
This is a repository copy of Spatio-temporal graph neural network based child action
recognition using data-efficient methods: A systematic analysis.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/229012/

Version: Supplemental Material

Article:

Mohottala, S. orcid.org/0000-0002-6196-2161, Gawesha, A. orcid.org/0000-0001-8946-
5629, Kasthurirathna, D. orcid.org/0000-0001-8820-9033 et al. (2 more authors) (2025)
Spatio-temporal graph neural network based child action recognition using data-efficient
methods: A systematic analysis. Computer Vision and Image Understanding, 259. 104410.
ISSN 1077-3142

https://doi.org/10.1016/j.cviu.2025.104410

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a journal
article published in Computer Vision and Image Understanding is made available via the
University of Sheffield Research Publications and Copyright Policy under the terms of the
Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Computer Vision and Image Understanding

journal homepage: www.elsevier.com

Spatio-Temporal Graph Neural Network based Child Action Recognition using

Data-Efficient Methods: A Systematic Analysis - Supplementary Material

Sanka Mohottalaa,b,∗∗, Asiri Gaweshaa, Dhrashana Karshutrirathnaa, Charith Abhayaratned, Pradeepa Samarasinghec

aDepartment of Software Engineering, Faculty of Computing, Sri Lanka Institute of Information Technology, Sri Lanka
bDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Sri Lanka
cDepartment of Information Technology, Faculty of Computing, Sri Lanka Institute of Information Technology, Sri Lanka
dSchool of Electrical and Electronic Engineering, The University of Sheffield, United Kingdom

ABSTRACT

This paper presents implementations on child activity recognition (CAR) using spatial-temporal graph

neural network (ST-GNN)-based deep learning models with the skeleton modality. Prior implementa-

tions in this domain have predominantly utilized CNN, LSTM, and other methods, despite the superior

performance potential of graph neural networks. To the best of our knowledge, this study is the first

to use an ST-GNN model for child activity recognition employing both in-the-lab, in-the-wild, and

in-the-deployment skeleton data. To overcome the challenges posed by small publicly available child

action datasets, transfer learning methods such as feature extraction and fine-tuning were applied to

enhance model performance. As a principal contribution, we developed an ST-GNN-based skeleton

modality model that, despite using a relatively small child action dataset, achieved superior perfor-

mance (94.81%) compared to implementations trained on a significantly larger (x10) adult action

dataset (90.6%) for a similar subset of actions. With ST-GCN-based feature extraction and fine–

tuning methods, accuracy improved by 10%-40% compared to vanilla implementations, achieving a

maximum accuracy of 94.81%. Additionally, implementations with other ST-GNN models demon-

strated further accuracy improvements of 15%-45% over the ST-GCN baseline. The results on activity

datasets empirically demonstrate that class diversity, dataset size, and careful selection of pre-train-

ing datasets significantly enhance accuracy. In-the-wild and in-the-deployment implementations con-

firm the real-world applicability of above approaches, with the ST-GNN model achieving 11 FPS on

streaming data. Finally, preliminary evidence on the impact of graph expressivity and graph rewiring

on accuracy of small dataset-based models is provided, outlining potential directions for future re-

search.

1. Initial Implementations

Initial implementations on reproducing the NTU-60 dataset

based results with ST-GNN models as stated in the journal pa-

per are given in Table 2. All implementation were done only

with cross-subject protocol and Top-1 accuracy as used as the

accuracy metric. Due to computation limitations, RA-GCN was

∗∗Corresponding author

e-mail: divandyasm@gmail.com (Sanka Mohottala)

only done with 2 streams. Original batch sizes and number

of epochs could not be used with these due to computational

limitations and that might explain the shortcomings of the re-

produced results. TensorFlow based re-implementation of ST-

GCN was done based on (Yan et al., 2018). However, the Top-1

accuracy achieved was lower than the reported accuracy. This

could be attributed to differences in hyperparameters, which

arose due to ambiguity in the paper and our computational lim-

itations. In our subsequent ST-GCN implementations, dropout

2

and layer specific edge weighting (i.e.,learnable Mask) were not

implemented since that could potentially result in low perfor-

mance in transfer learning. With these changes, our ST-GCN

accuracy was also improved as shown in Table 1.

Table 1: ST-GCN Implementation using NTU-60 Dataset

Implementation
Accuracy

Top-1 Top-5

ST-GCN original 81.5% -

ST-GCN our imple. 75.16% 94.47%

ST-GCN w/o dropout+mask 78.19% 96.01%

While the ST-GCN implementation with NTU-120 dataset

resulted in 69.04%, a comparison could not be done since im-

plementation was not done based on a standard protocol and

original ST-GCN (Yan et al., 2018) haven’t used this dataset.

This implementation was used to select the classes for the NTU-

44 protocols.

Initial implementations were done with roto-translation in-

variance being introduced to the dataset as done by (Kofinas

et al., 2021). This can be seen as introducing a strong prior

into the model. This resulted in improved accuracy but only

by a small margin. Implementations were done using NTU-44

dataset and NTU-60 datasets as in Table 3. Since resultant im-

provement was marginal, original pre-processing was used in

all subsequent implementations.

