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We explore the quantum superposition of boundary conditions in the context of the Poincaré patch of the

two-dimensional anti–de Sitter space. Focusing on Robin (mixed) boundary conditions, we investigate the

response function of the Unruh-DeWitt (UDW) detector interacting with two or more scalar fields, each

respecting a different boundary condition. The role of this quantum superposition is twofold: (i) it may

represent different fields propagating on the same spacetime and interacting with an UDW detector or (ii) it

may describe an UDW detector on a superposition of spacetimes, each one with an inequivalent

propagating field.

DOI: 10.1103/3nfv-lhs1

I. INTRODUCTION

It is known that the vacuum state for quantum fields in

Minkowski space is typically constructed to be invariant

under the Poincaré group. This means that all inertial

observers agree on the state having no particle content.

However, this is not true for general curved spacetimes,

where the Poincaré group is no longer a symmetry group. In

this case, the absence of a “preferred frame” leads to a

nonunique notion of vacuum.

Usually, in globally hyperbolic spacetimes having a

timelike Killing vector field ξ, vacuum states are con-

structed using the notion of positive frequency (with

respect to ξ) modes ϕj satisfying [1]

Lξϕj ¼ −iωjϕj; ωj > 0; ð1Þ

where Lξ denotes the Lie derivative. In nonglobally hyper-

bolic spacetimes, the quantization of fields is more subtle

and depends on additional assumptions. In the absence of a

Cauchy surface, the evolution of classical fields may not be
uniquely determined by initial data on any spacelike surface.
However, it was shown in Refs. [2,3] that it is possible to
prescribe a sensible evolution for classical scalar fields on a
great variety of static nonglobally hyperbolic spacetimes
through the specification of boundary conditions at the edge
of spacetime. This is particularly relevant for static non-
globally hyperbolic spacetimes possessing naked singular-
ities [4,5] or even a conformal infinity, as in the case of
anti–de Sitter (AdS) spacetime [6–8]. Consequently, after
quantization, the vacuum state becomes dependent on both
the timelike Killing field ξ and on the boundary conditions.

In Ref. [9], one of the authors demonstrated that, for

conformal fields adhering to Robin-type boundary con-

ditions at the conformal boundary of two-dimensional anti–

de Sitter space (PAdS2), a subtle change between isometric

frames corresponds to a change in the boundary condition

and it results in a finite number of particles being created.

This raises the following question, which is the target of the

present study: How does an observer perceive the inter-

action with one or more inequivalent (respecting different

boundary conditions) scalar fields when traveling through

space? Or, equivalently, which effects does an observer

traveling in a superposition of spacetimes, each one in a

different vacuum state (parametrized by a different boun-

dary condition), feel?

To address this question, we will model the observer

using an Unruh-DeWitt detector in PAdS2 with coordinates

ðt; zÞ, z > 0, following a static trajectory z ¼ z0. The

vacuum will be given by j0iγ and the Unruh-DeWitt
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detector will interact with fields ϕðγ1Þ, ϕðγ2Þ, …, with the

parameters γi representing the corresponding Robin

(mixed) boundary condition (RBC). We associate to each

boundary condition a quantum state jγii, which acts as a

boundary condition selector. This setup enables the detector

to interact with a superposition of fields that respect

different RBCs. Furthermore, as we will show below, each

parameter γi corresponds to a specific frame selection,

allowing us to interpret the detector’s response as the result

of interactions with fields in different frames. This method,

involving the interaction between the observer (i.e., the

detector) and a controlled superposition of states jγii, has
been employed as an operational approach to measure the

superposition of spacetimes—an anticipated effect in

quantum theories of gravity (see [10–12]).

This paper is organized as follows. In the next section we

recover the main results of Ref. [9] showing the depend-

ence of the vacuum state on the boundary condition in the

context of quantum fields in PAdS2. Subsequently, in

Sec. III, we discuss how to use the Unruh-DeWitt detector

to measure superposition by introducing the boundary

condition selector states jγii. In Sec. IV we illustrate our

main findings by considering the superposition of two

different boundary conditions. Our final remarks are

presented in Sec. V.

