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ARTICLE

Dutch population structure across space, time and
GWAS design
Ross P. Byrne 1✉, Wouter van Rheenen 2, Project MinE ALS GWAS Consortium*, Leonard H. van den Berg2,

Jan H. Veldink 2 & Russell L. McLaughlin 1✉

Previous genetic studies have identified local population structure within the Netherlands;

however their resolution is limited by use of unlinked markers and absence of external

reference data. Here we apply advanced haplotype sharing methods (ChromoPainter/

fineSTRUCTURE) to study fine-grained population genetic structure and demographic change

across the Netherlands using genome-wide single nucleotide polymorphism data (1,626

individuals) with associated geography (1,422 individuals). We identify 40 haplotypic clusters

exhibiting strong north/south variation and fine-scale differentiation within provinces.

Clustering is tied to country-wide ancestry gradients from neighbouring lands and to locally

restricted gene flow across major Dutch rivers. North-south structure is temporally stable,

with west-east differentiation more transient, potentially influenced by migrations during the

middle ages. Despite superexponential population growth, regional demographic estimates

reveal population crashes contemporaneous with the Black Death. Within Dutch and inter-

national data, GWAS incorporating fine-grained haplotypic covariates are less confounded

than standard methods.
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T
he Netherlands is a densely populated country on the
northwestern edge of the European continent, bounded by
Germany, Belgium and the North Sea. The country is

divided into twelve provinces and has a complex demographic
history, with occupation by several Germanic peoples since the
collapse of the Roman Empire, including the Frisians, the Low
Saxons and the Franks. Over 17 million individuals now inhabit
this relatively small region (41,500 km2), making it one of the
most densely populated countries in Europe. Despite its small
geographical size, previous genetic studies of the people of the
Netherlands have demonstrated coarse population structure that
correlates with its geography, as well as apparent heterogeneity in
effective population sizes across provinces1,2. These observations
suggest that the demographic past of the Dutch population has
left residual signatures in its present regional genetic structure;
however, this has not been fully explained in the context of
neighbouring populations and thus far the use of unlinked genetic
markers have limited the resolution at which this structure can be
described. This resolution limit also confines the extent to which
the confounding effects of population structure can be controlled
in genomic studies of health and disease such as genome-wide
association studies (GWAS). As these studies continue to seek
ever-rarer genetic variation with ever-increasing cohort sizes,
intricate understanding and fine control of population structure is
becoming increasingly relevant, but increasingly challenging3.

Recent studies have showcased the power of leveraging shared
haplotypes to uncover and characterise previously unrecognised
fine-grained genetic structure within populations, yielding novel
insights into the demographic composition and history of Britain
and Ireland4–7, Finland8, Japan9, Italy10, France11 and Spain12.
Haplotype sharing has also revealed genetic affinities between
populations13, enabling inference of historical admixture events
using modern populations as proxies for ancestral admixing
sources14. Furthermore, geographic information can be integrated
to model genetic similarity as a function of spatial distance15 to
infer demographic mobility within or between populations; one
approach uses the Wishart distribution to estimate and map a
surface of effective migration rates based on deviations from a
pure isolation by distance model16, allowing migrational cold
spots to be inferred which may derive from geographical
boundaries such as rivers and mountains. Almost half of the area
of the Netherlands is reclaimed from the sea and its con-
temporary land surface is densely subdivided by human-made
waterways and naturally-occurring rivers, including the Rhine
(Dutch: Rijn), Meuse (Maas), Waal and IJssel. These rivers have
been speculatively linked to genetic differentiation between
northern and southern Dutch subpopulations in previous work1;
however the explicit relationship between Dutch genetic diversity
and movement of people within the Netherlands has not been
directly modelled.

The Dutch have previously received special interest as a model
population1,2 and form a major component of substantial ongo-
ing efforts to better understand human health, disease, demo-
graphy and evolution. For example, at the time of writing, over
10% of all studies listed in the NHGRI-EBI genome-wide asso-
ciation study (GWAS) catalogue17 include the Netherlands in
their “Country of recruitment” metadata. As well as offering
insights into demography and human history, refined population
genetic studies are important to identify and adequately control
confounding effects in genomic studies of health and disease,
especially if spatially structured environmental factors contribute
substantially to variance in phenotype, which in particular
impacts rare variants18.

In this study, we harness shared haplotypes to examine the
fine-grained genetic structure and demography of the Nether-
lands. We show that Dutch population structure is more granular

than previously recognised, and is ancient and persistent over
time. The strength and stability of the observed structure appears
to be tied to the relationship of the Netherlands to neighbouring
lands and to its own internal geography, and has likely been
shaped over history by migration, but preserved in recent gen-
erations by enduring sedentism of genetically similar individuals
within regions. We observe genetic evidence of regional popula-
tion crashes during the Black Death and a countrywide popula-
tion surge in the 17th century. Finally, we show that the complex
genetic structure observed demonstrably confounds GWAS;
however, through analysis of the Netherlands and more extensive
international data19, we demonstrate that using shared haplotypes
as GWAS covariates significantly reduces this confounding over
standard single-marker methods.

Results
The genetic structure of the Dutch population. We mapped the
haplotypic coancestry profiles of 1626 Dutch individuals using
ChromoPainter20 and clustered the resulting matrix using
fineSTRUCTURE20, identifying 40 genetic clusters at the highest
level of the hierarchical tree which segregated with geographical
provenance. We explored the clustering from the finest (k= 40)
to the coarsest level (k= 2), settling on k= 16 as it captured the
major regional splits sufficiently with little redundancy. Clusters
at this level were robustly defined by total variation distance
(TVD; p < 0.001) and fixation index (FST; Fig. 1a); remarkably,
some FST values between particularly differentiated Dutch clusters
were comparable in magnitude to estimates between European
countries (calculated using data from ref. 21; Supplementary
Table 1). Some clusters had expansive geographical ranges (for
example NHFG, representing individuals from North Holland,
Friesland and Groningen), while others neatly distinguished
populations on a sub-provincial level (for example, NBE and
NBW, representing east and west regions of North Brabant). For
visualisation we projected the ChromoPainter coancestry matrix
in lower dimensional space using principal component analysis
(PCA; Fig. 1b) and assigned cluster labels based on majority
sampling location (available for 1422 individuals), arranging
neighbouring and genetically similar clusters into cluster groups,
as with previous work6. The first principal component (PC) of
coancestry followed a strong north-south trend (latitude vs mean
PC1 per town r2= 0.52; p= 6.8 × 10−72) with PC2 generally
explained by a west-east gradient (longitude vs mean PC2 per
town r2= 0.29; p= 3.4 × 10−33). Further PCs demonstrated more
complex relationships with geography (Supplementary Fig. 1).