Skeleton structural implementations as detailed in Jornal pa-

per were done using the NTU-5 dataset. Since there are two

candidate structures, four train-test skeleton combinations were

used in four different implementations and results are given

in Table 4. KinectV2 refers to the 25 joint structure and

kinectV1 refers to the modified 20 joint structure. Results sug-

gest that while the ST-GCN performs well even with structural

changes done to both train-test sets, loss of information af-

fect the model performance. But given that kinectV1-kinectV2

train-test combination performs better than kinectV2-kinectV1

train-test combination, we have used the modified structure in

our subsequent transfer learning implementations.

Initial implementations based on kinetics-400 dataset were

done to determine the optimal ST-GCN model configurations.

ST-GCN (Yan et al., 2018) reported results for OpenPose based

kinetics-400 (i.e., kinetics-skeleton) as well as a motion ori-

ented 30 class subset from this dataset called kinetics-motion.

Thus we attempted to reproduce the results with same datasets

and the best results are given in Table 5. Since KS-KSS dataset

share data with kinetics-skeleton dataset, data from those 8

classes were not used in the implementation. Original hyper-

parameters were used where it was possible but some (e.g.,

batch size) were not used due to computational limitations.

This and/or the differences in pre-processing may have lead

to the differences between original and reproduced results with

kinetics-{skeleton,motion} datasets.

Because of the unconstrained nature of the kinetics-400

videos, ST-GCN authors (Yan et al., 2018) introduced a new

pre-processing stage that is different from the one used with

constrained scenario based datasets such as NTU-60. Primary

pre-processing stage contains skeleton normalization, skeleton

centering and tracking of individuals in multi-person scenarios.

Secondary pre-processing stage contains random frame selec-

tion from raw frames as well as camera motion simulation pro-

cess. Since exact configurations of this pre-processing stage is

not given in the paper, experiments with kinetics-motion subset

were done to determine the optimal configuration. Result from

these experiments (Table 6) suggest that combination of frame

selection along with random skeleton movement (i.e., camera

motion simulation) outperforms each individual implementa-

tions. In addition, a new sub-sampling approach with frame

dropping was also implemented, but due to low performance it

was not added to the final secondary pre-process stage. Based

on these results, 150 frame window based combined approach

was used in all future implementations.

Comparisons were done between different skeleton struc-

tures (Table 7) using KS-balance and KS-full datasets which

were introduced in Journal paper. Feet related joints were re-

moved from Gbody resulting in Gbody∗ skeleton structure with 19

vertices (V3). Considering the overall performance, Gbody was

used for the vanilla implementations while Gcoco was used in

3

Table 2: ST-GNN implementations with NTU-60

ST-GCN 2s-AGCN MS-AAGCN RA-GCN ST-GAT

Original 81.5% 88.5% 90.0% 87.3% 92.8%

Reproduced 78.2% 86.1% 88.7% 84.4% 90.4%

Table 3: Pre-processing Implementations

Dataset Implementation Accuracy

NTU 44

Original 80.78%

Roto-translational invariance 79.55%

Roto-trainslational invariance* 81.31%

NTU 60

Original 78.70%

Roto-translational invariance* 80.49%

Table 4: Skeleton structure selection for CWBG dataset

Test

Train
KinectV2 KinectV1

KinectV2 94.16% 91.73%

KinectV1 89.32% 93.30%

Table 5: ST-GCN Implementations based on kinetics-400 dataset

Implementation
Accuracy

Top- 1 Top-5

kinetics-skeleton (Yan et al., 2018) 30.7% 52.8%

kinetics-skeleton [our imple.] 21.16% 41.7%

kinetics-motion (Yan et al., 2018) 72.4% -

kinetics-motion [our imple.] 68.01% -

Table 6: Secondary pre-processing configuration results

Implementation Accuracy

Random frame selection [w = 150] 65.99%

Random skeleton movement 67.54%

Combined approach [w = 150] 68.01%

Combined approach [w = 128] 67.87%

Sub-sampling approach 49.06%

Without secondary pre-processing stage 63.17%

transfer learning implementations. As detailed in our previous

paper (Mohottala et al., 2022), a modified graph structure was

used instead of the default OpenPose-COCO graph structure.

Table 7: Skeleton Structure Selection for KS-KSS dataset

Skeleton structure KS-balance KS-Full

Gbody , |V2| = 25 69% 75%

Gbody∗ , |V3| = 19 67% 74%

Gcoco , |V1| = 18 66.45% 74%

2. Inter-class variation effect

For inter-class variation analysis, we use CWBG-D and

CWBG-S protocols since they both contains similar number of

classes, similar number of samples and balanced datasets. Each

sample contains similar number of features where sample shape

is (T,V,C) resulting in T ·V ·C number of features. Based on the

pre-processing done, T=300, V=20 and C=3 thus resulting in

18000 features in each sample skeleton sequence. We utilized

t-SNE, a dimensionality reduction method, to visualize and an-

alyze datasets residing in this high-dimensional feature space in

a two-dimensional space. This technique preserves the pairwise

similarities and dissimilarities between data points. The result-

ing visualizations are presented in Figure 1a and 1b. To analyse

resultant model performance, we use the LOOCV evaluation

method based model implementation and the resultant Top-1

accuracy and the confusion matrix which are derived consider-

ing all 30 implementations the samples from the corresponding

CWBG protocol.

