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ABSTRACT

Water quality events within drinking water distribution systems are commonly first detected by consumers. This undermines confidence, is in

contrast to the level of service consumers now expect and in extreme cases can indicate a risk to public health. The objective of this paper is

to propose and show how the value and insight gained increases in progression from single parameter, single location to multiple parameter

multiple location sensor approaches. This is done using real-world datasets from operational systems and application of multiple analytical

approaches in combination to extract actionable insights. Analytical methods include: cross-correlation for system connectivity and transit

time derivation; an innovative turbidity event scale system; and material flux analysis of discolouration material. This research demonstrates

the ability to confirm and track network-wide events, determine root causes, and inform proactive management via advisory event scores.

The evidence provided of the multiplicative jumps in value in progressing towards multiple parameter multiple sensor approaches is vital to

help guide future strategies for networks of water quality sensing.
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HIGHLIGHTS

• Multi-parameter multi-sensor fusion yields multiplicative increase in water quality insights.

• Novel application of combined analytics demonstrated on real drinking water networks.

• Operational datasets made openly available for future water quality monitoring research.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Ensuring the delivery of wholesome drinking water to consumers is a critical public health responsibility. Drinking water is

treated to meet rigorous international standards (EU 1998; WHO 2017; DWI 2018; USEPA 2018) but its delivery through

vast, buried and aging drinking water distribution system (DWDS) infrastructure comes with water quality risks that are

poorly detected and understood. Monitoring of DWDS rarely extends beyond regulatory compliance via minimal random

daytime sampling. This provides incredibly sparse (temporally and spatially) snapshots into these complex, dynamic systems.

Water service providers (WSPs) are often only made aware of water quality events retrospectively through customer com-

plaints (Cook et al. 2016; Boxall et al. 2023). In the UK, discoloured water is the primary water quality issue (DWI 2023).

Pressure from regulation and customer expectations to reduce customer contacts for discolouration are driving some inno-

vation projects to explore the deployment of continuous water quality sensors within DWDS. However, the value of the

resulting time series data has yet to be realised, with much simply assessed through manual visual interpretation (Gleeson

et al. 2024). As urban population growth and climate change puts increased strain on DWDS (UN-INWEH 2020), there is

a need to develop data-driven approaches to improve management of these vital assets and ensure the safe delivery of drink-

ing water.

Deploying continuous water quality monitors within DWDS comes with numerous challenges and choices: selecting par-

ameters; finding monitoring locations; determining monitor density; instrument maintenance needs; accuracy and

confidence in data quality. Many of these are compounded by the use of technologies that are typically sensitive analytical

instruments deployed in harsh remote environments. The nature of the dataset obtained directly impacts what analysis

approaches are possible and what network insights can be derived. The ultimate goal is to utilise a deployment strategy

that can best inform the actionable insight desired. However, to achieve this we must understand what insights can be

obtained from what data and how this changes as a function of the deployment strategy. Central to this is understanding

how the level of obtainable insight changes with more sensor locations and parameters.

Two commonly identified parameters of interest with potential to inform insight are turbidity and chlorine. Turbidity, an

optical measure of water clarity, is important for measuring discolouration that is the primary consumer observed water qual-

ity issue (Boxall & Saul 2005). Change in disinfection residual can provide information about reactions and interactions

occurring within DWDS and even external contamination, as chlorine responds and reacts with various substances
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(Murray & Haxton 2010). Monitoring chlorine, or turbidity, without any other parameters or sensor locations may therefore

in some cases be a sole objective. Recent work reviewing discolouration monitoring developed a turbidity event scale that

distinguishes between reactive alarm (.4 NTU) and alert (2–4 NTU) events, as well as providing proactive advisory warning

scores based on crowd-sourced labelled data (Gleeson et al. 2024). This demonstrates that actionable insight can be obtained

from individual parameter time series data sets, in this case informing the management of discolouration risk.

The increased value of monitoring at more than one connected location within a DWDS has been reported. For example,

comparison of chlorine time series profiles at different sensing locations has been shown to yield useful connectivity and tran-

sit time information (Gleeson et al. 2023b). Turbidity and chlorine are prone to data quality issues and a data quality

framework has been developed to assess the performance of these sensors when installed in DWDS (Gleeson et al.