As previously observed in different populations6, the distribu-
tion of individuals in this genetic projection generally resembled
their geographic distribution (Fig. 1c), with some exceptions. For
example, North Brabant is geographically further north than
Limburg, but is further separated by PC1 from northern clusters.
We explored the possibility that this could instead be explained
by relative ancestral affinities to neighbouring lands by modelling
the genome of each Dutch individual as a linear mixture of
European sources (obtained from ref. 21) using ChromoPainter,
retaining source groups that best matched Dutch individuals for
at least 5% of the genome4 (Fig. 2). The resulting profiles of
German, Belgian and Danish ancestries were significantly
autocorrelated (pDE, pBE < 0.0001; pDK < 0.001; Moran’s I and
Mantel’s test) and spatially arranged along geographical direc-
tions S66°W, N73°E and S73°E respectively, approximately
corresponding to declining ancestry gradients directed away
from the German and Belgian borders and the North Sea
boundary (Fig. 2; r2DE ¼ 0:31; r2BE ¼ 0:35; r2DK ¼ 0:12;
pDE ¼ 9:4 ´ 10�119;pBE ¼ 2:7 ´ 10�133; pDK ¼ 1:1 ´ 10�39). The
spatial distribution of French ancestry was comparatively
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uniform, with only a modest correlation due east (r2FR ¼ 0:014;
pFR ¼ 9:5 ´ 10�6). The general trend across the Netherlands was
thus of complementary Belgian and German ancestral affinities,
decaying with distance from the respective borders. North
Brabant, however, showed a greater Belgian profile than Limburg,
despite similar, substantial Belgian frontiers in both Dutch
provinces. Conversely, the German ancestry profile of Limburg
greatly exceeded that of North Brabant, reflecting its 200-
kilometre border with Germany and centuries of consequent
demographic contact and likely genetic admixture.

Genome flux and stasis in the Netherlands. To explore temporal
trends in Dutch population structure we called genomic segments
of pairwise identity-by-descent (IBD) using RefinedIBD22. An
IBD haplotype sharing matrix is conceptually similar to a
ChromoPainter coancestry matrix23, but trades some sensitivity
to be more explicitly interpretable. As IBD segment length is
inversely related to age24,25, different length intervals can inform

on structure at different time depths. Total pairwise IBD between
Dutch individuals mirrored the structure observed with Chro-
moPainter (Fig. 3a), with 8 distinct clusters identified in the IBD
sharing matrix that broadly segregated with geography and
recapitulated some of the important splits obtained from fineS-
TRUCTURE, most strikingly the west-east split in North Brabant.
Decomposing total IBD by centiMorgan (cM) length into short
(1–3 cM), medium (3–5 cM) and long (5–7 cM) bins, we observed
stability over time of north-south structure and the emergence of
west-east structure embedded in 3–5 cM segments (Fig. 3b),
corresponding to an expected time depth around 1120 years
ago25. As this date and the structure observed is dependent on the
(arbitrary) thresholds set for IBD segment length bins, we have
also provided an interactive environment in which Dutch
population structure can be explored across a range of IBD seg-
ment bins (http://bioinf.gen.tcd.ie/ctg/nlibd).

Although these observations could potentially be biased by
power to detect population structure in longer and shorter bins,
the temporally volatile west-east structure contrasts with the
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Fig. 1 The genetic structure of the people of the Netherlands. a fineSTRUCTURE dendrogram of ChromoPainter coancestry matrix showing clustering of

1626 Dutch individuals based on haplotypic similarity. Associated total variation distance (TVD) and fixation index statistics between clusters are shown in

the matrix. Permutation testing of TVD yields p < 0.001 for all cluster pairs, indicating that clustering is non-random. Cluster labels derive from Dutch

provinces and are arranged into cluster groups for genetically and geographically similar clusters (circled labels). b The first two principal components

(PCs) of ChromoPainter coancestry matrix for all individuals analysed. Points represent individuals and are coloured and labelled by cluster group.

c Geographical distribution of 1422 sampled individuals, coloured by cluster groups defined in a. Labels represent provinces of the Netherlands. Map

boundary data from the Database of Global Administrative Areas (GADM; https://gadm.org).
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stability and persistence of old north-south structure and possibly
represents a genomic signature of historical demographic flux in
the region and its surrounding lands. With this in mind, we
investigated possible admixture from outside demographic
groups using GLOBETROTTER14 with 4514 European indivi-
duals21 representing modern proxies for admixing sources.
Across the Dutch sample, significant admixture dating to 1088
CE (95% CI 1004–1111 CE) was inferred with the major

contributing source best modelled by modern Germans and the
minor source best modelled by southern European groups
(France, Spain) (Table 1). This is supported by single-marker
ADMIXTURE component estimates showing that the Nether-
lands has the closest profile to Germanic groups (Supplementary
Fig. 3) and is consistent with the ancestry profile gradients
detailed in Fig. 2. The timing of the inferred 11th century event
was stable across Dutch fineSTRUCTURE clusters (to varying
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reflect (for instance) a precisely-timed admixture event. Map boundary data from the Database of Global Administrative Areas (GADM; https://gadm.org).

Table 1 GLOBETROTTER date and source estimates for admixture into the Netherlands.

