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CORRIGENDUM TO “A ROCKAFELLAR-TYPE THEOREM FOR

NON-TRADITIONAL COSTS”

S. ARTSTEIN-AVIDAN, S. SADOVSKY, K. WYCZESANY

Abstract. This note describes corrections to an error in the published version of the paper

“A Rockafellar-type theorem for non-traditional costs” regarding the solvability of an un-

countable family of inequalities. In this note, we describe the mathematical error and show

that one must add an extra assumption - either countability of the family or an assumption

on the coefficients not allowing the existence of what we call an infinite “black hole”.

1. The mistake in the published version, and the corrected statements

In Theorem 3.2 from the paper [1] we used Zorn’s lemma to show that there always exists a

solution to the system of inequalities

ai,j ≤ xi − xj, i, j ∈ I

where I is some index set, ai,j ∈ [−∞,∞) satisfy for all i1, . . . , im that

(1) ai1,im ≥
m−1
∑

k=1

aik,ik+1
.

Within the proof a mistake was made, when we assumed that, fixing J0 ⊂ I and some solution

f of the system for i, j ∈ J0, we have for some i0 ̸∈ J0

sup
j∈J0

(ai0,j + f(j)) < ∞ and inf
j∈J0

(f(j)− aj,i0) > −∞.

This was needed to extend a solution found on the index set J0 ⊂ I to some i0 ∈ I \ J0 (and

conclude that we have a solution on the whole index set I). We showed that this supremum

is bounded from above by f(j)− aj,i0 for any j ∈ J0, however, if for all j ∈ J0 and all i0 ̸∈ J0
we have aj,i0 = −∞, it could still be the case that the supremum is infinite.

In the same paper we prove Theorem 3.2 by other means in the case where I is countable.

That proof is valid (and does not rely on the extendability of a solution). For the uncountable

case, not only is the proof using Zorn’s lemma not valid, but we can find a counterexample

for the statement of [1, Theorem 3.2]. We present it in Section 2. Nevertheless, if we add an

extra condition on the system that guarantees existence of some j ∈ J0 with aj,i0 ̸= −∞, the

proof from [1] carries over. The corrected version of [1, Theorem 2] is as follows

Theorem 2 (Corrected). Let {αi,j}i,j∈I ∈ [−∞,∞), where I is some arbitrary index set,

and with αi,i = 0. The system of inequalities

(2) αi,j ≤ xi − xj, i, j ∈ I
1
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has a solution if (a) for any i, j ∈ I there exists some constant M(i, j) such that for any m

and any i2, · · · , im−1, letting i = i1 and j = im one has that
∑m−1

k=1 αik,ik+1
≤ M(i, j), and

(b) either I is at most countable, or, if I is uncountable then for every infinite subset J ⊂ I

there exist some j ∈ J, i /∈ J with αj,i > −∞.

For the corrected version of [1, Theorem 1] we need the following.

Definition 1.1. Let c : X×Y → (−∞,∞] be a cost function. We say that a set G ⊂ X×Y

does not have an infinite black hole if for every infinite subset G0 ⊂ G there exists y ∈ PYG0

and z ∈ PX(G \G0) such that c(z, y) < ∞.

Theorem 1 (Corrected). Let X, Y be two arbitrary sets and c : X × Y → (−∞,∞] an

arbitrary cost function. Assume that G ⊂ X×Y is a c-path-bounded subset that is countable,

or if it is uncountable, it does not have an infinite black hole. Then there exists a c-class

function ϕ : X → [−∞,∞] such that G ⊂ ∂cϕ.
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2. An uncountable Counterexample

In this section, we present a counterexample to the statement of [1, Theorem 3.2]. To this

end, we choose the uncountable index set I to be I = N ∪ S where S denotes the subset of

all non-decreasing real-valued sequences, S ⊂ R
N. Next, for i, j ∈ N we define ai,j = i − j

when i ≤ j and −∞ when i > j. For s ̸= t ∈ S we let as,t = −∞ (and, as usual, as,s = 0).

For s ∈ S and j ∈ N we let aj,s = −∞ and as,j = s(j), the jth element in the sequence s.

Let us check that the system satisfies the condition (1).

