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Abstract

We consider the Min-r-Lin(Zm) problem: given a system S of length-r linear equations modulo m,
find Z ⊆ S of minimum cardinality such that S − Z is satisfiable. The problem is NP-hard and
UGC-hard to approximate in polynomial time within any constant factor even when r = m = 2.
We focus on parameterized approximation with solution size as the parameter. Dabrowski, Jonsson,
Ordyniak, Osipov and Wahlström [SODA-2023] showed that Min-2-Lin(Zm) is in FPT if m is prime
(i.e. Zm is a field), and it is W[1]-hard if m is not a prime power. We show that Min-2-Lin(Zpn )

is FPT-approximable within a factor of 2 for every prime p and integer n ≥ 2. This implies that
Min-2-Lin(Zm), m ∈ Z

+, is FPT-approximable within a factor of 2ω(m) where ω(m) counts the
number of distinct prime divisors of m. The high-level idea behind the algorithm is to solve tighter
and tighter relaxations of the problem, decreasing the set of possible values for the variables at
each step. When working over Zpn and viewing the values in base-p, one can roughly think of
a relaxation as fixing the number of trailing zeros and the least significant nonzero digits of the
values assigned to the variables. To solve the relaxed problem, we construct a certain graph where
solutions can be identified with a particular collection of cuts. The relaxation may hide obstructions
that will only become visible in the next iteration of the algorithm, which makes it difficult to find
optimal solutions. To deal with this, we use a strategy based on shadow removal [Marx & Razgon,
STOC-2011] to compute solutions that (1) cost at most twice as much as the optimum and (2) allow
us to reduce the set of values for all variables simultaneously. We complement the algorithmic result
with two lower bounds, ruling out constant-factor FPT-approximation for Min-3-Lin(R) over any
nontrivial ring R and for Min-2-Lin(R) over some finite commutative rings R.
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1 Introduction

Systems of linear equations are ubiquitous in computer science and mathematics [16] and

methods like Gaussian elimination can efficiently solve linear systems over various rings.
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Equations and congruences over the ring of integers modulo m (Zm) are of central importance

in number theory, but also have many applications in computer science, including complexity

theory, coding theory, cryptography, hash functions and pseudorandom generators, see

e.g. [3, 9, 11, 33]. Linear equations over modular rings can be solved in polynomial time, but

the methods are not suited to dealing with inconsistent systems of equations. We consider

the Min-r-Lin(R) problem which asks to find an assignment to a system of linear equation

over the ring R that violates the minimum number of equations, and where each equations

contains at most r distinct variables. This problem is NP-hard even when r = 2 and R

is the simplest nontrivial ring Z2 [23]. We note that Min-r-Lin(R) for r ∈ N and finite

ring R is a special case of MinCSP(Γ) for a finite constraint language Γ. This, and the

more general Valued CSP, have been widely studied from many different perspectives,

e.g. [4, 6, 22, 23, 31, 32].

Two common ways of coping with NP-hardness are approximation and parameterized

algorithms, but neither of them seems sufficient in isolation to deal with Min-r-Lin(Zm).

Even Min-2-Lin over finite fields such as Z2 is conjectured to be NP-hard to approximate

within any constant factor under the Unique Games Conjecture (UGC) [20]: see Definition 3

in [21] and the discussion that follows. The natural parameter for Min-r-Lin(Zm) is the

cost of the optimal solution (i.e. the number of equations not satisfied by it), which we

denote by k. Under this parameterization, Min-2-Lin(Zm) is fixed-parameter tractable

when m is a prime, i.e. Zm is a field, but W[1]-hard when m is not a prime power. Moreover,

the problem Min-3-Lin is W[1]-hard for every nontrivial ring [8]. This motivates us to

study parameterized approximation algorithms [14, 27]. This approach has received rapidly

increasing interest (see, for instance, [13, 17, 18, 25, 26, 30]). Let c ≥ 1 be a constant. A

factor-c FPT-approximation algorithm takes an instance (I, k), runs in O∗(f(k))1 time for

an arbitrary computable function f , either returns that there is no solution of size at most k

or returns that there is a solution of size at most c · k. Thus, there is more time to compute

the solution (compared to polynomial-time approximation) and the algorithm may output

an oversized solution (unlike an exact FPT algorithm). 2 Our main result is the following.

Let ω(m) be the number of distinct prime factors of m.

▶ Theorem 1. For every m ∈ Z+, Min-2-Lin(Zm) is FPT-approximable within 2ω(m).

We complement the result with two lower bounds. First, we show that allowing three or

more variables per equation leads to W[1]-hardness of constant-factor approximation.

▶ Theorem 2. Min-3-Lin(R) over every nontrivial ring R is W[1]-hard to approximate

within any constant factor.

This result strengthens two previously known hardness results: (i) Min-3-Lin(R) is

W[1]-hard [8] and (ii) Min-3-Lin(R) is NP-hard to approximate within any constant (which

can easily be derived from [19]). While we focus on rings of the form Zm, the result of

Theorem 1 begs the questions whether Min-2-Lin(R) is FPT-approximable within a constant

factor for every finite commutative ring R. We answer this question in the negative.

1 The notation O∗(·) hides polynomial factors in the input size.
2 A decision c-approximation procedure for Min-2-Lin(Zm) can be turned into an algorithm that returns

a c-approximate solution using self-reducibility: if (S, k) is a yes-instance, then there exists a subset
S′ ⊆ S, |S′| ≤ c, such that (S − S′, k − 1) is a yes-instance; moreover, such S′ can be found by iterating
over all subsets of size at most c, which incurs a polynomial overhead on the running time of the
algorithm.
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▶ Theorem 3 (See Theorem 17 for a more detailed statement.). There exist finite commutative

rings R such that Min-2-Lin(R) is W[1]-hard to approximate within any constant factor.