2023a). This framework can aide proactive sensor maintenance, as well as filter datasets for subsequent analysis. A key fea-

ture of the framework is a third stage which uses cross comparison with other confirmed-connected sensor locations

demonstrating value in combining different sensor locations. Kennedy et al. (2024) showed how combining turbidity

sensor locations, in this case at the inlet and outlet of service reservoirs, can reveal sink or source material behaviour and

inform proactive cleaning interventions. The ability to combine sensor locations depends on the spatial deployment density

with both temporal and spatial monitoring density a trade-off between cost and value. 15-minute sampling is common and

provides good definition of daily patterns (Mounce et al. 2012), whilst 1-minute intervals can offer benefits for capturing

DWDS dynamics (Gaffney & Boult 2012). Instrumentation capable of delivering water quality data sub 1 s is not currently

available, but combining it with 100 Hzþ pressure data to understand the water quality interactions with hydraulic transients

has been shown (Aisopou et al. 2012; Weston et al. 2021). Spatial density depends on objectives and suitable locations, but

collecting a dataset with multiple connected sensors means that any subsequent analysis will have a higher confidence.

Similar to the benefits of combining sensor locations, combining different parameters from the same location has been

shown to improve overall analytical processes in other fields, specifically it is common to utilise combinations to detect anom-

alous data. Principal component anlysis (PCA) is a dimensionality reduction technique that has been found to be an effective

way to reduce highly correlated high-dimensional datasets into smaller uncorrelated datasets more suited to unsupervised

anomaly detection (Dunia et al. 1996; Aggarwal 2016). Isolation forests (Liu et al. 2008), elliptical envelopes (Rousseeuw

& Driessen 1999) and local outlier factor (LOF) (Breunig et al. 2000) are popular unsupervised anomaly detection methods

that look to create a boundary between normal and abnormal datapoints. One-class support vector machines (OCSVM) is an

unsupervised variant of the popular supervised classification method support vector machines (SVM) that splits data into two

classes (Shin et al. 2005). When it comes to water quality sensors, it has been shown that combining them with hydraulic

parameters like flow and pressure are also relevant, for example hydraulic changes impacting head loss and shear stress

can initiate discolouration that is measurable with turbidity (Husband et al. 2008). When flow and turbidity are multiplied

together, material flux can be estimated, allowing the transport of discolouration material to be quantified (Gaffney &

Boult 2012; Furnass 2015).

Previous research has hence demonstrated the increase in value when combining the same parameter at different sensing

locations, as well as when combining different parameters at the same location.

2. METHOD

This paper proposes that progressing towards multiple parameters and multiple sensors (MPMSs) strategies in combination

with appropriate analytical methods will yield a multiplicative increase in actionable insight, and to demonstrate this for data

from operational DWDS. In theory, one might expect the value to increase multiplicatively due to the increased confidence

and analytical options. The term multiplicative in this context refers to the increase value being greater than simply adding

together the individual value from each single sensor and parameter. This would be an important finding due to its potential

impact on cost-benefit analysis when deriving a deployment strategy.

This research explores how MPMS datasets, taken from operational DWDS, can be combined and transformed into action-

able insights to safeguard drinking water quality. By using real-world data, this research addresses a common deficiency in

DWDS water quality event research where synthetic events are introduced to modelled derived data before developing detec-

tion etc. approaches (Murray & Haxton 2010; Perelman et al. 2012; Li et al. 2019; Muharemi et al. 2019). In examining

MPMS datasets, this research investigates the nature of the presumed increase in level of value derivable when combining

sensor locations and parameters. To support reproducibility and enable further research in this area, the datasets used in
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this study are made freely available, with the exception of one case study where commercial restrictions apply (https://doi.

org/10.15131/shef.data.28045628.v1).