Considering the CWBG-D protocol, from Figure 1a,

”crouch”, ”draw flower”, ”fly like a bird” and ”hands up”

classes can be identified as the ones with highest inter-class

variation, as they exhibit lower overlap and greater distance

4

Table 8: Publicly available Child Datasets Summary

Name Sensors Subjects Actions Samples Data Year

Kinder-Gator(Aloba et al., 2018) Kinect 10 58 580 RGB+D 2018

Kinder-Gator 2.0 (Dong et al., 2020) MoCap 8 21 538 Depth 2020

CWBG (Vatavu, 2019) Kinect 30 15 1313 Depth 2019

APSICA (Olalere et al., 2021) RGB NA 21 1592 RGB 2021

SSBD (Rajagopalan et al., 2013) RGB NA 3 75 RGB 2012

KS-KSS (Mohottala et al., 2022) RGB NA 8 2396 RGB 2022

from other classes.Additionally, lower intra-class variation can

be observed in the ”crouch” and ”draw flower” classes due to

their relatively tight clustering. Relatively better performance

for these classes as evident from the confusion matrix Fig-

ure 1c corroborate these interpretations. On the other hand,

higher overlap among samples in ”jump”, ”stand on one leg”

and ”throw ball” result in lower inter-class variations and the

low accuracy results from the confusion matrix corroborate the

conclusion that low inter-class variation result in low accuracy.

Considering the CWBG-S protocol, lower inter-class variation

between the ”draw circle”, ”draw flower” and ”draw square”

are quite apparent because of the overlapping of samples from

these 3 classes. Corresponding LOOCV model output in confu-

sion matrix Figure 1d corroborate that low inter-class variation

resulting in low accuracy as well as misclassification among the

overlapping classes.

3. Extended Age-wise and Gender-wise Implementations

To further study the effect of age and gender of children on

the ST-GNN model performance, we introduce several new pro-

tocols. For the gender factor, we introduces 4 protocols, one

only containing boys in the training, another only containing

girls and final one containing a combination of boys and girls.

• CWBG-G-B: Contains all the boys in training phase and

all the girls in test phase.

• CWBG-G-G: Contains all the girls in training phase and

all the boys in test phase.

• CWBG-G-M-1: Train set contains 8 boys and girls, with a

near-uniform age distribution. test set contains rest of the

7 boys and 7 girls.

• CWBG-G-M-2: Train set from CWBG-G-M-1 is used as

the test set and test set is used as the train set.

For the age factor, we introduce 5 protocols as given below.

• CWBG-A-3: Contains all the children (10) in Group 3 - in

testing phase and all the other children in training phase.

• CWBG-A-4: Contains all the children (10) in Group 4 in

testing phase and all the other children in training phase

• CWBG-A-5: Contains all the children (10) in Group 5 in

testing phase and all the other children in training phase

• CWBG-A-M-1: Contains a mixture of children, 7 from

Group 3 and 5 and 6 from Group 4, with near-uniform

gender distribution in training phase and all others in test

phase.

• CWBG-A-M-2: similar to CWBG-A-M-1 but children

IDs are different.

Implementations were done under CWBG-F and CWBG-D

subset protocols and the results are shown in Table 9. Results

from CWBG-A-M-1 and CWBG-A-M-2 were averaged since

both are mixed age protocols and the results are given under

’Mixed’ protocol. When a higher age group is used in test-

ing, a sharp increase in accuracy can be observed across both

CWBG-F and CWBG-D protocols. This is to be expected since

5

(a) t-SNE visualization of CWBG-Dissimilar dataset (b) t-SNE visualization of CWBG-Similar dataset

(c) CWBG-Dissimilar confusion matrix (d) CWBG-Similar confusion matrix

Fig. 1: ST-GCN input and output visualization

Table 9: Age-wise implementation results

Protocol CWBG-A-3 CWBG-A-4 CWBG-A-5 Mixed

CWBG-F 37.49 ± 2.2 40.00 ± 2.7 42.76 ± 2.5 43.13 ± 5.4

CWBG-D 55.96 ± 3.1 56.54 ± 2.4 63.47 ± 2.6 65.33 ± 3.5

6

Table 10: Gender-wise implementation results

Protocol Boys Girls Mixed

CWBG-F 36.39 ± 3.0 37.18 ± 3.1 41.68 ± 4.1

CWBG-D 56.43 ± 3.7 53.29 ± 3.0 59.04 ± 2.7

with lower intra-class variations in test set can result in better

model performance due to smaller differences in test set as well

as due to better distribution capturing by the higher intra-class

variation present in training dataset. Best accuracy is achieved

with ’Mixed’ protocol as expected since it contains a similar

distribution in both train and test sets and able to capture it well

during the training phase.

Implementations were also done on age factor as detailed in

journal paper and the results are given in Table 10 under both

CWBG-F and CWBG-D subset protocols. CWBG-G-B proto-

col based results are given under ’Boys’ column and CWBG-G-

G protocol based results are given under ’Girls’ column. Since

CWBG-G-M-1’s test set is used as train set in CWBG-G-M-

2 and vice versa, averaged results for both of these protocols

were calculated and given under the ’Mixed’ column. Across

both CWBG-D protocol, ’Girls’ test set performs better than

’Boys’ test set but with CWBG-D protocol, the opposite is true.