Theorems 5.2 and 6.2 in [8] leave open the question of whether Min-2-Lin(Zpn) is FPT or

W[1]-hard for a prime p and n ≥ 2. The answer is unknown even for the smallest such ring –

Z4. While our result implies that Min-2-Lin(Zpn) is FPT-approximable within a factor of 2,

its exact parameterized complexity remains an intriguing open problem.

Full proofs for the results marked with a ⋆ can be found in the full version of the paper.

Another version of this paper is available on arXiv [7]; it considers a broader class of rings,

but gives worse approximation factors.

2 Preliminaries

For the basics of graph theory and parameterized complexity, we refer to [10, 12, 15, 29].

An expression c1 · x1 + · · · + cr · xr = c is a (linear) equation over R if c1, . . . , cr, c ∈ R

and x1, . . . , xr are variables with domain R. This equation is homogeneous if c = 0. Let S be

a set (or equivalently a system) of equations over R. Let V (S) denote the variables in S, and

we say that S is consistent if there is an assignment φ : V (S) → R satisfying all equations

in S. An instance of the computational problem r-Lin(R) is a system S of equations in

at most r variables over R, and the question is whether S is consistent. Linear equation

systems over Zm are solvable in polynomial time and the well-known procedure is outlined,

for instance, in [1, p. 473]. We now define the computational problem when we allow some

equations in an instance to be soft (i.e. deletable at unit cost) and crisp (i.e. undeletable).

Min-r-Lin(R)

Instance: A (multi)set S of equations over R with at most r variables per
equation, a subset S∞ ⊆ S of crisp equations and an integer k.

Parameter: k.
Question: Is there a set Z ⊆ S \S∞ such that S −Z is consistent and |Z| ≤ k?

We use crisp equations for convenience since they can be modelled by k + 1 copies of

the same soft equation. For an assignment α : V (S) → R, let costS(α) be ∞ if α does not

satisfy a crisp equation and the number of unsatisfied soft equations otherwise. We drop the

subscript S when it is clear from context. We write mincost(S) to denote the minimum cost

of an assignment to S.

3 FPT-Approximation Algorithm

3.1 Algorithm Summary

Let pn1

1 · · · pnℓ

ℓ be the prime factorization of m ∈ Z+. It is well known that Zm is isomorphic

to the direct sum
⊕ℓ

i=1 Zp
ni
i

, and we can reduce the problem to the prime power case.

▶ Proposition 4 (⋆). Suppose that the ring R is isomorphic to a direct sum
⊕ℓ

i=1 Ri. If

Min-2-Lin(Ri) is FPT-approximable within a factor ci for all i ∈ [ℓ], then Min-2-Lin(R) is

FPT-approximable within a factor
∑ℓ

i=1 ci.

Now, consider the ring Zpn for a prime p and positive integer n. We start with a

simplification step. An equation over a ring R is simple if it is either a binary equation of

the form u = rv for some r ∈ R or a crisp unary equation u = r for some r ∈ R. An instance

S of 2-Lin(R) is simple if every equation in S is simple.

ESA 2025
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Figure 1 Graphs Be corresponding to equations x = 1 · y, x = 2 · y, x = 3 · y and x = 4 · y.

▶ Lemma 5 (⋆). Let m be positive integer and c be a constant. If Min-2-Lin(Zm) restricted

to simple instances is FPT-approximable within a factor c, then Min-2-Lin(Zm) on general

instances is FPT-approximable within a factor c.

Now, suppose n = 1, i.e. we are working over a field Zp. Min-2-Lin(Zp) can be solved

exactly in FPT time (see. [8]); we will show a 2-approximation because it is illustrative of our

approach. For an instance S of 2-Lin(Zp), we construct a graph G = G(S) with vertices xi for

every x ∈ V (G) and 1 ≤ i ≤ p − 1 and special vertices s and t. For unary equations x = r in

S, add crisp edges sxr if r ≠ 0, and crisp edges xrt for every 1 ≤ r ≤ p − 1 if r = 0. For every

binary equation e of the form x = r · y, construct an edge bundle Be = ¶xriyi : 1 ≤ i ≤ p − 1♢

and add these edges to G. This completes the construction. We establish a correspondence

between conformal st-cuts in G(S) and assignments to S. Formally, for a set of vertices

X ⊆ V (G), let δ(X) be the set of edges with exactly one endpoint in X, i.e. δ(X) is the

cut separating X and X. If U ⊆ V (G) is such that s ∈ U , t /∈ U and there is at most one

vertex xi ∈ U for any x ∈ V (S), we say that δ(U) is a conformal st-cut. To construct an

assignment from a conformal cut U , map x 7→ i whenever xi ∈ U for some i ∈ ¶1, . . . , p − 1♢,

and otherwise x 7→ 0; the reverse direction of the correspondence is obvious.

Let b(U) be the number of edge bundles Be intersected by δ(U). Then R being a field

implies that b(U) is exactly the cost of the assignment corresponding to U . More specifically,

consider an equation e = (x = r · y), suppose xi, yj ∈ U and Be ∩ δ(U) = ∅. Then i = rj

because the edge xrjyj is uncut and both its endpoints are reachable from s, so the assignment

corresponding to U satisfies e. This guarantee is represented by Be being a matching: view

an edge xiyj as encoding “x = i if and only if y = j”. To complete the algorithm for fields,

we compute a conformal cut δ(U) with b(U) ≤ k. Observe that b(U) ≤ k implies δ(U) ≤ 2k

because U contains at most one vertex per variable so δ(U) may intersect at most two edges

of any bundle. Thus, for 2-approximation it suffices to compute a conformal cut of size 2k,

which is guaranteed to exist for yes-instances. However, when translating it back into a set of

equations, we may delete 2k equations because all edges of our conformal cut may intersect

distinct bundles. Finally, to compute a conformal cut in FPT time, we may use branching

in the style of Digraph Pair Cut [24]: compute the closest st-cut (which is unique by

submodularity of cuts), and if it is not conformal, then branch.