To investigate the potential of sensor networks in DWDS to provide insight to help protect water quality four existing data-

sets provided by different UK WSP were examined. A crucial element in water quality monitoring is how many sensors and

parameters to monitor. It is often assumed that more sensors and parameters equals more insight but this relationship has yet

to be robustly examined. Therefore the aim of this research is to investigate whether a proposed increase in insight obtainable

is seen as analytics move from single parameter single sensor (SPSS) to MPMSs. The deployment strategy of the datasets used

herein was not defined by the research, it was a function of other purposes and thinking within each water company. Our

selection criteria was datasets that would enable a research methodology that investigated the impact in moving from

SPSS analytics, passing via multi-parameter single sensor (MPSS) or single parameter multi-sensor (SPMS) stages to ulti-

mately MPMS analytics. All available data was used in each case study, with the analytical approach selected to meet the

needs of each dataset. The approach here focused on information that could be extracted from water quality monitor data

alone, a benefit being this is achievable without necessarily requiring additional network data and information. Analytical

methods that can be applied vary across this progression and this section reviews the possibilities available at each stage.

2.1. Single parameter single sensor

When analysing a SPSS water quality time series dataset from a DWDS it is crucial to consider uncertainty, particularly in

differentiating sensing errors from events. While the data quality assessment framework illustrated in Figure 1 (Gleeson et al.

2023a) can only be partially applied for SPSS, conducting Stage 1 is an essential first step to assess the sensor performance

and determine what data is suitable for further analytics. Preprocessing steps, such as removing drift and single-point outliers,

may be necessary depending on the subsequent analysis requirements. Some approaches do not rely on absolute value accu-

racies, circumventing calibration challenges at low turbidity levels. Examples of this include the event scale method of

Gleeson et al. (2024) or the daily standard deviation of turbidity (Mounce et al. 2015), which captures how much discolour-

ation material is mobilising due to diurnal flow patterns informing the potential for discolouration without absolute value

dependencies.

2.2. Multi-parameter single sensor

With multiple parameters at the same location, analysis confidence theoretically increases. Sensor faults are more easily

detected, as they may be apparent in multiple parameters. Different analytical approaches combining parameters become

applicable, enhancing insights obtainable. An example is multiplying turbidity and flow to generate material flux

(NTU·m3/hr) (Furnass 2015). This can be integrated to calculate total material quantities, enabling precise discolouration

material quantification rather than just discolouration material concentration, which is effectively what turbidity provides.

Material flux can also be converted to particulate mass if the turbidity-suspended solids relationship is known (Gaffney &

Boult 2012). With increased parameters, dimensionality reduction techniques such as principal component analysis (PCA)

combined with unsupervised anomaly detection can automatically identify anomalous features across variables (Dunia

et al. 1996; Aggarwal 2016).

2.3. Single parameter multi-sensor

SPMS datasets allow for water quality data to be compared across locations, enabling higher confidence analysis, for

example, knowing which locations are hydraulically connected. Cross-correlation has proven effective in determining hydrau-

lic connectivity between chlorine sensors and estimating transit times between sensing locations (Gleeson et al. 2023a).

However, this method does not work equally well with all parameters, with chlorine for example showing more suitability

Figure 1 | Three-stage data quality assessment framework (simplified from Gleeson et al. 2023b).
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than turbidity. Having two or more confirmed-connected sensing locations enables quality comparisons as water passes

through complex networks, potentially allowing for root-cause estimation and downstream risk evaluation during water qual-

ity events.

2.4. Multi-parameter multi-sensor

MPMS analytics combine the benefits of MPSS and SPMS, theoretically leading to a more complete and confident assess-

ment. Analytics suited to MPSS, such as material flux, can be compared across connected locations, allowing for material

tracking in the case of discolouration events.

3. RESULTS

To explore the benefits of MPMS water quality monitoring, four case studies featuring different combinations of parameters

and numbers of sensors are examined. These are summarised in Table 1. The case studies range from SPMS to MPMS with

the increase in value obtained compared to what would be possible with SPSS monitoring presented. The first two case

studies both focus on the benefits of MPMS analysis of discolouration events. The final two case studies look at increasing

sensor density, with case study 3 focusing on 6 sensors deployed along the same main, and number of available parameters,

with the final case study focusing on sensors deployed measuring eight different parameters.

