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ABSTRACT

This paper presents implementations on child activity recognition (CAR) using spatial-temporal graph

neural network (ST-GNN)-based deep learning models with the skeleton modality. Prior implementa-

tions in this domain have predominantly utilized CNN, LSTM, and other methods, despite the superior

performance potential of graph neural networks. To the best of our knowledge, this study is the first

to use an ST-GNN model for child activity recognition employing both in-the-lab, in-the-wild, and

in-the-deployment skeleton data. To overcome the challenges posed by small publicly available child

action datasets, transfer learning methods such as feature extraction and fine-tuning were applied to

enhance model performance. As a principal contribution, we developed an ST-GNN-based skeleton

modality model that, despite using a relatively small child action dataset, achieved superior perfor-

mance (94.81%) compared to implementations trained on a significantly larger (x10) adult action

dataset (90.6%) for a similar subset of actions. With ST-GCN-based feature extraction and fine–

tuning methods, accuracy improved by 10%-40% compared to vanilla implementations, achieving a

maximum accuracy of 94.81%. Additionally, implementations with other ST-GNN models demon-

strated further accuracy improvements of 15%-45% over the ST-GCN baseline. The results on activity

datasets empirically demonstrate that class diversity, dataset size, and careful selection of pre-train-

ing datasets significantly enhance accuracy. In-the-wild and in-the-deployment implementations con-

firm the real-world applicability of above approaches, with the ST-GNN model achieving 11 FPS on

streaming data. Finally, preliminary evidence on the impact of graph expressivity and graph rewiring

on accuracy of small dataset-based models is provided, outlining potential directions for future re-

search.

1. Introduction

Human Action Recognition (HAR) is a research area focused

on detecting and estimating human actions or movements. It

plays an important role in many application domains such as

surveillance (Vishwakarma and Agrawal, 2013), autonomous

driving (Lu et al., 2020), healthcare (Keskes and Noumeir,

∗∗Corresponding author

e-mail: divandyasm@gmail.com (Sanka Mohottala)

2021), entertainment (Shotton et al., 2011), video retrieval (Hu

et al., 2007), human-robot interactions (Rodomagoulakis et al.,

2016), sports analysis (Martin et al., 2018), Virtual real-

ity (Maqueda et al., 2015).

HAR data can be classified as visual or non-visual modal-

ities based on interpretability (Sun et al., 2022), where visual

includes RGB, skeleton, depth, and event streams, while non-

visual includes audio, acceleration, radar, and WiFi. While

action recognition can be done using those different modali-
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ties (Kawashima et al., 2017; George et al., 2020; Wang et al.,

2019a), due to practicality and interpretability, our focus in this

research is on RGB and skeleton modality based methods.

Child action recognition (CAR) can be considered as a

subdomain in HAR and has important applications in video

game development (Dong et al., 2020), early detection of

autism (Zhang et al., 2021b; Zahan et al., 2023a), safety

monitoring (Goto et al., 2013), object-play behavior assess-

ment (Ramesha et al., 2022), video game development (Dong

et al., 2020) and many others.

State-of-the-art (SOTA) RGB data based HAR models (Sri-

vastava and Sharma, 2024; Piergiovanni et al., 2023; Wang

et al., 2024b; Huang et al., 2023b) as well as skeleton data

based HAR models (Liu et al., 2025; Zhou et al., 2024; Xie

et al., 2024; Zheng et al., 2024) are developed using adult ac-

tion centered datasets such as Kinetics-400 (Carreira and Zis-

serman, 2017), Moments in time (Monfort et al., 2019), UCF-

101 (Soomro et al., 2012), Something-something-v1/2 (Goyal

et al., 2017), NTU RGB+D 120 (Liu et al., 2020), kinetics-

skeleton (Yan et al., 2018). Thus these models are not suitable

for child action recognition (CAR) since 1) children are still

in their gross and fine motor development stage (Aloba et al.,

2019; Jain et al., 2016a) and 2) with skeleton modality, child-

adult differences in size and anatomy result in a distribution

difference between adult and child action data (Sciortino et al.,

2017). These differences can be observed in Figure 1.

Furthermore, this has been verified experimentally as well

with ML and DL models (Aloba et al., 2020; Olalere et al.,

2021a). To overcome this, CAR models need to be developed

using child action based data but lack of child action data due

to ethical reasons is a major bottleneck. This research tackles

this issue by focusing on data-efficient method in CAR model

development.

Skeleton modality data is obtained by using multimodal sen-

sors such as Kinect (Liu et al., 2020) or from pose-estimation

methods (Cao et al., 2019; Bazarevsky et al., 2020) on RGB

datasets. Compared to RGB modality and other modalities,

skeleton modality has several unique advantages. Early re-

Fig. 1: Adult (blue) vs Child (red) jumping jacks action snapshots taken from a

Kinect camera. Reprinted from (Jain et al., 2016b)

search in perception has shown that motion trajectories of the

skeleton are sufficient for humans to recognize actions (Johans-

son, 1973). Spiking neural network inspired by the functional-

ity of the dorsal pathway (Liu et al., 2018a) corroborates this by

obtaining on-par accuracy in benchmark datasets indicating the

sufficiency of motion information for HAR.

Skeleton data is not affected by background clutter, clothing,

view angle or lighting hence, there is less spurious informa-

tion (Liu et al., 2018b; Chen et al., 2021). This also results in

a cleaner signal with less noise, making them well suited for

HAR. With skeleton modality, number of features is also less

compared to RGB modality making skeleton modality ideal for

data-efficient HAR model development (Fukunaga and Hayes,

1989).

Skeleton data require minimal storage (170x less storage

compared to RGB data) and can be processed quickly, so they

are well suited for real-time applications and storage-intensive

applications (Qin et al., 2022; Lin et al., 2020). Additionally,

this preserve the privacy and removes ethnic bias in HAR mod-

els (Moon et al., 2023).

Due to the natural graph structure of skeleton modality, graph

neural networks (GNNs) is the best suited neural network (NN)

architecture for skeleton based HAR and the empirical results

show the superiority of GNN methods over other NNs and

handcrafted feature-based methods (Yan et al., 2018; Zheng

et al., 2024).
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Transfer learning (TFL) methods have resulted in remark-

able performance with low-data regions across different NN

architectures, including GNNs (Yaras et al., 2024; Wu et al.,

2021; Kooverjee et al., 2022). TFL has also obtained good

performance with HAR models (Dhekane and Ploetz, 2024;

Keskes and Noumeir, 2021). Characteristics of source and

target datasets such as quality, quantity, diversity and similar-

ity have non-trivial effect on TFL as evident in previous stud-

ies (Ehrig et al., 2024; Jain et al., 2022). This motivated us

to do a systematic study on the effect of source-target datasets

with different TFL methods in CAR.

Architectural features that act as inductive biases result in

preferences for some solutions over the others thus resulting in

data-efficiency (Romero, 2024). This has been observed across

CNN, LSTM, Transformers, GNNs etc (Zhang et al., 2024;

Potapczynski et al., 2024; Kayhan and Gemert, 2020; Farina

and Slade, 2021). Motivated by this, a detailed study of differ-

ent spatio-temporal graph neural network (ST-GNN) architec-

tural features was done on CAR.

Due to practical reasons, in HAR and CAR applications,

RGB vision systems (i.e., mobile phone, CCTV etc.) are pre-

ferred over depth sensors (i.e., Kinect, RealSense). To utilize

skeleton modality, pose estimation methods (Cao et al., 2019;

Sárándi et al., 2020; Bazarevsky et al., 2020) are used with

RGB data. Multi-person contexts, long-shot views, jitter, occlu-

sion and truncation are challenges (Song et al., 2021; Shi et al.,

2023) that needs to be addressed with this approach. Motivated

by this, we extend the previous experiments to pose estimation

based skeleton data as well and conduct experiments to analyse

the effect of pose degradation on model performance.

Real-time implementation is vital for HAR in domains like

surveillance and autonomous driving (Noor et al., 2024; Deng

et al., 2023). Balancing accuracy and latency is also needed.

Deployment also demands handling streaming input (Huan

et al., 2023) and out-of-distribution data (Roy et al., 2022). To

this end, we extend pose-based child action recognition to out-

of-distribution streaming scenarios.

Based on the research gaps identified, this work presents the

following contributions:

• To the best of our knowledge, this is the first system-

atic analysis of skeleton modality-based CAR using GNN

architectures, covering in-the-lab, in-the-wild and in-the-

deployment action recognition.

• We conduct a detailed analysis of transfer learning in

skeleton-based HAR with GNNs, examining how (1)

source dataset quality, quantity, and diversity, and (2) tar-

get dataset class distribution and task similarity impact

TFL outcomes.

• We demonstrate that generic HAR models do not trans-

late well to CAR. We analyze how architectural properties,

including model complexity, graph expressivity, graph

wiring approaches, occlusion robustness, and higher-order

information utilization, influence CAR performance.

• We observe that ST-GNN model performance on CAR

positively correlates with child age, suggesting that lower

CAR performance stems from both dataset limitations and

developmental differences in motor skills.

• We show that the limited accuracy of pose-estimation-

based models is due to inherent pose-estimation limita-

tions rather than specific action classes.

The codes are made publicly available for reproducing the

results and future research.1. The rest of the paper is orga-

nized as follows. Current state of research areas this study

touches is covered in Section 2 . The ST-GNN models, learn-

ing methods, action recognition with in-the-lab, in-the-wild,

and in-the-deployment datasets are covered in Section 3. Pre-

processing stages, common experimental details and employed

evaluation methods are discussed in Section 4. Results and in-

terpretations of ST-GNN based in-the-lab, in-the-wild and in-

the-deployment protocols are given in the Section 5 while Sec-

tion 6 concludes the study with some future research directions.

1Codes, pre-processed data and implementation results are available from

https://github.com/sankamohotttala/ST_GNN_HAR_DEML
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2. Related Work

This section surveys prior work in GNNs, HAR, and CAR

to provide the necessary context for our methodology and high-

light existing research gaps.

2.1. Graph Neural Network

Graph Neural Networks (GNNs) were introduced by the

original researchers to work with graph-structured data, itera-

tively updating node representations by aggregating informa-

tion from their neighbours (Scarselli et al., 2009; Gori et al.,

2005; Gallicchio and Micheli, 2010). Early graph convo-

lution networks (GCN) such as ChebNet and Spectral CNN

were based on graph signal processing (Defferrard et al., 2017;

Bruna et al., 2014). Improved ChebNet based GCN (Kipf and

Welling, 2016) archived SOTA performance on graph bench-

mark datasets (Wu et al., 2021). Message passing graph neural

network (MPGNN) (Gilmer et al., 2017) unified GNN architec-

tures under a principled message passing framework.

GraphSAGE (Hamilton et al., 2018) achieved SOTA on in-

ductive tasks, GAT (Veličković et al., 2017) improved expres-

sivity via attention-based neighbor weighting, and GIN (Xu

et al., 2019) further improved expressiveness to the level of

the Weisfeiler-Lehman (1-WL) test. These GNN architectures

have been applied to tasks such as few-shot image classifica-

tion, semantic segmentation, visual reasoning, recommenda-

tion systems and predict molecular properties (Wu and Xin,

2025; Aflalo et al., 2023; Wang et al., 2023, 2024a; Batatia

et al., 2025). Quantization and pruning have also improved the

practicality of GNNs for real-world, resource-limited applica-

tions (Chen et al., 2023).

Graph rewiring mitigates oversmoothing and oversquashing

by adjusting the graph structure, either before training (Attali

et al., 2024) or during it (Zhu et al., 2022). Although effec-

tive across various tasks, the impact of these GNN features on

HAR is still unclear (Feng and Meunier, 2022). We address this

by experimentally evaluating which architectural features best

support HAR performance.