If we use the same approach naïvely over Zpn , n ≥ 2, then the bundles Be stop being

matchings. Consider the equation e = (x = 2y) over Z8 (second graph from the left in

Figure 1). Note that both y2 and y6 are adjacent to x4 in Be. Moreover, if x = 4 then

either y = 2 or y = 6 so the dependencies cannot be captured by binary edges (even if one

were to use directed graphs). Thus, we lose the connection between the number of bundles

intersected by a conformal cut and the cost of the corresponding assignment. One idea for

solving Min-2-Lin(Zpn) is to retain the “if and only if” semantics of an edge by matching
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sets of values rather than individual values. More specifically, let us partition ¶1, . . . , pn − 1♢

into classes C1, . . . , Cℓ and build G(S) with vertices s, t and xC1
, . . . , xCℓ

for all x ∈ V (S).

To keep the matching structure for an equation e, we want an edge xCi
yCj

in Be to mean

“x ∈ Ci if and only if y ∈ Cj”. For fields, we have used the most refined partition (every

nonzero element is a class of its own). For other rings, a coarser partition is needed: e.g.

if R = Z8, then 2 and 6 have to be in the same class (think of x = 2y). However, simply

taking a coarser partition is not sufficient: indeed, the coarsest partition (putting all non-zero

elements in the same class) has the required structure, but it only distinguishes between zero

and nonzero values, and is not very useful algorithmically. Intuitively, we want to a partition

such that a class assignment over Zpn allows us to rewrite our input as a set of equations

over Zpn−1 without increasing the cost too much.

A useful partition is obtained by viewing the elements of Zpn represented in base-p.

Formally, every element a ∈ Zpn equals
∑p−1

i=0 aip
i, where the coefficients a0, . . . , ap−1 ∈ Zp

uniquely define a. Let a⃗ = (a0, . . . , ap−1), and for every a ̸= 0, define ord(a) = min¶i : ai ≠ 0♢

to be the index of the first nonzero coordinate in a⃗, and lsu(a) = rord(a) to be the least

significant unit in a⃗. For completeness, let ord(0) = lsu(0) = 0. Let

a ≡ b ⇐⇒ ord(a) = ord(b) and lsu(a) = lsu(b).

This equivalence relation has two important properties. First, it is matching, i.e. ¶0♢ is an

equivalence class, and for every i, j ∈ Zpn and r ∈ Zpn ,

if i ≡ j then ri ≡ rj,

if i ̸≡ j, then either ri ̸≡ rj or ri = rj = 0.

Moreover, it is absorbing, meaning that

i ≡ j =⇒ p divides i − j for all i, j ∈ Zpn .

Let Γpn denote the set of equivalence classes of ≡, and Γ̸=0
pn = Γpn \ ¶¶0♢♢. We will

drop the subscript when it is clear from the context. The name “matching” comes from

considering bipartite graphs G ̸=0
r defined by binary equations u = rv for every r ∈ R as

follows: let V (Gr) = Γ̸=0 ⊎ Γ ̸=0 and let there be an edge between two classes C1 on the left

and C2 on the right if and only if i = rj for some i ∈ C1 and j ∈ C2. Then ≡ being matching

implies that G ̸=0
r is a matching for every r, i.e. every vertex has degree at most 1.

▶ Example 6. Partition Γ32 (with elements written in base-3) has classes

¶013, 113, 213♢, ¶023, 123, 223♢, ¶103♢, ¶203♢, ¶003♢.

For another example, Γ23 has classes

¶0012, 0112, 1012, 1112♢, ¶0102, 1102♢, ¶1002♢, ¶0002♢.

For a non-example, a coarser partition of Z23 into three classes

¶0012, 0112, 1012, 1112♢, ¶0102, 1102, 1002♢, ¶0002♢.

lacks the matching property (as is evident from the equation x = 2y in Figure 1).

The matching property of ≡ is crucial for the main algorithmic lemma, which we state

below and prove in Section 3.2. A value assignment α : V (S) → Zpn agrees with a class

assignment τ : V (S) → Γ if α(v) ∈ τ(v) for all v ∈ V (S). A class assignment τ respects an

equation e if it admits a satisfying assignment that agrees with τ , otherwise we say that

τ violates e. Define the cost of a class assignment τ to be the number of equations in S

ESA 2025
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that it violates. Note that every value assignment α uniquely defines a class assignment

τα : V (S) → Γpn , so we say that α strongly violates an equation e if τα violates e. Clearly,

an optimal assignment can violate at most k equations in S, and we can guess the number

q ∈ ¶0, . . . , k♢ of strongly violated equations.

▶ Lemma 7. Let p be a prime, n be a positive integer, and let k and q be integers with k ≥ q.

There is a randomized algorithm that takes a simple instance S of 2-Lin(Zpn) and integers k

and q as input, and in O∗(2O(k log k)) time returns a class assignment τ : V (S) → Γpn such

that the following holds. Let Y be the set of equations in S violated by τ . If S admits an

assignment that strongly violates q equations and has cost k, then with probability at least

2−O(q2), ♣Y ♣ ≤ 2q and S − Y admits an assignment of cost at most k − q that agrees with τ .