3.1. Case study 1 – Combining sensors and parameters for MPMS analysis of alarm turbidity event

This case study combines free chlorine, turbidity and flow at two locations, as shown in the simple schematic in Figure 2, in

order to analyse a discolouration event. Before the MPMS analysis, it is important to consider what the SPSS analysis would

have looked like. A single chlorine (Figure 3(a)) or flow time series (Figure 4(b)) would not indicate anything had occurred. A

turbidity ‘alarm’ (Gleeson et al. 2024) event would have been detected in either turbidity time series (Figure 4(a)) but would

have been of low confidence: it may have been a sensor error or simply a localised event. By combining the available data, the

level of insight obtained and confidence increases; in the first instance that both turbidity time series show an alarm event

suggesting it is not sensor error, if they are connected. Figure 2 shows how cross-correlation (Gleeson et al. 2023b) of the

Table 1 | Summary of case studies presented

Case

study Summary Parameters/locations/additional data Analytic techniques

1 Combining sensors and parameters

for MPMS analysis of alarm

turbidity event

Chlorine, Turbidity, Flow/�2

locations/none

Data quality assessment, Turbidity drift detection and

correction, Cross-correlation, Material flux, Daily

peak flow rate, Turbidity event scale

2 MPMS alarm event following mains

flow increase with associated

customer contacts

Chlorine, Turbidity, Flow/�3

locations/mains flow,

customer contacts

Data quality assessment, Cross-correlation, Daily peak

flow rate, Material flux, Turbidity event scale,

Contacts Analysis

3 SPMS analysis of six turbidity sensors

in single main

Turbidity/�6 locations/Mains

flow

Median daily standard deviation, Turbidity event scale,

Material flux (using only available mains flow rate)

4 MPMS dimensionality reduction and

anomaly detection

Turbidity, Chlorine,

Temperature, pH, Pressure,

Flow, Conductivity,

ORP/�2 locations

Dimensionality reduction (PCA), Unsupervised

anomaly detection (IF, EE, LOF, OCSVM)

Figure 2 | Simplified network schematic showing sensors at locations 1 and 2.
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chlorine residual concentration data (Figure 3(a)) was used to confirm hydraulic connectivity between two monitoring

locations by Pearson’s cross-correlation coefficient (PCC, Figure 3(b)). Determining the highest PCC for a sliding 4-week

window determined location 1 to be approximately 3.5 h upstream of location 2.

Figure 3 | Sliding cross-correlation is used to derive transit times between two chlorine sensors. Chlorine time series at locations 1 and 2 (a),
maximum sliding cross-correlation coefficient for a 4-week window (b), and corresponding sliding offset (c).

Figure 4 | Material flux is calculated from turbidity and flow time series data in order to quantify material moving past the sensor locations
during an event. Turbidity event responses at each location with turbidity (a), flow (b), and net material flux (c).
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Comparison of the turbidity time series data, shown in Figure 4(a), shows that this event started with an initial turbidity

spike that occurred simultaneously at both locations (unshaded part of Figure 4(a)), followed by a more prolonged secondary

response with an observed offset between event peaks that matches the transit time derived from the chlorine data. Visual

assessment of the turbidity signals suggests that with extended higher levels of turbidity the event had worsened at location

2 and hence suggesting this is a local event with material being mobilised from the pipe internal surface between the

locations. However material flux analysis shows this to be incorrect. With addition of flow data (Figure 4(b)), material flux

analysis shown in Figure 4(c), calculated by multiplying flow and turbidity at each time step, estimates that around 10%

more material traversed location 1 compared to location 2 (1,305 NTU·m3 versus 1,163 NTU·m3). This indicates that the

source of this event is primarily upstream of Location 1, with the material entrained in the bulk flow passing through this

network section with some being lost due to some low demand off-take connections. It should be noted that this calculation

was based on the shaded area of Figure 4(a), the early (excluded) spikes in turbidity where likely due to material mobilisation

local to the instrument locations but was not the dominant issue in this case study.

This case study demonstrates the increasing insight and confidence obtained from confirming hydraulic connectivity of

sensor locations. Either turbidity sensor alone could have been neglected or assumed to be faulty. That the derived transit

time also matches the time between event peaks increases confidence further. This case study also demonstrates the value

in combining parameters when analysing turbidity events, in this case turbidity and flow. Interpretation of turbidity data

alone misleadingly suggests a predominantly local event with the section between the monitors contributing discolouration

material. It is the calculation and comparison of material flux which provides the most valuable information indicating that

the dominant source and root-cause is upstream. Thus this case study demonstrates the multiplicative nature of the increase in

insight and confidence obtained with MPMS analysis.