2.2. Human Action Recognition

Initial skeleton based HAR models were based on hand-

crafted features such as covariance matrices of joint trajectories,

lie group represented skeleton and hidden markov model (Xu

et al., 2016; Hussein et al., 2013; Zhou et al., 2009). With

RGB modality, handcraft methods based on spatio-temporal

volume, spatio-temporal interest point (STIP) and trajectory

were used (Wang et al., 2011; Bobick and Davis, 2001; Laptev,

2005). Deep learning methods leveraging RGB data and op-

tical flow have employed (2+1)D and 3D CNN architectures

for action recognition (Hara et al., 2018; Feichtenhofer, 2020;

Wang et al., 2015; Simonyan and Zisserman, 2014). Similarly,

these architectures have also been applied to skeleton sequence

data (Li et al., 2018; Huynh-The et al., 2020; Liu et al., 2017b).

With skeleton modality, HAR has obtained SOTA using GNN

methods on benchmark datasets (Yan et al., 2018; Hu et al.,

2022; Shi et al., 2019; Xie et al., 2024; Zhou et al., 2024).

GNN-based HAR models have also been developed for real-

time implementation (Noor et al., 2024; Dong et al., 2020; Chi

et al., 2025).

Current SOTA HAR models are mainly evaluated on large-

scale (e.g., Kinetics-400, NTU RGB+D) or medium-scale (e.g.,

UCF-101, HMDB) datasets (Carreira and Zisserman, 2017; Liu

et al., 2019, 2017a; Soomro et al., 2012; Kuehne et al., 2011).

However, detailed experiments on how performance varies with

dataset size are lacking, limiting insights into model data ef-

ficiency. To address this, we experiment with different GNN

architectures on CAR datasets.

2.3. Child Action Recognition

Research show that child and adult actions differ in varia-

tion, stability, and intensity, and these differences are percep-

tible enough for observers to categorize individuals as children

or adults based on skeletal motion (Aloba, 2019; Aloba and An-

thony, 2021; Jain et al., 2016b).

Early work in CAR used ML methods (Tsiami et al., 2018;

Rehg et al., 2013). Neural network based methods such CNN,

LSTM have been used for CAR with children aged 4-5 on pri-

vate RGB modality based datasets (Zhang et al., 2021b; Suzuki
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et al., 2019; Olalere et al., 2021b; Amemiya et al., 2020; Huang

et al., 2023a). Recent work has used GNN and transformer

based approaches on publicly available skeleton modality based

datasets as well (Mohottala et al., 2022b; Kim et al., 2023; Za-

han et al., 2023b).

While there are claims about publicly available CAR

datasets (Lemaignan et al., 2018; Rajagopalan et al., 2013; Kim

et al., 2023; Olalere et al., 2021b), some of them were not

available and others were not complete. Thus, in this work,

fully available CAR datasets were considered and the experi-

ments were conducted on them (Vatavu, 2019; Mohottala et al.,

2022a).

3. Methodology

The ST-GNN-based Child Action Recognition (CAR) imple-

mentations address four key aspects: architecture, dataset se-

lection, learning methods, and hyper-parameter tuning. Experi-

ments were systematically designed across these dimensions to

achieve state-of-the-art performance, as outlined in the follow-

ing subsections. Figure 2 provides an overview of the imple-

mentations. Graph Neural Networks (GNNs) are introduced in

Section 3.1 as a foundation for the ST-GNN architectures (Sec-

tion 3.2), starting with ST-GCN. Transfer learning methods are

described in Section 3.3, and heuristic hyper-parameter tuning

is detailed in Section 4.2. Detailed descriptions of in-the-lab

(Section 3.4), in-the-wild (Section 3.5), and in-the-deployment

(Section 3.6) implementations are provided next.

3.1. Graph Neural Network (GNN)

GNNs are used with graph structured data to learn a feature

embedding that can be used in downstream tasks such as node

classification, link prediction, graph classification etc.

Many GNN architectures can be understood within the mes-

sage passing graph neural network (MPGNN) framework. As

shown in Figure 3, the process can be explained using a target

node u (e.g., node A in Figure 3), following three main steps.

• Message (Fm): This transforms the input embeddings hk
v

of all neighbourhood nodesN(u) of target node u where k

is the layer. This is generally a dense layer or a multi-layer

perceptron (MLP).

• Aggregation (FA) : This is a permutation-invariant func-

tion that aggregates the messages from previous step. In

many of GCN ,GAT and other architectures, this is either

summation or average function.

• Update (FU): This function takes the output from the pre-

vious step as well as a transformed target node’s feature

vector Ft(u) as inputs. Generally, Fu is an non-linear func-

tion resulting in updated representation of node u, denoted

by hk+1
u . Ft could also be the zeros function, the identity

function, a dense layer or an MLP.

These steps are given in equation 1 where node u is the target

node. A specific implementation (Hamilton, 2020) of MPGNN

is given in equation 2 where dense layers are used for Ft and

Fm and summation function is used for FA.

h(k+1)
u = FU

(

Ft

(

h(k)
u

)

, FA

(

{

Fm

(

h(k)
v

)

∣

∣

∣

∣

v ∈ N(u)
}

))

, (1)

h(k+1)
u = σ

















W
(k)

sel f
h(k)

u +
∑

v∈N(u)

W
(k)

neigh
h(k)

v + b(k)

















, (2)

where

W
(k)

sel f
, W

(k)

neigh
∈ Rd(k)×d(k−1)

,

b(k) = b
(k)

sel f
+
∑

v∈N(u)

b
(k)

neigh
.

3.1.1. Graph Convolutional Network (GCN)

GCN (Kipf and Welling, 2016) uses Fm for Ft as well

thus the resultant weight sharing makes it less expressive than

MPGNN (equation 2). Transformed node embeddings (Fm) are

multiplied by a local structure specific weight resulting in equa-

tion 3. These inductive biases make GCN pay attention to the

local graph structure and the simple design makes it a compu-

tationally efficient architecture:

h(k+1)
u = σ

















∑

v∈N(u)∪{u}

W(k)h(k)
v√

|N(u)| |N(v)|

















. (3)
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t-SNE
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In-The-Wild

In-The-Deployment

In-The-Lab
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Architecture

Learning Method

Datasets

Hyper-parameters
Tuning

Outputs

Implementation Type

CAR Models

Fig. 2: Overview Diagram of Methodology

Fig. 3: MPGNN Framework

3.1.2. Graph Attention Networks (GAT)

GAT (Veličković et al., 2017) extend GCN by replacing

the fixed, structure-based aggregation weights with learnable,

attention-based weights, allowing the model to adaptively fo-

cus on the most relevant neighbours during message passing

(equation 5). By relaxing the fixed weights, GAT becomes more

expressive and offers improved structural awareness.

However, due to its weak inductive bias, GAT may underper-

form in low-data regimes if GCN’s bias benefits representation

learning in HAR tasks. Conversely, if GCN’s bias hinders learn-

ing, GAT may outperform due to its higher expressivity, even

with limited data.

The attention calculation equation is given in equation 4

where both W and a are learnable parameters. Use of multi-

headed attention improves the expressivity even more by allow-

ing GAT to capture diverse patterns:

αu,v =
exp
(

aT [Whu ∥Whv]
)

∑

w∈N(u)∪{u}
exp
(

aT [Whu ∥Whw]
) , (4)

h(k+1)
u = σ

















∑

v∈N(u)∪{u}
αu,vW(k)h(k)

v

















. (5)

3.2. Spatial-Temporal Graph Neural Network (ST-GNN)

We hypothesize that architectural improvements can lead to

better performance, even with small datasets. Based on this

assumption, we evaluated the performance of several state-of-

the-art human action recognition models on child action recog-

nition. Our implementations started with our TensorFlow-based

ST-GCN model, which we used in our previous work (Mo-

hottala et al., 2022b,a) as well. We then gradually introduced
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four state-of-the-art architectures which were selected based on

novel architectural components and functional codebases. Ini-

tial implementations were done to reproduce the SOTA results

on benchmark HAR datasets given in their corresponding pa-

pers.

3.2.1. Spatial-Temporal Graph Convolutional Network

ST-GCN (Yan et al., 2018) architecture utilized the graph

structure of human skeleton of Kinect camera output and the

pose estimation output of RGB videos with the graph convolu-

tion operation. In this architecture, only the first order infor-

mation of data were used such that the input contained either

the real-world coordinates of kinect camera or the RGB camera

pixel coordinates.

3.2.2. Other ST-GNN Implementations

With 2s-AGCN model architecture (Shi et al., 2019), rather

than restricting the GNN adjacency matrix representation to

the static skeleton structure, it is formulated as a combina-

tion of static skeleton structure, an adaptive graph and a data-

dependant graph. Furthermore, second order information such

as bone vectors at each time step are included in input, essen-

tially giving the model a strong inductive prior.

Improving on the adaptive graph aspect of 2s-AGCN model,

MS-AAGCN (Shi et al., 2020) model initializes the adaptive

graph with static skeleton structure and combines it with the

data-dependant graph. Furthermore, a gating mechanism is in-

cluded between these two graphs to stabilize the model. Atten-

tion is also included on spatial, temporal and channel directions

to improve the performance. Finally, improving on 2-stream

aspect, more refined second order information is included with

skeleton motion resulting in 4-streams.

RA-GCN (Song et al., 2021) introduces a novel pre-

processing stage where first order, second order and second or-

der motion information are combined as a new feature vector.

With this approach previous multi-stream implementations can

be combined to a single implementation. Furthermore, to make

the architecture robust to occlusion, truncation and jitter, train-

able mask approach is introduced with multiple streams where

each stream is conditioned to give attention to a more discrimi-

native set of joints. Finally, a new loss function is introduced to

train the model without need of ensemble model as in 2s-AGCN

and MS-AAGCN.

In previous methods, GCN based spatial feature extraction

and 1-D convolution based temporal feature extraction were

independent of each other. However in ST-GAT (Hu et al.,

2022), GAT is used where receptive field is not limited to a

single frame hence, short-term motion feature can also be ex-

tracted. Similar to MS-AAGCN, a 4-stream approach is used

which achieves current SOTA results.

3.3. Learning Methods

The limited size of available child activity datasets can lead

to poor performance in deep learning models. Improved learn-

ing methods is a promising approach to overcome this chal-

lenge. After the vanilla implementations, techniques such as

fine-tuning (Tan et al., 2018) and feature extraction (Zhang

et al., 2019) were used to enhance the performance of the

model.

3.3.1. Vanilla Method

Initial implementations were done by training the model

from scratch without any modifications. Optimizer hyper-

parameter tuning was done across all protocols to achieve the

best performance while architectural hyper-parameter tuning

was done to observe the effect of model capacity. Experiments

on the batch normalization were also done to select the best

normalization method.

3.3.2. Fine Tuning Method

Fine tuning of the pre-trained ST-GCN model was done

using several methods as detailed in transfer learning litera-

ture (Zhang et al., 2019). Fine-tuning model pipeline is shown

in Figure 4.

• Frozen layer approach - Fine tuning L top ST-GCN layers,

where 1 ≤ L < 10

• Propagation approach - Fine tuning all ST-GCN layers

(L = 10).



8

(a) Fine-tuning (b) Feature extraction

Fig. 4: ST-GCN architecture and transfer learning pipeline

• Hybrid approach - In the original ST-GCN model, L top

ST-GCN layers were randomly initialized where 1 ≤ L ≤

10.

1. Hybrid-Frozen : Combines feature extraction and

standard deep learning together. Bottom 10 − L ST-

GCN layers were kept frozen.

2. Hybrid-FineTuned : Combines fine tuning and stan-

dard deep learning together. Bottom 10− L ST-GCN

layers were fine tuned.