Cluster group Conclusion Minor Major Prop Date CE 95% CI CE p

SHOL One-date multiway SPA-FRA(2) GER(5) 0.25 1169 1086–1244 0

ZEE One-date-multiway FRA(8) GER(5) 0.4 1172 771–1773 0

NBE One-date-multiway FRA(8) GER(5) 0.4 1085 939–1262 0

NBW One-date-multiway GER(5) BEL(5) 0.34 1013 668–1383 0

NEN One-date SPA-FRA(2) GER(5) 0.19 1172 925–1364 0

DRO One-date-multiway FRA(8) GER(5) 0.16 1390 1116–1932 0

GLO One-date SPA-FRA(2) GER(5) 0.14 1128 893–1306 0

CEN One-date SPA-FRA(2) GER(5) 0.18 1049 854–1244 0

GEL One-date SPA-FRA(2) GER(5) 0.17 1189 1046–1391 0

NHFG One-date GER(9) DEN(5) 0.36 1060 759–1290 0

LIM One-date ITA(8) GER(5) 0.34 1162 1044–1351 0

ALL One-date SPA-FRA(2) GER(5) 0.25 1088 1004–1111 0

Minor and Major represent inferred proxy admixing sources. Prop represents estimated minor admixture proportion. Admixing sources are derived from ChromoPainter/fineSTRUCTURE clustering of

4514 European reference individuals (Methods); labels represent principal country of origin (SPAin, FRAnce, GERmany, BELgium, DENmark) with cluster numbers arbitrarily assigned within countries.

Example coancestry curves are shown in Supplementary Fig. 2.
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degrees of confidence), suggesting that the signal represents an
important period in the establishment of the modern Dutch
genome (Table 1); however, given the state of demographic flux
in Europe at the time, its exact historical correlate is open to
interpretation. Notably, a significant admixture event with a
major Danish source was inferred between 759 and 1290 CE in
the NHFG cluster group (representing Dutch northern seaboard
provinces); this period spans a historical period of recorded
Danish Viking contact and rule in northern Dutch territories.

In addition to influence from outside populations, the
population structure detailed in Figs. 1 and 3 has likely been
shaped by independent demographic histories within the Nether-
lands. In support of this, we noted that short (1–2 cM) IBD
segments shared between northern clusters and provinces
outnumbered those shared between southern clusters and
provinces (Supplementary Fig. 4), and, as observed previously2,
northern provinces shared more short segments with southern
provinces than southern provinces shared amongst themselves.
Together, these results suggest that the north had a smaller
ancestral effective population size (Ne) than the south and is
probably derived from an ancient or historical founder event
forming the northern population from a subset of southerners.
We formally characterised ancestral trajectories in Ne between the
north and the south of the Netherlands using the nonparametric
method IBDNe26 for the entire Dutch sample and two
subsamples representing the principal fineSTRUCTURE north/
south split (Fig. 4a), retaining a random sample of 641 individuals
from each group. We also characterised historical Ne within
individual Dutch provinces for which genotypes for more than 40
individuals were available. Countrywide, Ne has grown super-
exponentially over the past 50 generations in the Netherlands

(Fig. 4a) and has been consistently lower in the north than the
south. Despite this, the pattern of growth in northern and
southern groups was identical, with a steady exponential growth
up to around 1650 CE, when a major uptick in growth rate was
observed. This corresponds to a period of substantial economic
development in the Netherlands over the 17th century known to
historians as the Dutch Golden Age. Preceding this period,
historical Ne estimates for the entire country and for northern/
southern groups showed only a modest response to the Black
Death (Yersinia pestis plague pandemic) of the 14th century
which claimed up to 60% of Europe’s population27. Conversely,
Ne estimation within individual Dutch provinces revealed a much
more detectable impact of the Black Death (Fig. 4b).

Genomic signatures of Dutch mobility. We noted that long (>7
cM) IBD segments, which capture recent shared ancestry, were
almost always shared within genetic clusters (and provinces), and
rarely between (Supplementary Fig. 4). This indicates a pro-
pensity for genetically similar individuals (relatives) to remain
mutually geographically proximal, suggesting a degree of
sedentism that has likely influenced Dutch population structure
over time. It has also previously been argued that genetic struc-
ture in the Netherlands may be partially rooted in geographic
obstacles imposed by the country’s major waterways1 so we
explicitly modelled genetic similarity as a function of geographic
distance using EEMS16 to infer migrational hot and cold spots
(Fig. 5). The resulting effective migration surface showed several
apparent barriers to gene flow, the strongest and most contiguous
of which runs in an east-west direction across the Netherlands
overlapping the courses of the Rhine, Meuse and Waal rivers.
This inferred migrational boundary also approximately
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Fig. 4 Dutch effective population size over time. a Historical change in effective population size (Ne) over the past 50 generations for all Dutch individuals
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fineSTRUCTURE split, which separates the Dutch population into northern (NNL) and southern (SNL) genetic clusters; inset shows geographical distribution
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corresponds to the geographical division determining the prin-
cipal fineSTRUCTURE split between northern and southern
Dutch populations (Fig. 4a) as well as the geographical bound-
aries between clusters inferred from ancient IBD segments
(Fig. 3b), suggesting that these rivers have been a historically
persistent determinant of Dutch population structure.

GWAS confounding by fine-grained structure. As population
structure confounds GWAS (for example due to stratification of
cases and controls between subpopulations), we investigated the
extent to which haplotype sharing captures confounding structure
in a Dutch sample of 1963 cases of amyotrophic lateral sclerosis
(ALS) and 2774 controls from a recent multi-population GWAS
for ALS19. PCs of the haplotypic ChromoPainter coancestry
matrix for these 4737 individuals explained substantially more
variance in ALS phenotype than PCs calculated from single
nucleotide polymorphism (SNP) genotypes alone, indicating
latent structure captured by ChromoPainter that is stratified
between cases and controls (Fig. 6a). To estimate the extent to
which this stratified structure confounds GWAS we calculated
case-control association statistics using a logistic model covarying
for either 20 ChromoPainter PCs or 20 SNP PCs and estimated
the linkage disequilibrium (LD) score regression intercepts for
both sets of resulting summary statistics. An intercept higher than
1 indicates confounding in the GWAS; Fig. 6a shows that GWAS
statistics calculated with ChromoPainter PCs as covariates are less

confounded than statistics using SNP PCs, albeit with overlapping
confidence intervals for the relatively small Dutch sample. To
more adequately represent the large-scale multi-population data
typically used in modern GWAS, we extended our analysis to the
full ALS case-control dataset from which the Dutch data derive19,
including 35,755 individuals from twelve European countries and
the USA. For computational tractability, instead of Chromo-
Painter we used PBWT-paint (https://github.com/richarddurbin/
pbwt), a scalable approximate haplotype painting method based
on the positional Burrows-Wheeler transform28. When run on
our original Dutch dataset of 1626 individuals, the structure
rendered by PBWT-paint was almost identical to ChromoPainter
(r2PC1 ¼ 0:99; r2PC2 ¼ 0:98; Supplementary Fig. 5), indicating its
suitability for this analysis. PBWT-paint captured pervasive glo-
bal and local structure in the multi-population GWAS data that
both separated and subdivided countries (Fig. 6b). Top PCs of
PBWT-paint coancestry explained substantially more variance in
phenotype than SNP PCs and GWAS statistics including PBWT-
paint PCs as covariates were significantly less confounded than
statistics corrected by SNP PCA (Fig. 6a, LD score regression
intercepts).