Thus these results are not conclusive enough to make a strong

claim. When compared with ’Mixed’ implementation, it’s per-

formance is superior to both Girls only and Boys only trained

models, thus suggesting the previous conclusion that both train

and test sets capture the distribution equally well.

Original CWBG paper (Vatavu, 2019) uses the dataset

to study children’s gesture preferences by introducing an

algorithm called ’dissimilarity-consensus’ to calculate the

similarity-dissimilarity of actions they perform. In that they ap-

ply the algorithm to actions of each class independent of other

action classes. Since this considers the similarity of actions

within each class, this algorithm can be considered as a method

to measure intra-class variation and the results from this study

can be used as a quantitative measure of intra-class variation.

An anlysis done in (Vatavu, 2019) under the same age groups

gives conclusive results that increased age group result in de-

creased intra-class variation when all classes are considered to-

gether thus giving conclusive evidence for age being a factor

in intra-class variation. Our results of higher performance with

higher age group corroborate these findings conclusively and

further showing that the lower performance of CAR model is

influenced by the varying levels of motor skill development in

children.

4. Transfer Leraning with ST-GCN for CAR

Number of samples (n) and number of features in each sam-

ple (p) in a dataset can have a significant effect on model per-

formance. Generally, n >>> p leads to well-fitted models but

n ≈ p can lead to overfitting. In non-FRA source datasets in

Table ??, sample shape is (3, 20, 300) thus p = 18000 while

FRA source datasets result in p = 6000 due to down-sampling

resulting in (3, 20, 100). Down sampling was done to emulate

a 10FPS frame rate in the source dataset because of the frame

rate mismatch in CWBG (10FPS) and NTU (30FPS) datasets.

While the increased n
p

positively contribute to the model perfor-

mance, loss of information as a result of frame dropping con-

tributed negatively. Net effect of this can be observed in Ta-

ble ?? as a drop in accuracy between down-sampled and origi-

nal dataset based implementations. Thus we can conclude there

is considerable loss of information in FRA source datasets.

5. ST-GNN Implementations

(a) ST-GAT (b) MS-AAGCN

Fig. 2: CWBG-D classwise comparison

Both of these models misclassified data from the ’throw ball’

and ’climb ladder’ classes as ’draw flower’ and ’hands up’ in

7

a similar manner (figure 2). Additionally, the ST-GAT model

further misclassified some data from ’climb ladder’ class as

belonging to the ’throw ball’ class. In order to identify po-

tential reasons for these shortcomings, misclassified skeleton

sequences were visualized in a 3D space. While it is hard to

exactly interpret the reasons behind misclassification as ’draw

flower’ class, it seems similarity in hand movement is a one

reason. When considering the samples that were misclassi-

fied as ’hands up’, the visualizations leads to better interpre-

tations. Misclassified samples from ’climb ladder’ class can

be attributed to participants raising there hands with little to

no movement in legs. Misclassified samples from ’throw ball’

class can be attributed to the overhead throwing of the ball.

These samples are shared in both models as well. ST-GAT mis-

classification of some ’climb ladder’ samples as ’stand on one

leg’ can be attributed to lack of hand movements. Misclassifi-

cation of 3 instances from ’fly like a bird’ class as ’draw flower’

is present in both of these models and confusion matrices from

RA-GCN and 2s-AGCN also show the same behavior. Further

analysis show that these 3 instances are from the same partici-

pant (ID: 28) and the visualization show that participant is do-

ing a single-handed circular motion similar to drawing a imag-

inary circle rather than the two-handed steady movement that

is present in other samples. Furthermore, comparison of ST-

GAT and MS-AAGCN models probability distributions (Fig-

ure 3) suggest both of these models are over-confident models

compared to other models such as 2s-AGCN.

Experiments done with NTU-60 and NTU-120 under cross-

subject approach in (Song et al., 2021) show that RA-GCN

model is robust to truncation, occlusion and jitter compared

to other models such as ST-GCN and 2s-AGCN. Since the

CWBG dataset was created in a constrained environment (i.e.,

lab environment), we assume there is no occlusion/truncation

present. Visualization of CWBG skeleton sequences corrob-

orate this assumption. While there is no apparent reason for

presence of jitter in CWBG, analysis of noise in kinect sen-

sors (Pagliari and Pinto, 2015) show that sensor noise is more

pronounced in Kinect V1 than Kinect V2. Since participants

performed action at a 3m distance from sensor, standard devi-

ation of noise resulted can be assumed to be ≈ 0.015m. While

this is much higher than the standard deviation of noise from a

Kinect V2 sensor (≈ 0.002m), resulted from jitter experiments

with ≈ 0.05m standard deviation of jitter in (Song et al., 2021)

suggest that 2s-AGCN is still robust to kinect v1 sensor noise

just as it is to kinect v2 sensors. Thus the better performance of

2s-AGCN compared to RA-GCN with CWBG-F and CWBG-

D can be attributed to the lack of presence of jitter along with

occlusion and truncation. However, the slightly superior perfor-

mance of RA-GCN compared to 2s-AGCN with CWBG-S and

CWBG-Sh contradicts this conclusion, and it may be explained

by the presence of jitter in the classes within these two subsets.