Fully connected (FC) layer was removed after the initial

source dataset based model training and a randomly initial-

ized feed forward neural network (FFNN) was connected to the

global average pooling layer output to function as the classi-

fier. FFNN architecture was selected as part of the architecture

hyper-parameter tuning.

3.3.3. Feature Extraction Method

Inspired by (Awais et al., 2020; Yu et al., 2017), the fea-

ture representations were extracted from feature maps of the

ST-GCN model as shown in Figure 4. The original ST-GCN

model was then supplemented with either a flattening layer or

a global average pooling (GAP) layer as the intermediate layer

between the ST-GCN model and the classifier. Fusion of fea-

ture maps was done with consecutive maps from two or three

layers of ST-GCN as shown by N4 and N3 in Figure 4. En-

hancing this approach further, dimensionality reduction tech-

niques such as principle component analysis (PCA) and trun-

cated SVD were employed. Experiments were conducted using

support vector machine (SVM), logistic regression as well as

feed forward neural network (FFNN) as the classifier.

Based on the results detailed in (Mohottala et al., 2022b),

FFNN was used as the classifier in the final feature extraction

with the output from final ST-GCN layer. FFNN contains 3

layers, first 2 with 196 and 128 units and the final layer with

units equal to the number of target dataset classes.

3.4. In-the-Lab Action Recognition

A literature review was carried out on the child action recog-

nition (CAR) related datasets and the benchmark human action

recognition (HAR) datasets. While the majority of the datasets

used in CAR research comes from private datasets (Zhang et al.,

2021b; Suzuki et al., 2019; Amemiya et al., 2020), few of

those datasets were publicly available. Details of these datasets

are given in Table 8 in the supplementary document. As the

Child datasets, CWBG (Vatavu, 2019) and the KS-KSS (Mo-

hottala et al., 2022a) datasets were used in this study while for

benchmark datasets, which are predominantly adult data, NTU

RGB+D (Shahroudy et al., 2016), NTU 120 (Liu et al., 2019)

and kinetics-skeleton (Yan et al., 2018) datasets were used.

Initial experiments were conducted using CWBG and NTU

datasets which were collected in carefully designed lab envi-

ronments, thus we call these in-the-lab datasets. Kinect cam-

eras were used to capture the data while actions were per-

formed based on a prompted command rather than a natural

scenario. Due to the data collection environment, there is less

pose degradation causes such as occlusion and truncation. Due

to the depth images taken by Kinetic cameras, resultant skeleton

poses contain the real-world 3D positions as well, resulting in

highly accurate pose estimations. Due to these reasons, in-the-

lab data were used across all implementation at the first stage.

As the second stage, we extended several experimentations

to in-the-wild data which were collected in natural settings us-

ing standard RGB cameras. As the child dataset, we used the

KS-KSS (Mohottala et al., 2022a) dataset which we created and
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Table 1: Action Class Coverage Across CWBG and KS-KSS Dataset Protocols

Index Action Class
CWBG KS-KSS

Full Similar Dissimilar Shared Full Large Balanced Small

0 Hopscotch ✓ ✓ ✓

1 Clapping ✓ ✓ ✓

2 Bouncing on trampoline ✓ ✓ ✓

3 Baseball throw ✓ ✓ ✓

4 Climbing tree ✓ ✓ ✓

5 Cutting watermelon ✓ ✓

6 Squat ✓ ✓

7 Pull ups ✓ ✓

8 angry like a bear ✓ ✓

9 applaud ✓ ✓ ✓ ✓

10 climb ladder ✓ ✓ ✓

11 crouch ✓ ✓ ✓ ✓

12 draw circle ✓ ✓

13 draw flower ✓ ✓ ✓

14 draw square ✓ ✓

15 fly like a bird ✓ ✓ ✓

16 hands up ✓ ✓ ✓ ✓

17 jump ✓ ✓ ✓ ✓

18 scratch like a cat ✓

19 slice carrots ✓

20 stand on one leg ✓ ✓

21 throw ball ✓ ✓ ✓

22 turn around ✓ ✓
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released publicly. As for the adult dataset, we used the kinetics-

skeleton dataset. We call these datasets in-the-wild data due to

the natural setup and as a result of that, considerable occlu-

sions and truncation can be observed which became a part of

our study as well. To extract skeletons, OpenPose (Cao et al.,

2019), a 2D pose estimation model was used.

3.4.1. CWBG: In-The-Lab Child Dataset

CWBG (Vatavu, 2019) is a dataset recorded in a controlled

lab environment using a Kinect v1 camera with approximately

10FPS frame rate. This is a balanced dataset with 15 action

classes resulting in 1312 skeleton sequences which amount to

90 skeleton sequences per class and the children were asked

to perform those action through verbal commands. It contains

30 children who are between the ages of 3 - 6 with a uni-

form gender and age distribution as shown in Table 5 where the

CWBG (Vatavu, 2019) child ID is given. Group 3 contains the

children between age 3-4, group 4 contains the children who

are between 4-5 and final group 5 contains children between

age 5-6.

3.4.2. CWBG Dataset Protocols

Following the cross subject evaluation method introduced in

NTU-60 (Shahroudy et al., 2016) dataset, we also use a similar

x-sub evaluation method with our protocols. We select 21 chil-

dren (70%), with a uniform age and gender distribution, for the

training phase and rest of the 9 children (30%) were used for

testing phase. With cross subject evaluation, personal informa-

tion leakage between train and test is removed and the resultant

model performance can be generalized to outside personals as

well. To analyse the effect of information leakage, we also de-

vised a random split based evaluation method with similar train

test distribution.

Since all these 15 classes aren’t present in any large-scale

dataset, comparison of child-data based model and adult-data

based model with CAR is not possible. But there are five sim-

ilar classes between CWBG and NTU datasets as given in the

Table 2 and Table 1. We introduce CWBG-Shared protocol to

compare the performance of those implementations. Following

the leave-one-out cross validation (LOOCV) method, we eval-

uate the model performance on each child and give a robust

evaluation of the model with another protocol as well.

• CWBG-Cross-Subject: The dataset is split based on sub-

ject IDs to ensure no child appears in both training and

test sets, effectively preventing subject-specific informa-

tion leakage.

• CWBG-Random: Randomly split the train and test sets

disregarding the child ID. Stratified splitting was used to

get balanced subsets with similar train-test distribution to

other CWBG protocols.

• CWBG-LOOCV: Similar to LOOCV evaluation, training

was done with 29 children data and tested with the remain-

ing child. Final model evaluation was done averaging the

results.

Low inter-class variations and high intra-class variations can

adversely affect classification tasks. Since the children in

CWBG are between 3-6, there could be differences in under-

standing the actions asked to perform as well as the way they

perform. Due to complex nature of human actions, higher

intra-class variations can always be present in a HAR dataset.

Given that there are similar classes in this dataset, resulting low

inter-class variations could also affect the model performance.

Thus going beyond the full CWBG implementation (CWBG-

Full protocol in Table 1), we develop several CWBG dataset

based protocols to analyse these effects.

To analyse the effect of inter-class variations, we devise two

protocols as two balanced subsets of this dataset, one with

Table 2: Similar classes in CWBG and NTU Datasets

CWBG dataset NTU dataset

Hands up Capitulate

Jump Jump up

Crouch Fall down

Throw ball Throw

Applaud Clapping
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higher inter-class variations (CWBG-Dissimilar) and the other

with lower inter-class variations (CWBG-similar). Exact com-

position of these protocols are given in the Table 1. ST-GCN

based and transfer learning based implementations were then

extended to these two protocols as well. Furthermore, to anal-

yse the effect of age and gender of children on model perfor-

mance, more protocols were introduced and the details of those

protocols and the subsequent experimental results are given in

the supplementary document.

3.4.3. Transfer Learning: NTU as Source Dataset

NTU-120 (Liu et al., 2019) dataset was used as the source

dataset with transfer learning methods in in-the-lab setting.

NTU-120 dataset contains 3D skeleton sequences belonging to

94 action classes and 26 interaction classes. With NTU-120

dataset, we introduced several protocols, with varying amounts

of source dataset diversity and size, to achieve improved per-

formance with transfer learning. Furthermore, with each NTU-

{44,60,120} protocol, a NTU-{44,60,120}-FRA protocol was in-

troduced by down-sampling each skeleton sequence by select-

ing each of the 3rd frame.

• NTU-120: The full NTU RGB+D-120 dataset was used

with a different dataset splitting method as detailed in Sec-

tion 4.1 than the one proposed in (Liu et al., 2019). With

this approach, we were able to remove any potential bias

resulting from an unbalanced data distribution.

• NTU-60: We used the full NTU RGB+D dataset along

with 11 interaction classes.

• NTU-5: This contains the 5 NTU classes that are similar

to 5 CWBG classes as in Table 2.

• NTU-44: A qualitative curriculum learning inspired ap-

proach was used by analysing the confusion matrices of

NTU-60/120 to select best performing classes. To reduce

ambiguities introduced from spatial and temporal symmet-

rical classes, we kept only one such class in this subset.

• NTU-44-Best: A quantitative curriculum learning inspired

approach was used by selecting the best performing 44

(a) NTU skeleton (b) CWBG skeleton

Fig. 5: Skeleton structures

classes from the NTU-120 implementation.

• NTU-44-Worst: A quantitative curriculum learning in-

spired approach was used by selecting the worst perform-

ing 44 classes from the NTU-120 implementation.

Since CWBG dataset is recorded with a Kinect version 1

camera, skeleton structure contains only 20 joints and there also

exists structural differences between Kinect version 2 camera

based NTU dataset where 25 joints are present. While GCN and

GAT architectures are robust to topological variations and uti-

lizes the feature information rather than structural information,

structural improvements on NTU dataset resulted in improved

performance with preliminary experiments. Based on these re-

sults, rewired 20-joint skeleton sequence version of NTU was

used across all above NTU protocols in transfer learning exper-

iments. Results are given in the supplementary document and

the original structure and the modified structure are shown in

the Fig 5.

3.5. In-The-Wild Action Recognition

Due to the limited availability of publicly accessible RGB-

modality child action datasets, we developed the KS-KSS

dataset (Mohottala et al., 2022a) for Child Action Recognition

(CAR) by annotating a subset of the Kinetics-600 dataset (Car-

reira et al., 2018) and have made it publicly available. We pri-

marily included motion-oriented classes in the KS-KSS dataset.

To increase its complexity, we added challenging classes such

as climbing tree and cutting watermelon, which involve trunca-

tion and occlusion. Classes were selected to ensure a substantial
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number of child instances, making KS-KSS suitable for in-the-

wild CAR scenarios.

OpenPose was used for pose estimation with KS-KSS video

data since (Sciortino et al., 2017) shows that in child pose

estimation, it performs better than other methods even when

truncations and occlusions are present. OpenPose provides

two pose estimation models called BODY 25 (i.e., OpenPose

2019 version) and COCO (i.e., OpenPose 2016 version). The

BODY 25 is faster than COCO in extraction process and, its ac-

curacy is also improved by 7% as detailed in (Cao et al., 2017).

COCO-skeleton (Gcoco) contains 18 vertices (V1) and

BODY 25-skeleton (Gbody) contains 25 vertices (V2) and since

V1⊂V2 in Gcoco = (V1, E1) and Gbody = (V2, E2), Gcoco skele-

ton structure could be used with the BODY 25 extracted data.

Thus, skeleton extraction was done for the full kinetics600 sub-

set using BODY 25 model.

Since kinetics-skeleton is created with COCO model and

graph structure has to be same in all data, we used Gcoco for KSS

pre-trained model based implementations. In our implementa-

tions, we used kinetics-skeleton as the source dataset in trans-

fer learning approaches. In those experiments, only 392 classes

were used (kinetics-skeleton-392) since some of the data from

the other 8 (Table 1) classes are used in the KS-KSS dataset.