Discussion
The genomes of modern humans contain a detailed record of the
intricate histories that shaped them. Genomic signatures of these
histories are often reflected in present-day population structure
and have the potential to confound genomic studies of health and
disease through stratification across phenotypic categories. Here,
we have studied the Netherlands as a model population, har-
nessing information from shared haplotypes and recent devel-
opments in spatial modelling to gain intricate insights into the
geospatial distribution and likely origin of Dutch population
genetic structure. The structure identified through shared hap-
lotypes is surprisingly strong; some Dutch genetic clusters iden-
tified this way are more mutually distinct (by FST) than whole
European countries. We have also introduced a novel use of
length-binned IBD sharing combined with PCA and Gaussian
mixture model-based clustering to characterise changing popu-
lation structure over time, revealing transient genetic structure
layered over strong and stable north-south differentiation in the
Netherlands. This is contextualised by somewhat distinct demo-
graphic histories between genetic groups in the Netherlands, with
consistently lower Ne in the north than the south. A potential
source of the north-south differentiation is impaired migration
across the east-west courses of the Rhine, Meuse and Waal, which
effectively separate southern Dutch populations from the north.
The population structure observed in the Netherlands is espe-
cially remarkable when considered in terms of the country’s size
and extensive infrastructure; notably Denmark, which is roughly
equal in geographical area, is genetically homogeneous, forming
only a single cluster when interrogated using fineSTRUCTURE29,
despite its island-rich geography. Both the United Kingdom and
Ireland also exhibit at least one large indivisible cluster con-
stituting a large fraction of the population4–6, however no
extraordinarily large clusters dominate the Dutch sample. Mean
FST between Dutch clusters also greatly outmeasures that
observed between Irish clusters, suggesting that the extent of
population differentiation is higher in the Netherlands, despite
Dutch land area being less than half that of the island of Ireland.

While coarse geographical trends in Dutch genetic structure
have previously been described using single-marker PCA1, our
use of shared haplotypes reveals structure at a much higher
resolution, differentiating subpopulations between, and some-
times within, provinces (Fig. 1). As a striking example, individuals
from the east and west of North Brabant (NBE and NBW in

Waal

Meuse

Lower Rhine

IJsse
l

–2 –1 0 1 2

log10(posterior mean migration rate)

Fig. 5 The effective migration surface of the Netherlands. Contour map

shows the mean of 10 independent EEMS posterior migration rate

estimates between 800 demes modelled over the land surface of the

Netherlands. A value of 1 (blue) indicates a tenfold greater migration rate

over the average; −1 (orange) indicates tenfold lower migration than

average. The courses of major rivers are included to highlight their

correlation with migrational cold spots. Map boundary data from the

Database of Global Administrative Areas (GADM; https://gadm.org); river

course data from Natural Earth (https://www.naturalearthdata.com).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18418-4

6 NATURE COMMUNICATIONS |         (2020) 11:4556 | https://doi.org/10.1038/s41467-020-18418-4 | www.nature.com/naturecommunications

https://github.com/richarddurbin/pbwt
https://github.com/richarddurbin/pbwt
https://gadm.org
https://www.naturalearthdata.com
www.nature.com/naturecommunications


Fig. 1) are mutually genetically distinguishable and are more
distinct from clusters to their north than Limburg, despite being
geographically closer. This deviation from haplotype sharing
mirroring geography appears to be driven by strong genetic
affinity to Belgium (Fig. 2), reflecting a long history of demo-
graphic and sovereign overlap across a 100 km frontier spanning
the modern Dutch-Belgian border. In contrast, the majority of
ancestral influence in Limburg, which also shares a substantial
border with Belgium, is equally split between Belgium to the west
and Germany to the east. Notably, the Belgian border with the
south of Dutch Limburg is almost entirely described by the course
of the Meuse, which may have acted as a historical impediment to
migration, thus distinguishing individuals in this region geneti-
cally. This is reflected in IBD clustering, in particular the dis-
tinction of southern Limburgish individuals from the rest of the
Netherlands in short (1–3 cM) segments, which otherwise only
describe coarse north-central-south structure (Fig. 3). Future
work explicitly modelling Dutch-Belgian and Dutch-German
frontiers using additional Belgian and German genetic data with
associated geography will resolve the historical and present-day
role of the Meuse in distinguishing distinct population clusters in
the south of the Netherlands.

Similarly to North Brabant, groups of individuals in North and
South Holland show significant genetic separation despite mutual
geographic proximity. While we have chosen to group the four
South Holland clusters for visual brevity in Fig. 1, they are
robustly distinct by TVD permutation analysis (p < 0.001), indi-
cating that significant population differentiation exists even
within South Holland. Migration and admixture in the highly
urbanised Randstad has been proposed as a driver of genetic
diversity and loss of geographic structure in this region1; the
overlaid geographical distribution of regional ancestry profiles
(Fig. 2) for this area lends support to this hypothesis. However,
the geographical ranges of the four South Holland clusters are
somewhat independent (Supplementary Fig. 6), indicating that
some degree of genetic structure has survived this urbanisation.
Previous studies have highlighted the correlation between

decreasing autozygosity and increased urbanisation30; future
work leveraging the ChromoPainter/fineSTRUCTURE frame-
work coupled with length-binned IBD and Gaussian mixture
model-based clustering will more explicitly delineate the interplay
between urbanisation and population structure over time. To this
end, highly urbanised areas such as the Randstad will be parti-
cularly informative.

