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ABSTRACT
Across the globe, mobile species are key components of ecosystems. Migratory birds and nomadic antelope can have considerable 
conservation, economic or societal value, while irruptive insects can be major pests and threaten food security. Extreme weather 
events, which are increasing in frequency and intensity under ongoing climate change, are driving rapid and unforeseen shifts 
in mobile species distributions. This challenges their management, potentially leading to population declines, or exacerbating 
the adverse impacts of pests. Near- term, within- year forecasting may have the potential to anticipate mobile species distribution 
changes during extreme weather events, thus informing adaptive management strategies. Here, for the first time, we assess the 
robustness of near- term forecasting of the distribution of a terrestrial species under extreme weather. For this, we generated 
near- term (2 weeks to 7 months ahead) distribution forecasts for a crop pest that is a threat to food security in southern Africa, 
the red- billed quelea Quelea quelea. To assess performance, we generated hindcasts of the species distribution across 13 years 
(2004–2016) that encompassed two major droughts. We show that, using dynamic species distribution models (D- SDMs), envi-
ronmental suitability for quelea can be accurately forecast with seasonal lead times (up to 7 months ahead), at high resolution, 
and across a large spatial scale, including in extreme drought conditions. D- SDM predictive accuracy and near- term hindcast 
reliability were primarily driven by the availability of training data rather than overarching weather conditions. We discuss how 
a forecasting system could be used to inform adaptive management of mobile species and mitigate impacts of extreme weather, 
including by anticipating sites and times for transient management and proactively mobilising resources for prepared responses. 
Our results suggest that such techniques could be widely applied to inform more resilient, adaptive management of mobile spe-
cies worldwide.
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1   |   Introduction

With every passing year, record- breaking weather is increas-
ingly commonplace (O'Kane  2024; Poynting  2024) as extreme 
events increase in frequency, intensity and extent worldwide. 
This phenomenon is a result of ongoing anthropogenic- induced 
climate change; rising global temperatures from the emis-
sion of greenhouse gases are altering atmospheric and oceanic 
conditions and increasing weather variability (Seneviratne 
et  al.  2021). Encompassing intense heatwaves and droughts, 
through to severe flooding and storms, extreme weather events 
have severe and detrimental consequences for ecological and 
human systems (Ummenhofer and Meehl  2017). These events 
put species at risk of extinction, disrupt the provision of ecosys-
tem services, and present challenges to both food security and 
human health (Murali et  al.  2023; Slingo et  al.  2005; Haines 
et  al.  2006). Such impacts arise through several mechanisms 
(Maxwell et  al.  2019), including habitat destruction by floods 
or storms (Wiley and Wunderle  1993), water deficits from se-
vere droughts (Prugh et al. 2018), physiological stress from tem-
perature extremes (McKechnie, Hockey, and Wolf  2012), and 
disturbances increasing ecosystem vulnerability to biological 
invasion (Diez et al. 2012). Thus, the timely development of ef-
fective climate adaptation strategies is critical (New et al. 2022). 
These strategies involve prepared responses that mitigate nega-
tive impacts and reduce the vulnerability of species, systems and 
society to climate changes.

Mobile species, which include nomadic or migratory organisms 
that engage in substantial movements within their life cycle, 
are integral components of ecosystems worldwide (Teitelbaum 
and Mueller 2019; Runge et al. 2014). Consequently, many mo-
bile species are important for supporting global biodiversity, 
hold great cultural significance, and contribute economic value 
through ecotourism. For instance, the nomadic Mongolian ga-
zelle Procapra gutturosa is a key grazer regulating Mongolia's 
steppe (Nandintsetseg et al. 2019), while the scarlet- chested par-
rot Neophema splendida is revered for its distinctive beauty in 
Australia (Runge and Tulloch 2018). In a broader context, across 
many nations and species, migratory cuckoos and swallows 
hold great cultural value as harbingers of new seasons (López- 
Hoffman et  al.  2017), while salmon can offer key ecosystem 
services, including economic benefits and biodiversity support 
(Walsh et al. 2020). However, some mobile species like the red- 
billed quelea Quelea quelea and the desert locust Schistocerca 
gregaria are considered pests, causing considerable agricultural 
damage and economic losses in Africa (Elliott  1990; Zhang 
et  al.  2019). Extreme weather events drive high variability in 
mobile species distributions because individuals move flexibly 
in response to atypical conditions, such as by novel occupa-
tion of refugia (Dean, Barnard, and Anderson 2009) or shifting 
migration timing (Visser  2008; Tøttrup et  al.  2012). Through 
driving these rapid and unforeseen changes in mobile species 
distributions, extreme weather events may lead to adverse con-
sequences for society and the environment. For instance, mobile 
species populations may decline if individuals are compelled to 
leave protected areas or enter areas with new threats (Runge 
et  al.  2014). Conversely, the negative impacts of pest or inva-
sive mobile species may be exacerbated by novel or unexpected 
outbreaks as individuals change their distributions (Sutherst 
et  al.  2011). To mitigate these negative impacts of changing 

climates, we need to develop adaptive management strategies 
for mobile species under extreme weather.

Adaptive management strategies for mobile species and their 
associated impacts could involve dynamic management actions 
(Reynolds et al. 2017; Runge and Tulloch 2018). These are tran-
sient actions to manage mobile species on a temporary basis, 
such as short- term rental of habitat for protected area placement 
(Runge et  al.  2014) or targeting local and well- timed control 
measures for pest species (Zhang et  al.  2019). Managers can 
adjust the timing, extent, and location of management to track 
species' movements and flexibly respond to short- term environ-
mental changes. In addition to the increased efficacy of these 
adaptive approaches (Dunn et al. 2016), transient actions could 
increase landowner cooperation, cost efficiency, and resilience 
of the management strategy under long- term climate change by 
better mitigating extreme weather impacts (Reynolds et al. 2017; 
Bull et al. 2013). However, such approaches depend on having 
information on where individuals will be at any point in time.

Near- term (or seasonal) ecological forecasting is an emerging 
field that aims to inform adaptive management by utilising me-
teorological forecasts for early warning of environmental condi-
tions up to 1 year ahead, at hourly to monthly intervals (Tulloch 
et al. 2020). Similarly to how advanced near- term weather fore-
casts help humans adapt their behaviour, near- term ecological 
forecasting holds potential utility in anticipating and managing 
ecological changes (Dietze et  al.  2018). Near- term forecasting 
of mobile species' intra- annual distributions could anticipate 
changes under extreme weather and inform proactive, adaptive 
management. However, at present, the few examples of near- 
term distribution forecasts are limited to a small number of ma-
rine mammals and commercial fish species to inform dynamic 
management, such as establishing spatial zoning restrictions or 
identifying optimal sites/timings for moving vessels (Barlow and 
Torres 2021; Brodie et al. 2017; Hobday et al. 2016). By contrast, 
the near- term forecasting of terrestrial species distributions for 
dynamic management has been largely ignored. Near- term fore-
casts of population dynamics have been developed to alert to 
outbreaks of disease, pests and prey species (Clark et al. 2022; 
White et al. 2019; Kleiven et al. 2018), but these lack the spatially 
explicit distributional estimates essential for targeting manage-
ment. Given the pivotal roles of mobile species in many terres-
trial systems (Runge et al. 2014), this knowledge gap needs to be 
addressed to understand whether their distributions can be fore-
cast accurately, and at appropriate timescales and resolutions, 
for adaptive management purposes.