6. In-the-wild Implementations

Table 11: Transfer learning results for KS-KSS datasets

Dataset Method Full Balance Large Small

KS Propagation 84.3 83.38 86.03 76.92

KSS

Propagation 81.26 87.68 87.92 82.60

Fine-Tuning 80.47 89.85 86.51 82.60

Feature Extraction 79.15 89.13 87.92 86.95

Table 12: Comparison of RGB modality and skeleton modality of KS-KSS

dataset

Modality Full Balance Large Small

KS
RGB 86.62 88.64 87.02 73.07

Skeleton 84.3 83.38 86.03 76.92

KSS
RGB 82.57 86.23 79.72 78.26

Skeleton 81.26 89.85 87.92 86.95

Table 13: Vanilla implementation results

Accuracy Full Large Balance Small

KS 75.29 77.83 69.32 69.23

KSS 60.68 64.88 59.43 86.95

When comparing the class-wise accuracy between KS/KSS-

Balance protocols, performance of each class has increased,

8

(a) CWBG-D: All correctly classified samples (b) CWBG-D: All samples

Fig. 3: ST-GNN performance with CWBG datasets

yet there is no relative improvement between classes.’Clapping’

class perform the best while ’baseball throw’ perform the worst.

Result also suggest there is no strong connection between

classwise confidence value and classwise accuracy given that

’climbing tree’ class performs second best even though the av-

erage confidence value is the lowest and ’hopscotch’ performs

second worst even though the average confidence is the highest.

7. Accuracy vs Confidence Comparison

Figure 4 contains additional results for the second most ac-

tive person.

(a) Normalized accuracy (b) Softmax probability

Fig. 4: Comparison results for second most active person (p = 1)

8. In-the-Deployment Additional Results

In-the-deployment experiments, latency results were taken

with respect to each module in the system pipeline along with

the number of people in sliding window as detailed in the Sec-

tion 3.6 of the main manuscript. Some of the results are given

in the Results and Discussion (Section 5.9) including the Ta-

ble 15 where average latency results are given in milliseconds.

To add error bounds to these results, we have calculated the

standard deviations for each of these results and are given in

the Table 14. In this Table, each row label represent a specific

module in the system module as in the main manuscript and

each column label represent the number of people in a given

sliding window.

9. Hyper-parameter tuning and Results

Hyper-parameter tuning was a major part of most of the im-

plementations and detailed of different hyper-parameters are

given in the Section 9.1. Final selected hyper-parameters for

CWBG protocols and the performance difference between dif-

ferent hyper-parameters for the KS protocol are given in Sec-

tion 9.2.

9.1. Hyper-parameter details

9.1.1. Base Optimizer Parameters

1. base lr: The initial learning rate used for training. Affects

how much model weights are updated during each opti-

mization step.

2. batch size: Number of samples processed before the model

is updated. Batch size of 4 was the highest we could go due

to storage limitations.

9

Time (ms) 1 2 3 4 5 6 7 8

inference time 0.0624 ± 0.0046 0.0838 ± 0.0084 0.1040 ± 0.0092 0.1187 ± 0.0109 0.1223 ± 0.0134 0.1330 ± 0.0088 0.1759 ± 0.0187 0.1910 ± 0.0071

detection time 0.0071 ± 0.0006 0.0072 ± 0.0007 0.0073 ± 0.0007 0.0071 ± 0.0005 0.0070 ± 0.0004 0.0069 ± 0.0005 0.0072 ± 0.0004 0.0080 ± 0.0000

pose time 0.0256 ± 0.0028 0.0326 ± 0.0033 0.0384 ± 0.0035 0.0409 ± 0.0033 0.0448 ± 0.0031 0.0491 ± 0.0030 0.0595 ± 0.0036 0.0665 ± 0.0007

track time 0.0004 ± 0.0006 0.0007 ± 0.0006 0.0008 ± 0.0006 0.0009 ± 0.0006 0.0010 ± 0.0007 0.0011 ± 0.0007 0.0015 ± 0.0006 0.0010 ± 0.0000

action time 0.0153 ± 0.0016 0.0298 ± 0.0039 0.0429 ± 0.0064 0.0543 ± 0.0099 0.0551 ± 0.0125 0.0612 ± 0.0075 0.0914 ± 0.0174 0.0960 ± 0.0000

Table 14: Mean ± standard deviation of processing times for each metric vs. number of people in the frame

3. epochs: Total number of passes over the entire training

dataset.

4. Optimizer: Optimization algorithm used to update model

parameters; Stochastic Gradient Descent (SGD) and

Adam were mainly explored.

5. SGD momentum: A momentum value used with SGD to

accelerate convergence by smoothing the gradient updates.

6. SGD nesterov: Boolean indicating whether Nesterov mo-

mentum is used, a variation of standard momentum that

anticipates future gradients.

9.1.2. Learning Rate Scheduler Parameters

7. learning rate scheduler: Defines how the learning rate is

adjusted during training.

• PiecewiseConstDecay: The learning rate stays con-

stant for specified intervals and then drops.

• ExponentialDecay: The learning rate decays expo-

nentially over time.

8. steps: Epochs at which the learning rate changes in piece-

wise constant decay.

