human curators (Tello-Ruiz et al., 2019). These are ex-
amples of one-off or static deferral strategies. With the advancement of AI methodologies
(Mozannar and Sontag, 2020), it is now possible to develop intrinsic deferral mechanisms,
enabling AI systems to dynamically defer tasks to humans as part of an ongoing, adaptive
collaboration.

Explainability. The explainability of AI refers to its ability to provide a human-
understandable rationale for its results. “White-box” models, such as those based on
patterns, rules, or decision trees, explicitly explain how they generate predictions and
have been widely used in biomedical research. However, “black-box” models, particu-
larly deep learning models, outperform white-box models in complex tasks but lack the
transparency needed to produce explainable knowledge (Dey et al., 2022). This can pose
challenges in understanding biological mechanisms and building trust in AI-generated
conclusions (Ali et al., 2023). These challenges are being addressed through explainable
artificial intelligence (XAI) techniques, which enhance the interpretability of black-box
models. Such advancements boost confidence in AI-generated outputs across a wide range
of biological applications (Zhou et al., 2023; Koh et al., 2024).
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Supplementary Note 5: Illustrative use case – En-
hancing annotation consistency with an AI-Assisted
ontology finder
The following use case scenario illustrates how ChatGPT can assist users in assigning GO
terms and Evidence and Conclusion Ontology (ECO) codes based on literature excerpts.
The collaboration is presented in a user–ChatGPT 4o (accessed on 12 June 2025) dialogue
format to demonstrate the potential of LLMs in supporting ontology-based annotation
tasks. The full dialogue can also be accessed at: https://chatgpt.com/share/684a2eac-
2400-800b-9036-5a4f9f1cd0fa. Please note that while the final suggestion for the GO
term is correct, the associated ECO term appears to be misaligned. The model suggested
ECO:0000315, which corresponds to “mutant phenotype evidence used in manual asser-
tion”. However, based on the description of direct assay methods in the input text, the
appropriate ECO term should be ECO:0000314 (“direct assay evidence used in manual
assertion”).

User: You are a knowledgeable and reliable AI assistant specializing in biomedical cura-
tion. Your primary task is to help human curators identify accurate Gene Ontology (GO)
terms and Evidence and Conclusion Ontology (ECO) codes based solely on the provided
sentence, paragraph, or experimental description.

• Use only the information available in the input. Do not assume or infer beyond
what is stated.

• If the information provided is insufficient to confidently assign a GO or ECO term,
politely request clarification or additional context from the human user.

• When suggesting GO or ECO terms, explain your reasoning clearly and concisely,
including the exact evidence phrase(s) you used.

• If multiple GO or ECO terms are plausible, present them all and explain the dif-
ferences.

• Always remain transparent about limitations and defer final judgment to the human
curator.

Your role is to enhance consistency, accuracy, and efficiency in ontology-based annotation
while ensuring human experts remain in control of final decisions.

ChatGPT 4o: Understood. I’ll follow these principles when reviewing experimental
descriptions and recommending GO terms and ECO codes. Please share a sentence,
paragraph, or description of the experiment you’d like me to analyze. I’ll identify candi-
date GO terms and ECO codes using only the information provided, explain my reasoning
clearly, and request clarification if needed.

User: Sentence: “Moreover, the mean cell number of blastocysts was significantly higher
in the 40 ng pRLN/ml group (38 ± 3) compared to others (control: 31 ± 4 and 20 ng
pRLN/ml: 32 ± 6; P < 0.05), which appeared similar.”. Can you suggest a GO term and
an ECO term related to pRLN based on this sentence?

ChatGPT 4o: Thank you. Based on the sentence:

“Moreover, the mean cell number of blastocysts was significantly higher in the 40 ng
pRLN/ml group (38 ± 3) compared to others (control: 31 ± 4 and 20 ng pRLN/ml: 32
± 6; P < 0.05), which appeared similar.”
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Key evidence phrases: “mean cell number of blastocysts was significantly higher”

“40 ng pRLN/ml group”

Suggests that pRLN (presumably prolactin or relaxin, if pRLN stands for one of these)
enhances blastocyst cell proliferation or development

Suggested Gene Ontology (GO) Term(s): GO:0008283 – Cell proliferation Reasoning:
The sentence reports a significant increase in cell number in blastocysts treated with 40
ng pRLN/ml. This directly supports a role in promoting cell proliferation.

Used evidence phrase: “mean cell number of blastocysts was significantly higher”

(Alternative, context-dependent): If the focus is more on developmental progression of
blastocysts:

GO:0009790 – Embryo development Caution: This term would require more direct evi-
dence showing broader developmental changes, not just cell number.

Suggested Evidence and Conclusion Ontology (ECO) Term: ECO:0000315 – Experimen-
tally inferred by direct assay (IDA) Reasoning: The evidence is derived from a direct
measurement of cell number in response to a specific treatment (pRLN), which fits the
criteria for IDA.