Near- term forecasts of mobile species distributions can be gen-
erated by employing dynamic species distribution modelling (D- 
SDM). D- SDMS have developed from static SDMs, which have 
been developed over recent decades (Guisan and Thuiller 2005; 
Zimmermann et  al.  2010). D- SDMs utilise historical relation-
ships between species occurrence and short- term environmen-
tal conditions to project dynamic distribution suitability under 
past or future environmental conditions (Elith, Kearney, and 
Phillips 2010; Milanesi, Della Rocca, and Robinson 2020). When 
developing near- term ecological forecasts, uncertainty can arise 
from multiple sources, including from underlying model vari-
ables and structure, and from stochastic and extreme conditions 
(Doblas- Reyes et al. 2013). This uncertainty must be quantified 
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and considered when assessing possible outcomes and risks of 
dynamic management decisions (Dietze et  al.  2018). The un-
certainty of near- term forecasts of mobile species distributions 
may be increased during extreme weather events (Muhling 
et  al.  2020). This is because extreme conditions often surpass 
those previously recorded in past and current species ranges, 
and, therefore, D- SDM projections based solely on historical 
relationships may be inaccurate. While studies in marine en-
vironments indicate robust near- term forecast performance 
during extreme weather events (Barlow and Torres 2021; Brodie 
et al. 2023), this has not yet been explicitly investigated in ter-
restrial spaces.

To address these gaps in our knowledge, we assess whether the 
near- term distribution of a highly mobile terrestrial species can 
be accurately forecast, including under extreme weather events. 
We then explore the value and operability of these forecasts for 
informing adaptive species management to mitigate the impacts 
of altered species distributions under extreme weather. For this, 
we generate near- term distribution forecasts for the red- billed 
quelea (hereafter referred to as quelea) up to 7 months ahead, 
which threatens food security across its range in sub- Saharan 
Africa, and assess forecast accuracy through hindcasting. We 
chose this species because it is a crop pest, is highly mobile, 
and its opportunistic life history facilitates rapid and unforseen 
outbreaks during extreme drought events in southern Africa 
(Elliott  1990). During such events, abiotic stresses can greatly 
diminish crop yields (Knox et al. 2012), and so minimising ad-
ditional pest- driven yield losses is critical to food security. The 
timely development of an adaptive pest management tool is es-
pecially important as extreme droughts are projected to inten-
sify across this pest's range in the future (Niang et  al.  2014). 
Ultimately, we envisage our study will encourage these ap-
proaches to be applied to other mobile species worldwide and 
inform adaptive management to mitigate negative impacts from 
our changing global climate.

2   |   Materials and Methods

2.1   |   Case Study Species and Region

Quelea are considered the world's most abundant wild bird, 
with an estimated population of 1.5 billion (Craig 2020). They 
are granivorous, nomadic birds of sub- Saharan Africa that are 
serious pests because they consume staple cereal crop seed, 
including wheat, sorghum and rice (Elliott 1990), locally caus-
ing up to 94% yield loss (Rodenburg et al. 2014). Consequently, 
their populations are frequently controlled to reduce impacts on 
food security. The dominant control method is lethal destruc-
tion by spraying aggregations with the pesticide fenthion, which 
is also toxic to non- target organisms (McWilliam and Cheke 
2004). Alternative approaches utilising agronomic techniques 
to reduce crop damage (e.g., altering planting schedules or crop 
varieties to create a phenological mismatch between crop seed 
abundance and quelea presence) have been advocated (Cheke 
and El Hady Sidatt  2019). However, it can be challenging for 
farmers to know which, if any, of such agronomic changes may 
be suitable as, such approaches require forewarning of quelea 
distributions, which, thus far, have been difficult to predict. 

Moreover, forewarning could improve the efficiency of pesticide 
spraying operations and reduce usage by targeting aggregations 
before young fledge or major crop damage occurs (Cheke and El 
Hady Sidatt  2019). Quelea are nomadic, dynamically tracking 
environmental suitability in space and time, and opportunis-
tically redistributing to avoid poor conditions during extreme 
droughts (Elliott  1990). Near- term distribution forecasts could 
aid management efficiency by anticipating unexpected out-
breaks, identifying sites for interventions before crop damage 
occurs, and informing farmers of agronomic decision risk.

Here, we forecast the distribution of the subspecies Q. q. lath-
amii in southern Africa (Figure S1), focusing on this subspecies 
because its ecology and changing occurrence patterns are well- 
characterised (Jones 1989a). Quelea in southern Africa have two 
distinct life- stages breeding (December–May) and non- breeding 
(June–November). They are opportunistic colonial breeders 
whose colonies can be millions strong. Non- breeding roosts can 
be similarly numerous. Quelea movements are driven by both 
wild grass and cereal crop seed abundance, which in turn are 
governed by the regular movements of seasonal rain fronts. 
However, at a local scale, quelea distribution can be highly spa-
tially and temporally heterogeneous (Ward 1971). Furthermore, 
developing a successful climate adaptation strategy is essential 
for this sub- species as it inhabits southern Africa, where over a 
fifth of the human population is currently malnourished (FAO 
et al. 2020). Moreover, under future climate change, this region 
is predicted to experience increases in severe droughts and as-
sociated crop yield declines (Niang et al. 2014; Knox et al. 2012). 
Therefore, minimising pest- driven yield loss here, through the 
development of adaptive management tools, will be highly im-
pactful and mitigate negative socio- economic impacts of climate 
change. To assess the accuracy of near- term species distribution 
forecasting for informing quelea management, we employed 
hindcasting across the study period (2004–2016), a widely used 
method that replicates real- time forecasting systems in historical 
periods to evaluate outputs against observed data (Kell, Kimoto, 
and Kitakado 2016; Barnes et al. 2022; Woelmer et al. 2022).