The system of inequalities restricted to N becomes i − j ≤ xi − xj for i ≤ j, that is, xi − i

should be a non-increasing sequence. In particular, condition (1) is satisfied when all indices

belong to N, since the restricted system admits a solution xi = i.

When at least one of the indices appearing in (1) belongs to S, then we need to distinguish

two cases: i1 ∈ S or ik ∈ S with k ≥ 2. Let us start with the latter, since then it is easy to

see that then at least one of the aik,ik+1
on the right-hand side is −∞ and (1) holds. Thus,

we only need to be concerned with the case where i1 ∈ S and i2, . . . , im ∈ N. If for some

index we have ik > ik+1 then again the right-hand side is −∞ and (1) holds. The remaining

case is where i1 ∈ S and all other elements are in N and satisfy ik < ik+1 (if they are equal,

we can omit one of them as ai,i = 0). Then, the condition amounts to

s(im) = as,im ≥ as,i2 +
m−1
∑

k=2

aik,ik+1
= s(i2) +

m−1
∑

k=2

(ik − ik+1) = s(i2) + i2 − im.
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We see that this inequality is satisfied, precisely if

s(im) + im ≥ s(i2) + i2.

Recalling that we consider the case when im > i2, the above condition is precisely that the

sequence s(j) + j is non-decreasing. In particular, if s ∈ S is a non-decreasing sequence, this

condition is satisfied.

Now, assume towards a contradiction that our system does have a solution. In particular,

this solution restricted to N, denoted, say, by (xj)j∈N, must satisfy xj = j + bj with bj
non-increasing. Assigning a value x(s) for any sequence in S, it must satisfy

s(j) = as,j ≤ x(s)− xj = x(s)− j − bj.

This means that

sup
j

(

s(j) + j + bj
)

< ∞

for any s ∈ S.

However, one of the sequences s ∈ S which we can consider is the sequence s(j) = −bj, which

is non-decreasing. For this specific sequence, the condition above reads

sup
j

j < ∞,

which is clearly false. This implies that we do not have a solution x : N ∪ S → R for the

original system, although it does satisfy the condition (1).

3. The corrected statement of [1, Theorem 3.2], and its proof

As mentioned above, in the case of a countable index set we gave an alternative proof (see

Appendix A in [1]) that does not rely on extendability of a solution of a subsystem. We have

proved the following theorem.

Theorem 3.1. Let {ai,j}i,j∈I ∈ [−∞,∞), where I is a countable index set. Assume that for

any m ≥ 1 and any i1, i2, · · · , im it holds that ai1,im ≥
∑m−1

k=1 aik,ik+1
. Then the system of

inequalities

ai,j ≤ xi − xj, i, j ∈ I

has a solution.

In the case of an uncountable index set, the counterexample shows that we need to add

some additional condition on the set {ai,j} to guarantee the existence of a solution. As

we mentioned above, the issue arises when we attempt to extend the maximal solution fJ0
indexed by J0 given by Zorn’s lemma. For the (real-valued) extension to exist we need

supj∈I0
(ai0,j +f(j)) to not be +∞ and infj∈I0(f(j)−aj,i0) to not be −∞ (the latter is always

more than the former, but they might both be +∞ or −∞ if no extra assumption is made).

Note that in general, we cannot expect to be able to extend a solution. It may be that, after

adding the additional index i∗ and all the ai∗,j, aj,i∗ for j ∈ J0 one needs an entirely different

solution. Nevertheless, we pursue the path of extending the given solution and show that
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the proof of solvability of a system of linear inequalities can be made valid under additional

assumptions on ai,j’s that guarantee that the supremum is not ±∞. Therefore, the condition

we add is sufficient not only for the existence of a solution but also for the extendability of

given sub-solution.

Definition 3.2. Consider a collection of numbers {ai,j}i,j∈I ∈ [−∞,∞), where I is an index

set. We say that the collection {ai,j}i,j∈I has a black hole in the index set J0 ⊂ I if for all

j ∈ J0 and all i ∈ I \ J0 we have that aj,i = −∞. We say that it has a black hole of infinite

cardinality if such J0 exists and is of infinite cardinality.