While technical details are deferred to Section 3.2, we remark that we can no longer use

branching in the style of Digraph Pair Cut when working over non-fields since some

conformal cuts of low cost correspond to class assignments of high cost. For an extreme

example over Z8, consider the system of equations △ = ¶x = 4, 2a = x, 3a = b, 3b = c, 3c = a♢.

By the construction of G(△), the vertex t is isolated and the connected component U of s

contains vertices s, x¶4♢, a¶2,6♢, b¶2,6♢ and c¶2,6♢. Hence, δ(U) is empty and conformal, but

the cost of △ is at least 1 because the system is inconsistent (this follows from considering

both possible values for a, which are 2 and 6). In fact, the cost is exactly 1 because it is

sufficient to delete 2a = x. To mitigate this issue of “invisible” future costs, we use shadow

removal in the class assignment graph followed by branching on the shadow components.

Now, to explain how the absorbing property of ≡ is used, we need some definitions.

Choose an arbitrary representative element C∼ from every equivalence class C ∈ Γ. Consider

a simple equation e and a class assignment τ : V (e) → Γ to its variables that respects e. For

unary equations e = (u = r), define e′ = next(e, τ) to be

u′ =
r − τ(u)∼

p
.

For binary equations e = (u = rv), define e′ = next(e, τ) to be

u′ = rv′ +
rτ(v)∼ − τ(u)∼

p
.

The absorbing property implies that next(e, τ) is defined in both cases. Indeed, if e = (u = r)

and τ respects e, then r ∈ τ(u) and r ≡ τ(u)∼, so p divides r − τ(u)∼. If e = (u = rv) and τ

respects e, then there is an assignment α : ¶u, v♢ → Zpn such that α(u) = rα(v), α(u) ∈ τ(u)

and α(v) ∈ τ(v). Equivalently, α(u) − rα(v) = 0 and p divides both τ(u)∼ − α(u) and

τ(v)∼ − α(v), hence p also divides any linear combination of these two values, particularly

r(τ(v)∼ − α(v)) − (τ(u) − α(u)∼) = rτ(v)∼ − τ(u)∼ + (α(u) − rα(v)) = rτ(u)∼ − τ(v)∼.

▶ Lemma 8 (⋆). Let p be a prime and n ∈ Z+. Let e be a simple equation over Zpn , and

τ : V (e) → Γ be a class assignment. Then τ respects e if and only if next(e, τ) is satisfiable

over Zpn−1 .

Now we combine all ingredients to prove the main theorem.

▶ Theorem 1. For every m ∈ Z+, Min-2-Lin(Zm) is FPT-approximable within 2ω(m).

Proof sketch. Let m = pn1

1 · · · pnℓ

ℓ be the prime factorization of m. Note that ω(m) = ℓ,

so by Proposition 4, it suffices to show that Min-2-Lin(Zpn) is FPT-approximable within
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factor 2 for every prime p and positive integer n. We proceed by induction on n. If n = 1,

then we can use the algorithm of [8] for Min-2-Lin over fields to solve the problem exactly.

Otherwise, let (S, k) be an instance of Min-2-Lin(Zpn). By Lemma 5, we may assume

without loss of generality that S is simple.

Guess q ∈ ¶0, . . . , k♢ and run the algorithm from Lemma 7 on (S, k, q) to produce a class

assignment τ : V (S) → Γpn . Let Y be the set of equations in S violated by τ . If ♣Y ♣ > 2q, then

reject (S, k). Otherwise, create an instance S′ of 2-Lin(Zpn−1) with V (S′) = ¶v′ : v ∈ V (S)♢

and S′ = ¶next(e, τ) : e ∈ S − Y ♢. Set k′ = k − q and pass (S′, k′) as input to the algorithm

for Min-2-Lin(Zpn−1), and return the same answer.

Correctness of the algorithm follows from Lemmas 7 and 8. On the one hand, if (S, k)

is a yes-instance admitting an optimal assignment that strongly violates q equations, then

our guess for q is correct with probability 1/(k + 1), and the instance S′ we produce from

S − Y has cost at most k − q. On the other hand, if we obtain a 2-approximate solution for

S′, then translating it back into a solution for S − Y of size ≤ 2(k − q) and combining with

Y , which is of size ≤ 2q, yields a solution for S of size ≤ 2k. ◀

3.2 Computing Class Assignments

This subsection is devoted to a proof of Lemma 7. To achieve this we introduce the class

assignment graph (Section 3.2.1) and show that certain cuts in this graph correspond to class

assignments (Section 3.2.2), which themselves correspond to solutions of Min-2-Lin(Zpn).

We then use shadow removal and branching to compute these cuts (Section 3.2.3). Throughout

this section, we consider the ring Zpn for prime number p and integer n.

3.2.1 The Class Assignment Graph

In what follows, let (S, k) be a simple instance of Min-2-Lin(Zpn) and let ≡ be the matching

and absorbing equivalence relation on Zpn defined in Section 3.1. Without loss of generality,

we assume that every equation of S is consistent (otherwise we can remove the equation and

decrease k by 1) and non-trivial (otherwise we can remove the equation). We first use the

matching property of ≡ to define the mapping πe : Γpn → Γ̸=0
pn between equivalence classes

for any equation e = (ax = y) with a ∈ Zpn \ ¶0♢, as follows. For every C ∈ Γpn , we set:

πe(C) = 0 if ar = 0 for every r ∈ C and

πe(C) = D otherwise, where D is the unique equivalence class such that e maps C to D.

This is uniquely defined since ≡ has the matching property.

For an equation e = (x = a) with a ∈ Zpn , we let πe be the unique equivalence class Γpn(a)

consistent with e. We can now define the class assignment graph G = G(S); see Figure 2 for

an illustration. The graph G has two distinguished vertices s and t together with vertices xC

for every x ∈ V (S) and every non-zero class C ∈ Γ ̸=0
pn . Moreover, G contains the following

edges for each equation.