2.2   |   Extreme Weather Events

To identify extreme weather events during the study period 
(2004–2016), the one- month Standardized Precipitation- 
Evapotranspiration Index (SPEI) in each 0.5° cell across southern 
Africa (Beguería et al. 2023) was categorised (following McKee 
et al. 1993) as either: non- drought (> 0), mild (0 to −0.99), mod-
erate (−1.00 to −1.49), severe (−1.50 to −1.99) or extreme (≤ −2). 
The SPEI quantifies drought on a standardised scale by assess-
ing precipitation and evapotranspiration data over various time 
scales, which can indicate moisture deficiency or surplus rela-
tive to historical conditions (Beguería et al. 2014). The 1- month 
SPEI is derived by first computing the monthly difference be-
tween precipitation (𝑃) and potential evapotranspiration (𝑃𝐸𝑇):

This series is then fitted to a log- logistic distribution to estimate 
its parameters. The SPEI values are obtained by transforming 
the fitted distribution to a standard normal distribution:

D = P−PET
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where Φ−1 is the inverse of the standard normal cumulative 
distribution function and 𝐹 is the cumulative distribution func-
tion of the log- logistic distribution. Monthly percentage cover of 
each class was calculated across the range of quelea in southern 
Africa (BirdLife International 2021).

2.3   |   Species Distribution Modelling

To project quelea distribution under historical and near- term 
hindcast environmental conditions, we developed dynamic 
species distribution models (D- SDMs), which relate species 
spatiotemporal occurrence to short- term environmental con-
ditions (Elith, Kearney, and Phillips  2010). To model these 
complex and non- linear relationships effectively, we used the 
machine- learning ensemble technique Boosted Regression Tree 
modelling (BRT, Elith, Leathwick, and Hastie 2008). Below we 
describe the response and explanatory variables used in BRT 
model fitting.

2.3.1   |   Response Variable

Quelea occurrence records were collated from various sources, 
including the Global Biodiversity Information Facility, which 
comprises academic and citizen sciences datasets (GBIF 2021), 
and from pest control and government organisations (Table S1). 
Only records with coordinates demonstrating spatial uncer-
tainty of < 100 m were included for model fitting. Due to distinct 
niche requirements at each life stage, quelea records were sep-
arated into breeding or non- breeding localities for modelling. 
If records did not specify breeding or non- breeding behaviour, 
missing life- stage data were infilled through multiple imputa-
tions (Nakagawa and Freckleton 2008) informed by record lo-
cation and month, which are known drivers of quelea breeding 
phenology (Jones 1989b).

As true absences were rarely recorded, we instead generated 
pseudo- absence points within close spatiotemporal buffers for 
fine- scale presence- absence comparisons. For each occurrence 
record, one pseudo- absence coordinate was randomly generated 
within a spatial buffer (250–500 km). Pseudo- absence record 
dates, required for extracting temporally matched explanatory 
variables, were randomly generated within a close temporal 
buffer (6–12 weeks either side) of the corresponding occurrence 
record date. These buffers were chosen to balance between 
being too close (in both spatial and temporal terms) for models 
to detect a difference, and too distant so that only coarse spatio-
temporal drivers are identified (Vanderwal, Shoo, Graham, and 
Williams  2009). Spatial buffer extent was informed by quelea 
movement capabilities, and the temporal extent was informed 
by typical rates of change in their habitat (Ward 1971). Pseudo- 
absences were regenerated if they were within 6 weeks and the 
same 0.05° cell of a concurrent record. Quelea have a breeding 
cycle of about 6 weeks (Jaeger, Bruggers, and Erickson  1989), 
and so, conditions at a site are likely to remain suitable for this 

period. Therefore, generating a pseudo- absence within 6 weeks 
of an observed presence at the same location could inaccurately 
suggest an absence.

2.3.2   |   Explanatory Variables

Known drivers of quelea distribution were transformed into 
D- SDM explanatory variables (Table 1) that were temporally 
matched to occurrence and pseudo- absence records. Dynamic 
weather variables were calculated from CHELSA- W5E5 
daily mean temperature and total precipitation data (Karger 
et al. 2022) that were spatially aggregated to 0.05° from 0.01°. 
The spatial resolution was coarsened to balance having suffi-
cient detail for species distribution modelling with minimis-
ing overfitting and unrealistic precision associated with finer 
data. Resource variables were derived from MODIS Annual 
Land Cover datasets (Friedl and Sulla- Menashe  2019). For 
each resource variable listed in Table 1, each 0.004° MODIS 
Annual Land Cover cell was classified into “1” (presence) or 
“0” (absence) based upon the presence of land cover types as-
sociated with that resource, such as water bodies or preferred 
habitat. These binary data were then aggregated by sum to 
a spatial resolution of 0.05°, representing the relative abun-
dance of a resource within each larger grid cell. Considering 
quelea can forage up to 10 km from a breeding colony or non- 
breeding roosting site to access resources (Elliott  1990), re-
source abundance was then summed across the equivalent 
spatial area surrounding each cell using the ‘dynamicSDM’ R 
package (Dobson et al. 2023). One exception was for the seed 
abundance resource variable; here, the binary classification 
depended not only on the presence of grassland and cereal 
cropland cells but also on being within the correct graminoid 
phenology stage on a date, such that seeds are available for 
quelea consumption (Appendix  A1). The vegetation phenol-
ogy stages were derived from the MODIS Annual Land Cover 
Dynamics dataset (Friedl, Gray, and Sulla- Menashe  2019), 
which classified vegetation as being in various stages, in-
cluding “green- up”, “maturity” and “senescence,” based on 
trends in the remote- sensed enhanced vegetation index (EVI, 
Figure S2). For instance, if cells were identified as being in the 
latter two phenology stages, it was inferred that seeds were 
available because graminoid species typically produce seeds 
during plant maturity and the onset of yellowing.

2.3.3   |   Model Building

To prevent spatiotemporal bias in quelea records impacting D- 
SDM performance, model weights proportional to survey effort 
were used to down weight contributions from records in over-
sampled areas and vice versa. A proxy for survey effort was 
measured by the total number of e- Bird (Auer et  al.  2022) re-
cords within a 100 km radius and within 14 days either side from 
each record. The selection of these buffer sizes was informed 
by qualitative assessments of avian regional sampling patterns 
in southern Africa, as documented in the literature (Reddy and 
Dávalos 2003) and supported by analysis of eBird data presented 
in Figures S3 and S4.

SPEI = Φ
−1(F(D))
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To establish a baseline understanding of SDM behaviour and 
tune model parameters for near- term hindcasting, we fitted 
two boosted regression tree models (BRTS) using all available 
data (2002–2016)—one for breeding and one for non- breeding 
records. We tested the model's ability to extrapolate over space 
and time using the block cross- validation method (Roberts 
et al. 2017), implemented through the ‘dynamicSDM’ R pack-
age (Dobson et al. 2023). Occurrence data were divided into 
sampling units, designated as non- contiguous sections of a 
terrestrial biome in southern Africa, and further split by year 
of record. Sampling units were then grouped into six blocks 
of approximately equal sample size, within each of which the 
mean and range of covariate data were similar. BRTs were fit-
ted using a six- fold cross- validation approach, whereby each 
block was excluded in turn to be used as a testing dataset for 
models trained on the remaining five blocks of data. BRTs re-
quired parametrisation of the learning rate or ‘shrinkage’ pa-
rameter, which determines the contribution of each tree to the 
growing model. This parameterisation consisted of ‘n.trees’, 
the number of trees outcomes that are counted across, and 
tree complexity or ‘interaction. depth’, which controls the ex-
tent that interactions are fitted. Following Bagchi et al. (2013), 
these parameters were set respectively at 0.001, 5000, and 
complexity was varied between 1 and 4, selecting the value 
that minimised mean root mean square error (RMSE) across 
the six- fold cross validation block combination. In summary, 
we constructed one baseline model per season using tuned 
parameters, which were then used both to generate observed 
suitability maps for comparison with hindcast maps. Tuned 
parameters were then used to fit the hindcasting models (de-
tailed in Section 2.4).