II. QUANTUM FIELDS IN PAdS2

The metric of the Poincaré patch of the two-dimensional

anti–de Sitter spacetime is given by

ds2 ¼ l2

z2
ð−dt2 þ dz2Þ; ð2Þ

with t∈R and z∈Rþ. Here l is the AdS curvature radius

and, henceforth, we shall set it to 1. Its conformal structure

is presented in Fig. 1. As we can observe, in this chart

conformal infinity I corresponds to z ¼ 0, on which the

classical field requires an appropriate boundary condition

[2,3,8]. For a conformal real scalar field φ∶ PAdS2 → R

satisfying the wave equation □φ ¼ 0, a suitable general

class of boundary conditions at I is given by the Robin

boundary condition given by [7]

φðt; z ¼ 0Þ − γ
∂φðt; z ¼ 0Þ

∂z
¼ 0; ð3Þ

where γ > 0 is a parameter. The particular cases of

Dirichlet and Neumann boundary conditions are recovered

by setting γ → 0 and γ → ∞, respectively.

The complete set of positive frequency solutions

fuω;γðxÞg respecting (3) and normalized with respect to

the Klein-Gordon inner product is given by [9]

uω;γðxÞ ¼
sinðωzÞ þ γω cosðωzÞ

ffiffiffiffiffiffi

πω
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2ω2
p e−iωt; ω > 0: ð4Þ

These modes satisfy ∂tuω;γ ¼ −iωuω;γ and allow us to

expand the quantum scalar field as

φ̂ðγÞðxÞ ¼
Z

∞

0

dωðâω;γuω;γðxÞ þ â†ω;γu
�
ω;γðxÞÞ: ð5Þ

Notice that we explicitly wrote the field dependence on the

γ-parameter. Naturally, the canonical quantization is per-

formed by imposing the usual commutation relation

between φ̂ðγÞðxÞ and its conjugated momentum (or equiv-

alently between âω;γ and â†ω;γ). Then, the vacuum state j0iγ
is defined as

âω;γj0iγ ¼ 0; ∀ ω > 0: ð6Þ

To understand the effect of the RBC on the vacuum

states, consider the coordinate transformation generated by

the Killing field ξ ¼ t∂t þ z∂z [9] (see the representation in
Fig. 1)

x ¼ ðt; zÞ → xi ¼ ðti; ziÞ ¼ ðλit; λizÞ; λi > 0: ð7Þ

The RBC (3) transforms into

φðti; zi ¼ 0Þ − γi
∂φðti; zi ¼ 0Þ

∂zi
¼ 0; ð8Þ

where γi ¼ λiγ represents a modification of the boundary

condition. In other words, if we change the frame, we

FIG. 1. Penrose diagram for AdS2 spacetime. The Poincaré

coordinates (PAdS2) cover the triangular region from z ¼ 0 to

z ¼ ∞. The transformation x → xi is represented as a change

between surfaces of constant t, z. Note that the t-constant
spacelike surfaces are not Cauchy surfaces.

PITELLI, FELIPE, DAPPIAGGI, and WINSTANLEY PHYS. REV. D 111, 125011 (2025)

125011-2



change the boundary condition. Consequently, we arrive at

a new set of mode solutions

uω̃;γiðxÞ ¼
sinðω̃zÞ þ γiω̃ cosðω̃zÞ

ffiffiffiffiffiffi

πω̃
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2i ω̃
2

p e−iω̃t; ω̃ > 0; ð9Þ

satisfying (8), which is equivalent to the mode uω;γðΛ−1
i xÞ

satisfying (3) where Λ−1
i is the diffeomorphism in Eq. (7).

Notice that we have absorbed λi into ω by defining

ω̃ ¼ λiω. The field expanded in this new base, namely

φ̂ðγiÞðxÞ, will lead to the definition of a new vacuum state

j0iγi via

âω̃;γi j0iγi ¼ 0; ∀ ω̃ > 0: ð10Þ

Therefore, if j0iγ denotes the natural vacuum correspond-

ing to the frame in the coordinates x, then the vacuum for

the transformed frame xi is represented by j0iγi. These
vacua do not respect AdS invariance [6] and depend

crucially on the choice of γi.