Used evidence phrase: “mean cell number… significantly higher… compared to others… P
< 0.05”

Limitations & Clarification Needed: It’s unclear what “pRLN” stands for—presumably a
peptide or hormone (e.g., prolactin or relaxin). The precise GO annotation might change
based on knowing its identity and mechanism.

Also, we don’t know if cell type identity or viability was assessed, which could refine
annotation.

Summary:

Ontology Suggested Term ID Justification
GO Cell proliferation GO:0008283 Based on increased blastocyst cell number
ECO Inferred from

direct assay
ECO:0000315Based on quantification of cell number in

treated vs. control groups

Let me know if more context is available (e.g., full figure legend, experimental method,
identity of pRLN), and I can refine the suggestion further.

User:

Thanks, this is Table 4 with details of experimental results.

ChatGPT 4o: Thank you for sharing Figure/Table 4. With this additional context, I
can now refine the GO and ECO term suggestions based on the detailed experimental
results evaluating relaxin (pRLN) during oocyte maturation (IVM) and embryo culture
(IVC).

Key Observations from the Table: Experimental variable: Relaxin (pRLN) concentration
during IVM and IVC.
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Figure 2: Table 4 from the scientific paper by Feugang et al. (2011).

Outcomes measured:

Cleavage rate at Day 2 post-insemination

Blastocyst formation rate at Day 7

Blastocyst cell number (proxy for growth/proliferation)

Updated Gene Ontology (GO) Suggestions: GO:0008283 – Cell proliferation

Justification: The mean cell number in blastocysts was significantly higher in the 40
ng/ml pRLN IVM + 40 ng/ml IVC condition (43 ± 6) compared to control (31 ± 3).
This indicates increased proliferation in the presence of relaxin.

Evidence phrase: “Cell number (n): 43 ± 6 vs. 31 ± 3”

GO:0009790 – Embryo development

Justification: Relaxin appears to influence not only proliferation but also cleavage rates
and blastocyst formation, suggesting an impact on overall developmental progression.

Evidence phrase: “% of cleaved at Day 2pi” and “Blastocyst formation at Day 7pi”

(Optional, mechanistic) If further molecular evidence is available in the full article:

GO:0040018 – Positive regulation of multicellular organism growth May apply if authors
link relaxin mechanistically to embryo growth.
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Suggested Evidence and Conclusion Ontology (ECO) Term: ECO:0000315 – Experimen-
tally inferred by direct assay (IDA)

Justification: The experiment involved direct measurement of cleavage rates, blastocyst
formation, and cell number under different treatment conditions.

Applies to all GO terms above

Summary Table:

Ontology Term Name ID Justification
GO Cell proliferation GO:0008283 Increased blastocyst cell number with

pRLN
GO Embryo

development
GO:0009790 Effects on cleavage and blastocyst

formation
ECO Inferred from

direct assay
ECO:0000315Direct measurements of cell number and

development

Notes for Curator: If molecular mechanisms or gene expression analyses related to relaxin
are included elsewhere in the paper, more specific GO terms may apply (e.g., signaling
pathways).

The exact GO annotation for relaxin’s biological role may also depend on how the authors
interpret its function (e.g., hormone activity vs. growth factor activity).

Let me know if you’d like help annotating a specific gene/protein involved in this experi-
ment or more detailed parsing of the full text.

User: Thank you. Table 4 demonstrates that the addition of pRLN to in vitro culture
increases the cellularity of blastocysts. Is there a specific Gene Ontology (GO) term that
describes this function?

ChatGPT 4o: Yes, there is a specific Gene Ontology (GO) term that describes the
function observed in Table 4, where the addition of pRLN to in vitro culture increases
the cellularity of blastocysts.

Recommended GO Term: GO:0001832 – Blastocyst growth

Definition: An increase in size of a blastocyst due to expansion of the blastocoelic cavity,
cell shape changes, and cell proliferation.

Justification: The observed increase in blastocyst cell number with pRLN treatment
reflects enhanced growth through cell proliferation, aligning with this term.

Recommended Evidence Code (ECO): ECO:0000315 – Inferred from Direct Assay (IDA)

Justification: The conclusion is based on direct measurements of blastocyst cell numbers
under varying pRLN concentrations, fitting the criteria for IDA.

Summary:
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Ontology Term Name ID Justification
GO Blastocyst

growth
GO:0001832 Reflects increased blastocyst size due to

cell proliferation
ECO Inferred from

direct assay
ECO:0000315Based on direct measurement of blastocyst

cell numbers

If further details about the specific cell lineages affected (e.g., trophectoderm or inner
cell mass) are available, more precise GO terms could be considered. Please provide
additional information if available.
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