Remark 3.3. By definition, if Jα ⊂ I are black holes for the system {ai,j}i,j∈I ∈ [−∞,∞) for

any α ∈ A then so is J = ∪α∈AJα. This means that one can take a maximal black hole J ⊆ I

by taking the union over all black holes, and this J includes, as a subset, any black hole of

any cardinality.

We see that if the collection {ai,j}i,j∈I does not have a black hole then for every J ⊂ I there

exists i /∈ J0 and j ∈ J0 such that aj,i0 ̸= −∞. In fact, black holes of finite cardinality are

not of worry to us as we shall readily see.

Theorem 3.4. Let I be an uncountable index set, and let {ai,j}i,j∈I ∈ [−∞,∞) be a collection

that does not have a black hole of infinite cardinality. Assume that for any m ≥ 1 and any

i1, i2, · · · , im it holds that ai1,im ≥
∑m−1

k=1 aik,ik+1
. Then the system of inequalities

ai,j ≤ xi − xj, i, j ∈ I

has a solution.

Proof of Theorem 3.4. We start by letting J1 be the union of all black holes in I. By Remark

3.3, the set J1 is a black hole and by the added assumption J1 is finite. We take any countably

infinite set J2 ⊆ I which includes it. Then the system of inequalities indexed by J2 has a

solution due to Theorem 3.1. Denote this solution by f2.

We shall now use Zorn’s Lemma. Consider the partially ordered set of pairs (J, fJ) where

J2 ⊂ J ⊂ I and fJ : J → R satisfies fJ |J2 = f2, and such that for any i, j ∈ J we have

fJ(i)− fJ(j) ≥ ai,j. We know the set is non-empty because it contains the pair (J2, f2). The

partial order we consider is (J, fJ) ≤ (K, fK) if J ⊂ K and fK |J = fJ .

First, let us notice that every chain has an upper bound. Assume (Jα, fJα)α∈A is a chain

(namely any two elements are comparable). Consider J = ∪αJα and fJ = ∪αfJα . This

function is well defined because of the chain properties (at a point i ∈ J it is defined as fJα(i)

for any α with i ∈ Jα). The pair (J, f |J) is in our set because if i, j ∈ J then for some α we

have i, j ∈ Jα, so f |Jα satisfies the inequality on fJ(i)− fJ(j) ≥ ai,j and so does fJ . Finally,

(J, fJ) is clearly an upper bound for the chain. So, we have shown that every chain has an

upper bound, and we may use Zorn’s lemma to find a maximal element. Denote the maximal

element by (J0, fJ0).
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Assume towards a contradiction that J0 ̸= I. Note that the non-empty set I \ J0 has no

black holes since we assumed that J2 ⊂ J0 contains all the black holes in I. Therefore, there

is some i0 ∈ I \ J0 and some ji0 ∈ J0 with ai0,ji0 ̸= −∞.

If we are able to extend fJ0 to be defined on {i0} in such a way that all inequalities with

indices of the form (i0, j) and (j, i0) with j ∈ J0 still hold, we will contradict maximality and

complete the proof.

First, recall that under our assumptions ak,j ≥ ak,i0 + ai0,j. Moreover, since fJ0 already

satisfies the inequality ak,j ≤ fJ0(k)− fJ0(j) for all j, k ∈ J0, we get that

ak,i0 + ai0,j ≤ ak,j ≤ fJ0(k)− fJ0(j)

holds for all j, k ∈ J0. In particular, this gives us

ai0,j + fJ0(j) ≤ fJ0(k)− ak,i0

for any j, k ∈ J0. This means that fJ0 must satisfy that

(3) sup
j∈J0

(ai0,j + fJ0(j)) ≤ inf
j∈J0

(fJ0(j)− aj,i0) .

In particular, since we chose i0 so that there exists ji0 ∈ J0 with ai0,ji0 ̸= −∞ we know that

the supremum is not −∞, and therefore, the infimum is not −∞. We will now show that

infj∈J0 (fJ0(j)− aj,i0) is not +∞, from which we will conclude that both the infimum and

supremum are finite.

To this end, we will show that for all i ∈ I \ J0 there is some j ∈ J0 such that aj,i ̸= −∞.