The principal fineSTRUCTURE split in the Netherlands
describes north-south genetic differentiation (Fig. 1) that is strong
and persistent over time (Fig. 3). We hypothesised that this
reflects partially independent demographic histories so we esti-
mated ancestral Ne for northern (NNL) and southern (SNL)
Dutch fineSTRUCTURE populations, revealing superexponential
growth in both populations with a sudden increase in rate during
the 17th century (Fig. 4a). Historical Ne follows the same
approximate trajectory for both populations but is consistently
lower for the northern cluster, corroborating previous observa-
tions of increased homozygosity in northern Dutch populations1

and consistent with a model of northerners representing a
founder isolate from southerners (although a more complex
demographic model may better explain these observations)1,2.
The apparent absence of Ne decline in 14th-century Netherlands
initially hints at the possibility that the Black Death had a weaker
impact in the region than elsewhere in Europe; although this
agrees with the views of some historians, it is hotly debated by
others31. Per province, however, most Ne estimates display a
prominent dip at this time (Fig. 4b), suggesting that merging non-
randomly mating subpopulations into a countrywide group
(Fig. 4a) artificially inflates diversity, thus smoothing over any
population crash following the Black Death. Population structure
is thus important when estimating Ne and trends countrywide
and in NNL and SNL clusters (Fig. 4a) should be interpreted
carefully: it is possible that a substantial population crash brought
about by the Black Death might have had only a marginal impact
on the overall effective size of the breeding population in these
merged groups. Indeed, the rate of exponential growth in coun-
trywide Ne (Fig. 4a) is marginally shallower in the 10 generations
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following the Black Death (0.024; 95% CI 0.0235–0.0251) com-
pared to the 10 generations prior (0.017; 95% CI 0.016—0.018),
indicating enduring strain on the overall Dutch population prior
to its recovery in the 17th century.

Previous works have hinted that north-south genetic differ-
entiation in the Netherlands may have been facilitated by cultural
division between the predominantly Catholic south and the
Protestant north1. Given that the north-south structure observed
in 1–3 cM IBD bins (expected time depth ~700 BCE) greatly
precedes different forms of Christianity (Fig. 3), our data support
a model in which the Protestant Reformation of the 16th and
17th centuries exploited pre-existing demographic subdivisions,
leading to correlation between distinct cultural affinities and
clusters of genetic similarity which has potentially been further
strengthened by assortative mating among religious groups32.
Geographical modelling supports the role of migrational
boundaries in establishing and maintaining this population sub-
structure, especially rivers (Fig. 5). A substantial belt of low
inferred migration runs across the Netherlands, corresponding
closely to the roughly parallel east-west courses of the Lower
Rhine, Waal and Meuse rivers and correlating with the geo-
graphical boundary of the principal north-south fineS-
TRUCTURE split. Absolute assignment of causality to these
geographical correlates is, however, not possible and, given the
dense network of waterways in the Netherlands, could be mis-
leading. For example, a strong migrational cold spot in the east of
the Netherlands runs parallel to the IJssel (Fig. 5), but could
potentially be better explained by the course of the Apeldoorn
Canal, a politically fraught waterway constructed in the early 19th
Century. Similarly, a cold spot in the northwest directly overlays
the North Sea Canal (completed in 1876). As both of these are
human-made waterways, it is not certain whether their courses
are consequences or determinants of low movement of people
across their paths.

As well as internal geography, outside populations have also
played an important and significant role in the establishment of
population structure in the Netherlands (Fig. 2; Table 1); however
the variety and extent of demographic upheaval and mobility of
European populations over history obscure the likely historical
provenance of most inferred admixture signals. As an important
exception, however, ancestry profiles show a small but significant
contribution of Danish haplotypes in the north and west of the
Netherlands, a possible vestige of Viking raids in coastal areas in
the 9th and 10th centuries. This is corroborated by an inferred
GLOBETROTTER single-date admixture event in the NHFG
(North Holland, Friesland and Groningen) cluster (Fig. 1)
between 759 and 1290 CE with Danish haplotypes as a major
admixing source (Table 1). The demographic legacy of more than
a century of Danish Viking raids and settlement in the Nether-
lands has been the subject of some debate; from our data, it
appears that the modern Dutch genome has indeed been partially
shaped by historical Viking admixture. This Danish Viking
contact is contemporaneous with a critical period in the estab-
lishment of the modern Dutch genome from other outside
sources (1004–1111 CE; Table 1), although the precise historical
correlates of the admixture events detected in the remaining
Dutch regions are less obvious. Future densely sampled ancient
DNA datasets from informative time depths in the Netherlands
and northwest Europe will enable direct estimation of ancestral
population structure, admixture, demographic affinities and
effective population sizes, improving precision over the current
study which depends on proxy patterns of haplotype sharing
between modern individuals. Similarly, regional ancestry and
admixture inference are limited by the use of modern proxy
populations in place of true ancestral sources; nevertheless, there
are ample advantages to the use of modern data, including large

sample size and relevance to research on modern human health
and disease. In particular, as in our previous work in Ireland6,
samples in the current Dutch dataset were not specifically selected
to have pure ancestry in each geographical area (eg all grand-
parents from the same region4) meaning the degree of structure
observed is not idealised or exaggerated by sampling, but instead
representative of the structure expected in any GWAS that
includes Dutch data.