The relationship between the two bases of mode sol-

utions was studied in [9], where the authors find the

Bogoliubov transformation taking into account the frame

change x → xi. In this way, the new modes uω̃;γiðxÞ can be
expressed in terms of the old ones uω̃;γiðxÞ as [here, we

present the inverse of the transformation in Eq. (18) from

Ref. [9] ]

uω̃;γiðxÞ ¼
Z

∞

0

dω
�

α
λi
ωω̃uω;γðxÞ − β

λi
ωω̃u

�
ω;γðxÞ

�

; ð11Þ

where α
λi
ωω̃ and β

λi
ωω̃ are real Bogoliubov coefficients given

by [with a correction to the typo in Eq. (19) of Ref. [9] ]

α
λi
ωω̃ ¼ 1þ λiγ

2ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2ω2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2λ2iω
2

p δðω − ω̃Þ þ γ

π

λi − 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2ω2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2λ2i ω̃
2

p

ffiffiffiffiffiffiffi

ωω̃
p

ω − ω̃
;

β
λi
ωω̃ ¼ γ

π

λi − 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2ω2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2λ2i ω̃
2

p

ffiffiffiffiffiffiffi

ωω̃
p

ωþ ω̃
: ð12Þ

Notably, and for future analysis, we can also express the

new annihilation and creation operators as

âω̃;γi ¼
Z

∞

0

dω
�

α
λi
ωω̃âω;γ þ β

λi
ωω̃â

†
ω;γ

�

â†ω̃;γi ¼
Z

∞

0

dω
�

α
λi
ωω̃â

†
ω;γ þ β

λi
ωω̃âω;γ

�

: ð13Þ

III. UNRUH-DEWITT DETECTOR MEASURING

SUPERPOSITION

Let us consider the Unruh-DeWitt detector (a two-level

system) interacting with a real massless scalar field in

PAdS2. This field respects RBC with parameter γi, where

the subindex i denotes each possible choice for the

parameter. Then, the standard interaction Hamiltonian

reads
1

Hi ¼ cσðτÞφðγiÞðxðτÞÞ: ð14Þ

Here, c is a small coupling constant, τ is the detector’s

proper time, and σðτÞ is the monopole momentum operator

which connects the two-level states of the detector as

σðτÞ ¼ jeihgjeiΩτ þ jgiheje−iΩτ; ð15Þ

with jgi and jei denoting respectively the ground and the

excited state of the detector. In the above equation, Ω is the

energy gap between the detector’s states.

Now, in order to describe the superposition of different

RBCs, we introduce the selector states jγii satisfying

hγijγji ¼ δij ¼
�

1; i ¼ j

0; i ≠ j
; ð16Þ

which can be understood as a “boundary condition

selector“—or, equivalently, a “frame selector”—which will

couple the detector with a specified field respecting the

boundary condition assigned by γi. In this way, we can

write the total interaction Hamiltonian between the detector

and N scalar fields (respecting N different RBCs) as

Hint ¼
X

N

i¼1

Hi ⊗ jγiihγij: ð17Þ

First of all, we set the vacuum in the observer’s

(detector’s) frame as j0iγ , i.e., the vacuum for φðγÞðxÞ
which satisfies the boundary condition (3). Then, the initial

state of the total system can be represented as

1
We do not consider the switching function (responsible for

turning the detector on and off) since we are interested in the case
of an eternally active detector. Additionally, we are disregarding
the internal structure of the detector, which is necessary to obtain
a normalized probability.
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jini ¼ jgi ⊗ j0iγ ⊗ jSini; with jSini ¼
1
ffiffiffiffi

N
p

X

N

i¼1

jγii;

ð18Þ

where jSini denotes the superposition of N possible

boundary conditions.