3.2. Case study 2 – MPMS alarm event following mains flow increase with associated customer contacts

This case study focuses on a discolouration event, this time combining flow and turbidity at three connected locations, as

shown in the simple schematic in Figure 5 with the addition of customer contact data. Figure 6 shows the DWDS turbidity

data from three connected sensor locations, all installed at offshoots from a central trunk main where a sudden increase in

flow was observed (Figure 6(a)). The event (Figure 6(b)) caused over 130 discolouration contacts within 3 days (Figure 6(c)),

with 31 of these contacts found to be customers directly downstream of these sensor locations. Contact data is often lagged, in

the following figures it is plotted at midnight for the day the calls were received. SPSS analysis of the individual turbidity time

series (Figure 6(b)) would have indicated an alarm-level event (NTU .4) at each of the three location, but this each alone

would have been of low confidence.

Looking across the three sensors, which were confirmed to be connected via cross-correlation of chlorine data (not

included to avoid repetition) increases confidence that this was a real event. Incorporating the mains flow data (Figure 6(a))

suggests that the discolouration was due to the temporally coincident spike in flow, greater than normally experienced. From

the turbidity data alone, risk would likely have been rated similar for L1 and 3 and greater for L2. Material flux analysis

during the event, Figure 7, confirms that L2 posed the greatest downstream potential for discolouration risk with more

than ten times and double the amount of mobilised material traversing here compared to L1 and L3, respectively. Flux analy-

sis significantly downgrades the discolouration potential of L1. The flux based assessment of downstream impact is confirmed

in the lagged customer contacts attributed to each offshoot from the trunk main (Figure 7(d)). If a system of MPMS analysis,

as set out here, had been operational in near real-time this event could have been identified early with high confidence, as

being due to an increase in flow, with flux analysis used to prioritised mitigation efforts towards the network below L2

and away from L1.

Figure 5 | Simplified network schematic showing three different sensor locations at offshoots to a trunk main section.
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3.3. Case study 3 – SPMS analysis of six turbidity sensors in single main

This case study features a single trunk main with only 2 small offtakes along its nearly 70 km length. Six turbidity sensors were

installed as shown in Figure 8 to record any turbidity responses prior to and during planned maintenance work. Unlike more

complex network configurations, hydraulic connectivity is assumed (and confirmed by observation of turbidity profile track-

ing) in this case study. However, the lack of chlorine data prevents transit time estimation and limits analysis confidence. The

Figure 6 | Hydraulically induced turbidity response seen within the wider context of 1 week pre and post event. Mains flow (a), turbidity at
the three locations (b), and network daily discolouration contacts (c).

Figure 7 | Material flux calculated at three locations during event and associated customer contacts. Turbidity event at all three locations
with the net turbidity in (a), flow (b), net material flux (c), and accumulated customer contacts downstream of each location (d).
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median daily turbidity standard deviation was calculated using data from four weeks leading up to the conditioning exercise

and is found to increase along the main (Figure 9(a)), indicating accumulating discolouration material. The turbidity event

scale also shows both the frequency of alert and alarm events as well as how the daily peak advisory scores increase towards

the downstream end (Figure 9(b)), indicating the compounding discolouration magnitude.

Turbidity responses are seen at each sensor during a conditioning exercise across multiple days (Figure 10). Approximate

transit times between sensors are estimated by visually comparing and matching distinct features of the turbidity responses.

Using the flow data from a meter located near the start of the main and flux analysis shows that most material mobilised

during this event is found at the final two sites 5 and 6 (Figure 11). This analysis shows that there was additional material

mobilised between locations 4 and 5, suggesting increased risk at this end of the network. However, without the precise

flow data at each location, it is not possible to know exactly how much the flow at locations 4–6 is being overestimated

due to the two offshoots after location 3.

This case study showcases the value in having several turbidity sensors in a connected DWDS section, in this case identify-

ing where the discolouration risks are. Of course, all of these approaches can be applied to any of these sensors in a SPSS

analysis, but it is the comparison which yields potentially the most useful network insights. However, the analysis is limited

by the lack of availability of more flow data.