2.3.4   |   Model Evaluation

Using the tuned model parameters, the performance of the 
breeding and non- breeding D- SDMs was measured by the area 
under the receiver operating characteristic curve (AUC), cal-
culated based on the full dataset for training. AUC represents 
the model's ability to correctly discriminate a species presence 
from absence across all thresholds between 0 and 1. AUC val-
ues range from 0.5, indicating discrimination no better than 
random, to 1, indicating perfect discrimination. Percentage 
variable importance was quantified using the permute- after- 
calibration test (Breiman  2001), performed using the ‘bio-
mod2’ R package (Thuiller et al. 2024). This method involves 
permuting each explanatory variable sequentially, thereby 
disrupting the relationship between the variable and D- SDM 
performance. The associated decrease in model performance 
quantifies that variable's importance to D- SDM predictive 
ability.

2.3.5   |   Abundance- Suitability Relationship

To test whether projected distribution suitability was related to 
the abundance of quelea in each site, we extracted D- SDM ex-
planatory variables for records collected by pest control organi-
sations associated with quelea abundance estimates (Table S1). 
These explanatory variable values were used to predict occur-
rence probability using the baseline D- SDMs trained on all 

available occurrence data. The linear relationship between que-
lea abundance and modelled distribution suitability was mea-
sured using Spearman's rank correlation as the abundance data 
were not normally distributed.

2.4   |   Near- Term Hindcasting

2.4.1   |   Overview of Approach

On the 1st of each month between 2004 and 2016, we gener-
ated seven- month near- term hindcasts of quelea distribution. 
Each hindcast is comprised of one distribution suitability 
map (0.05° spatial resolution) for every two- week period up 
to 7 months ahead, resulting in 14 maps per near- term hind-
cast. To create these maps, we generated seven- month near- 
term hindcasts of weather and resource explanatory variables 
(Section  2.4.2) across southern Africa, which were used by 
D- SDMs to project quelea occurrence probability. To align 
with quelea phenology, we projected breeding D- SDMs from 
December to May and non- breeding D- SDMs from June to 
November, clipping all projections to the quelea's known el-
evation range (0–1800 m, Jaeger, Erickson, and Jaeger 1979). 
We used two distinct approaches to fit the hindcasting D- 
SDMs to breeding and non- breeding datasets: “real- time” and 
“maximal”. Real- time D- SDMs were fitted using all occur-
rence data available up until the hindcast initiation date. This 
approach allowed us to simulate real- world conditions, where 
predictions were made based solely on historical data lead-
ing up to the hindcast period. In contrast, maximal D- SDMs 
were fitted using all available data, excluding the respective 
hindcast period. By maximising the training dataset size, this 
approach allowed us to explore the potential benefits of in-
creased data availability on hindcast accuracy and reliability. 
It also enabled examination of inter- annual variations in hind-
cast performance during extreme weather events, without the 
confounding effect of training dataset size. Hereafter, we refer 
to these two approaches as real- time and maximal. Finally, 
we evaluated the hindcast suitability maps generated by both 
maximal and real- time D- SDMs by comparing them to projec-
tions based on observed ecoclimatic conditions for the same 
period (Table 1), generated using baseline D- SDMs fitted to all 
available occurrence data (Section 2.3).

2.4.2   |   Explanatory Variable Hindcasts

2.4.2.1   |   Weather Variables. For every 2- week interval 
within each 7- month near- term hindcast period, 8-  and 52- 
week weather variables (Table 1) were calculated by combining 
daily total precipitation and mean temperature from hindcast 
(7 months ahead of hindcast initiation) and historical data-
sets (up to 52 weeks prior to hindcast initiation). Hindcast 
weather data were extracted from the European Centre 
for Medium- Range Weather Forecasts (ECMWF) fifth gen-
eration seasonal forecast system (SEAS5) dataset at 1° spatial 
resolution (Johnson et  al.  2019), comprising predictions by 25 
ensemble members. SEAS5 releases seven- month near- term 
forecasts on the 1st of each month and also provides near- term 
hindcasts (or re- forecasts) for the 1st day of each month 
between 1981 and 2016. These hindcasts were generated with 
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a version of the forecast system closely aligned with that used 
for real- time forecasts, providing a good estimate of the bias 
and skill expected in the real- time forecasting system (Boas 
et al. 2023; Chevuturi et al. 2021). Historical weather data were 
extracted from the ECMWF atmospheric reanalysis of the global 
climate (ERA5) dataset at 0.25° spatial resolution (Hersbach 
et  al.  2020). Whilst CHELSA- W5E5 historical weather data 
were used for D- SDM explanatory variables (Table 1), this data-
set is not updated in real- time. Therefore, despite its coarser 
native resolution, we used the ERA5 dataset that is released at 
a 3- month lag from present day, because it offers more practical 
applicability for real- time forecasting.

The 3- month gap in ERA5 data from real- time was filled using 
values from the previous three SEAS5 forecasts at 1- month lead 
time, as forecasts match observed conditions well at such low 
lead times (Johnson et al. 2019).

To achieve a 0.05° spatial resolution and ensure these weather 
data were consistent with historical observations from the 
CHELSA- W5E5 dataset, we applied bias correction and spa-
tial disaggregation techniques to ERA5 and SEAS5 data. Bias 
correction of near- term hindcasts was applied using CHELSA- 
W5E5 data aggregated to 1.0° (aligning with the spatial res-
olution of hindcasts) for empirical quantile mapping (EQM) 
in the ‘downscaleR’ R package (Bedia et  al.  2020). EQM is a 
common technique that involves adjusting the cumulative dis-
tribution function of model data to match that of observational 
data (Cannon, Sobie, and Murdock 2015). This correction was 
applied separately for each variable, month, lead time, and en-
semble member. Hindcasts from 1981 to 2001 were used to in-
form bias correction of hindcasts from 2002 to 2016. To achieve 
spatial disaggregation to a resolution of 0.05°, the widely used 
technique of spline interpolation (Lam 1983) was employed. The 
weather explanatory variables (Table  1) were calculated from 
the daily data using each of the 25 SEAS5 ensemble members 
separately, and the median value was then taken to produce 
deterministic forecasts (see Appendix A2 for comparison of the 
performance of individual ensemble members compared to the 
ensemble median).