For an equation e = (ax = y) do the following. For every C ∈ Γpn , add the edge xCyπe(C)

if πe(C) ̸= 0. For every D ∈ Γ̸=0
pn such that π−1

e (D) is undefined, add the edge yDt.

For a crisp equation e = (x = 0), add the crisp edge xCt for every class C ∈ Γ ̸=0
pn .

For a crisp equation e = (x = b), where b ̸= 0 , add the crisp edge sxπe
.

Intuitively, every node of G corresponds to a Boolean variable and every edge e of

G corresponds to an “if and only if” between the two Boolean variables connected by e.

Moreover, every assignment φ of the variables of S naturally corresponds to a Boolean

assignment, denoted by φG of the vertices in G by setting s = 1, t = 0, and:
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s

bO dE
rE uE dO

aO cE uO rO cO

t

b = 1
2b = d d = r r = u

a = 1
2a = c c = 2u u = r

c = 2a

c = 2u

d = 2b

Figure 2 Let S be the instance of 2-Lin(Z4) with variables a, b, c, d, u, r and equations a = 1,
b = 1, 2a = c, c = 2u, u = r, 2b = d, and d = r. The figure illustrate the class assignment graph
G = G(S). Note that ≡ has only two non-zero equivalence classes, namely, E = {2} and O = {1, 3}.
Every edge of G is annotated with the equation that implies it. A minimum conformal st-cut is given
by the two edges that correspond to the equation u = r and corresponds to the class assignment
a = O, b = O, c = E, d = E, u = O, and r = E. Note that G has only one minimal conformal
st-cut closest to s, namely {aOcE , bOdE}. This st-cut corresponds to the class assignment a = O,
b = O, and c = d = u = r = 0. Therefore, the optimum solution for S only removes the equation
u = r, however, any solution that corresponds to a minimum conformal st-cut closest to s has to
remove the equations 2a = c and 2b = d.

if φ(x) belongs to the non-zero class C, then we set xC = 1 and xC′ = 0 for every non-zero

class C ′ not equal to C,

if φ(x) = 0, we set xC = 0 for every non-zero class C.

We say that an edge e of G is satisfied by φ if φG satisfies the “if and only if” Boolean

constraint represented by that edge.

▶ Observation 9. Let S be a simple instance of 2-Lin(Zpn), let φ be an assignment of S

and pick e ∈ S. If φ satisfies e, then φG satisfies all edges corresponding to e in G(S).

3.2.2 Cuts in the Class Assignment Graph

In this section, we introduce conformal cuts and show how they relate to class assignments

and solutions to Min-2-Lin(Zpn) instances. Let S be a simple instance of 2-Lin(Zpn) and

G = G(S). An st-cut Y in G is conformal if for every variable x ∈ V (S) at most one vertex

xC for some C ∈ Γ ̸=0
pn is connected to s in G − Y . Please refer to Figure 2 for an illustration

of conformal cuts in the class assignment graph. If Y is a conformal st-cut in G, then we say

that a variable x is decided with respect to Y if (exactly) one vertex xC is reachable from s

in G − Y ; and otherwise we say that x is undecided with respect to Y . Moreover, we denote

by τY the assignment of variables of S to classes in Γpn implied by Y , i.e. τY (x) = 0 if x is

undecided and otherwise τY (x) = C, where C is the unique non-zero class in Γpn such that

xC is reachable from s in G − Y . We say that an assignment φ of S agrees with Y if φ(x)

is in the class τY (x) for every variable x of S. Note that if some assignment agrees with

Y , then Y is conformal. The following auxiliary lemma characterizes which edges of G are

satisfied by an assignment φ of S after removing a set Y of edges from G.

▶ Lemma 10. Let Y be a set of edges of G and let φ be an assignment of S. Then, φG

satisfies all edges reachable from s in G − Y if and only if φG sets all Boolean variables

reachable from s in G − Y to 1. Similarly, φG satisfies all edges reachable from t in G − Y

if and only if φG sets all Boolean variables reachable from t in G − Y to 0.

Proof. This follows because φG(s) = 1 and φG(t) = 0 for any φ and every edge of G

corresponds to an “if and only if” between the variables corresponding to its two endpoints. ◀
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For a set Z of equations of S, we let ed(Z) denote the set of all edges of G corresponding

to an equation of Z. Conversely, for a set Y of edges of G, we let eqn(Y ) denote all equations

of S having a corresponding edge in Y . Moreover, if Y is an st-cut in G, we let sep(Y ) denote

the unique minimal st-cut contained in Y that is closest to s in G. Finally, for an optimal

solution Z of S, we let Z be the set of equations Z \ eqn(sep(ed(Z))), i.e. all equations in

Z that do not have an edge in sep(ed(Z)). We can now establish the connection between

solutions of Min-2-Lin(Zpn) instances and conformal st-cuts in the class assignment graph.

▶ Lemma 11 (⋆). Let Z be a set of equations such that S −Z is satisfiable and let Y = ed(Z).

Then, Y ′ = sep(Y ) satisfies:

1. Y ′ is a conformal st-cut.

2. ♣Y ′♣ ≤ 2♣eqn(Y ′)♣ = 2♣Z \ Z♣.