We therefore explored the impact of fine-scale genetic structure
described in this study and others4–12 on GWAS statistics, using
the ALS study from which the Dutch data derive as an exemplar
trait. Generally, population-based PCs should not predict case/
control status (in the absence of any disease-ancestry interaction);
if they do, this indicates that (sub)populations are stratified
between cases and controls, introducing bias that artificially
inflates GWAS statistics. In both Dutch-only and multi-
population analyses, fine-scale genetic structure detected by
haplotype sharing (ChromoPainter or PBWT-paint) explained
substantially more variance in phenotype (ALS case/control sta-
tus) than standard SNP-only PCA (Fig. 6a). This demonstrates
the power of shared haplotypes to simultaneously capture subtle
genetic structure within single countries (that is potentially
invisible to standard single-marker PCA) along with broader
structure between countries and potential cryptic technical arte-
facts such as platform- or imputation-derived bias. We found that
shared haplotypes are effective for controlling GWAS inflation:
statistics calculated using haplotype-based PCs as covariates
showed lower overall confounding than single marker-based
covariates, as measured by LD score regression intercepts
(Fig. 6a). In the age of large-scale, single-country and cross-
population biobanks, the additional power of haplotype sharing
methods to detect fine-scale local population structure will be
crucial for ensuring robust GWAS results unconfounded by
ancestry. For example, a recent study of latent structure in the UK
Biobank demonstrated that a GWAS for birth location returned
significant loci even after correction for 40 single-marker PCs33,
suggesting that residual fine-grained population structure may
influence other GWAS from this cohort (although others suggest
a role for socioeconomically-driven migration in this phenom-
enon34). Ongoing developments in scalable haplotype sharing
algorithms such as PBWT-paint will help to address this problem
by facilitating the creation of biobank-scale haplotype sharing
resources, simultaneously improving studies of human health and
disease and enabling large-scale, fine-grained population genetic
studies of human demography. Such resources will likely be
particularly useful in studies of rare variation, motivating future
work exploring the efficacy of such strategies in correcting con-
founding where rare variation is a factor.

Methods
Data and quality control. We mapped fine-grained genetic structure in the
Netherlands using a population-based Dutch ALS case-control dataset (n= 1626;
subset of stratum sNL3 from a GWAS for amyotrophic lateral sclerosis19) and a
European reference dataset subsampled from a GWAS for multiple sclerosis21 (MS;
n= 4514; EGA accession ID EGAD00000000120 [https://www.ebi.ac.uk/ega/
datasets/EGAD00000000120]). 1422 Dutch individuals had associated residential
data (hometown at time of sampling) which were used for geographical analyses.
For estimating GWAS confounding, we separately analysed the Netherlands on its
own using a larger ALS case/control dataset (n= 4753; strata sNL1, sNL3 and sNL4
from ref. 19) and the complete multi-population GWAS dataset19 (n= 36,052)
from which this Dutch subset was derived. Data handling for estimating con-
founding is further described under “Estimating GWAS confounding” below. For
population structure analyses, we applied quality control (QC) using PLINK v1.935;
briefly we removed samples with high missingness (>10%), high heterozygosity (>3
median absolute deviations from median) and single-marker PCA outliers
(>5 standard deviations from mean for PCs 1-20). We also filtered out A/T and G/
C SNPs and SNPs with minor allele frequency <0.05, high missingness (>2%) or in
Hardy Weinberg disequilibrium (p < 1 × 10−6). Before running ChromoPainter/
fineSTRUCTURE we retained only one individual from any pair or group that
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exhibited greater than 7.5% genomic relatedness (π̂) and removed SNPs with any
missing genotypes as the algorithm does not tolerate missingness or relatedness
well. For European reference data we also removed individuals suggested by the QC
of the source study21 and we extracted individuals only of European descent. As
this European dataset included MS patients, we filtered out SNPs in a 15Mb region
surrounding the strongly associated HLA locus (GRCh37 position
chr6:22,915,594–37,945,593) to avoid bias generated from this association, fol-
lowing previous works. The final Dutch and European reference datasets contained
374,629 SNPs and 363,396 SNPs respectively at zero missingness. The merge of
these datasets contained 147,097 SNPs at zero missingness. Data were phased per
chromosome with the 1000 Genomes Project phase 3 reference panel36 using
SHAPEIT v237 (for ChromoPainter/fineSTRUCTURE) and Beagle v4.1 (for IBD
estimation). For these and all subsequent runs of SHAPEIT and ChromoPainter,
we used the 1000 Genomes Project Phase 3 genetic map; IBD analyses with Beagle
were carried out using the Hapmap phase 2 genetic map38 as used in the Refi-
nedIBD and IBDNe source papers22,26. Both programmes were run with default
settings; allele concordance was checked prior to phasing (SHAPEIT: -check;
Beagle: conform-gt utility).

fineSTRUCTURE analysis. We used ChromoPainter/fineSTRUCTURE20 to detect
fine-grained population structure using default settings. In brief, each individual
was painted using all other individuals (-a 0 0), first estimating Ne and μ (switch
rate and mutation rate) with 10 expectation-maximisation (EM) iterations (using
all samples and chromosomes), then the model was finally run using these para-
meter estimates. The fineSTRUCTURE Markov chain Monte Carlo (MCMC)
model was then run on the resulting Dutch coancestry matrix with two chains for
3,000,000 burnin and 1,000,000 sampling iterations, sampling every 10,000 itera-
tions. To define European clusters for use in GLOBETROTTER and ancestry
profile estimation we instead used 1,000,000 burnin and sampling iterations,
sampling every 1000 iterations (due to large sample size). We extracted the state
with the maximum posterior probability and performed an additional 10,000
burnin iterations before inferring the final trees using both the climbtree and
maximum concordance methods. For all subsequent analyses the maximum con-
cordance tree was used.

Cluster robustness and differentiation. To assess the robustness of clustering in
the Dutch data we calculated TVD4 and FST. TVD is a distance metric for assessing
the distinctness of pairs of clusters, calculated from the ChromoPainter chunk-
length matrix. TVD is calculated as the sum of the absolute differences between
copying vectors for all pairs of clusters, where the copying vector for a given cluster
A is a vector of the average lengths of DNA donated to individuals in A by all
clusters. Intuitively, the TVD of two clusters reflects distance between those clusters
in terms of haplotype sharing amongst all clusters, and is a meaningful method for
assessing the effectiveness of fineSTRUCTURE clustering. To assess whether the
observed clustering performed better than chance we permuted individuals
between cluster pairs (maintaining cluster size) and calculated the number of
permutations that exceeded our original TVD score for that pairing of clusters. We
used 1000 permutations where possible, and otherwise used the maximum number
of unique permutations. P values were calculated from the number of permutations
greater than or equal to the observed TVD divided by the total permutations; all p-
values were less than 0.001, indicating robust clustering. We generated a TVD tree
for clusters from the k = 16 fineSTRUCTURE split by merging pairs of clusters
with the lowest TVD successively using methods developed in ref. 8, with the goal
of providing an alternative representation of cluster relationships that is inde-
pendent of sample size (Supplementary Fig. 7). The tree was built in k-1 steps, with
TVD recalculated at each step from the remaining populations. Branch lengths
were scaled proportional to the TVD value of the corresponding pair of popula-
tions using adapted code from the original paper8. Finally, to assess cluster dif-
ferentiation independently of the ChromoPainter model, FST was calculated
between Dutch clusters using PLINK 1.9. For this analysis we used the SNP overlap
between Dutch and European datasets, pruning for LD (--indep-pairwise 1000 50
0.25) and simultaneously calculating FST between European countries present in
ref. 21 for comparison.