9. iterationNum: Total number of iterations used for one

epoch of training. Possibly around the value obtained as

dataset size divided by batch size.

10. values: List of learning rate values to be used at different

training steps when using PiecewiseConstDecay.

11. stepdecay: Indicates whether step-based decay is applied.

Boolean.

12. steps decay: Steps at which decay is applied in step-based

decay. Only relevant if stepdecay is set to TRUE.

13. decay rate: Decay rate for exponential or step-based learn-

ing rate schedules.

9.1.3. Regularization Parameters

14. Weight decay: Type of weight regularization used. L2

corresponds to L2 regularization, which discourages large

weights.

15. Weight decay value: Strength of the L2 penalty added to

the loss function to prevent overfitting.

9.1.4. Weight Initialization Parameters

16. Weight initializer (WI): Method used to initialize the

weights of the model. VarianceScaling adjusts the scale

based on the number of input or output units.

17. WI scale: A scale factor applied during weight initializa-

tion. Might control the variance level of the initial weights

18. WI mode: Mode for variance scaling. ’Fan out’ scales

weights based on the number of output units (neurons) in

a layer.

19. WI distribution: Distribution used to sample initial

weights. ’Truncated normal’ means values are drawn from

a normal distribution, but any value more than two stan-

dard deviations from the mean is discarded and redrawn.

10

9.2. Hyper-parameters and the model performance

The first part of this section presents the selected hyper-

parameters for the CWBG protocols. The second part details

the various hyper-parameter configurations used with the ST-

GCN model in the in-the-wild experiments, along with a com-

parative analysis of the model’s performance across these con-

figurations.

In the first part, for the cross-subject protocol, final selected

hyper-parameters were given in the main manuscript (Section

5.3) under all four CWBG protocols. For other three pro-

tocols,selected hyper-parameters are given in the Tables 15

and 16. Performance of the ST-GCN model on these protocols

are given in the Table 3 of the main manuscript.

In the second part, for the in-the-wild implementations, KS-

X protocols were used. Details of these protocols are given in

Section 3.5 of the main manuscript. Hyper-parameter details of

finally selected hyper-parameters as well as some of the other

sub-optimal hyper-parameters are given in Tables 17, 18, 19

and 20.

Model performance for these combination of hyper-

parameters are also given in the subsequent Figures. For

KS-Full protocol, ST-GCN performance for selected hyper-

parameters are given in Figure 5. Performance for other hyper-

parameters are given in Figures 6 and 7. Model performance of

KS-Large protocol for the selected hyper-parameters is given

in Figure 8. Similarly, for KS-Balanced protocol,model per-

formance for selected hyper-parameters is given in Figure 9

while for other hyper-parameter combinations, model perfor-

mance is given in Figures 10 and 11. For KS-Small protocol,

model performance for the selected hyper-parameters is given

in Figure 12 while Figures 13 and 14 contains the model per-

formance for other hyper-parameter sets.

11

Table 15: Final hyper-parameter values for Random Hyper parameters

hyperparam full dissimilar similar shared

base lr 0.01 0.01 0.01 0.01

batch size 4 4 4 4

epochs 30 30 30 30

Optimizer SGD SGD SGD SGD

opt-SGD-moment 0.9 0.9 0.9 0.9

opt-SGD-nestrov TRUE TRUE TRUE TRUE

learning rate schedular PiecewiseConstantDecay PiecewiseConstantDecay PiecewiseConstantDecay PiecewiseConstantDecay

steps [10,20] [10,20] [10,20] [10,20]

iterationNum 916 628 628 312

constantBaseLearnigRate FALSE FALSE FALSE FALSE

values [0.01,0.001,0.0001] [0.01,0.001,0.0001] [0.01,0.001,0.0001] [0.01,0.001,0.0001]

stepdecay

steps decay

decay-rate

regularizer l2 l2 l2 l2

regularizer val 0.0001 0.0001 0.0001 0.0001

weight initilizer VarianceScaling VarianceScaling VarianceScaling VarianceScaling

scale,mode,distribution 2,fan out,truncated normal 2,fan out,truncated normal 2,fan out,truncated normal 2,fan out,truncated normal

learningMode ’from scratch’ ’from scratch’ ’from scratch’ from scratch

pretrainedClasses 0 0 0 0

childDatasetClasses 15 10 10 5

protocolTraining random full random dissimilar random similar random shared

FPS 30 30 30 30

save freq 2 2 2 2

acc 44.82 66.22 53.1 80.74

mean time 0.007880198 0.007766723 0.007908626 0.008125316

std time 0.000901624 0.000807083 0.00090555 0.001110671

12

Table 16: Final hyper-parameter values for LOOCV Hyper parameters

hyperparam full dissimilar similar shared

base lr 0.01 0.01 0.01 0.01

batch size 4 4 4 4

epochs 30 30 30 30

Optimizer SGD SGD SGD SGD

opt-SGD-moment 0.9 0.9 0.9 0.9

opt-SGD-nestrov TRUE TRUE TRUE TRUE

learning rate schedular ExponentialDecay ExponentialDecay ExponentialDecay ExponentialDecay

steps [10,20] [10,20] [10,20] [10,20]

iterationNum 1268 868 840 432

constantBaseLearnigRate FALSE FALSE FALSE FALSE

values [0.01,0.001,0.0001] [0.01,0.001,0.0001] [0.01,0.001,0.0001] [0.01,0.001,0.0001]