3. There is a satisfying assignment for S − Z that agrees with Y ′.

Proof Sketch. Let φ be a satisfying assignment of S − Z. Observation 9 implies that φG

satisfies all edges of G − Y . Therefore, it follows from Lemma 10 that φG sets all vertices

reachable from s in G − Y to 1 and all vertices reachable from t in G − Y to 0. Thus, Y is

an st-cut, because otherwise t would have to be set to 1 by φG since it would be reachable

from s in G − Y . Therefore, Y ′ = sep(Y ) exists. Because Y ′ is closest to s, it holds that a

vertex is reachable from s in G − Y if and only if it is reachable from s in G − Y ′. Therefore,

if at least two vertices xC and xC′ for some distinct non-zero classes C and C ′ are reachable

from s in G − Y ′ for some variable x, then all of them must be set to 1 by φG, which is not

possible due to the definition of φG. We conclude that Y ′ is conformal.

Towards showing that ♣Y ′♣ ≤ 2♣eqn(Y ′)♣, it suffices to show that ♣Y ′ ∩ ed(e)♣ ≤ 2 for every

equation e ∈ Z. Note that because Y ′ is a minimal st-cut, it holds that one of the endpoints

of every y ∈ Y ′ is reachable from s in G − Y ′. Therefore, because Y ′ is conformal, Y ′ can

contain at most two edges in ed(e) = ¶ xCyπe(C) ♣ C ∈ Γ̸=0
pn ∧ πe(C) ̸= 0 ♢ ∪ ¶ yDt ♣ D ∈

Γ ̸=0
pn ∧ π−1

e (D) is undefined ♢ for every binary equation e of the form ax = y. Similarly, Y ′

can contain at most one edge in ed(e) = ¶ xCt ♣ C ∈ Γ ̸=0
pn ♢ for every unary equation e of the

form x = 0. Finally, ♣ed(e)♣ = ♣¶sxπe
♢♣ = 1 for every unary equation e of the form x = b.

Therefore, ♣Y ′♣ ≤ 2♣eqn(Y ′)♣, and Y ′ = Z \ Z by definition.

Let D be the set of all variables of S such that no vertex xC is reachable from s in G − Y ′.

Let φ′ be the assignment for S such that φ′(x) = 0 if x ∈ D and φ′(x) = φ(x) otherwise.

Clearly, φ′ agrees with Y ′, because φ agrees with all variables not in D and all other variables

are correctly set to 0 by φ′. It therefore only remains to show that φ′ still satisfies S − Z,

which we leave to the full version of the paper. ◀

3.2.3 Shadow Removal

We show how shadow removal (introduced in [28] and improved in [5]) can be used for

computing conformal cuts that correspond to solutions of a Min-2-Lin(Zpn) instance. We

follow [5] and begin by importing some definitions, which we translate from directed graphs

to undirected graphs to fit our setting; to get back to directed graphs one simply has to

think of an undirected graph as the directed graph obtained after replacing each undirected

edge with two directed arcs in both directions. Let G be an undirected graph. Let F be a

set of connected subgraphs of G. A set T ⊆ V (G) is an F-transversal if T intersects every

subgraph in F . Conversely, if T is an F-transversal, we say that F is T -connected.

▶ Theorem 12 ([5]). Let G be an undirected graph, T ⊆ V (G) and k ∈ N. There is

a randomized algorithm that takes (G, T, k) as input and returns in O∗(4k) time a set
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W ⊆ V (G) \ T such that the following holds with probability 2−O(k2). For every T -connected

family of connected subgraphs F in G, if there is an F-transversal of size at most k in

V (G) \ T , then there is an F-transversal Y ⊆ V (G) \ (W ∪ T ) of size at most k such that

every vertex v /∈ W ∪ Y is connected to T in G − Y .

The following lemma is crucial for the application of shadow removal (Theorem 12).

Informally, it shows that if Z is a solution, i.e. a set of equations such that S −Z is satisfiable,

then we can obtain a (not too large) new solution Z ′ = (Z ∪ eqn(Y ′)) by replacing the

corresponding conformal minimal sA-cut Y = sep(ed(Z)), where A is the set of vertices in G

not reachable from s in G − Y , by any minimal sA-cut Y ′.

▶ Lemma 13. Let S be a simple instance of 2-Lin(Zpn) and G = G(S). Moreover, let

Z be a set of equations such that S − Z is satisfiable, Y = sep(ed(Z)), A be the set of all

vertices in G that are not reachable from s in G − Y , and let Y ′ be an sA-cut in G. Then,

there is an assignment φ : V (S) → Zpn of S that satisfies S − Z ′ and agrees with Y ′, where

Z ′ = (Z ∪ eqn(Y ′)).

Proof. Lemma 11 implies that Y is conformal and there is a satisfying assignment φ for

S − Z that agrees with Y . Because Y ′ is also an sA-cut in G, if no vertex xC is reachable

from s in G − Y for some variable x of S, then the same applies in G − Y ′. Let D be the set

of all variables x of S such that some vertex xC is reachable from s in G − Y but that is not

the case in G − Y ′. Let φ′ be the assignment obtained from φ by setting all variables in D to

0. Then, φ′ agrees with Y ′. We claim that φ′ also satisfies S − Z ′, where Z ′ = (Z ∪ eqn(Y ′)).

Consider a unary equation e of S − Z ′ on variable x. If x /∈ D, then φ′(x) = φ(x) and

therefore φ′ satisfies e (because e is crisp and therefore e /∈ Z). So suppose that x ∈ D. If e

is of the form x = 0, then φ′ satisfies e. Otherwise, e is of the form x = b for some b ̸= 0 and

G − Y ′ contains the edge sxπe
. Therefore, xπe

is reachable from s in G − Y ′ contradicting

our assumption that x ∈ D.