Ancestry profiles. We assessed the ancestral profile of Dutch samples in terms of a
European reference made up of 4514 European individuals21 from Belgium,
Denmark, Finland, France, Germany, Italy, Norway, Poland, Spain and Sweden.
European samples were first assigned to homogeneous genetic clusters using the
fineSTRUCTURE maximum concordance tree6 to reduce noise in painting profiles.
We then modelled each Dutch individual’s genome as a linear mixture of the
European donor groups using ChromoPainter, and applied ancestry profile esti-
mation method developed in ref. 4 and implemented in GLOBETROTTER14 (num.
mixing.iterations: 0). This method estimates the proportion of DNA which is most
closely shared with each individual from each donor group calculated from a
normalised ChromoPainter chunklength output matrix, and then implements a
multiple linear regression of the form

Yp ¼ β1X1 þ β2X2 þ ¼ þ βGXG ð1Þ

to correct for noise caused by similarities between donor populations. Here, Yp is a

vector of the proportion of DNA that individual p copies from each donor group,
and Xg is the vector describing the average proportion of DNA that individuals in

donor group g copy from other donor groups G, including their own. The coef-
ficients of this equation β1 ¼ βG are thus interpreted as the “cleaned” proportions
of the genome that target individual p copies from each donor group, hence the
ancestral contribution of each donor group to that individual. The equation is
solved using a non-negative-least squares (NNLS) function such that βg ≥ 0 and the

sum of proportions across groups equals 1. We discarded European groups that
contributed less than 5% total to any individual, and refit to eliminate noise. We
then aggregated sharing proportions across donor groups (genetically homogenous
clusters) from the same country to estimate total sharing between an individual and
a given country to investigate the regional distribution of sharing profiles. Auto-
correlation of ancestry profiles was assessed by Moran’s I and Mantel’s test (10,000
permutations) in R version 3.2.3. Geographical directions of ancestry gradients
were determined by rotating the plane of latitude-longitude between 0° and 360° in
1° steps and finding the axis Y that maximised the coefficient of determination for
the linear regression Y � Ac , where Ac is the aggregated ancestry proportion for
country c.

Additionally we compared the ancestry profiles estimated by the NNLS method
to those estimated using the recently developed Bayesian algorithm
SOURCEFIND13. We ran SOURCEFIND on the ChromoPainter output described
above using 50,000 burnin and 200,000 MCMC iterations, sampling every 5000
iterations. For each Dutch individual we took the weighted average (weighted by
posterior probability) of ancestry estimates with the highest posterior probability
taken from 50 independent runs of the algorithm. We aggregated sharing portions
across donor groups from the same country to estimate total sharing between an
individual and a given country to investigate the regional distribution of sharing
profiles. Ancestry gradients generated by each method were regressed against one
another to estimate correlation. We report both the results of both NNLS (Fig. 2)
and SOURCEFIND (Supplementary Fig. 8) for comparison.

Identity-by-descent analyses. IBD segments were called in phased data using
RefinedIBD22 (default settings) to generate pairwise matrices of total length of IBD
shared between individuals for bins of different segment lengths. To identify
population structure captured by IBD sharing patterns we performed PCA on these
matrices using the prcomp function in R version 3.2.339 and clustered the IBD
matrices using a Gaussian mixture model implemented in the R package mclust40.
Plots of model selection are shown in Supplementary Fig. 9. We note that while
previous work23 has shown that IBD matrices underperform the linked Chromo-
Painter matrix in identifying population structure, they are arguably more inter-
pretable for visualising temporal change as they can be subdivided into cM bins
corresponding to different time periods, a feature leveraged by emerging work on
local population structure25. Patterns in IBD sharing that identify population
subgroups in older (shorter) cM bins which are preserved in more recent (longer)
bins are interpreted as persistent population structure that has been influenced by
mating patterns in old and recent generations. Structure which emerges in a spe-
cific cM bin and is lost is likely to reflect transient changes in panmixia that have
not necessarily persisted. We approximated the age of segments in a given cM bin
using equation s19 from ref. 25, under the assumption that the population is
sufficiently large:

lim
N!1

E T μj ≤ l ≤ υ½ � ¼ 75
1

L1
þ

1

L2

� �

; ð2Þ

where T is the random coalescence time in generations, l is the length of a segment
(in base pairs), μ and υ are the upper and lower segment length bounds of the
interval (in base pairs) and L2 and L1 are the upper and lower bounds of the
interval rescaled to centiMorgan (i.e. multiplied by 100r, where r is the recombi-
nation rate). For the age estimates given in Fig. 3, we multiplied the expected
coalescence time in generations by the approximate human generation time (28
years).

Inferring admixture events. To infer and date admixture events from European
sources we ran GLOBETROTTER14 with the Netherlands dataset as a whole and in
individual cluster groups defined from the Dutch fineSTRUCTURE maximum
concordance tree (Fig. 1). To define European donor groups we used the European
fineSTRUCTURE maximum concordance tree to ensure genetically homogenous
donor populations. We used ChromoPainter v2 to paint Dutch and European
individuals using European clusters as donor groups (estimating Ne and μ using the
weighted average of 10 EM iterations on chromosomes 1, 8, 15 and 20, using all
samples). This generated a copying matrix (chunklengths file) and 10 painting
samples for each Dutch individual. GLOBETROTTER was run for 5 mixing
iterations twice: once using the null.ind:1 setting to test for evidence of admixture
accounting for unusual linkage disequilibrium (LD) patterns and once using null.
ind:0 to finally infer dates and sources. We further ran 100 bootstraps for the
admixture date and calculated the probability of no admixture as the proportion of
nonsensical inferred dates (<1 or >400 generations). Confidence intervals were
calculated from the bootstraps from the standard model (null.ind:0) using the
empirical bootstrap method, and a generation time of 28 years.
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ADMIXTURE analysis. We performed ADMIXTURE analysis41 on the combined
Dutch and European samples to explore single marker-based population structure
in a set of 41,675 SNPs (LD-pruned using PLINK 1.9: r2 > 0.1; sliding window 50
SNPs advancing 10 SNPs at a time). ADMIXTURE was run for k= 1–10 popula-
tions, using 5 EM iterations at each k value. The k value with the lowest cross-
validation error was selected for further analysis using 15 fold cross-validation;
where two k values had equal CV-error the lower k value was taken for parsimony
(Supplementary Fig. 10). We analysed the distribution of proportions for each
ADMIXTURE cluster across the Dutch dataset, and its relationship with geography.