stepdecay TRUE TRUE TRUE TRUE

steps decay 1268//4 868//4 840//4 432//4

decay-rate 0.96 0.96 0.96 0.96

regularizer l2 l2 l2 l2

regularizer val 0.0001 0.0001 0.0001 0.0001

weight initilizer VarianceScaling VarianceScaling VarianceScaling VarianceScaling

scale,mode,distribution 2,fan out,truncated normal 2,fan out,truncated normal 2,fan out,truncated normal 2,fan out,truncated normal

learningMode ’person {child+1}’ ’person {child+1}’ ’person {child+1}’ ’person {child+1}’

pretrainedClasses 0 0 0 0

childDatasetClasses 15 10 10 5

protocolTraining loocv new loocv diss loocv sim loocv shared

FPS 30 30 30 30

save freq 2 2 2 2

acc 48.93 67.53 55.79 81.13

mean time 0.00835618 0.008330888 0.010205285 0.012963511

std time 0.002472371 0.002750763 0.004082358 0.007184704

13

Table 17: KS-ALL Hyperparameters

hyperparam Journal added other 1 other 2

base lr 0.001 0.001 0.001

batch size 4 4 4

epochs 50 50 30

Optimizer SGD SGD SGD

opt-SGD-moment 0.9 0.9 0.9

opt-SGD-nestrov TRUE TRUE TRUE

learning rate schedular PiecewiseConstantDecay PiecewiseConstantDecay PiecewiseConstantDecay

steps [20,40] [20,40] [20,40]

iterationNum 1716 1792 1792

constantBaseLearnigRate FALSE FALSE FALSE

stepdecay

steps decay

decay-rate

regularizer l2 l2 l2

regularizer val 0.0001 0.0001 0.0001

weight initilizer VarianceScaling VarianceScaling VarianceScaling

scale,mode,distribution 2,fan out,truncated normal 2,fan out,truncated normal 2,fan out,truncated normal

learningMode ’From Scratch’ From Scratch From Scratch

pretrainedClasses 0 0 0

childDatasetClasses 8 8 8

protocolTraining BODY 25 child 8 BODY 25 child 8 BODY 25 child 8

FPS 30 30 30

save freq 5 5 5

acc 75.29 74.12 74.12

14

Table 18: KS-Large Hyperparameters

hyperparam Journal added

base lr 0.001

batch size 4

epochs 50

Optimizer SGD

opt-SGD-moment 0.9

opt-SGD-nestrov TRUE

learning rate schedular PiecewiseConstantDecay

steps [20,40]

iterationNum 1716

constantBaseLearnigRate FALSE

stepdecay

steps decay

decay-rate

regularizer l2

regularizer val 0.0001

weight initilizer VarianceScaling

scale,mode,distribution 2,fan out,truncated normal

learningMode ’From Scratch’

pretrainedClasses 0

childDatasetClasses 5

protocolTraining BODY 25 child 5

FPS 30

save freq 5

acc 77.83

15

Table 19: KS-Balanced Hyperparameters

hyperparam Journal added other 1 other 2

base lr 0.001 0.001 0.001

batch size 4 4 4

epochs 50 50 50

Optimizer SGD SGD SGD

opt-SGD-moment 0.9 0.9 0.9

opt-SGD-nestrov TRUE TRUE TRUE

learning rate schedular PiecewiseConstantDecay PiecewiseConstantDecay PiecewiseConstantDecay

steps [20,40] [20,40] [20,40]

iterationNum 936 936 936

constantBaseLearnigRate FALSE FALSE FALSE

stepdecay

steps decay

decay-rate

regularizer l2 l2 l2

regularizer val 0.0001 0.0001 0.0001

weight initilizer VarianceScaling VarianceScaling VarianceScaling

scale,mode,distribution 2,fan out,truncated normal 2,fan out,truncated normal 2,fan out,truncated normal

learningMode ’From Scratch’ From Scratch From Scratch

pretrainedClasses 0 0 0

childDatasetClasses 5 5 5

protocolTraining BODY 25 child 5 balanced BODY 25 child 5 balanced BODY 25 child 5 balanced

FPS 30 30 30

save freq 5 5 5

acc 69.32 67.41 66.45

16

Table 20: KS-Small Hyperparameters

hyperparam Journal added other 1 other 2

base lr 0.001 0.001 0.001

batch size 4 4 4

epochs 50 50 30

Optimizer SGD SGD SGD

opt-SGD-moment 0.9 0.9 0.9

opt-SGD-nestrov TRUE TRUE TRUE

learning rate schedular PiecewiseConstantDecay PiecewiseConstantDecay PiecewiseConstantDecay

steps [15,25] [20,40] [15,25]

iterationNum 76 76 76

constantBaseLearnigRate FALSE FALSE FALSE

stepdecay

steps decay

decay-rate

regularizer l2 l2 l2

regularizer val 0.0001 0.0001 0.0001

weight initilizer VarianceScaling VarianceScaling VarianceScaling

scale,mode,distribution 2,fan out,truncated normal 2,fan out,truncated normal 2,fan out,truncated normal