2.4.2.2   |   Resource Variables. As MODIS Annual 
Land Cover Type datasets are typically released with a 2- year lag 
from the present (Friedl and Sulla- Menashe 2019), we derived 
resource variable hindcasts using data from the dataset released 
two years prior. To hindcast seed abundance (Table  1), we 
employed a novel approach (see Appendix A3) that first involved 
classifying real- time vegetation growth stages in “cereal crop-
land” and “grassland” land cover cells using 16- day MODIS EVI 
data (Table S2, Didan 2021). From this classification, the subse-
quent growth stages were extrapolated forward to each monthly 
interval within the 7- month hindcast, using average stage 
durations extracted from the historical dataset (Table 1). Using 
these hindcast growth stages, we calculated and inferred seed 
abundance using the same methodology applied to the historical 
dataset (Section 2.3.2).

2.4.2.3   |   Evaluation. Explanatory variable Hindcast-
ing skill was measured by the Pearson correlation between 
hindcast and observed remote- sensed variable data (Table 1) 
for each hindcast interval. A two- way ANOVA was used to 

test for significant differences in this relationship across hind-
cast lead times and years and an interaction effect of variable 
type. ANOVAs were followed by post hoc Tukey's HSD tests 
to look for significant pairwise differences across lead times 
years and variables.

2.4.3   |   Distribution Suitability Hindcasts

2.4.3.1   |   Hindcasting D- SDMs. For each hindcast 
period, real- time and maximal D- SDMs were fitted to their 
respective training datasets (Figure  1) using the tuned 
model parameters derived from the baseline D- SDMs (Sec-
tion 2.3). D- SDM performance was measured using the AUC, 
based on predicted occurrence probabilities for occurrence 
records from the corresponding seven- month hindcast period 
(Figure 1). We used a two- way analysis of variance (ANOVA) 
to test for significant inter- annual variation in D- SDM per-
formance, considering the factors of the year the D- SDM was 
generated and the type of dataset used for training, and their 
interaction effect. Post hoc Tukey's honestly significant dif-
ference (HSD) test was used to look for significant pairwise 
differences between real- time and maximal D- SDM perfor-
mances in each year.

2.4.3.2   |   Hindcast Suitability and Evaluation. To gen-
erate hindcast distribution suitability maps for 14 intervals 
(once every 2 weeks) within each 7- month hindcast, hindcast-
ing D- SDMs were applied to project suitability under hind-
cast ecoclimatic conditions across southern Africa (Figure  2). 
For evaluation, the baseline D- SDMs were applied to generate 
“observed” suitability maps based on observed ecoclimatic con-
ditions for the corresponding period (Table  1). For example, 
the near- term hindcast initiated on 1 January 2008 generated 
14 distribution suitability hindcasts between 2 weeks (14 Janu-
ary 2008) and 7 months ahead (1 August 2008). The two- week 
hindcast was compared to distribution suitability projected by 
the baseline D- SDMs using historical ecoclimatic data from 
14 January 2008, and so on, once every 2 weeks up to 1 August 
2008. Hindcast performance was measured by the Pearson cor-
relation between observed and hindcast suitability in each cell. 
We used Kruskal–Wallis tests to assess significant differences 
in the median performance metrics across lead times and years, 
due to skewed data. Dunn's post hoc test with Bonferroni cor-
rection was then applied for pairwise comparisons. Evaluation 
was repeated using distribution suitability projections from both 
real- time and maximal D- SDMs.

3   |   Results

3.1   |   Extreme Weather Events

On average, non- drought was experienced through much 
of the focal study period, with mild droughts also frequent 
(Figure  S5a). Extreme drought events were rare, though most 
extensive and prolonged in 2005 and 2015 (Figure S5b). In 2005, 
extreme drought conditions were experienced for nine succes-
sive months from February to October, reaching a maximum 
extent of 37% of the Quelea range in June. In 2015, 9 months 
experienced extreme drought between January and December, 
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interspersed between severe droughts, reaching a maximum ex-
tent of 16% in July.

3.2   |   Species Distribution Modelling

3.2.1   |   Baseline Models

Baseline D- SDMs were able to accurately explain the spa-
tiotemporal patterns of quelea distribution in the breeding 
(AUC = 0.79, = 23,736) and non- breeding seasons (AUC = 0.76, 
N = 42,183) as assessed on blocks that were quasi- independent 
from model fitting. On average, the most important eco- 
climatic variables for explaining quelea breeding distribution 
were seed abundance (relative variable importance = 50%), 
8- week mean temperature (20%), and 8- week total precipita-
tion (14%, Table S3). Whereas, for non- breeding distribution, 

the most important variables were seed abundance (40%), 52- 
week mean temperature (23%), and 8- week total precipitation 
(20%, Table  S3). Removing the seed abundance explanatory 
variable from D- SDMs resulted in a decline in AUC by 6% and 
7% observed across breeding and non- breeding models, re-
spectively. A positive, albeit weak, statistically significant cor-
relation was found between projected distribution suitability 
and quelea abundance (Spearman's rank correlation, ρ = 0.18, 
𝑝 < 0.01, N = 4279).

3.2.2   |   Hindcasting Models

Throughout the study period, the hindcasting D- SDMs per-
formed well in predicting quelea occurrences during the hind-
cast periods, with real- time training datasets (mean = 0.71, 
SD = 0.07, N = 153, Table  S4) and maximal training datasets 

FIGURE 1    |    Evaluation approach for near- term hindcast performance. (a) An example timeline illustrates the placement of a 7- month near- term 
hindcast within the study period 2004–2016. Hindcasts are initiated monthly (each grey line), spanning 7 months ahead from each initiation date. 
The green interval represents the current hindcast period and shifts to the right for each subsequent hindcast. This figure shows the use of occurrence 
records as training and testing datasets for generating and evaluating dynamic species distribution models (D- SDMs) used in hindcasting. The dotted 
lines represent the flow of output tuned parameters from one model being used as input parameters in other models. The solid lines represent a 
linkage in the flow of analysis from input dataset to output. (b) “Baseline”: D- SDM fitted using all available occurrence records from the study period. 
Model parameters were tuned through block cross- validation prior to achieving the final fitted “baseline” D- SDM. (c) “Real- time”: Hindcasting 
D- SDM fitted using only records available before the hindcast interval (blue period in the timeline), replicating data availability at that point. (d) 
“Maximal”: Hindcasting D- SDM fitted using occurrence records from both before and after the seven- month hindcast period (blue and yellow 
period in the timeline), allowing for an assessment of performance with increased training data availability. Hindcasting D- SDM performances were 
measured by AUC using occurrence records from within the seven- month hindcast period (green in the timeline).
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(mean = 0.74, SD = 0.05, N = 153, Table  S5). Nevertheless, we 
found significant inter- annual variation in hindcasting model 
performances (ANOVA, F(12,298) = 21.55, p < 0.01), which was 
significantly influenced by the interaction with D- SDM train-
ing dataset type (ANOVA, F(1,298) = 21.55, 𝑝 < 0.01). Between 
2005 and 2008, maximal D- SDMs performed significantly better 
than real- time D- SDMs (Figure S6, 𝑝 < 0.01). However, follow-
ing 2009, when real- time D- SDM training dataset size reached 
~3000 breeding and ~ 6000 non- breeding records, model perfor-
mances were not significantly different between training data-
set compositions (Figure S6 and Tables S4 and S5).