Computing mean pairwise shared IBD within and between groups. We com-
pared IBD sharing within and between both clusters and provinces (Supplementary
Fig. 4) using the mean number of segments within a given length range (e.g. 1–2
cM) shared between individuals. To calculate this mean for a single group of size N
with itself the denominator was ðN2 � NÞ=2; when comparing two groups of sizes
N and M the denominator was NM.

Estimating recent changes in population sizes. We used IBDNe26 to estimate
historical changes in Ne. IBDNe leverages information from the length distribution
of IBD segments to accurately estimate effective population size over recent gen-
erations, with a resolution limit of about 50 generations for SNP data. We followed
the authors’ protocol and detected IBD segments using IBDseq version r120642

with default settings and ran IBDNe on the resulting output with default settings,
removing IBD segments shorter than 4 cM (minibd= 4, the recommended
threshold for genotype data). We compared estimated Ne with recorded census size
(https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37296ned/table?
ts=1520261958200) for approximately equivalent dates (starting at 1946 CE for
generation 0 and assuming 1 generation is 28 years) and found that for generations
0 - 3 our Ne estimates were approximately 1/3 of the census population (Supple-
mentary Fig. 11), which follows expectation if lifespan is ~3× the generation
time26,43. The slope of the ratios for the three generations is near zero suggesting
that our model tracks well with the census population; this is consistent with
reported expectation26.

Estimating effective migration surfaces. To model geographic barriers to
geneflow in the Netherlands we ran EEMS16. This software provides a visualisation
of hot and coldspots for geneflow across a habitat using a geocoded genetic dataset.
To run EEMS, we generated an average pairwise genetic dissimilarity matrix from
our genotype data using the bed2diffs utility provided with the software. We
initially ran the EEMS model with 10 randomly initialised MCMC chains for a
short run of 100,000 burn-in and 200,000 sampling iterations, thinning every 999
iterations, to find a suitable starting point. For these runs we placed the data in 800
demes and used default settings with the following adjustments to the proposal
variances: qEffctProposalS2= 0.00008888888; qSeedsProposalS2= 0.7; mEffct-
ProposalS2= 0.7. The resulting chain with the highest log-likelihood was then used
as the starting point for a further ten chains for 1,000,000 burn-in iterations and
2,000,000 sampling iterations, thinning every 9999 iterations. The model was run
with the following adjustments to the proposal variances: qEffctProposalS2=
0.00008888888; qSeedsProposalS2= 0.7; mEffctProposalS2= 0.7. We plotted the
results of our analysis using the rEEMSplot package in R and modified the resulting
vector graphics using Inkscape v0.91 to remove display artefacts caused by non-
overlapping polygons. MCMC convergence was assessed by inspecting the log-
posterior traces (Supplementary Fig. 12).

Estimating GWAS confounding. To examine the contribution of observed fine-
grained population structure to GWAS confounding, we estimated how well
phenotype could be predicted by principal components of haplotype sharing
matrices in a 2016 GWAS for ALS19, comparing our results to those obtained using
standard single marker PCA. We separately analysed 1,060,224 zero-missingness
Hapmap3 SNPs that passed QC in the original GWAS for Dutch data alone (1963
cases, 2774 controls) and for the complete multi-population GWAS (12,480 cases,
23,275 controls). Haplotypes for unrelated individuals (π̂ < 0.075) were phased
using SHAPEIT v237 and painted in terms of one another using ChromoPainter
v220 for the Dutch dataset (estimating Ne and μ using the weighted average of 10
EM iterations on chromosomes 1, 8, 15 and 20 in 10% of samples), and PBWT-
paint (https://github.com/richarddurbin/pbwt) for the considerably larger multi-
population GWAS dataset. PBWT-paint is a fast approximate implementation of
ChromoPainter suitable for large datasets. PCs of the resulting coancestry matrices
were calculated using the fineSTRUCTURE R tools (http://www.
paintmychromosomes.com), removing extreme haplotype PCA outliers (>20 SD
from mean on PC1-10) followed by repainting as an additional QC step. For
comparison we also calculated PCs on independent markers from the SNP datasets
using Plink v1.9, first removing long range LD regions44 (https://genome.sph.
umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)) and pruning for
LD (--indep-pairwise 500 50 0.8). Variance in ALS phenotype explained by
ChromoPainter/PBWT-paint PCs and SNP PCs (Nagelkerke R2) was estimated
using the glm() function and fmsb package45 in R version 3.2.3. To estimate
confounding in GWAS inflation, we implemented a logistic regression model
GWAS (--logistic) in PLINK v1.9 for each dataset using a range of ChromoPainter/

PBWT-paint PCs or SNP PCs (10, 20, 30 and 40 PCs) as covariates and ran LD
score regression46 on the resulting summary statistics using recommended settings
(Fig. 6 and Supplementary Fig. 13). Structure evident in the PBWT-paint matrix
was visualised and contrasted with corresponding SNP data in 2 dimensions using
t-distributed stochastic neighbour embedding (t-SNE)47 implemented in the Rtsne
package in R version 3.2.3 (5000 iterations; perplexity 30; top 100 PCs provided as
initial dimensions).

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Data used in this study are available for academic use through the Project MinE

Consortium at https://www.projectmine.com/research/data-sharing/. MS GWAS data

used for European reference populations were downloaded from the European Genome-

phenome Archive under accession EGAD00000000120. Data availability subject to any

conditions outlined by source studies.
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