After the interaction, we expect the detector and the field

to exchange energyΩ and evolve to their respective excited

states. Consequently, the final state of the total system can

be written as

jouti ¼ jei ⊗ jψi ⊗ jSouti; ð19Þ

where jψi ¼ â†ω;γj0iγ is the first excited state of the field

and jSouti characterizes the final superposed boundary

conditions. We can assume a controlled superposition by

selecting a specific combination of jγii [10] to represent

jSouti. Alternatively, one can introduce relative phases to

the states jγii, allowing the desired superposition to be

selected by simply choosing the phase parameters. In this

way, the control state can be expressed as a superposition of

states in which each component carries a relative phase

associated with its respective boundary condition, as

jSouti ¼
1
ffiffiffiffi

N
p

X

N

i¼1

e−iθi jγii: ð20Þ

By applying perturbation theory, the probability ampli-

tude for the interaction that induces transitions from jini to
jouti is

Ain→out ¼ houtjini − ihoutj
Z

∞

−∞

dτHintjini þOðc2Þ

¼ −
ic

N

X

N

i¼1

eiθi
Z

∞

−∞

dτ eiΩτhψ jφðγiÞðxðτÞÞj0iγ

þOðc2Þ: ð21Þ

Thus, by squaring the modulus of A and summing over all

final states ψ , we derive the non-normalized transition

probability (to first order in c) as

PðΩÞ ¼ c2

N2

�

X

N

i¼1

F iiðΩÞ þ
X

N

i≠j

e−iϕjiF jiðΩÞ
�

; ð22Þ

where ϕji ≔ θj − θi and the “ji-response function” F ji is

given by

F jiðΩÞ ¼
Z

∞

−∞

dτ e−iΩτ
Z

∞

−∞

dτ0 eiΩτ
0
Wjiðx;x0Þ; ð23Þ

with Wjiðx;x0Þ ¼γ h0jφ̂ðγjÞðxðτÞÞφ̂ðγiÞðxðτ0ÞÞj0iγ being the

two-point function for the fields defined by boundary

parameters γi and γj, acting on the vacuum defined by

the mass parameter γ.

Identifying γi as the transformed boundary condition (8),

which implies that λi ¼ γi=γ, we expand the fields

φ̂ðγiÞðxðτÞÞ in terms of their corresponding modes

uω̃;γiðxÞ and use the transformation (13) to find

Wjiðx;x0Þ ¼
Z

dω̃

Z

dk̃

Z

dω
�

α
λj
ωω̃β

λi
ωk̃
uω̃;γjðxÞuk̃;γiðx

0Þ þ α
λj
ωω̃α

λi
ωk̃
uω̃;γjðx0Þu�

k̃;γi
ðx0Þ

þ β
λj
ωω̃β

λi

ωk̃
u�ω̃;γjðxÞuk̃;γiðx

0Þ þ β
λj
ωω̃α

λi

ωk̃
u�ω̃;γjðxÞu

�
k̃;γi

ðx0Þ
�

: ð24Þ

As we can observe in (12), if λi ¼ λj ¼ 1, Eq. (24)

simplifies to

Wðx;x0Þ ¼
Z

∞

0

dωuω;γðxÞu�ω;γðx0Þ; ð25Þ

which is simply the Wightman function expressed as a sum

of the modes.

A. Critical acceleration

We are interested in the simple trajectory where the

detector remains at rest at a constant position z0 and evolves
only in time (see Fig. 1). In terms of the detector’s proper

time, this trajectory is described by

xðτÞ ¼ ðz0τ; z0Þ: ð26Þ

This path is an accelerated trajectory with proper accel-

eration

a ¼
ffiffiffiffiffiffiffiffiffiffi

aμaμ
p

¼ l ¼ 1; ð27Þ

recalling that l is the radius of curvature of AdS spacetime.

As shown in [13], a ¼ l characterizes a critical acceleration,

as thermal effects occur only for a > l. Since no response is

expected from a standard detector following the trajectory

(26), any nonzero response observed by our approach will

indicate the presence of a superposition effect.

In this trajectory, the integration over τ and τ0 in the

response function (23) simplifies to the Fourier transform

of the modes uω̃;γi and their conjugates. Specifically, we

have
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Z

∞

−∞

dτe−iΩτuω̃;γjðz0τ;z0Þ¼uω̃;γjð0;z0ÞδðΩþ ω̃z0Þ; ð28aÞ

Z

∞

−∞

dτe−iΩτu�ω̃;γjðz0τ;z0Þ¼u�ω̃;γjð0;z0ÞδðΩ− ω̃z0Þ; ð28bÞ

Z

∞

−∞

dτ0 eiΩτ
0
uk̃;γiðz0τ

0; z0Þ ¼ uk̃;γið0; z0ÞδðΩ− k̃z0Þ; ð28cÞ

Z

∞

−∞

dτ0 eiΩτu�
k̃;γi

ðz0τ0; z0Þ ¼ u�
k̃;γi

ð0; z0ÞδðΩþ k̃z0Þ: ð28dÞ

As we can observe, the Dirac delta function enforces the

interaction to select only the modes with energy

�ω̃0 ¼ �Ω=z0. IfΩ > 0 (excitation), only the combination

of the terms (28b) and (28c) will produce nonzero con-

tributions to the two-point function (24). Conversely, for

Ω < 0 (deexcitation), the nonzero contribution arises from

the combination of terms (28a) and (28d). As a result, we

obtain the ji-response functions

F jiðΩÞ ¼ u�ω̃0;γj
ð0; z0Þuω̃0;γi

ð0; z0Þ
Z

dωβ
λj
ωω̃0

β
λi
ωω̃0

; ð29Þ

for Ω > 0, and

F jiðΩÞ ¼ u−ω̃0;γj
ð0; z0Þu�−ω̃0;γi

ð0; z0Þ
Z

dωα
λj

ωð−ω̃0Þα
λi
ωð−ω̃0Þ;

ð30Þ

for Ω < 0.