To conduct experiments with the in-the-wild data, four proto-

cols based on KS-KSS dataset were introduced with a 3:1 train,

test split. Implementations were separately done with KS and

KSS datasets, thus X in each protocol name indicating both KS

and KSS. X-Full contain all 8 classes and X-large contain the

five largest classes by sample size. By selecting 250 videos

(X = KS) or 110 videos (X=KSS), we introduced a balanced

version of this protocol. X-Small protocol contains smallest 3

classes of KS-KSS dataset. Protocol details are given in the

Table 1.

3.5.1. In-The-Wild Data: Accuracy vs Confidence Evaluation

Skeleton based model implementation can be adversely af-

fected by pose estimation process when RGB video based

datasets are used. In general, pose estimation can have errors

due to occlusion, truncation, and jitter. Here, we study the ef-

fect of occlusion and truncation on action recognition task using

confidence value, which acts as a heuristic measure.

For each joint v, OpenPose outputs a 3-element vector con-

taining [xv, yv, cv] where cv denotes the confidence value and

is within the range of [0, 1]. This confidence value resulted

from the non-maximum suppression functionality in key point

extraction, which can be interpreted as a probability value used

as the heuristic metric to measure the effect of truncation and

occlusion.

For the purpose of this study, kinetics-skeleton test set was

used which is a balanced set containing approximately 50

videos per each class resulting in 19796 videos. OpenPose

extracted kinetic-skeleton test set was used to obtain the con-

fidence values. ST-GCN model trained with kinetics-skeleton

train set was used to obtain the predicted class values on the

kinetics-skeleton test set.

To perform this analysis, we first define the set S y for each

class y (equation 6), where S y comprises all skeleton sequence

information belonging to class y including their corresponding

confidence and accuracy values.

Initial analysis was done by separating each skeleton se-

quence to two sets for two most active persons, where most

active person is denoted by p = 0 and the second most active

person is denoted by p = 1 (equation 7). Set of confidence val-

ues of each node in each of these sets is given by equation 8.

In the same equation, T denotes the set of frames where each

frame is denoted by t. Set of nodes is denoted byV while each

node is defined by v.

Sy =
{

sky | ky ∈ Ny

}

, (6)

where

sky =
{

ŝ
ky

0
, ŝ

ky

1
, ŷky , y

}

, (7)

ŝ
ky

p =
{

c
t,ky,p
v | ∀t ∈ T , ∀v ∈ V

}

, (8)

k̄y =
∣

∣

∣Ny

∣

∣

∣ .

In above equations,
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ŷky : predicted class from ST-GCN model for the skeleton se-

quence ky,

Ny: set of all skeleton sequences from class y,

ky: index of each skeleton sequence in class y,

sky : confidence and accuracy values for skeleton sequence ky,

Sy: confidence and accuracy values for all skeleton sequences

in class y,

c
t,ky,p
v : confidence value of each v node at frame t of the person

p in skeleton sequence ky,

ŝ
ky

p : set of confidence values of all nodes of the person p in

skeleton sequence ky,

As the second step, analysis was done considering average

classwise confidence (c̄
y
p) as the independent variable (equa-

tion 9) and the classwise accuracy (āy) as the dependant vari-

able (equation 10).

c̄
y
p =

∑

ky∈Ny

∑

t∈T
∑

v∈V c
t,ky,p
v

|T | |V|
∣

∣

∣Ny

∣

∣

∣

, (9)

āy =

∑

i∈Ny
1 (yi = ŷi)
∣

∣

∣Ny

∣

∣

∣

. (10)

Due to only considering the average class-wise confidence,

information of confidence variance within the class is lost. To

mitigate this issue an approach analogous to reliability diagram

was also used (equations 11, 12).

ŝk
p =
{

c
t,k,p
v | ∀t ∈ T , ∀v ∈ V

}

, (11)

where,

K : set of all skeleton sequences in kinetics-skeleton test set

where |K| = 19796,

k: index of each skeleton sequence.

c
t,k,p
v : confidence value of each node v at frame t of the person

p in skeleton sequence k,

ŝk
p: set of confidence values of all nodes of person p in skeleton

sequence k.

S =
{

sk | k ∈ K
}

, (12)

where,

sk =
{

ŝk
0, ŝ

k
1, y, ŷ, p

k
}

pk ∈ [0, 1]

In equation 12,

sk: Confidence values ŝk
0
, predicted class y ,actual class ŷ and

the probability values pk for skeleton sequences k,

S: Set of sk for all samples in the k set,

In this approach, for each video in the test dataset (S), average

confidence value (c̄k
avg) as well as average confidence value per

person(c̄k
p) was calculated as in equation 14 and equation 13.

c̄k
p =

∑

t∈T
∑

v∈V c
t,k,p
v

|T | |V| (13)

c̄k
avg =

∑1
p=0 c̄k

p

2
(14)

Based on those values, samples were assigned a bin (b) in a

manner similar to histograms and the final normalized accuracy

per bin (hb
acc) was calculated as in equation 15. Further extend-

ing this approach, instead of accuracy, each sample’s resultant

probability from softmax layer (pk) was used to calculate the

final normalized probability per bin as in equation 16.

hb
acc =

∑

1 (ym = ŷm)
∣

∣

∣c̄m
p

∣

∣

∣

(15)

hb
prob =

∑

pm

∣

∣

∣c̄m
p

∣

∣

∣

(16)

where,

∀c̄m
p ∈
[

1

20
b ,

1

20
(b + 1)

)

b = {0, 1, .., 19}
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3.5.2. In-The-Wild Data: RGB Modality Implementations

In the Long-term Recurrent Convolutional Network (LRCN)

architecture (Donahue et al., 2017), visual features are extracted

through CNNs and the temporal information from those ex-

tracted features are learnt through LSTMs. Furthermore, Im-

ageNet 1.2M dataset (Deng et al., 2009) was used to pre-train

the CNN feature extractors of the LRCN model as done in sim-

ilar other HAR architectures (Wang et al., 2019b), (Ng et al.,

2018). While the original model uses both RGB and Opti-

cal Flow modalities, we have restricted it to RGB modality.

The CNN base of the implemented LRCN model is based on

Resnet-152 architecture instead of AlexNet. This reimplemen-

tation of LRCN was used with KS-KSS dataset and a compari-

son of RGB-modality performance with skeleton-modality was

conducted across all KS-KSS protocols.

3.6. In-The-Deployment Action Recognition

Although in-the-wild implementations use RGB video data

captured under unconstrained real-world conditions, they do

not adequately represent real-world deployment scenarios in-

volving streaming inputs and potential distribution shifts be-

tween training and inference data. To address these limitations

in the context of child action recognition, we designed an action

recognition system (ARS) that takes streaming data as input and

outputs temporally localized action predictions.

Since multi-person scenarios are expected in deployment, we

first apply a YOLO-based human detector (Wang et al., 2022)

to localize humans and estimate bounding boxes for each in-

dividual. The similarity of bounding boxes across consecutive

frames is then used to track all humans throughout the frame

sequence. For each detected human, AlphaPose (Fang et al.,

2022) is employed to extract 2D pose estimations.

For action recognition, the skeleton sequences of each indi-

vidual are used as input to the model. Since the input sequence

length is a design parameter, we adopt a sliding window ap-

proach with a window size of n frames and a stride of d frames

during both training and inference. To prevent frame back-

log caused by high instantaneous latency, we employed queue-

based data structures for efficient frame buffering and utilized

multi-threading to parallelize key operations.

Action recognition model was trained using the ST-GCN ar-

chitecture on the KS dataset for a child clapping versus non-

clapping classification task. All 386 child action samples from

the clapping class were used, along with 98 child action sam-

ples each from the baseball throw, hopscotch, climbing tree, and

bouncing on trampoline classes for the non-clapping category.

Results on these are given in the supplementary document.

Since real-world deployments often involve out-of-

distribution data, we evaluated the action recognition system

(ARS), incorporating the previously trained ST-GCN model,

on a privately collected child action dataset from a daycare

center. The recordings, captured with parental consent, include

children playing with toys and interacting with adults in natural

settings. A subset of the videos was manually annotated with

action classes, such as clapping and high-fiving, when the

action persisted for at least one second. This annotated subset

is referred to as ”Hummingbird-AS” in this paper. The ARS

was then used to evaluate classification accuracy and inference

latency on Hummingbird-AS.

4. Experiments

This section describes the quantitative experimental proce-

dures, including dataset pre-processing, evaluation methods,

and detailed implementation settings.

4.1. Data Pre-processing

Data pre-processing steps were systematically applied to in-

the-lab datasets to enhance model performance. Initially, noisy

data such as pseudo-skeleton sequences were removed from the

NTU datasets. Subsequently, the following standardized steps

were applied:

• Fixed the frame size to 300 frames by padding sequences,

increasing feature visibility.

• Extracted first-order information by translating each skele-

ton to have the spine joint as the coordinate system’s origin

([0,0,0]).
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• Rotated skeletons around the spine joint, ensuring the per-

son initially faces the positive x-axis and the spine is par-

allel to the z-axis.

Following pre-processing, the NTU-60/120 datasets were

split using the standard cross-subject protocol (Shahroudy et al.,

2016), while maintaining class balance. For the CWBG dataset,

the train-test split was performed as described in Section 3.4.2.

The processed data was subsequently stored as TFRecords to

optimize training efficiency.

To match the single-person actions in CWBG, one-person-

per-sequence architecture was used during transfer learning in-

stead of the default two-person ST-GCN. For NTU-60/120 and

NTU-44-B/W, the individual with the most prominent activity

was selected, while ambiguous interactions were excluded from

NTU-44 and NTU-22.

The Kinetics-skeleton and KS-KSS datasets were pre-

processed differently, using a two-stage approach. Primary pre-

processing involved:

• Centralization: positioning skeleton coordinates relative to

the center point rather than the default upper left corner.

• Match poses: tracking the correct individual throughout

the two-person skeleton sequence based on distance met-

rics.

Secondary pre-processing introduced randomized spatial-

temporal augmentations during training, following protocols

outlined in (Yan et al., 2018). Specific augmentation configu-

rations were experimentally optimized and documented in sup-

plementary materials.

4.2. Implementation Details

All experiments, except for in-the-deployment tests, were

conducted on a PC with an AMD Ryzen 9 3900X 12-Core

(3.79GHz) processor and an NVIDIA GeForce RTX 2060-S

GPU with 8GB memory. In-the-deployment experiments were

conducted on a PC with an Intel i7-8700 6-Core (3.20GHz)

processor and an NVIDIA GeForce GTX 1070 GPU with 8GB

memory.

All ST-GNN models were trained using categorical cross-

entropy loss. Random seeds were not fixed, resulting in vari-

ability due to batch shuffling and weight initialization. For

CWBG vanilla experiments, repeated hold-out validation was

used to achieve stable performance (Section 5.1).

To study the effects of model capacity, we varied ST-GCN

hyper-parameters such as the number of layers, number of

channels, and the use of batch normalization. Results are pro-

vided in Section 5.2.

For both in-the-lab and in-the-wild CAR implementations,

several optimizer hyper-parameters were tuned to improve

model accuracy. Key hyper-parameters explored included:

• Optimizer: SGD and Adam

• Learning rate scheduler: piecewise constant and exponen-

tial decay, with learning rates between 0.1 and 0.0001

• Weight decay: L2 regularization with values of 0.01,

0.001, and 0.0001

• Weight initialization: truncated and untruncated normal

distributions with varying parameters

• Label smoothing: smoothing factors of 0, 0.1, and 0.2

(mainly in TFL experiments)

A full list of hyper-parameters is provided in the supplemen-

tary material. Final selections, based on accuracy and stability,

are detailed in Section 5.3. Additionally, the effect of age and

gender on CWBG performance was analyzed using LOOCV,

with results reported in Section 5.4.