Now, consider a binary equation e = (ax = y) of S − Z ′ on variables x and y and first

consider the case when e ∈ Z. Clearly, if neither a vertex xC nor a vertex yC is reachable

from s in G − Y ′, then φ′(x) = φ′(y) = 0, so e is satisfied by φ′. We next show that either

no vertex xc or no vertex yC is reachable from s in S − Y ′. Suppose for a contradiction that

xCx
and yCy

are reachable from s in S − Y ′. Let h be an arbitrary edge in ed(e) ∩ Y ; such

an edge h exists because e ∈ Z \ Z ′. Because Y is a minimal st-cut, it follows that exactly

one endpoint of h is reachable from s in G − Y and either xC or yC (endpoint of h) for some

C ∈ Γpn must be reachable from s in G − Y . We assume without loss of generality that xC

is reachable from s in G − Y . Because Y ′ is an sA-cut and Y ′ does not contain h, xC is not

reachable from s in G − Y ′. But then C ̸= Cx and both xC and xCx
are reachable from s in

G − Y , which contradicts that Y is conformal. It remains to consider the case when there

is a vertex xC that is reachable from s in G − Y ′ but no vertex yC is reachable from s in

G − Y ′; the case when there is a vertex yC reachable from s in G − Y ′ but no vertex xC

reachable from s in G − Y ′ is analogous. Since Y ′ ∩ ed(e) = ∅, we obtain that πe(C) = 0

since otherwise either t or some yC′ would be reachable from s in G − Y ′. Because φ′(y) = 0,

it follows that e is satisfied by φ′. This completes the proof for the case when e ∈ Z.

Suppose instead that e /∈ Z. In this case φ satisfies e and therefore φ′ also satisfies e

unless exactly one of x and y is not in D. We distinguish the following cases:

x /∈ D and y ∈ D. If there is no vertex xC that is reachable from s in G − Y ′, then

the same holds in G − Y so φ′(x) = φ(x) = φ′(y) = 0, which shows that φ′ satisfies e.

Otherwise, let xC be reachable from s in G − Y ′. Then, πe(C) = 0 since otherwise either

t or yπe(C) is also reachable from s in G − Y ′ (because Y ′ ∩ ed(e) = ∅), which in the
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former case contradicts our assumption that Y ′ is an st-cut and which in the latter case

contradicts our assumption that y ∈ D. Therefore, φ′ satisfies e (because φ′(y) = 0).

x ∈ D and y /∈ D. We first show that there is no vertex yC that is reachable from s in

G − Y ′. Suppose there is such a vertex yC . Then, π−1
e (C) is undefined since otherwise

xπ
−1

e (C) is reachable from s in G − Y ′ (because Y ′ ∩ ed(e) = ∅), which contradicts our

assumption that x ∈ D. But then yCt ∈ E(G − Y ′) and t is reachable from s in G − Y ′,

which contradicts our assumption that Y ′ is an st-cut. Hence, there is no vertex yC

that is reachable from s in G − Y ′, which implies that the same holds in G − Y so

φ′(y) = φ(y) = φ′(x) = 0, which shows that φ′ satisfies e. ◀

Let G = G(S) and for a set W ⊆ V (G), let δ(W ) be the set of edges incident to a vertex

in W and a vertex in V (G) \ W . The forthcoming Lemma 14 provides a version of shadow

removal adopted to our problem. Informally, it provides us with a set W ⊆ V (G) such that

we only have to look for conformal st-cuts that are subsets of δ(W ) to obtain our class

assignment; in fact it even shows that for every component C of G[W ] either all edges in δ(C)

are part of the cut or no edge of δ(C) is part of the cut. We will use this fact in Lemma 15

to find a conformal st-cut by branching on which components of G[W ] are reachable from s.

More formally, if Z is a set of equations such that S − Z is satisfiable and A is the set of

vertices not reachable from s in G minus the conformal st-cut sep(ed(Z)) (see Lemma 11),

then the lemma provides us with a set W ⊆ V (G) such that there is a conformal sA-cut

Y ′ within δ(W ) of size at most 2♣Z \ Z♣ such that there is an assignment φ : V (S) → Zpn

for the variables in S that satisfies S − (Z ∪ eqn(Y ′)) and agrees with Y ′. The main idea

behind the proof is the application of Theorem 12 to the set of all walks from s to A in G to

obtain the set W and to employ Lemma 13 to obtain the new solution that corresponds to

the minimum sA-cut Y ′ ⊆ δ(W ).

▶ Lemma 14 (⋆). Let S be a simple instance of 2-Lin(Zpn) and let G = G(S). Moreover,

let Z be a set of equations such that S − Z is satisfiable, Y = sep(ed(Z)), let A be the set

of all vertices in G that are not reachable from s in G − Y , and let q = ♣Z \ Z♣. There

is a randomized algorithm that in O∗(42q) time takes (G, q) as input and returns a set

W ⊆ V (G) \ ¶s♢ such that the following holds with probability 2−O(q2). There is a (minimal)

sA-cut Y ′ of size at most 2q satisfying:

1. every vertex v /∈ W is connected to s in G − Y ′,

2. Y ′ ⊆ δ(W ),

3. there is satisfying assignment for S − (Z ∪ eqn(Y ′)) that agrees with Y ′.

Moreover, for every component C of G[W ] the following holds:

resume either Y ′ ∩ δ(C) = ∅ or δ(C) ⊆ Y ′,

resume if t ∈ C, then δ(C) ⊆ Y ′,

resume if xα, xα′ ∈ C for some variable x and α ̸= α′, then δ(C) ⊆ Y ′,

resume if C contains some xα for some decided variable x w.r.t. Y ′, then δ(C) ⊆ Y ′.