Let J3 ⊆ I \ J0 denote all those i ∈ I \ J0 for which there is some ji ∈ J0 with aji,i ̸= −∞.

We claim that J3 = I \ J0. Towards a contradiction, assume that I \ (J0 ∪ J3) ̸= ∅. Then, as

J0 ∪ J3 is not a black hole (since it has infinite cardinality), there is some k ∈ J0 ∪ J3 such

that ak,l ̸= −∞ for some l ∈ I \ (J0 ∪ J3). The fact that l ̸∈ J3 means k ∈ J3 (and not in J0).

However, since k ∈ J3 there is some jk ∈ J0 with ajk,k ̸= −∞. Together with our assumption

that ai1,i3 ≥ ai1,i2 + ai2,i3 for any indexes i1, i2, i3 ∈ I, this means

ajk,l ≥ ajk,k + ak,l > −∞

in contradiction to the fact that l ̸∈ J3. Hence, as claimed, for all i ∈ I \ J0 there is some

j ∈ J0 such that aj,i ̸= −∞. In particular, this is true for i = i0 which we chose before.

We conclude that both sides of the inequality (3) are finite, and hence we may take f(i0) ∈ R

such that

sup
j∈J0

(ai0,j + fJ0(j)) ≤ f(i0) ≤ inf
j∈J0

(fJ0(j)− aj,i0) .

This means that we may extend the function fJ0 to i0, which is a contradiction to maximality,

and we conclude that J0 = I. This finished the proof, as we have found a solution to the full

system of inequalities. □

Remark 3.5. Note that the additional condition of ‘not having an infinite black hole’ is not

a necessary one. Indeed, one can come up with a system where, for example, all the ai,j are

equal −∞, and this system admits a solution, e.g. we can take a constant solution.
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4. Completing the proof for the corrected theorems 1 and 2

In [1] we used Theorem 3.2 to prove Theorem 2, which is again a statement on the solvability

of a system of linear inequalities. We then used the latter to prove Theorem 1 regarding the

existence of a potential for a given set G. In this section, we provide the corrected version

for these two theorems.

First, we examine the relation of the collection of ai,j’s from [1, Theorem 3.2] and αi,j’s [1,

Theorem 2], where we defined

ai,j = sup{
m−1
∑

k=1

αik,ik+1
: m ∈ N,m ≥ 2, i2, . . . , im−1 ∈ I}.

We see that the collection {ai,j}i,j∈I does not have an infinite black hole, if for every J0 ⊂ I

of infinite cardinality, there exists a “path” of finite valued coefficients. More precisely, we

need that for every J0 ⊂ I of infinite cardinality, there exists i0 /∈ J0, j ∈ J0 and m ∈ N

indexes i1, . . . , im ∈ I such that aj,i1 , ai1,i2 , . . . , aim,i0 ̸= −∞.

This in turn means the same as the system {αi,j} not having a black hole. Indeed, the

existence of such a path implies there is some first index ik ∈ J0, so that ik+1 ̸∈ J0 and we

get a finite αik,ik+1
escaping J0. Therefore, the proof of the implication in the paper remains

valid. The reasoning in [1] thus carries through and completes the proof of Theorem 2.

Next we trace back the correspondence of the above result to [1, Theorem 1], in which we

seek a condition on a set G ⊂ X × X to lie on a c-subgradient of a c-class function. As

explained in [1], we consider I = G ⊂ X×X, and for any two elements (x, y), (z, w) ∈ G, we

define α(x,y),(z,w) := c(x, y)− c(z, y). We observe that the condition of having no black holes

can be rewritten in the following way: For any infinite subset G0 ⊂ G there exists (x, y) ∈ G0

and (z, w) ∈ G \G0 such that

c(x, y)− c(z, y) ̸= −∞.

Since the cost c takes values in (−∞,∞] the above condition is equivalent to c(z, y) < ∞.

This is precisely Definition 1.1.

With this definition, joined with Theorem 2 and [1, Theorem 3.1], we have proved the above

corrected version of Theorem 1.

Remark 4.1. In [1], we presented two results for special cases of a set G and continuous cost

functions, Corollary 4.1 and Proposition 4.2. It is easy to check that in these special instances

the sets do not have black holes.
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