learningMode ’From Scratch’ From Scratch From Scratch

pretrainedClasses 0 0 0

childDatasetClasses 3 3 3

protocolTraining BODY 25 child 3 BODY 25 child 3 BODY 25 child 3

FPS 30 30 30

save freq 5 5 5

acc 69.23 57.69 53.84

17

(a) Confusion Matrix (b) Cross-Entropy Loss (c) Train Test Plot

Fig. 5: Journal added- KS Full

(a) Confusion Matrix (b) Cross-Entropy Loss (c) Train Test Plot

Fig. 6: Other 1 - KS Full

(a) Confusion Matrix (b) Cross-Entropy Loss (c) Train Test Plot

Fig. 7: Other 2- KS Full

18

(a) Confusion Matrix (b) Cross-Entropy Loss (c) Train Test Plot

Fig. 8: Journal added- KS Large

(a) Confusion Matrix (b) Cross-Entropy Loss (c) Train Test Plot

Fig. 9: Journal added- KS Balanced

(a) Confusion Matrix (b) Cross-Entropy Loss (c) Train Test Plot

Fig. 10: Other 1 - KS Balanced

19

(a) Confusion Matrix

(b) Cross-Entropy Loss

c (c) Train Test Plot

Fig. 11: Other 2 - KS Balanced

(a) Confusion Matrix (b) Cross-Entropy Loss (c) Train Test Plot

Fig. 12: Journal added - KS Small

(a) Confusion Matrix (b) Cross-Entropy Loss (c) Train Test Plot

Fig. 13: Other 1 - KS Small

20

(a) Confusion Matrix (b) Cross-Entropy Loss (c) Train Test Plot

Fig. 14: Other 2 - KS Small

21

References

Aloba, A., Flores, G., Woodward, J., Shaw, A., Castonguay, A., Cuba, I., Dong,

Y., Jain, E., Anthony, L., 2018. Kinder-Gator: The UF Kinect Database

of Child and Adult Motion, in: Diamanti, O., Vaxman, A. (Eds.), EG

2018 - Short Papers, The Eurographics Association. doi:10.2312/egs.

20181033.

Dong, Y., Aristidou, A., Shamir, A., Mahler, M., Jain, E., 2020. Kinder-Gator

2.0, Optical motion capture, Dataset, MIG2020. URL: https://doi.org/

10.5281/zenodo.4079507, doi:10.5281/zenodo.4079507.

Kofinas, M., Nagaraja, N., Gavves, E., 2021. Roto-translated local coordinate

frames for interacting dynamical systems. Advances in Neural Information

Processing Systems 34, 6417–6429.

Mohottala, S., Abeygunawardana, S., Samarasinghe, P., Kasthurirathna,

D., Abhayaratne, C., 2022. 2D Pose Estimation based Child Ac-

tion Recognition, in: TENCON 2022 - 2022 IEEE Region 10 Con-

ference (TENCON), IEEE, Hong Kong, Hong Kong. pp. 1–7. URL:

https://ieeexplore.ieee.org/document/9977799/, doi:10.1109/

TENCON55691.2022.9977799.

Olalere, F., Brouwers, V., Doyran, M., Poppe, R., Salah, A.A., 2021. Video-

based sports activity recognition for children, in: 2021 Asia-Pacific Signal

and Information Processing Association Annual Summit and Conference

(APSIPA ASC), IEEE. pp. 1563–1570.

Pagliari, D., Pinto, L., 2015. Calibration of kinect for xbox one and compari-

son between the two generations of microsoft sensors. Sensors 15, 27569–

27589.

Rajagopalan, S., Dhall, A., Goecke, R., 2013. Self-stimulatory behaviours in

the wild for autism diagnosis, in: Proceedings of the IEEE International

Conference on Computer Vision Workshops, pp. 755–761.

Song, Y.F., Zhang, Z., Shan, C., Wang, L., 2021. Richly Activated Graph

Convolutional Network for Robust Skeleton-based Action Recognition.

IEEE Transactions on Circuits and Systems for Video Technology 31,

1915–1925. URL: http://arxiv.org/abs/2008.03791, doi:10.1109/

TCSVT.2020.3015051. arXiv:2008.03791 [cs].

Vatavu, R.D., 2019. The dissimilarity-consensus approach to agreement anal-

ysis in gesture elicitation studies, in: Proceedings of the 2019 CHI Confer-

ence on Human Factors in Computing Systems, Association for Computing

Machinery, New York, NY, USA. p. 1–13. URL: https://doi.org/10.

1145/3290605.3300454, doi:10.1145/3290605.3300454.

Yan, S., Xiong, Y., Lin, D., 2018. Spatial temporal graph convolutional net-

works for skeleton-based action recognition, in: Thirty-second AAAI con-

ference on artificial intelligence.

	Initial Implementations
	Inter-class variation effect
	Extended Age-wise and Gender-wise Implementations
	Transfer Leraning with ST-GCN for CAR
	ST-GNN Implementations
	In-the-wild Implementations
	Accuracy vs Confidence Comparison
	In-the-Deployment Additional Results
	Hyper-parameter tuning and Results
	Hyper-parameter details
	Base Optimizer Parameters
	Learning Rate Scheduler Parameters
	Regularization Parameters
	Weight Initialization Parameters

	Hyper-parameters and the model performance