The following lemma now uses the set W ⊆ V (G) computed in Lemma 14 to compute

a set of at most 2O(k log k) conformal cuts Y each of size at most 2q such that if S has a

solution Z of size at most k such that ♣Z \ Z♣ = q, then there is a cut Y ∈ Y of size at

most 2q together with an assignment satisfying S − (Z ∪ eqn(Y )) that agrees with Y . Note

that Lemma 7 is now an immediate consequence of Lemma 15, i.e. instead of returning

the set Y of conformal cuts, we choose one conformal cut Y ∈ Y uniformly at random and

output the class assignment corresponding to Y . The idea behind computing Y is that we

only need to consider conformal cuts that are within δ(W ) and this allows us to branch on

which components of G[W ] are reachable from s (see also Property 4. in Lemma 14).
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▶ Lemma 15 (⋆). Let S be a simple instance of 2-Lin(Zpn), G = G(S), and let k and q

with k ≥ q be integers. There is a randomized algorithm that takes (G, k, q) as input and

returns in O∗(2O(k log k)) time a set Y of at most 2O(k log k) conformal cuts (each of size at

most 2q), such that with probability at least 2−O(q2) there is a cut Y ∈ Y with the following

property: if S has a solution Z of size at most k such that q = ♣Z \ Z♣, then ♣Y ♣ ≤ 2q and

there is an assignment that satisfies S − (Z ∪ eqn(Y )) and agrees with Y .

4 Hardness of FPT-Approximation

We complement the approximation algorithm with hardness results: we prove (1) that for

finite, commutative, non-trivial rings R, Min-r-Lin(R) is W[1]-hard to FPT-approximate

within any constant when r ≥ 3 and (2) the existence of finite commutative rings R such

that Min-2-Lin(R) is W[1]-hard to FPT-approximate within any constant.

Let G denote an arbitrary Abelian group. An expression x1 + · · · + xr = c is an equation

over G if c ∈ G and x1, . . . , xr are either variables or inverted variables with domain G. We

say that it is an r-variable equation if it contains at most r distinct variables. A cyclic group

is generated by a single element and every finite cyclic group Cn of order n is isomorphic to

the additive group of Zn. Cyclic groups are the building blocks of more complex Abelian

groups: the fundamental theorem of finite Abelian groups asserts that every finite Abelian

group is a direct sum of cyclic groups whose orders are prime powers.

We consider the natural group-based variant Min-r-Lin(G) of the Min-r-Lin(R) prob-

lems in what follows. We first prove that Min-3-Lin(Cp), with p a prime, is not FPT-

approximable within any constant if FPT ≠ W[1]. Our result is based on a reduction from a

fundamental problem in coding theory: the Maximum Likelihood Decoding problem

over Zp with p prime. Here we are given a matrix A ∈ Z
n×m
p , a vector b ∈ Z

m
p , and the

goal is to find x ∈ Z
n
p such that Ax = b with minimum Hamming weight, i.e. the one that

minimizes k = ♣¶i ∈ [n] : xi ≠ 0♢♣. The parameter is k. Theorem 5.1 in [2] proves that for

every prime p, the problem MLDp is W[1]-hard to approximate within any constant factor.

Intuitively, row i in Ax = b is a linear equation
∑n

j=1 aijxj = bj , where aij , bj ∈ Zp are

coefficients and xj are variables. There is a straightforward way to subdivide long equations

into ternary equations: for example, if we have an equation x1 + x2 + x3 + x4 = 1, we can

introduce auxiliary variables y1, y2, y3 and write

x1 + x2 − y1 = 0, y1 + x3 − y2 = 0, y2 + x4 − y3 = 0 and y3 = 1.

When summing up these equations, auxiliary variables cancel out and we obtain x1 + x2 +

x3 + x4 = 1. Using this trick, we encode the constraints implied by the row equations of

Ax = b as crisp ternary and unary equations. To encode the objective function, i.e. the fact

that we are minimizing the Hamming weight of x, we add soft equations xj = 0 for all j ∈ [n].

This way, breaking a soft equation corresponds to increasing the Hamming weight by 1. This

hardness result for Cp, with p prime, can be lifted into the general case via two simple steps:

algebraic manipulations allow us to show hardness for Cpl , l ≥ 1, and this implies hardness

for Min-r-Lin(G) by recalling that G is a direct sum of cyclic groups of prime power order.

We obtain the following due to the additive group of every ring being Abelian.

▶ Theorem 16 (⋆). Let R be a non-trivial finite ring. Min-r-Lin(R) is W[1]-hard to

FPT-approximate within any constant factor when r ≥ 3.

We use Theorem 16 to demonstrate that there exist finite commutative rings such

that Min-2-Lin(R) is W[1]-hard to FPT-approximate within any constant factor. Let R
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denote the 16-element polynomial ring Z2[x, y]/(x2, y2), i.e. the ring with coefficients from

Z2 and indeterminates x, y with x2 and y2 factored out. An element r ∈ R is thus a sum

runit + rxx + ryy + rxyxy, where runit, rx, ry, rxy ∈ Z2. The idea is to express equations of

length 3 over Z2 using equations of length 2 over R. We illustrate this by considering an

equation a + b + c = 0 over Z2. To express it using binary equations over R, we introduce

a fresh variable v and three equations (1) xv = xyb, (2) yv = xya, and (3) (x + y)v = −xyc.

Summing up the first two equations, we obtain (x + y)v = xy(a + b). Together with the

third one, this implies xy(a + b + c) = 0. On the other hand, any assignment that satisfies

xy(a + b + c) = 0 can be extended as v = xa + yb to satisfy all three binary equations. With

this in mind, it is not too difficult to prove the following with the aid of Theorem 16.

▶ Theorem 17 (⋆). Min-2-Lin(R) is W[1]-hard to FPT-approximate within any constant

factor when R = Zp[x1, . . . , xk]/(x2
1, . . . , x2

k), p prime, and k ≥ 2.
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