Feature extraction (FX) experiments initially compared

multi-class SVM, multinomial logistic regression, and FFNN

classifiers, with results reported in (Mohottala et al., 2022b).

Due to FFNN’s superior performance, it was used in all FX im-

plementations, with results presented in Section 5.5. Hybrid-

frozen and vanilla fine-tuning approaches, previously selected

based on preliminary layer-wise analyses (Mohottala et al.,

2022b), were also adopted in this study (Section 5.5).

We reproduced benchmark results using the provided hyper-

parameters, except for adjustments to batch size and number
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of epochs due to GPU memory limitations (batch size set to 4

in most experiments). Vanilla implementations of four addi-

tional ST-GNN models mentioned in Section 3.2.2 were also

conducted to study the impact of architectural differences on

small datasets and potential accuracy improvements. Results

are given in Section 5.6.

In-the-wild action recognition experiments using KS-KSS

were conducted with the ST-GCN model, with results presented

in Section 5.7. Since occlusions in videos can bottleneck pose

estimation and impact recognition accuracy, we compared ac-

tion recognition accuracy against pose-estimation confidence

values; results are given in Section 5.8.

A modular pipeline was developed for in-the-deployment ex-

periments, with the action recognition module trained on KS-

KSS and evaluated using a privately collected child dataset. Re-

sults are detailed in Section 5.9.

4.3. Evaluation Methods

The hold-out method was primarily used for model evalua-

tion, while LOOCV was applied to the CWBG dataset. Cross-

subject evaluation was employed for most CWBG and NTU

implementations, whereas random splits were mainly used for

Kinetics-skeleton and KS-KSS datasets.

Top-1 accuracy served as the main evaluation metric, com-

plemented by confusion matrices for class-wise performance

analysis. Box-and-whisker plots compared model performance

and confidence across different learning methods and architec-

tures, while bar plots compared overall accuracies. 3D skeleton

visualizations were used to interpret individual sample predic-

tions. Additionally, reliability diagrams and t-SNE visualiza-

tions were employed to study model calibration and feature/em-

bedding space separability.

5. Results and Discussion

This section presents a comprehensive analysis of exper-

imental results obtained across multiple protocols, datasets,

and model configurations. We evaluate the effectiveness of

ST-GNN models under various learning strategies, investigate

performance trends across different data scenarios, and high-

light key insights drawn from in-the-lab, in-the-wild and in-the-

deployment implementations.

5.1. ST-GCN Implementations

ST-GCN architecture was exclusively used in the initial CAR

implementations and the results are detailed in this subsection.

Vanilla implementations were done with class-wise protocols

under cross-subject evaluation method and the results are given

in the Table 3. Due to the small dataset size, stochastic na-

ture of initial weights and minibatch shuffling in the training

loop, varying results were observed. Repeated model training

and validation were conducted with the fixed train-test subsets

resulting in model performance that is invariant to initial condi-

tions.

Due to higher inter-class variation, CWBG-dissimilar perfor-

mance is comparatively better than CWBG-similar. In contrast,

increased number of classes in CWBG-full makes it difficult to

discriminate action classes, resulting in a lower accuracy. In-

creased accuracy in CWBG-shared can be attributed to lower

number of classes. With CWBG-Random approach, contrary to

our expectations, the results were slightly lower than the cross-

subject approach with the exception of CWBG-Similar proto-

col. While the information leakages resulting from the random

split like this generally increase the overall model performance,

small dataset size along with changes in inter-class and intra-

class variations of test set may be affecting it.

CWBG-LOOCV protcol was implemented for each child in-

dependently and the final averaged results are given as LOOCV

in Table 3 for all four CWBG subset protocols. Since each

LOOCV implementation uses 29 out of 30 children for train-

ing the model, it can be inferred that each model developed

for every child is roughly comparable to one another. This is

due to the fact that 93.33% of the data used in any two random

LOOCV implementations are identical. Thus averaging the re-

sults from all 30 implementations is justifiable.

A box plot of softmax probabilities under the CWBG-D pro-

tocol (Figure 6), considering only correctly classified samples,

shows similar Top-1 accuracy across cross-subject, random,
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Table 3: Vanilla Implementations Top-1 Accuracy

CWBG-full CWBG-dissimilar CWBG-similar CWBG-shared

Cross subject 45.82 ± 3.4 66.78 ± 2.6 47.29 ± 2.4 81.78 ± 4.1

Random 44.82 ± 2.6 66.22 ± 3.1 53.10 ± 1.1 80.74 ± 1.4

LOOCV 48.93 ± 10.7 67.53 ± 12.4 55.79 ± 13.8 81.13 ± 11.4

Fig. 6: Probability distribution of vanilla implementations under CWBG-D pro-

tocol

and LOOCV approaches, but with higher median confidence

for LOOCV, followed by random, and then cross-subject.

5.2. ST-GCN architectural hyper-parameter tuning

The original ST-GCN architecture (Yan et al., 2018), utilizes

a decoder architecture that features increasing channel numbers

and decreasing feature map sizes in a pyramid structure, simi-

lar to other popular models like VGG-19 and ResNet. This en-

ables the network to capture progressively more complex and

detailed features as it goes deeper into the architecture. The

original ST-GCN architecture consists of three blocks, each of

which contains 4, 3, and 3 ST-GCN layers, respectively. Imple-

mentations on architecture were done by keeping the pyramid

structure intact but changing the number of layers, resulting in

changes in the network’s depth and changing the number of fil-

ters in every layer, resulting in changes to the network’s width.

Four depth-wise configurations (Dd) were used in experiments

with (i, j, k) number of layers from each block such that config-

uration D10 is the original ST-GCN architecture with (4, 3, 3),

D7 with (3, 2, 2), D4 with (2, 1, 1) and D1 with (1, 0, 0). Un-

der each depth-wise configuration, 8 width-wise configurations

were also used as in Table 4. Number of filters were changed

in each layer by the same ratio R, R = F̄n/Fn, where n refers to

ST-GCN layer number (1 ≤ n ≤ d) while F̄ refers to new model

filters and F to the original model filters. Implementations were

done with CWBG-Full protocol, which contains 968 training

samples and the results are given in Table 4. Under D10, D7

and D4 depth-wise configurations, results show signs of under-

fitting with lower R values, over-fitting with higher R values

and good-fit with intermediate R values but under D1 configu-

ration, over-fitting is not present. Best test accuracy of 53.88%

is achieved with D4 with R = 1/8 which results in ≈ 17k train-

able parameters. As the diameter of the CWBG skeleton graph

in Fig. 5 is 10, the experiments were limited to maximum of 10

layers since having a maximum of 10 layers is sufficient for the

information to propagate throughout the graph using the graph

convolution operation. Lower R values such as 1/32 result in

small number of channels such as 2 in the starting layer re-

sulting in an information bottleneck situation which could also

explain the under-fitting scenarios.

These results are also explainable from model capacity since

higher R values result in over-parameterized models as evi-

dent by the large number of trainable parameters, reaching as

high as ≈ 76M in Table 4 and lower R values result in under-

parameterized models, with the smallest number of trainable

parameters being 235. Even though the optimal capacity for a

model is achieved when number of trainable parameter is sim-

ilar to number of training samples, comparable models with

≈ 1000 parameters in Fig. 7 doesn’t give strong evidence for

presence of this phenomenon. Instead, results in Fig. 7 and

Table 4 indicate that the best accuracy is generally achieved
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Table 4: ST-GCN architecture hyper-parameter tuning

R
D10 D7 D4 D1

Acc Param Acc Param Acc Param Acc Param

5 45.85 76M 45.08 50M 47.67 25M 47.41 932k

2 46.89 12M 45.85 8M 48.70 4M 51.81 152k

1 48.96 3M 46.11 2M 49.74 1M 50.77 39k

1/2 43.26 770k 51.03 500k 52.07 251k 51.04 10k

1/4 53.36 195k 53.10 130k 50.25 64k 43.26 3k

1/8 51.55 50k 49.48 33k 53.88 17k 45.08 967

1/16 48.45 13k 48.76 9k 45.34 4.6k 32.90 407

1/32 33.67 3.6k 30.56 2.5k 36.26 1.4k 20.47 235

with over-parameterized models. These results are consistent

with the existing research done on over-parameterized neural

networks and the resultant high generalization accuracy (Zhang

et al., 2021a; Allen-Zhu et al., 2018). Furthermore, it is consis-

tant with the original ST-GCN implementation achieving SOTA

results on NTU-60 dataset with ≈ 3M parameters despite the

training set being ≈ 40k samples.

Fig. 7: Model complexity results

5.3. ST-GCN Optimizer hyper-parameter tuning

A comprehensive hyper-parameter tuning process was con-

ducted across various CWBG dataset protocols. In addition

to fundamental optimizer parameters such as learning rate and

batch size, the experiments also explored the effects of learning

rate scheduler configurations, regularization techniques, and

weight initialization strategies. Final optimal hyper-parameters

obtained across cross-subject protocols are given in Table 6.

Given the small dataset size, Stochastic Gradient Descent

(SGD) outperformed Adam. While the piecewise decay sched-

uler yielded the best results across most protocols, exponen-

tial decay was superior for CWBG-Sh. Notably, under the

LOOCV protocol, exponential decay consistently delivered the

best performance across all implementations. The final hyper-

parameters for both LOOCV and random split protocols and

detailed descriptions of each hyper-parameter are provided in

the supplementary document, and additional details, including

model performance, are available via the GitHub repository2.

Furthermore, performance difference between different hyper-

parameter sets for KS-Vanilla protocols are given in the KS pro-

tocols based results section in supplementary document.

5.4. Age and Gender Effect

Participants in the CWBG dataset, aged between 3 and 6

years (average 4.4), demonstrate variability in action recogni-

tion performance likely influenced by cognitive and motor de-

velopment stages. Using the LOOCV implementations with the

CWBG-D protocol, an analysis was conducted to evaluate the

effect of age and gender on accuracy (Table 5). Results indi-

cate a clear trend of increased accuracy with higher age groups,

2https://github.com/sankamohotttala/ST_GNN_HAR_DEML/

tree/main/vanilla_cwbg
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Table 5: LOOCV child-wise model performance with CWBG-Dissimilar protocol

Group Details
Boys Girls

Average
A B C D E A B C D E

Age Three (3)
Child ID 26 4 7 16 3 22 21 2 9 24

60.23 ± 12.0

Accuracy 58.97 62.22 57.78 64.52 37.50 67.71 73.08 46.67 59.14 74.71

Age Four (4)
Child ID 6 25 20 5 14 10 8 15 12 27

69.10 ± 12.2

Accuracy 77.78 71.11 79.57 47.78 63.33 58.89 76.67 61.11 84.44 70.00

Age Five (5)
Child ID 13 17 18 28 1 11 23 29 30 19

75.35 ± 11.3

Accuracy 62.22 77.42 77.78 56.67 83.91 74.44 81.11 84.44 77.78 77.78

Average 65.24 ± 13.8 71.20 ± 12.1

Table 6: Final hyper-parameter values for cross-subject CWBG protocols

Hyper-parameter CWBG Full CWBG Dissimilar CWBG Similar CWBG Shared

base lr 0.01 0.01 0.01 0.01

batch size 4 4 4 4

epochs 30 30 30 30

Optimizer SGD SGD SGD SGD

SGD momentum 0.9 0.9 0.9 0.9

SGD nesterov TRUE TRUE TRUE TRUE

learning rate scheduler PiecewiseConstDecay PiecewiseConstDecay PiecewiseConstDecay ExponentialDecay

steps [10, 20] [10, 20] [10, 20] -

iterationNum 924 628 612 312

values [0.01, 0.001, 0.0001] [0.01, 0.001, 0.0001] [0.01, 0.001, 0.0001] -

stepdecay - - - TRUE

steps decay - - - 78

decay rate - - - 0.90

Weight decay l2 l2 l2 l2

Weight decay value 0.0001 0.0001 0.0001 0.0001

Weight initializer (WI) VarianceScaling VarianceScaling VarianceScaling VarianceScaling

WI scale 2 2 2 2

WI mode fan out fan out fan out fan out

WI distribution truncated normal truncated normal truncated normal truncated normal
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(a) Age-wise results (b) Gender-wise results

Fig. 8: LOOCV results

supported by the age-wise performance distributions depicted

in Figure 8.