3.4. Case study 4 – MPMS dimensionality reduction and anomaly detection

This case study focuses on two sensor locations each with eight available parameters to examine additional analytics that are

enabled with this increase in parameters. Note that though these sensor locations were within the same network, they were

not hydraulically connected and therefore a schematic is not included. Dimensionality reduction using PCA (Dunia et al.

1996; Aggarwal 2016) is applied to two multi-parameter water quality sensor datasets, reducing the dimensions from eight

Figure 8 | Simplified network schematic showing locations 1–6 along a single main.

Figure 9 | Ranking of discolouration risk per sensor location using median daily standard deviation and the turbidity event scale. Median
daily standard deviation for locations 1–6 (a) and median peak daily advisory score (LHS y-axis and yellow bars) and number of alert (.2 NTU,
orange bars) and alarm (.4 NTU, red bars) events (RHS y-axis) (b).
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parameters down to two principal components (Figure 12). This is done to enable unsupervised (i.e. automated) anomaly

detection. Figure 12 shows the boundaries around normal data automatically determined by four different algorithms: iso-

lation forests (Liu et al. 2008), elliptical envelopes (Rousseeuw & Driessen 1999), LOF (Breunig et al. 2000), and OCSVM

Figure 10 | Mains flow and network turbidity responses during a flow conditioning exercise. Upstream mains flow (a) and turbidity time
series at each location (b).

Figure 11 | Total material passing each location (material flux) during the conditioning exercise shown in Figure 10.

Figure 12 | Unsupervised anomaly detection techniques compared for how well they fit the first two principal components after dimen-
sionality reduction performed on eight-parameter sensors. Scatter plots of two principal components for location H (a) and I (b), with
boundary lines shown for unsupervised anomaly detection methods isolation forest, elliptic envelope, local outlier factor and one-class SVM.
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(Shin et al. 2005). Quantitative assessment is not possible, as what is a true positive, false negative etc. is unknown. For each

of these algorithms, a contamination factor must be specified which dictates how much of the dataset is anomalous. Various

different contamination factors ranging from 0.1 to 0.001 were tested out in order to find the best fit. From visual, qualitative

inspection the OCSVM with a contamination factor of 0.001 was the most suitable of the four methods included and is there-

fore applied as an anomaly detection algorithm to the time series data from these sensors (Figure 13). This approach is found

to detect several events of interest in the data, including turbidity spikes and drops in ORP, that were not identified by single-

parameter methods such as Gleeson et al. (2024) and with increased confidence. This demonstrates the potential of this

approach to automatically detect subtle network events and showing what is possible with increased parameter size enabling

enhanced data fusion.

4. DISCUSSION

This research demonstrates how water quality time series data from DWDS can be transformed into actionable information

to support improved management of distributed drinking water quality. A particular focus on network discolouration events

was driven by discolouration being the most pervasive water quality issue in DWDS, along with turbidity being the most

measured parameter in the datasets provided. The methods demonstrated to analyse turbidity time series data also have appli-

cability to other parameters. That this research focused entirely on detecting real DWDS events represents a major advance

from the common practice of artificially inserting events on top of measured or simulated data. The increased insight resulting

from the combination of different parameters and multiple senor locations (MPMS) has been demonstrated and is discussed

further in this section, along with the implications for WSP with regards to both proactively and reactively protecting drinking

water quality in DWDS.

Figure 13 | OCSVM detected anomalies shown on original eight-parameter time series for both sensors. Two unconnected eight-parameter
water quality time series from March to October with turbidity (a), chlorine (b), temperature (c), pH (d), pressure (f), flow (g), conductivity (h),
ORP (i) and two principal components in (e) and (j), respectively. The red and blue stars indicate where anomalies have been observed in
locations 1 and 2, respectively.
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4.1. Multiplicative value of multiple parameters and multiple sensors

The increase in value from having multiple sensors was demonstrated with connectivity derived from cross-correlation