3.3   |   Near- Term Hindcasting

3.3.1   |   Real- Time Hindcasts

Quelea distribution hindcasts generated by real- time D- SDMs ex-
hibited a moderate correlation with observed patterns of quelea 
distribution suitability across the 13- year period (median r = 0.61, 
range = −0.31—0.89, N = 2184, Table S6). There were significant 
differences in real- time hindcast performance across lead times 
and between years (Figure 3a, Kruskal- Wallis, p < 0.01, Table S7). 
Performance was strongest between 2-  and 4- week lead times 
(R = 0.72), but still performed with good accuracy at longer lead 
times up to 12 weeks ahead (0.61–0.69, Table S8). Across all lead 
times, the correlation between observed and hindcast distribution 
suitability significantly increased over time (r = 0.84, 𝑝 < 0.01), 
reaching an average of 0.80 in 2016 (Figure 3a). Real- time hind-
casts were able to predict changes in environmental suitability 
for quelea under non- drought and extreme drought conditions 
(Figure 4). In this example, shown in Figure 4, real- time hindcasts 
anticipated the reduction in suitability compared to non- drought 

conditions in the breeding season across southern Africa, with 
pronounced declines in northern South Africa, eastern Botswana, 
and southern Mozambique.

3.3.2   |   Maximal Hindcasts

Quelea distribution hindcasts generated by maximal D- SDMs 
exhibited a strong correlation with observed patterns of que-
lea distribution suitability across the 13 - year period (median 
R = 0.79, range = −0.20—0.93, N = 2184, Table S6). There were 
significant differences in maximal hindcast performance across 
lead times and between years (Figure  3b, Kruskal- Wallis, 
p < 0.01, Table S7). Performance was strongest between 2-  and 
10- week lead times (R, 0.80–0.82), but still performed with high 
accuracy at longer lead times up to 28 weeks ahead (0.68–0.78, 
Table S8). Significant negative correlations with lead- time were 
found (−0.92, p < 0.01), with median correlation declining 
by 17% from 0.82 to 0.68 between 2-  and 28- week lead times 
(Table S8). Inter- annual pairwise comparisons revealed that the 
accuracy was significantly lower in 2005 and 2006 compared to 
several other years (Dunn's test, p < 0.01, Table S9).

3.4   |   Explanatory Variable Hindcasting Skill

Ecoclimatic variable hindcasts were strongly correlated with 
the observed, remote- sensed values (mean r = 0.89, SD = 0.20, 
Table S10). On average, seed abundance was hindcast with the 
lowest skill (mean r = 0.42, SD = 0.34) despite the strong accuracy 
of underlying models (80%–83%, Tables S11 and S12), followed 
by 8- week sum precipitation (mean r = 0.81, SD = 0.08) and 52- 
week sum precipitation (mean r = 0.86, SD = 0.04). Ecoclimatic 

FIGURE 2    |    Generation of near- term hindcast and observed distribution suitability maps for every 2- week interval within each 7- month near- 
term hindcast period. The timeline (a) depicts the intervals occurring once every 2 weeks within a 7- month seasonal hindcast at lead times from 2 to 
28 weeks ahead; each line indicates when the maps were generated. This process was repeated at the start of every month from 2004 to 2016, aligning 
with the SEAS5 hindcast initiation dates. (b) Observed maps were generated by “baseline” D- SDM using observed ecoclimatic condition datasets 
for each 2- week interval. (c) Hindcast maps were generated by “real- time” and “maximal” D- SDMs using hindcast ecoclimatic conditions for each 2- 
week interval. The correlations between observed and hindcast suitability maps were calculated to measure hindcast performance at each lead time 
under varying training data constraints (N = 14 per D- SDM type and hindcast period).
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variable hindcasting skill varied significantly across lead times 
and between years (Figure 5, Tables S10 and S13). However, we 
found significant interaction effects of variable type (ANOVAs, 
p < 0.01, Tables S14 and 15), suggesting that the variation in hind-
casting skill across lead times and between years was not con-
sistent across variables. Ecoclimatic variable hindcasting skill 
was significantly negatively correlated with lead time (r = −0.09, 
p < 0.01). However, post hoc pairwise comparisons indicated 
that the significant differences in hindcasting skill between 

lead- times were only observed in two variables (Tukey's HSD, 
Table  S16): seed abundance (r = −0.70, p < 0.01) and, less se-
verely, in 8- week sum precipitation (r = −0.16 p < 0.01). Between 
years, post hoc pairwise comparisons revealed that only three 
variables showed significant inter- annual variations in hind-
casting skill: significantly higher skill for seed abundance in 
2016, and significantly lower skill for 8- week sum precipita-
tion and 52- week precipitation in 2015 and 2016 (Tukey's HSD, 
Table S17).

FIGURE 3    |    Median correlation between distribution suitability projections based on near- term hindcast and observed ecoclimatic conditions 
across lead times and years, generated through: (a) “real- time” technique that simulated real- time data availability, where projected D- SDMs were 
trained on all data available up until that respective hindcast's initiation date; and (b) “maximal” technique, where D- SDMs projected onto hindcast 
ecoclimatic conditions were trained on all available training data from the study period but excluding from the respective hindcast's period. All 
Pearson correlation tests were statistically significant (p < 0.05).
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4   |   Discussion

Under ongoing climate change, adaptive management strat-
egies are needed to mitigate the negative impacts of extreme 

weather events that are intensifying worldwide. Extreme 
weather events drive rapid and unforeseen changes in mo-
bile species distributions, exacerbating management chal-
lenges for these pivotal species and their associated impacts. 

FIGURE 4    |    Distribution suitability for Q. quelea across southern Africa early in the breeding season (1 January) under non- drought (2008) and 
extreme drought conditions (2016, Figure S5). Distribution suitability of 1 represents the most suitable for quelea, and 0 represents no suitability for 
quelea. Suitability under hindcast conditions was generated at 1- month lead time using the “real- time” dynamic species distribution models (D- 
SDM). Suitability under observed conditions was generated using the “baseline” D- SDM. The correlation between hindcast and observed suitability 
(r) is annotated (p < 0.05 for both). Map lines delineate study areas and do not necessarily depict accepted national boundaries.