Note that the coefficients α
λi
ω;ω̃ (12) depend on the Dirac

delta function, which makes the integrand in (30)

dependent on δ2ðωþ Ω=z0Þ, and therefore, the integral

is ill posed. In fact, terms of the form jαλiωω̃j2 are related to

the number of particles only for nonvacuum states. This is

due to the fact that quantization of fields with γi ≠ γj leads

to unitarily inequivalent representations. However, this

problem is suppressed for a finite-time interaction between

the detector and the fields, that serves as a natural regulari-

zation mechanism, as it prevents the appearance of products

of Dirac delta distributions with identical arguments, given

that the time integration in Eq. (28) is restricted to a finite

interval rather than the entire real line (cf. Ref. [14]).

Nonetheless, as we are interested in the case of eternally

active detectors, let us restrict our attention to theΩ > 0 case.

B. Detector excitation (Ω > 0)

For Ω > 0 the ji-response function can be found analyti-
cally. Note that the integration in Eq. (29) depends only on

the coefficients β
λi
ωω̃0

and β
λj
ωω̃0

. This means the integration

measures the projection of themodesuω̃0;γi
and uω̃0;γj

into the

vacuum j0iγ . By expressing the modes in (29) using (9) and

performing the integration with the explicit expression (12)

for the Bogoliubov coefficients, we arrive at

F jiðΩÞ ¼ ðsinΩþ γjΩ cosΩÞðsinΩþ γiΩ cosΩÞ
π Ω

z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΩ2γ2i þ z2
0
ÞðΩ2γ2j þ z2

0
Þ

q N
ji
γ ðΩÞ;

ð31Þ

where

N
ji
γ ðΩÞ ¼

Z

∞

0

dωβ
λj
ωω̃0

β
λi
ωω̃0

¼
ðγj − γÞðγi − γÞΩz3

0
½πγΩz0 − γ2Ω2 − ðz2

0
− γ2Ω2Þ lnðγΩ

z0
Þ − z2

0
�

π2ðz2
0
þ γ2Ω2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz2
0
þ γ2jΩ

2Þðz2
0
þ γ2iΩ

2Þ
q : ð32Þ

First, note that we find a finite ji-response function for

the detector that is always switched on and, consequently, a

finite probability transition. This is a different result from

particle production along an accelerated path, which is

usually infinite (even in Minkowski space). Furthermore,

for γj ¼ γi ¼ γ (or equivalently λj ¼ λi ¼ 1), we obtain

N
ji
γ ðΩÞ ¼ 0, as expected for nonsuperposition on such a

trajectory.

By analyzing Eq. (32), we can explore the extreme cases

of the initial field in the detector’s frame by setting specific

values for γ. For the limits γ → 0 and γ → ∞, while

keeping λi and λj constant, we find N
ji
0
¼ N

ji
∞ ¼ 0, i.e.,

the Dirichlet vacuum j0i0 and Neumann vacuum j0i∞ do

not contain Robin modes uω̃0;γi
and uω̃0;γj

. On the other

hand, we can consider the Robin vacuum to interact with

Dirichlet and Neumann modes by taking limits for γi and

γj. Writing

NDir
γ ¼ lim

γi→0

Nii
γ ; NNeu

γ ¼ lim
γi→∞

Nii
γ ; ð33Þ

we illustrate these limits in Fig. 2. As can be observed, the

transformation γi ¼ λiγ combines γ and γi in a way that

always yields a finite projection of modes dependent on γi
in the vacuum j0iγ . Nonetheless, if we fix the modes to

respect the Dirichlet (Neumann) boundary condition, the

projection onto the Neumann (Dirichlet) vacuum goes to

infinity. We also see from Fig. 2 that N
ji
γ is very similar to

the Neumann limit for all values of γ except those close

to zero.
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IV. EXAMPLE OF SUPERPOSITION FOR N = 2

The simplest nonzero ii-response function occurs when

we consider the control states which select only one

boundary condition, i.e., jSouti≡ jγ1i (equivalently

N ¼ 1). In this case, F 11ðΩÞ represents how the detector

perceives the particles from the modes uω̃0;γ1
in the vacuum

state j0iγ, analogous to the study in Ref. [9] on the

observer’s perception of the “subtle frame change.”