(Gleeson et al. 2023a) used to improve the data quality assessment of individual sensors and parameters. The increased con-

fidence impacts the subsequent analytics. For example in the first two cases (Sections 3.1 and 3.2) network scale events were

confirmed as real, as opposed to local events or sensing errors. This logic is applicable to parameters other than turbidity,

where individually a sudden unexpected change could indicate either a sensing error or a local event. The same point can

be made for having multiple parameters measured at a single location, and there are some particular combinations of par-

ameters that can be combined to increase insight, such as flow rate and turbidity to determine material flux. However, it

was only with the availability of both parameters and multiple sensor locations (MPMS) that a multiplicative jump, not

only in confidence, but in obtainable insight regarding the root-cause of water quality events was seen (as previously defined

multiplicative refers to the increase in value being greater than adding together the individual values). This increase in value is

observed across four different DWDS water quality case studies with their varied nature providing different insights described

qualitatively. This is not amenable to a consistent set of quantitative and comparable metrics and the business case for rollout

would need to be application-specific metrics including cost savings, as well as contextual factors such as company targets

and regional regulations.

Case study 1 (Section 3.1) demonstrates the transformative power of having confirmed-connected locations and both

locations having flow rate and in this case turbidity data, which combine to enable the tracking of discolouration material

flux between the locations. Though it would be challenging to automate this kind of analysis, which included removal of

the initial localised turbidity spike, it would not be difficult to automatically check known-connected sensor locations against

a corresponding event. Case study 2 (Section 3.2) used material flux to compare which mains and offshoots received the most

discolouration material during a hydraulically induced discolouration event. That the sensor location with the highest total

discolouration material also had the most associated contacts validates this as a measure of downstream discolouration risk.

The dramatic increase in value from MPMS analysis seen in case study 1 is again repeated in case study 2, although the

addition of a third sensing location does not necessarily have the same level of increased value as the vital second location

that enables event tracking to take place. Whether the additional value from a third connected location is greater than the

additional cost of deploying this third sensor depends on what insight is required and whether three locations have been

identified as of interest.

Case study 3 (Section 3.3) demonstrated how only having turbidity at multiple locations may limit accurate tracking of an

event. Though in this single straight main case connectivity could be assumed, the lack of transit time meant visual assess-

ment was relied upon to track a network-wide turbidity event. This case study does show how the availability of multiple

connected turbidity sensors enables discolouration risks to be mapped and compared across entire DWDS sections, with

the region between sensors 4 and 5 found to have increased material mobilisation. This case study hence demonstrated multi-

plicative increase in value with additional sensors. However, it could be argued that similar analysis would have been possible

with only three or four sensor locations, suggesting that the degree of the multiplicative effects do not continue. A case look-

ing at eight-parameter sensors was included in case study 4 (Section 3.4), where dimensionality reduction and unsupervised

anomaly detection was shown to be an effective way to identify unusual subtle events in any parameter, showing the value in

having high dimension water quality time series. Though it is difficult to quantify the increase in value with additional par-

ameters, as this is very dependent on what insights are desired, this case study shows an example of what can be done. With

more water quality parameters and newer technologies emerging such as real-time bacteriological sensors, the potential for

combining and fusion different water quality parameters are high.

These case studies demonstrate that the increase in value and insight obtainable does not increase linearly from SPSS to

MPMS analysis, but instead a multiplicative increase is seen, with a particularly significant jump when moving from single

sensor to having a comparable second sensor. This impacts deployment strategies as the additional value from deploying

more than one connected location is likely to be greater than the additional cost. When it comes to analysing a water quality

event in a DWDS, knowing what sensors are hydraulically connected and the approximate transit times involved is transfor-

mative in its power. This places significant importance on gaining an understanding of the hydraulic connectivity between

sensor locations. The multiplicative increase seen when moving from single-parameter single-sensor to multiple parameter

multiple sensor analytics would not be expected to continue, or the multiplicative effect be as great, with the addition of

more and more sensors and parameters, as suggested from case study 3. It is likely the multiplicative increases would tail

AQUA — Water Infrastructure, Ecosystems and Society Vol 00 No 0, 12

corrected Proof

Downloaded from http://iwaponline.com/aqua/article-pdf/doi/10.2166/aqua.2025.002/1577149/jws2025002.pdf
by guest



off and plateau with increasing numbers of sensors and parameter. Datasets to quantify this for meaningful real-world

examples are not available, and would be a function of what insight is desired.