Additionally, gender-wise analysis revealed consistently

higher accuracy in girls compared to boys, suggesting gender-

based differences in motor skill development. These findings

align with the original CWBG study by Vatavu et al. (Vatavu,

2019), which quantitatively showed a decrease in intra-class

variability with increased age. This consistency highlights that

age and gender significantly contribute to intra-class variation,

influencing the action recognition accuracy of the model.

These findings justify the problem definition (Section 1),

emphasizing the importance of developing action recognition

models specifically tailored to children, thereby reinforcing the

significance and necessity of continued research in this area.

(a) NTU-44-B (b) NTU-44-W

Fig. 9: t-SNE visualization of NTU-44 models

5.5. Transfer Learning Implementations

For the transfer learning (TFL) analysis, only the kinect cam-

era based datasets were used with different protocols. The

first stage of TFL experiments was the pre-training of ST-GCN

Table 7: ST-GCN performance on source datasets

Dataset
Accuracy Samples

Top-1 Top-5 All Train

NTU-120 65.93 88.26 108998 71103

NTU-60 73.27 92.13 54718 38756

NTU-22 89.59 97.95 19700 12882

NTU-5 90.6 100.00 4490 3086

NTU-44 80.72 95.53 39758 26571

NTU-44-B 85.34 96.39 40180 27141

NTU-44-W 66.43 89.54 40049 23927

NTU-44-FRA 79.02 95.36 39758 26571

NTU-60-FRA 69.12 91.87 54718 38756

NTU-120-FRA 60.52 85.45 108998 71103

model with different source datasets. Second stage was the use

of different TFL methods with target datasets.

5.5.1. Pre-Training with Source Datasets

Initial transfer learning experiments involved training the ST-

GCN model on various source datasets, aligning their skeleton

structures with the CWBG dataset. Structural modifications led

to a noticeable drop in NTU-60 accuracy (73.27%) compared to

original ST-GCN implementations (78.19%), highlighting the

sensitivity of model performance to skeleton structure changes

(Table 7).

Down-sampling source datasets to 10FPS was necessary due

to frame rate discrepancies between CWBG (10FPS) and NTU

(30FPS). Although this increased the samples-to-features ratio

beneficially, it introduced considerable information loss, nega-

tively impacting overall accuracy as evidenced by comparisons

between FRA and original datasets (Table 7).

Furthermore, because of the best performing class selection,

NTU-44-B contains classes with higher inter-class variation

and lower intra-class variation as observed from visualizations

based on global average pooling layer output embeddings us-

ing t-SNE in Figure 9. This is in contrast to NTU-44-W which

results in the opposite explaining the considerable accuracy dif-

ference between NTU-44-B and NTU-44-W. Because of the
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Table 8: Transfer Learning Results on CWBG dataset (FX: Feature Extraction, FT: Fine-Tuning and HF: Hybrid-Frozen Fine-Tuning)

Source Dataset
CWBG-F CWBG-D CWBG-S CWBG-Sh

FX FT HF FX FT HF FX FT HF FX FT HF

NTU 120 57.51 58.03 58.55 74.53 76.78 77.53 65.88 66.27 67.45 89.63 91.11 92.59

NTU 60 51.81 52.33 57.25 71.16 69.66 78.28 61.57 63.92 63.92 90.37 92.59 92.59

NTU 22 50.52 52.07 52.07 69.29 67.04 70.79 56.86 58.43 57.65 86.67 85.19 89.63

NTU 5 43.74 42.75 47.41 55.81 58.43 66.67 54.90 55.69 56.47 85.93 86.67 88.89

NTU 44 55.44 56.74 57.51 74.16 75.28 78.28 62.75 65.49 66.27 91.85 91.85 89.63

NTU 44 - B 51.81 53.37 58.81 73.41 75.66 78.28 57.25 59.61 60.39 89.63 90.37 88.89

NTU 44 - W 51.04 50.26 53.63 70.04 71.91 78.65 58.82 63.53 61.18 87.41 90.37 91.85

NTU 44 - FRA 57.77 57.25 56.22 79.10 74.91 77.15 67.31 62.35 63.14 94.07 91.11 90.37

NTU 60 - FRA 54.15 55.44 55.44 77.15 76.40 79.03 62.75 66.67 65.49 94.07 91.85 94.07

NTU 120 - FRA 59.33 57.51 58.29 82.24 76.78 78.28 63.14 60.78 65.49 94.81 89.63 91.11

manual class selection, the performance of NTU-44 falls be-

tween that of NTU-44-B and NTU-44-W.

5.5.2. Transfer Learning with Target Datasets

Transfer learning performance is affected by multiple factors

and in this research, effect of several factors were observed us-

ing a diverse set of source datasets. With the number of classes

selected in each source dataset, dataset diversity and size factors

were controlled. Previous research (Li and Hoiem, 2017) sug-

gest higher diversity and larger dataset size increase the transfer

learning performance more than any other factor and this can be

observed with NTU-{60,120} and NTU-{60,120}-FRA imple-

mentations as evident by results in Table 8. Best performance

for CWBG-Full, CWBG-Dissimilar and CWBG-Shared were

achieved with NTU-120-FRA source dataset and for CWBG-

Similar, best performance was achieved with NTU-120 source

dataset (Table 8), both datasets equal in size. Furthermore they

are x2 larger and x2 diverse than the second largest source

datasets, NTU-60 and NTU-60-FRA as detailed in Table 7.

Compared to training from scratch, with feature extraction

approach CWBG-Full achieves a 30% increase in Top-1 accu-

racy, with the accuracy score rising from 45.82% to 59.33%.

CWBG-Dissimilar and CWBG-Shared both achieve their best

performance also with feature extraction method, accuracy

score increasing from 66.78% to 82.24% and from 81.78% to

94.81% respectively, each gaining 23% and 16% increase in

accuracy. For CWBG-Similar protocol, best performance is

observed with Hybrid-Frozen approach, where accuracy score

increased from 47.29% to 67.45%. Similar to what was ob-

served in vanilla implementations, regardless of source dataset

used, across all transfer learning approaches (Table 8), CWBG-

Dissimilar outperforms CWBG-Similar results.

Curriculum learning inspired class selection approach was

evaluated with NTU-44, NTU-44-B and NTU-44-W source

datasets. Overall, NTU-44 results in best performance in 8

out of 12 transfer learning implementations while both NTU-

44-B and NTU-44-W result in best performance for 2 imple-

mentations each. Furthermore, NTU-44-B performs better than

NTU-44-W in 7 out of 12 implementations. When feature ex-

traction and vanilla fine-tuning are considered, NTU-44-B per-

forms better than NTU-44-W in 6 out of 8 implementations.

Thus, these results corroborate the use of curriculum learning

(CL) inspired approach to select classes for the source dataset

and the suitability of CL as a data-efficient learning method.

Comparison of different transfer learning approaches under

each CWBG protocol is shown in Figure 12. Source datasets

were used in x axis with ascending order of dataset size. Com-

pared to the vanilla implementation results, all protocols gain a
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performance increase as a result of transfer learning with source

datasets with the exception of NTU-5 dataset. Both feature ex-

traction and vanilla fine-tuning result in an accuracy decrease

with NTU-5 source dataset under CWBG-F and CWBG-D pro-

tocols. This can be considered due to negative transfer learning

because of the low-diversity. Increased source dataset size re-

sults in increased accuracy across all protocols. However, in

the case of NTU-44 and its variations (NTU-44-{B,W,FRA}),

where the differences in dataset size are relatively small, other

factors become more significant, leading to unpredictable re-

sults.

Furthermore, when considering the overall performance un-

der CWBG protocols, hybrid-frozen approach performs better

than vanilla fine-tuning and feature extraction approaches with

the exception of CWBG-shared protocol. This behaviour is

more pronounced when only the non-FRA datasets were con-

sidered thus validating the conclusions drawn from CWBG

benchmark results in Table 9. When comparing the over-

all transfer learning results in Table 9, 10FPS down sampled

datasets result in the best performance in all CWBG protocols

except CWBG-Similar. These findings indicate that the frame

rate has a significant impact on feature representation despite

the loss of information in down-sampled datasets.

To summarize the improvement in transfer learning perfor-

mance, we introduce the TFL enhancement factor (T FLF).

fo(sp, tp) =
{

fi(sp, tp)
∣

∣

∣ i ∈ { FT , FX , HF }
}

,

TFLF =
max
(

fo(sp, tp)
)

− fv(tp)

fv(tp)
,

(17)

where sp and tp denote the source and target protocols, fi(.) the

accuracy of TFL method i, and fv(.) the vanilla training accu-

racy. T FLF values for each (sp, tp) are shown in Figure 10.

As mentioned in section 4.2, label smoothing (LS) was used

as a regularization method and this improved the generaliza-

tion of models across most of the TFL implementations. Neu-

ral networks generally become too confident about their predic-

tions (Müller et al., 2019) and LS mitigates this by adding a

small noise to ground-truth labels during training. To estimate

model confidence, we utilized reliability diagrams (Figure 11)

Fig. 10: Accuracy Enhancement Factor of TFL across NTU Datasets

and as illustrated, when LS = 0.1, resultant model is a well-

calibrated model. Similar behavior can be observed in other

TFL approaches as well thus we use LS = 0.1 as the optimal

smoothing factor in most implementation.

Fig. 11: Label smoothing effect on feature extraction

Despite the similarity of the classes, CWBG-Sh test accuracy

on NTU-5 based Model is only 56.29% (compared to NTU-5

test acc of 90.6% (Table 7)). This highlights the significance of

our research problem and the importance of children-focused

HAR models (i.e., CAR models).

For CWBG-Sh protocol, best performance under feature ex-

traction approach resulted in 94.81% while vanilla fine-tuning

and hybrid-frozen approaches resulted in 92.59% and 94.07%

respectively. Considering the class-wise accuracy, lowest ac-

curacy resulting in ’Throw ball’ class can be attributed to the

ambiguity of the class while less ambiguous classes like ’hands
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Table 9: Benchmark results of CWBG protocols

Accuracy CWBG-F CWBG-D CWBG-S CWBG-Sh

All source datasets 59.33 82.24 67.45 94.81

non-FRA datasets (30FPS) 58.81 78.65 67.45 92.59

FRA datasets (10FPS) 59.33 82.24 67.31 94.81

up’, ’crouch’ and ’clapping’ resulted in higher accuracy.

A comparison of child action recognition and adult action

recognition can be done between NTU-5 and CWBG-Sh due

to the similarity of classes. Top-1 accuracy of 81.78% resulted

in CWBG-Sh dataset based ST-GCN model while 90.6% was

resulted in NTU-5 dataset based ST-GCN model with skele-

ton changes as detailed in Section 3.4.3. When original Kinect

v2 skeleton structure is used in NTU-5 dataset, accuracy in-

creased to 93.80%. This is to be expected since NTU-5 contains

3086 samples in train set while CWBG-Sh contains only 312

samples in train set, hence a ×10 larger dataset usage in adult

action recognition implementation. But with transfer learning

approaches, contrary to the expectations, CWBG-Sh accuracy

increased to 94.81%, exceeding original Kinect v2 NTU-5 ac-

curacy as well as modified Kinect v1 NTU-5 accuracy.