For N ¼ 2, we encounter the first superposition of two

different Robin boundary conditions. The probability (22)

simplifies to

PðΩÞ ¼ c2

4
½F 11ðΩÞ þ F 22ðΩÞ þ 2F 12ðΩÞ cosϕ12�; ð34Þ

illustrated for particular values in Fig. 3. This figure

demonstrates the probability’s oscillatory dependence on

Ω. By considering the equation dPðΩÞ=dΩ ¼ 0, we can

find energies Ω0 where the minimum values of PðΩÞ are
reached, indicating that the detector does not interpret the

superposition with these energies as particles. These values

can be determined numerically. For the values considered

in Fig. 3 we find

Ω0 ≈

�

2.82; 5.69; 8.63;… for ϕ12 ¼ 0;

2.79; 5.64; 8.57;… for ϕ12 ¼ π:
ð35Þ

These values are very similar, suggesting that superposition

has minimal influence on the energies which are unob-

served by the detector. Also in Fig. 3, we see that successive

oscillations are damped as Ω increases. The amplitude of

the oscillations also decreases as ϕ12 increases.

We also investigate the dependence of PðΩÞ on the

parameters λi. For N ¼ 2 and λ1 ¼ 1.1, we obtain Fig. 4.

As observed, the probability decreases for 0 < λ2 < λmin

and increases for λmin < λ2 < 8.5, where λmin depends on

the phase difference ϕ12. For ϕ12 ¼ 0; π we find λmin ¼ 0.9,

1.1, respectively. Furthermore, as the rate λ2 approaches

infinity, the probability approaches a constant value de-

pendent on ϕ12

PN¼2ðΩÞ ⟶λ2→∞
0.0157þ 0.0017 cosϕ12; ð36Þ

for the values considered in Fig. 4.

V. CONCLUSION

In this work, we investigated the quantum superposition

of Robin boundary conditions for scalar fields in PAdS2
spacetime. In particular, we analyzed the response function

of an Unruh-DeWitt detector interacting with two or more

scalar fields with different boundary conditions. This

approach has two significant interpretations: to explore

scenarios where these multiple inequivalent fields coexist

FIG. 3. Probability PðΩÞ as a function of Ω for N ¼ 2, setting

the coupling c ¼ 1. We also fix z0 ¼ 10, γ ¼ 1, λ1 ¼ 1.1, λ2 ¼
1.2 and vary ϕ12 from 0 to π.

FIG. 4. Probability PðΩÞ as a function of λ2 for N ¼ 2 and

coupling c ¼ 1. We set Ω ¼ 1, z0 ¼ 3 and λ1 ¼ 1.1 and show

results for ϕ12 varying from 0 to π. The plot is symmetric under

exchange of λ1 ↔ λ2.

FIG. 2. Illustration of N
ji
γ (32) as a function of the boundary

condition parameter γ. For N
ji
γ we take λi ¼ λj ¼ 20 and for all

curves we are setting Ω ¼ z0 ¼ 1. Here, NDir
γ (NNeu

γ ) is the

projection of the modes uω̃0;0
(uω̃0;∞

) onto the vacuum j0iγ .
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or where the spacetime itself exhibits quantum super-

position effects.

We found that when the detector is in the Robin

vacuum state with γ > 0 and interacts with any other

field with γ̃ ≠ γ, the response function is nonzero, but

remains finite. In contrast, a detector in Dirichlet or

Neumann vacuum states is completely blind to any other

field with γ > 0.

As a specific case, we examined the superposition of two

different boundary conditions, γ1 and γ2. We observed that,

depending on the relative phase ϕ12 (i.e., on the final

superposition state jSouti), certain energy values Ω0 do not

excite the detector. Furthermore, as the rate λ2 increases, the

transition probability converges to a constant value that is

determined by ϕ12.
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