FIGURE 5    |    Mean correlation of near- term hindcasts of ecoclimatic variables with observed remote- sensed values across lead times and years. 
Standard deviations and statistical significances are reported in Tables S10 and Table S13.
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Near- term forecasts of mobile species distributions could 
anticipate changes under extreme weather events to inform 
more effective, adaptive management. Here, we demonstrate 
that distribution changes of a terrestrial mobile species during 
extreme weather events can be forecast accurately and at 
high spatiotemporal resolution, up to 7 months in advance. 
Robust D- SDM performances were driven by explanatory 
variables targeted to species ecology, suggesting that our ap-
proach could be readily applied to other species. Our results 
indicated that forecast uncertainty may be higher following 
extreme weather events, although we showed that additional 
training data could enhance performance. Overall, we found 
forecast accuracy was robust for providing timely warnings 
to decision- makers for adaptive management during extreme 
weather events.

4.1   |   Forecast Utility for Adaptive Management

This study aimed to explore factors driving near- term distri-
bution forecast uncertainty using hindcast data. We focused 
on the predictability of local weather phenomena and extreme 
events, as well as the influence of model structure and inputs. 
Our results showed that underlying ecoclimatic variables were 
consistently accurately hindcast throughout the study period, 
closely matching high- resolution observed conditions, with 
performance remaining stable even during extreme weather 
events. Consequently, we found that D- SDM training data-
set size and composition had the largest impact on hindcast 
uncertainty. In general, as the training dataset grew, model 
performance increased, leading to closer alignment between 
projected and observed hindcast outputs. However, this effect 
plateaued after the dataset reached approximately 3000 breed-
ing and 6000 non- breeding records (by 2009). Subsequently, 
the performances of real- time and maximal models con-
verged, despite one using future data and the other relying 
solely on historical data. Maximal hindcasts were expected to 
consistently perform better due to their larger training data-
set, which closely aligned with the baseline models' training 
datasets. However, the observed convergence in performances 
suggests that beyond a certain point, additional training data 
do not considerably enhance model learning or alter identified 
relationships. This presents an encouraging outlook for future 
forecasting efforts: while initial data scarcity may limit fore-
cast accuracy, long- term monitoring could provide sufficient 
data to effectively inform management.

By employing the maximal hindcast approach, we explored 
inter- annual variations in hindcast performance across the 
study period, without the confounding effect of training data-
set sizes increasing over time. This approach was supported 
by the convergence between real- time and maximal hindcasts 
once the historical dataset reached a sufficient size. In general, 
we observed strong performance of maximal D- SDMs across 
the study period, largely driven by the seed abundance explan-
atory variable, which represented the ephemeral availability 
of queleas' primary food. This followed expectations that in-
corporating explanatory variables that matched the drivers of 
quelea movements would enhance D- SDM performance (cf. 
Runge et  al.  2015; Bateman, Vanderwal, and Johnson  2012; 
Burke et  al.  2019; Kass et  al.  2020). Nevertheless, despite 

underlying variables also being consistently well- hindcasted, 
we observed a weaker relationship between projections by 
maximal D- SDMs and projections by baseline D- SDMs, 
during the extreme drought event of 2005/2006. The differ-
ence was that baseline D- SDMs were also trained on occur-
rence records from the hindcast periods during the extreme 
drought. This suggests that occurrence records from extreme 
weather events altered the modelled relationships. This could 
be due to quelea exhibiting novel occurrence- environment re-
lationships in response to drought conditions (Elliott  1990). 
Consequently, although overall hindcast performance ap-
proaches an asymptote over time, we recommend that fore-
casters update D- SDMs as new conditions are experienced to 
capture these novel relationships and minimise forecast un-
certainty during extreme weather events.

One benefit of near- term forecasting for adaptive management 
is the ability to have longer lead times to facilitate proactive 
(rather than reactive) decision- making (Dietze et  al.  2018). 
Evaluating forecast accuracy at a lead time that is relevant 
for decision- making is therefore important. Lead times be-
yond which forecasts are not considered useful due to high 
uncertainty vary with target species and management aim. 
For example, in marine systems, lead times have been noted 
to range between two to four months (Eveson et  al.  2015; 
Hobday et  al.  2016), eight months (Malick et  al.  2020) and 
twelve months (Brodie et al. 2023). For forecasting near- term 
blue whale Balaenoptera musculus distributions, to inform 
dynamic adjustment of industrial activities and protect forag-
ing grounds, forecast accuracy at 3- week lead- time is critical 
(Barlow and Torres  2021). Whereas, for agronomic changes 
to manage yield loss to quelea, the forecast accuracy at lead 
times beyond one month is more relevant (Cheke, Venn, and 
Jones 2007). In southern Africa, planting decisions for wheat 
are normally made five months before this staple cereal crop 
is ready to harvest and becomes vulnerable to quelea dam-
age (Elliott  1990). Here, we showed that quelea distribution 
could be forecast with strong accuracy up to seven months 
in advance; hence, our forecasts have high potential utility. 
Nevertheless, the accuracy of distribution hindcasts generated 
during and after the major drought of 2005 was notably lower 
at lead times beyond 14 weeks. Despite the relatively modest 
difference in accuracy, uncertainty may be increased at higher 
lead times during extreme events.

To inform management decisions effectively, near- term fore-
casts need to accurately anticipate species distributions at an 
appropriate spatial and temporal resolution. The required 
spatiotemporal resolution will vary with mobile species and 
management aim. For instance, higher resolution can benefit 
targeted conservation efforts, as seen in daily 0.01° forecasts for 
blue whale protection (Barlow and Torres 2021), while coarser 
resolutions, like monthly 1° forecasts of commercial fish for 
anglers, may prevent overexploitation (Brodie et al. 2017). In 
this study, we generated pest distribution forecasts at 0.05° 
spatial resolution and 2- week intervals up to seven months 
ahead, capturing local- scale distribution changes for highly 
targeted management. Targeting sites and times for man-
agement with high precision can prevent unnecessary or 
ineffective actions, maximising overall management effi-
ciency. However, when generating high- resolution ecological 
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forecasts, there are associated trade- offs in computation time, 
data cost, and forecast uncertainty (Doblas- Reyes et al. 2013). 
Whilst open- source meteorological forecast datasets, which 
underpin ecological forecasts, are typically available at sub- 
daily temporal resolutions, spatial resolutions are relatively 
coarse, typically around 1° (Hudson et  al.  2013; Johnson 
et  al.  2019). Consequently, when ecological forecasting, em-
pirical downscaling and spatial interpolation techniques are 
often employed to achieve higher spatial resolutions (Maraun 
and Widmann 2018; Hijmans et al. 2005). Yet, these derived 
meteorological forecasts may not capture small- scale phenom-
ena and local- scale variations as accurately as a native high- 
resolution dataset. With technological advancements over 
time, we anticipate improved accessibility of such datasets, 
which will enable mobile species distributions to be forecast 
with even higher precision and accuracy for management.