These results conclude that 1) ST-GCN model can be effec-

tively used for child action recognition in the same way it can

be used for any standard human action recognition task, 2) de-

spite a ×10 smaller dataset, ST-GCN model can be effectively

used for transfer learning and 3) contrary to the past literature,

transfer learning can be effectively used to improve child action

recognition.

5.6. ST-GNN Model Implementations

Initial evaluations indicated that limitations in ST-GCN ar-

chitecture affected the accuracy on the CWBG datasets. To

address this, four state-of-the-art ST-GNN models (2s-AGCN,

MS-AAGCN, ST-GAT, and RA-GCN) with varying architec-

tural features were explored in Section 3.2.2. Performance on

the NTU-60 benchmark dataset are detailed in Table 11.

Vanilla implementations were done with ST-GNN models

and the results are given in Table 12 for all CWBG protocol

under cross subject evaluation approach. Since ST-GNN mod-

els leverage higher order information in datasets in a multi-

model/stream approach with an ensemble, experiments were

also done on those different streams as well and the results are

given in Table 12. Under each CWBG protocol, all experimen-

tal results except one show substantial performance gains over

ST-GCN thus supporting the hypothesis that the architectural

features can be used as data-efficient learning methods.

As the results in Table 12 indicate, bone modality perform

better than joint modality in 2s-AGCN while in MS-AAGCN,

motion modalities are better over static modalities. But the re-

sults obtained on NTU benchmark dataset do not agree with

this. Thus these findings indicate that performance of modality

depends on the dataset and can not be generalized.

RA-GCN results in Table 12 indicate that on average, 3-

stream RA-GCN (3s RA-GCN) perform well over other RA-

GCN models. We compare the performance of 3s RA-GCN

model and ensemble models of other ST-GNNs in Figure 13.

When comparing the vanilla ST-GNN models, except for

CWBG-Sh protocol, highest accuracy is achieved with MS-

AAGCN model. When considering the models with minimal

differences in top-1 accuracy, such as MS-AAGCN and ST-

GAT, performance with CWBG is unpredictable. These obser-

vations indicate that the best ST-GNN model to use with a given

dataset, especially when the dataset is small, is not always the

best SOTA ST-GNN model and that it depends on the dataset

and the task.

Detailed evaluations of the performance of the ST-GNN

models were not possible due to the use of different modali-

ties across ST-GNN models. However, a comparison between

the MS-AAGCN and ST-GAT models, which employ the same

modalities, was conducted. Figure 14 contains the confusion
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(a) CWBG - full protocol (b) CWBG - dissimilar protocol

(c) CWBG - similar protocol (d) CWBG - shared protocol

Fig. 12: Transfer Learning results on CWBG dataset

Table 10: ST-GNN benchmark results

Accuracy CWBG-F CWBG-D CWBG-S CWBG-Sh

TFL-ST-GCNmax 59.33 82.24 67.45 94.81

Joint-ST-GNNmax 59.59 82.02 67.45 96.29

ST-GNNmax 66.58 87.27 70.20 96.29
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Fig. 13: ST-GNN model performance

(a) ST-GAT (b) MS-AAGCN

Fig. 14: CWBG-D classwise comparison

matrices resulted from the ST-GAT ensemble model and MS-

AAGCN ensemble model with CWBG-D dataset. Higher top-1

accuracy resulted from MS-AAGCN (87.27%) compared to ST-

GAT (84.26%) can be attributed to the its higher classwise accu-

racy for ’climb ladder’ (ID: 2) and ’throw ball’ (ID: 9) classes

(Figure 14) since both models result in approximately similar

accuracy for all other classes.

A modality independent comparison of all ST-GNN mod-

Fig. 15: ST-GNN Joint modality performance

els with the exception of RA-GCN was done by only consid-

ering the joint modality and the results are given in Figure 15.

Higher accuracy of 2s-AGCN compared to ST-GCN (Figure 15)

can be attributed to the use of an adaptive graph in the spatial

graph convolution in the model architecture instead of only us-

ing the static global graph based on skeleton structure. Com-

pared to 2s-AGCN, MS-AAGCN also result in higher accuracy

across all CWBG protocols and this can be attributed to the

improved adaptive graph as well as the use of spatial, tempo-

ral and channel attention modules after the graph convolution

block. Superior performance of joint modality based ST-GAT

over ST-GCN show that graph attention network outperforms

graph convolution networks and the equivalent performance of

ST-GAT and MS-AAGCN models validate the effectiveness of

attention mechanism and show that attention incorporated GNN

layers performs better than attention usage after the GCN lay-

ers.

A classwise accuracy comparison of these two models were

done with CWBG-Sh protocol (Figure 16) because of the con-

siderable difference in top-1 accuracy. With ST-GAT, misclas-

sification only happens with ’throw ball’ class and four out of

five misclassified samples were labeled as ’hands up’ and three

of them come from a single participant (ID: 30). Visualiza-

tion of sequences show the participant throwing the ball over

the head thus resembling the hands-up action movement. Fig-

ure 17 illustrate this with several intermediate frames visualized

as 3D skeletons. With MS-AAGCN, misclassification is much

more varied but it is more pronounced with ’jump’ and ’throw

ball’ classes. Contrary to the joint modality, the ensemble MS-

AAGCN model result in similar confusion matrix to ST-GAT in

figure 16.

Furthermore, top-1 accuracy of best transfer learning based

ST-GCN model with each protocol as well as best joint modal-

ity based ST-GNN are given in table 10. Comparison between

best transfer learning results of ST-GCN and the joint-modality

ST-GNN results shows a similarity in performance. But when

considering all the modalities and the ensemble models, ST-

GNN models such as ST-GAT and MS-AAGCN outperforms
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the transfer learning approaches.

These results conclude that,

1. While best state-of-the-art (SOTA) models tend to outper-

form other SOTA models when used on relatively large

datasets, they does not always perform well with small

datasets. Thus, SOTA models cannot be generalized as

data-efficient methods,

2. As results indicated, transfer learning (TFL) methods per-

form on par with architecturally improved vanilla models

thus both are potential directions as data-efficient methods,

3. Higher-order information based (i.e., Multi-Modality)

ensemble models is a practically useful data-efficient

method.

(a) ST-GAT (b) MS-AAGCN

Fig. 16: CWBG-Sh joint modality classwise comparison

5.7. In-the-wild data based implementations

Initial vanilla implementations using the KS and KSS proto-

cols demonstrated improved accuracy when transitioning from

the KSS to the KS protocol, as shown under Vanilla method in

Table 13. This improvement likely resulted from the increased

number of samples per class in KS dataset. Best overall results

from different transfer learning methods for OpenPose based

skeleton modality is shown in Table 13 under TFLbest. Detailed

results for TFL can be found in the supplementary document.

Furthermore, RGB based implementations for KS-KSS can be

found under TFLPre-train where the pre-training of LRCN model

is done using ImageNet dataset.

TFL of skeleton modality was done using kinetics-skeleton

dataset as the source dataset and the considerable accuracy in-

crease from vanilla implementation to TFL proves the effec-

tiveness of TFL despite the noisiness of the kinetics-skeleton

dataset as evident in the from the confidence value based exper-

iments in section 5.8. This improvement can be attributed to the

high diversity and large dataset size of kinetics-skeleton. When

comparing the TFL based skeleton modality model with the

pre-trained RGB modality based model, both show on par per-

formance validating that skeleton modality based models can

be effectively used with RGB datasets when combined with

a suitable pose-estimation model. Furthermore, to the best of

our knowledge, this is the first time the kinetics-skeleton has

been successfully used in a transfer learning approach. De-

tailed results are provided in the supplementary document. Ad-

ditional results, including those obtained with the final hyper-

parameters as well as selected experiments with alternative

hyper-parameter settings, are available in the GitHub reposi-

tory3.

These results highlight that,

1. large and diverse datasets such as kinetics-skeleton can be

used in transfer learning despite the in-the-wild nature of

the dataset (i.e., noisiness),

2. TFL methods can be successfully used with RGB based

in-the-wild data with appropriate pose-estimation models

thus showing the practicality of the TFL based HAR mod-

els.

5.8. Accuracy vs Confidence comparison

Initial analysis was done using the classwise sets (Sky ) of

kinetic-skeleton dataset as described in Section 3.5.1 and the

results are plotted in Figure 18 where independent variable (x

axis) represents the classwise average confidence of the most

active person ( c̄
y

0
) and the dependent variable (y axis) repre-

sents the average accuracy.

Visualized distribution of all 400 classes in Figure 18 implies

there is no strong correlation but if the average confidence val-

ues is close to zero, then there is a higher chance of resulting in

a low accuracy. Quantitative analysis resulted in 0.533 for Pear-

3https://github.com/sankamohotttala/ST_GNN_HAR_DEML/

tree/main/kss_ks
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Table 11: ST-GNN implementations with NTU-60

ST-GCN 2s-AGCN MS-AAGCN RA-GCN ST-GAT

Original 81.5% (Yan et al., 2018) 88.5% (Shi et al., 2019) 90.0% (Shi et al., 2020) 87.3% (Song et al., 2021) 92.8% (Hu et al., 2022)

Reproduced 78.2% 86.1% 88.7% 84.4% 90.4%

Table 12: ST-GNN Vanilla Implementations Results

ST-GNN
CWBG-F CWBG-D CWBG-S CWBG-Sh

Model Modality

ST-GCN Joint 45.82 66.78 47.29 81.78

2s-AGCN

Joint 52.85 72.28 57.25 83.70

Bone 56.48 72.66 59.22 84.44

Ensemble 58.03 78.28 60.78 87.41

MS-AAGCN

Joint 59.59 82.02 67.06 88.15

Bone 63.73 81.65 63.14 87.41

J-Motion 62.18 79.03 70.20 93.33

B-Motion 61.66 82.77 66.26 90.37

Ensemble 66.58 87.27 69.41 92.59

RA-GCN
2 streams 48.70 70.41 61.96 78.52

3 streams 53.37 72.28 61.18 88.89

4 streams 49.48 75.66 57.25 91.11

ST-GAT

Joint 58.03 81.27 67.45 96.29

Bone 61.39 75.28 62.35 89.62

J-Motion 60.36 80.90 64.70 93.33

B-Motion 54.40 79.03 60.78 86.67

Ensemble 63.22 84.26 66.67 94.81

Fig. 17: Visualization of a misclassified sample in CWBG-Sh protocol
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Table 13: Implementation results for KS-KSS datasets

Method Modality Dataset Full Balance Large Small

Vanilla Skeleton
KS 75.29 77.83 69.32 69.23

KSS 60.68 64.88 59.43 86.95

TFLbest Skeleton
KS 84.3 83.38 86.03 76.92

KSS 81.26 89.85 87.92 86.95

TFLPre-train RGB
KS 86.62 88.64 87.02 73.07

KSS 82.57 86.23 79.72 78.26

son correlation indicating only a moderate positive relationship

and 0.564 for Spearman’s correlation. Analysis on other imple-

mentation also resulted in similar results and conclusions.

For the KS-KSS dataset, classwise accuracy and the average

confidence of two most active persons (c̄
y

0
, c̄

y

1
) are given in Ta-

ble 14. ’Position’ refers to the place each class take when all

400 classes are ordered in descending order in terms of class-

wise accuracy.

Higher accuracy and position attained by classes with indices

7, 6, 0, and 2 (Table 14) can be explained as a result of motion-

oriented nature of those actions. When considering the all 400

classes in Figure 18, all these four classes are above average.