4.2. From reactive to proactive management of network water quality events

Unpredictable and undesirable DWDS water quality events are thankfully rare but are inevitable due to aging, complex infra-

structure. Therefore, digitalisation of DWDS must include the ability to accurately detect and understand such events in a

timely manner. The ability to take effective action following a detected discolouration event for example is dependent on

how quickly and confidently the event is detected and the time before the discoloured water reaches customers. An alarm

event (using the turbidity event scale developed by Gleeson et al. 2024), seen at two or more connected locations and there-

fore of high confidence, should prompt immediate action. However, the lead time required for WSP to perform mitigating

actions that can halt discoloured water already on route to customers is likely greater than would be available. This is

where edge computing of the turbidity event scale could function to rapidly enable such alerts and warnings to be sent

out. Relying on waiting for the data to be uploaded to a central server before analysis reaches the alarm category means

many such events would reach customers before action is taken. Once an alarm is raised, it is important to understand

the route cause so that appropriate action is taken. Material flux has been shown to be central to the route cause analysis

reported here, able to detect and confirm the source of DWDS water quality events. This represents a clear improvement

over reliance on subjective retrospective analysis of customer contact information, providing WSP with actionable infor-

mation that can lead to improved future management of water quality. It should be noted that material flux estimates the

material mobilised during an event, the discolouration risk potential. To obtain a full estimate of risk, this should be factored

by the number of downstream customers likely to be impacted, the discolouration risk consequence.

Improved water quality event detection, root-cause determination and estimation of downstream risk all represent an

improvement over the status quo yet they remain largely reactive in nature. It is highly desirable to move towards more proac-

tive management approaches, i.e. event prevention. The turbidity advisory score approach developed in Gleeson et al. (2024)

has shown promise for flagging low-level increases in turbidity that would commonly be ignored due to low data confidence.

Case study 3 (Section 3.3) showed that the number of alert and alarm events was seen to broadly increase with transit time/

distance through the single straight network section, as well as the median peak daily advisory score proactively indicating

increasing potential for discolouration with time/distance. Using the highest daily advisory score is an obvious way to simplify

the advisory score time series, and reporting the median value of this would provide information on the average level for a

given day. The median daily standard deviation was also seen to roughly increase through this network section and this

demonstrates the promise of this metric to proactively estimate discolouration risk. In particular as this is a measure of diur-

nal variability of turbidity which may to be linked to daily hydraulics as a known precursor of discolouration events (Husband

et al. 2008). Whether the analysis is reactive or proactive, the multiplicative benefits of MPMS are equally important and

applicable.

5. CONCLUSIONS

To enable wider exploration of these findings and support future developments in DWDS water quality monitoring, the data-

sets utilised in this study are made openly available, aside from case study 4 which is restricted for commercial purposes

(https://doi.org/10.15131/shef.data.28045628.v1). This research utilising data sets from operational DWDS highlights the

potential value of continuous water quality sensors to provide actionable information for management of DWDS. By devel-

oping and applying novel analytics and fusing MPMS water quality data, this research has shown how it is possible to

understand and track water quality changes within complex DWDS.

The key findings are summarised as follows:

• The level of insight obtained from sensor data increases multiplicatively as analysis moves from single-parameter single-

sensor approaches to the integration of multi-parameters and multi-sensor.

• Using turbidity, chlorine, and flow data from multiple connected locations facilitates accurate discolouration event track-

ing, providing valuable information about both the source (root-cause) and destination (impacts) of discolouration material.

• The turbidity advisory event score and the daily standard deviation analytics can enable a shift from reactive to proactive

discolouration management.
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The major overarching outcome of this work is the demonstration that the level of insight obtainable from water quality

sensor data increases multiplicatively with the integration of multiple parameters from multiple sensor locations. This finding

will help inform the intelligent deployment and analysis of networks of water quality sensors, ultimately leading to improved

understanding and proactive management of DWDS. By demonstrating how to obtain actionable, operational insights from

real-world case studies using novel analytics this research represents a significant step forward in the field of water quality

monitoring and management.

Future work can build on this research by developing a more complete source-to-tap understanding that includes data taken

from catchment areas, treatment works and customer taps. This would enable even more data fusion to enhance MPMS

source-to-tap system monitoring. Additionally, future work can investigate and validate the proactive analytics presented, evi-

dencing that such metrics can be used to operate DWDS more efficiently and less reactively. Both of these areas together

represent promising avenues for enabling enhanced digital water quality monitoring within DWDS.
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