Our forecasts provide stakeholders with dynamic estimates of 
environmental suitability for each grid cell, with higher values 
indicating a greater likelihood of species presence. Forecasts 
of species abundance could provide richer information on spe-
cies population dynamics and associated impacts for informing 
management decisions (Howard et al. 2014; Kleiven et al. 2018). 
In theory, higher suitability values indicate areas where envi-
ronmental conditions are more favourable for a mobile species 
and therefore, may harbour higher abundances (Vanderwal, 
Shoo, Johnson, and Williams 2009). Our results indicated a 
positive and significant relationship between suitability and 
abundance, as expected. However, the strength of this relation-
ship was limited, likely due to different relationships between 
species abundance and the environment compared to species 
occurrence (Weber et  al.  2017). Additionally, there were few 
mid- range points for evaluation due to standardised abundance 
records from pest control surveys typically recording either high 
pest abundance or absence. Future studies could train D- SDMs 
on abundance data to identify these relationships and forecast 
species abundance (Howard et al. 2014). Currently, for our study 
species, there is not sufficient data to train these relationships 
effectively for large- scale forecasting. For now, forecasts of dis-
tribution suitability serve as a strong proxy for anticipating im-
pacts, particularly in agricultural areas where a high likelihood 
of occurrence indicates a considerable risk of pest influx.

Here, we generated near- term distribution forecasts of a highly 
mobile crop pest. Yet, this approach is widely applicable. Mobile 
species are found in diverse ecosystems worldwide and their 
movements can vary across a broad spectrum, from highly ir-
regular and nomadic wandering in arid environments, to reg-
ular and seasonal migrations between continents (Teitelbaum 
and Mueller 2019; Alerstam, Hedenström, and Åkesson 2003). 
However, a shared characteristic among mobile species is that 
movements are driven by fluctuations in environmental con-
ditions, including short- term weather conditions and resource 
availability (Jonzén et al. 2011), as individuals avoid poor con-
ditions and seek suitable sites. Consequently, under extreme 
weather, mobile species often opt to, or find themselves com-
pelled to, alter movement routes, destinations, and schedules, 
from mammals seeking alternative routes during extreme snow-
fall (Rosqvist, Inga, and Eriksson 2022), to migratory birds ex-
periencing delayed arrival to breeding grounds during extreme 
drought (Tøttrup et al. 2012). Given our findings, we expect that 

operational near- term forecasts could be generated for other 
mobile species requiring adaptive management by targeting D- 
SDM explanatory variables to that species' ecology. Near- term 
forecasts are available for diverse ecoclimatic variables that 
drive mobile species distributions (e.g., Copernicus Climate 
Change Service 2018). For instance, near- term forecasts of water 
availability and vegetation greening in Outback Australia could 
help forecast rare breeding events by ephemeral wetland species 
(Gentilli and Bekle 1983), whilst snow density and depth fore-
casts could be utilised for vulnerable mobile mammal species in 
the Arctic (Rosqvist, Inga, and Eriksson 2022).

4.2   |   Management Implications Under Extreme 
Weather

Adaptive management of mobile organisms involves the imple-
mentation of transient action as their populations move across 
the landscape (Reynolds et al. 2017; Runge and Tulloch 2018). 
By anticipating distribution changes under extreme weather 
events, these dynamic actions can be proactive, which is ex-
pected to be more effective and cost- efficient than reactive 
actions (Dietze et  al.  2018). Therefore, near- term distribution 
forecasts could more effectively mitigate the negative impacts 
associated with rapid and unforeseen changes in mobile spe-
cies distributions under extreme weather—for instance, by pre-
paring conservation measures for threatened mobile species 
(Runge et al. 2014; Boult 2023), or preparing control of mobile 
pests and pathogens for vulnerable communities or ecosystems 
(Zhang et  al.  2019). For adaptive management of quelea, our 
near- term forecasts could identify sites that are at high risk of 
pest occurrence during typical and extreme weather events to 
target control operations before crop damage occurs, or inform 
farmers of upcoming risks for agronomic management, includ-
ing altering crop planting schedules or switching to crops that 
are less susceptible to damage. Such interventions could be 
more efficient than current practices at mitigating pest- driven 
yield loss during extreme drought events (Cheke and El Hady 
Sidatt 2019). The timely development of analogous strategies for 
other mobile species could prove critical to the mitigation of cli-
mate change impacts.

To implement near- term forecasts for adaptive management, 
forecast output must be accessible and comprehensible to rel-
evant stakeholders (Dietze et  al.  2018). This can be achieved 
using diverse methods (Hobday et al. 2016). The method chosen 
typically depends on the stakeholders of interest and sensitiv-
ity to the information, which could be particularly important 
when forecasting the distribution of vulnerable or overexploited 
mobile species (Brodie et  al.  2017). Moreover, it is important 
that forecasts are communicated transparently with the level 
of uncertainty stated clearly for informed decision- making by 
stakeholders. Currently, there are many platforms available for 
freely developing and sharing code for near- term distribution 
forecasting, such as R (https:// www. r-  proje ct. org/ ) and GitHub 
(https:// github. com/ ). Such code could be automated using con-
tinuous integration tools (White et al. 2019), such as Travis CI 
(https:// www. travi s-  ci. com/ ) and Docker Hub (https:// hub. 
docker. com/ ). Indeed, this cyberinfrastructure could be uti-
lised to iteratively and automatically update forecasting mod-
els with occurrence records as novel ecoclimatic conditions are 
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experienced under ongoing climate change, which, according to 
our results, is crucial to robust forecast performance. However, 
there are currently barriers to using such platforms, including 
the complexity of setting up iterative forecasting systems, and 
the limitations in computational resources without cost (White 
et al. 2019). Amidst growing demand for ecological forecasts as 
extreme weather events intensify worldwide, practical cyberin-
frastructure and standardised approaches for sharing forecast 
output will need to become more available (Dietze et al. 2018).

5   |   Conclusion

Looking ahead, we see great potential for near- term distribution 
forecasts to be developed and used for terrestrial mobile species, 
to better understand and manage species in dynamic systems 
amidst ongoing climate change. Such work will help to assess 
the generality and reproducibility of our findings from the cur-
rent study. At the same time, we acknowledge the need for the 
development of practical cyberinfrastructure, to better integrate 
near- term forecasts into management frameworks for species. 
With extreme and novel weather conditions being increasingly 
experienced globally, managers need to account for the conse-
quent forecast uncertainties when using such models to inform 
decision- making. Our work suggests that continually updating 
models with data that include contemporary extreme events will 
minimise these uncertainties. Overall, we anticipate that with 
advancing data availability over time, near- term distribution 
forecasts will become integral to the effective adaptive manage-
ment of mobile species worldwide to mitigate impacts of extreme 
weather events.
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