Relatively bad performance of other 4 classes is difficult to at-

tribute to a single cause. Considering 4 and 5 classes, it may be

due to truncation/occlusion present in the videos as evidenced

by the confidence values but same reasoning is not true for the

low performance of 1 and 3 classes.

Since classwise approach doesn’t capture the variance within

classes, we introduce an approach that is analogous to reliabil-

ity diagrams as detailed in Section 3.5.1. Since most of the

kinetics-400 classes are single person activities, we only con-

sidered the most active person in each data sequence and the

resultant plot is given in Figure 19. Furthermore, result in Fig-

ure 19 also suggest a linear relationship between confidence

value and accuracy thus giving quantitative evidence for model

performance dependency on pose estimation process and the

presence of occlusion and truncation.

Softmax probability based results for the most active person

in Figure 20 show that higher confidence values result in higher

probability values thus demonstrating a relationship between

Fig. 18: Classwise accuracy vs confidence comparison

feature confidence values and predicted label confidence values.

Moreover, these results corroborate the conclusion we derived

from normalize accuracy based implementations.

These results conclude that,

1. both pose-estimation accuracy and the motion-oriented na-

ture contribute to the model’s overall accuracy,

2. confidence value from pose-estimation show a linear cor-

relation with ST-GCN model accuracy thus highlight-

ing the importance of utilizing improved pose-estimation

models when used in real-world scenarios.

Fig. 19: Normalized accuracy based comparison for most active person (p = 0)
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Table 14: Accuracy and Confidence Comparison for KS-KSS dataset

Class Index 0 1 2 3 4 5 6 7

Accuracy 48% 15% 36% 4% 8% 0% 48% 74%

Position 32(2) 210(5) 79(4) 321(7) 276(6) 373(8) 34(3) 5(1)

Confidence (c̄
y

0
, c̄

y

1
) .40/.12 .35/.18 .39/.11 .39/.16 .19/.03 .06/.01 .40/.12 .32/.05

Fig. 20: Softmax probability based comparison for most active person (p = 0)

5.9. In-The-Deployment Implementation Results

Based on preliminary results, a sliding window of size n = 30

frames and a stride of d = 1 frame was used for training the

CAR model on the KS-KSS dataset for clapping task recogni-

tion, as detailed in Section 3.6. The trained ST-GCN model

achieved a test accuracy of 91.25% on the KS clapping vs non-

clapping subset. The corresponding accuracy and loss plots,

along with the confusion matrix, are provided in the supple-

mentary document.

The Action Recognition System (ARS) was employed for

inference on the Hummingbird-AS dataset to simulate an

in-the-deployment scenario, where the streaming input com-

prised sequential video frames. Clapping-annotated video data

was used to evaluate the system’s performance and estimate

accuracy. For a representative input video (referred to as

”Chenidu GP02”), the instantaneous prediction probabilities

are illustrated in Figure 21. Instantaneous predictions were

computed for each frame based on a sliding window containing

14 past frames and 15 future frames, resulting in predictions be-

ginning from frame #15. To enhance robustness during action

determination, the ARS utilized a sigmoid probability thresh-

old of 0.5 rather than relying on softmax outputs. Specifically,

if the predicted probabilities for both classes were below 0.5,

the system classified the action as non-clapping. If not, then the

class with higher probability was selected as prediction. This

thresholding approach helps mitigate uncertain predictions in

streaming scenarios.

Fig. 21: Probability distribution for the streaming data

The shaded regions in Figure 21 represent the periods dur-

ing which the system predicted clapping. To estimate the over-

all accuracy, the cumulative duration of these predicted clap-

ping periods was divided by the total video length. For the

”Chenidu GP02” sample, this streaming-based evaluation re-

sulted in an estimated accuracy of 74.64%. Considering that

the dataset is out-of-distribution and no specific optimizations

were applied, this level of performance is deemed acceptable.

The current ARS, when deployed in the in-the-deployment

setup, outputs the instantaneous probability distribution, instan-

taneous latency distribution, and on-frame detection and esti-
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Fig. 22: On-frame outputs with in-the-deployment setup

mation results. Sample on-frame outputs for selected time in-

stances are shown in Figure 22. To address ethical consider-

ations, the output videos were anonymized using a Laplacian

filter, which acts as an edge detector. Figure 22 presents four

such frames, corresponding to frame numbers #33, #80, #132,

and #200 from the ”Chenidu GP02” sample.

As shown, latency and related results are also displayed on

the frames. The child is highlighted with a blue bounding box,

while the skeleton is overlaid in black. If additional individuals

are present, they are similarly annotated with black bounding

boxes and corresponding skeletons. Additionally, the predicted

probability for the selected action class is displayed on each

frame.

The distributions of latency across different modules in the

ARS, as well as their variation over time for two sample record-

ings from Hummingbird-AS, are presented in Figure 23. For

the ”Chenidu GP02” sample (Figure 23a), pose estimation ac-

counts for the largest share of latency, followed by action recog-

nition, with only a single individual present in the recording. In

contrast, for the ”Buwaneka” sample (Figure 23b), the number

of people varies from 2 to 7, resulting in increased latency for

both pose estimation and action recognition. The rate-limiting

nature of the action recognition module becomes more pro-

nounced as the number of people increases. Meanwhile, the

latencies of the human detection and person tracking modules

remain relatively constant, with the efficiency of confidence

matching leading to negligible tracking time in both scenarios.

In addition to these four ARS modules, other computational

tasks also contribute significantly to the overall inference time.

Latency analysis was conducted across 18 annotated child

action samples, with the results summarized in Table 15. These

findings further corroborate the observation regarding the rate-

limiting behavior of the action recognition module in overall la-

tency. When analyzing the latency patterns with respect to the

number of people in the frame, the inference time was found

to increase approximately linearly due to the higher number of

pose estimations and skeleton sequence inputs fed into the ST-

GCN model. As the number of people increases, both the pose

estimation time and the action recognition time proportionally

increase, whereas the human detection and tracking times re-

main largely unaffected. Although pose estimation takes longer

than action recognition when only one or two individuals are

present, action recognition becomes the dominant contributor to

latency as the number of people grows. Therefore, for achieving

real-time performance in this ARS setup, it is essential to ad-

dress the rate-limiting behavior of the action recognition mod-

ule.

The overall inference time is approximately 87 ms, corre-

sponding to an average frame rate of around 11 FPS. Real-

time performance with a 30 FPS streaming input can still be

achieved by adjusting the stride to d = 3, which provides a

100 ms window for inference per frame. This adjustment is

particularly effective when there are only 1–3 people present in

the video frames. As the number of people increases, real-time

performance can still be maintained by further increasing the

stride. Additionally, further optimization of the action recog-

nition module could contribute to reducing latency. For com-

parison, our initial in-the-lab CWBG experiments achieved an
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(a) For sample video: ”Chenidu GP02” (b) For sample video: ”Buwaneka”

Fig. 23: Inference time distributions for two recordings from Hummingbird-AS

inference latency of approximately 8 ms when only one person

was present, more than two times faster than the current setup.

This difference in the ST-GCN model’s inference speed can be

attributed to difference in the training environments, as detailed

in Section 4.2. Furthermore, since these performance results

(i.e., latency) are independent of the specific action types, they

can be generalized to broader human action recognition tasks

in in-the-deployment setups.

These results lead to the following conclusions:

1. Streaming input data and out-of-distribution data can be

effectively utilized by ST-GCN-based action recognition

systems (ARS) for child action recognition (CAR) tasks,

achieving both good accuracy and low latency suitable for

real-world deployment,

2. As the number of people in the sliding window increases,

real-world human action recognition (HAR) systems must

optimize the inference time of the action recognition mod-

ule to maintain real-time frame rates.

6. Conclusion

This paper presented state-of-the-art ST-GNN based imple-

mentations for child action recognition (CAR). Transfer learn-

ing experiments with ST-GCN models demonstrate that, con-

trary to past research, adult-based datasets can serve as effective

source datasets to improve performance on child datasets. Re-

sults further suggest that source dataset diversity and size have a

greater impact than either source-target similarity or the source

model’s Top-1 accuracy.

Moreover, transfer learning with ST-GCN achieves compa-

rable performance to other joint-modality ST-GNN models.

Comparisons between CWBG-Sh and NTU-5 protocols reveal

that (1) transfer learning-based CAR models can outperform

adult action recognition models with similar classes, and (2)

transfer learning can surpass vanilla training on datasets 10

times larger. These findings validate transfer learning as a data-

efficient strategy for low-resource settings, across both in-the-

lab and in-the-wild datasets.

Our analysis highlights that state-of-the-art performance on

large benchmark datasets does not always generalize to smaller

datasets, as seen with ST-GNN implementations. While learn-

able graph rewiring enhances CAR accuracy, higher graph ex-

pressivity (e.g., moving from GCN to GAT) does not neces-

sarily yield better performance, particularly as the number of

classes increases. RA-GCN results further indicate that lower

CAR accuracy is not solely due to dataset noise such as oc-

clusion or truncation. Additionally, the superior performance

of multi-stream models, observed in general HAR tasks, is ev-

ident with ST-GNN models as well. These results emphasize

the need for CAR-specific architectural innovations focused on

data efficiency, rather than relying on benchmark performance

indicators.

Age-related correlations with CAR performance suggest that

motor skill development significantly affects action recogni-

tion, indicating that increasing dataset size or improving data

efficiency alone may not fully address the challenges in CAR.

Further research employing deep learning explainability tools
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Time Metric (ms) All 1 2 3 4 5 6 7 8

Inference time 86.96 62.37 83.83 103.99 118.72 122.35 132.98 175.92 191.01

Detection time 7.16 7.10 7.20 7.27 7.13 7.04 6.94 7.20 8.00

Pose time 33.14 25.65 32.64 38.35 40.93 44.80 49.14 59.45 66.51

Track time 0.65 0.42 0.67 0.79 0.88 1.02 1.05 1.46 1.00

Action time 31.84 15.32 29.77 42.86 54.30 55.06 61.22 91.43 96.01

Table 15: Average inference time (ms) distribution with respect to number of people in the sliding window

could provide deeper insights into these effects.

Normalized accuracy and confidence analyses show that,

for in-the-wild activities, limitations in pose estimation signif-

icantly bottleneck CAR model performance. Thus, improving

pose estimation is critical for child action recognition in low-

resource settings. The comparable performance between RGB-

and skeleton-based models suggests that ST-GNN approaches

can be highly effective when supported by better pose estima-

tion.

In-the-deployment evaluations show that ST-GCN-based Ac-

tion Recognition Systems (ARS) can handle streaming and out-

of-distribution child action data with good accuracy and la-

tency. Inference time increases linearly with more people, with

action recognition becoming the rate-limiting stage. Real-time

performance can be maintained by optimizing the action mod-

ule and adjusting the sliding window stride. These results high-

light the need for system-level adaptations for skeleton-based

action recognition in real-world deployments.

These findings open several directions for future work. First,

extending the experimental studies to systematically assess how

data quality, quantity, diversity, and source-target similarity im-

pact model performance across broader human action recog-

nition (HAR) tasks would be valuable. Second, investigating

graph rewiring and expressivity as data-efficient strategies for

small datasets could further improve performance. Third, a

detailed analysis of the effects of occlusion, truncation, and

pose jitter, using multiple pose estimation models (e.g., Alpha-

Pose, Detectron2), could enhance system robustness. Explor-

ing advanced learning methods, such as self-supervised and

curriculum learning, and replacing heuristic hyperparameter

tuning with evolutionary approaches like genetic algorithms,

offer promising directions for improving generalization. Fi-

nally, achieving real-time 30 FPS deployment will require tar-

geted optimizations to rate-limiting components, particularly

ST-GNN architectures and pose estimation pipelines.
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