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Abstract
Amyotrophic lateral sclerosis (ALS) lacks a speci�c biomarker, but is de�ned by relatively selective
toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a
sensitive and speci�c biomarker based on detection of DNA released from dying MN within accessible
bio�uids. Here we have performed whole genome bisul�te sequencing (WGBS) of iPSC-derived MN from
neurologically normal individuals. By comparing MN methylation with an atlas of tissue methylation we
have derived a MN-speci�c signature of hypomethylated genomic regions, which accords with genes
important for MN function. Through simulation we have optimised the selection of regions for biomarker
detection in plasma and CSF cell-free DNA (cfDNA). However, we show that MN-derived DNA is not
detectable via WGBS in plasma cfDNA. In support of our experimental �nding, we show theoretically that
the relative sparsity of lower MN sets a limit on the proportion of plasma cfDNA derived from MN which
is below the threshold for detection of WGBS. Our �ndings are important for the ongoing development of
ALS biomarkers. The MN-speci�c hypomethylated genomic regions we have derived could be usefully
combined with more sensitive detection methods and perhaps with study of CSF instead of plasma.
Indeed we demonstrate that neuronal-derived DNA is detectable in CSF. Our work is relevant for all
diseases featuring death of rare cell-types.

Introduction
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease where death results from
motor neuron (MN) loss leading to respiratory failure. The design and development of novel therapeutics
has been held back because of the lack of a speci�c biomarker. Currently, neuro�lament proteins
measured in plasma provide a non-speci�c readout of neuronal death [1]. Neuro�lament proteins form
important structural components of the large myelinated axons which are found in MN. MN death
triggers the release of neuro�laments from the cytoplasm into the extracellular space [2]; as a result the
level of detectable neuro�lament is a function of the rate of MN death, and thus neuro�lament
measurement can be used as a biomarker of disease progression [1]. However, neuro�laments are not
speci�c to MN and it is notable that serum neuro�lament light chain (NfL) [3] is elevated in other
neurological diseases. Indeed, for diagnosis of ALS, serum NfL is of limited value [4] even if it is useful
for measuring the rate of progression. It follows that detection of a different marker which is released
only from dying MN may outperform neuro�laments as a biomarker for ALS.

DNA methylation is fundamental to the control of gene expression and by inference, genomic
methylation should be relatively cell speci�c. Cell-speci�c DNA methylation signals are stable between
individuals, as was con�rmed by a recent atlas of DNA methylation [5]. Moreover, DNA methylation is
relatively stable over time [6]. Cell-free DNA (cfDNA) found in peripheral blood is the product of release
from dying cells [7] and has been extensively proposed as a source of biomarkers in the cancer �eld [8];
methylated cfDNA is now the basis of FDA-approved applications e.g. [9]. We hypothesised that a DNA
methylation signature which is speci�c to MN, and is detectable within cfDNA, might be both sensitive
and speci�c as a biomarker of the rate of MN death due to ALS.
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We present whole genome bisul�te sequencing (WGBS) data from iPSC-derived MN from controls.
These data complement our previously published epigenetic pro�ling from the same neurons [10]. It is
practically di�cult to obtain MN in su�cient quantity from post-mortem material to perform WGBS and
therefore we chose to focus on iPSC-derived MN which are a gold-standard model of ALS [11]. We have
published WGBS of cfDNA from ALS patients and controls [12] but previously we lacked a MN signature
for comparison. Here we show, using simulation and measurement, that MN-speci�c DNA methylation is
not detectable within cfDNA in plasma by WGBS. Future work will evaluate our MN DNA methylation
signature by other means and in other bio�uids. Our approach is summarised in Fig. 1.

Results

Cell-speci�c DNA methylation within control iPSC-derived
MN is similar to human adult CNS neurons
WGBS was performed at high depth to pro�le DNA methylation within iPSC-derived MN from three
neurologically normal individuals (Supplementary Table 1, Methods). A �rst question was whether the
methylation signature of these neurons, which are derived in vitro, is consistent with CNS neurons
abstained from human tissue.

WGBS sequencing data were processed and quality control (QC) was performed according to the
ENCODE 4 standards [14]. Methylation pro�les of 205 samples covering 39 cell-types from an available
methylation atlas [5] were combined with our samples, then used to segment the genome into blocks of
co-methylated CpGs (Methods). Hierarchical unsupervised clustering was used to examine the
relationships between samples (Methods, Fig. 2A). As expected, genome methylation within iPSC-
derived MN clustered closely with CNS neuronal subtypes (Fig. 2B). On this basis we proceeded to use
our data to identify MN-speci�c methylation (Methods).

Identi�cation of cell-speci�c hypomethylated genomic regions
Next we derived DNA methylation changes speci�c to MN via comparison with the methylation pro�les
of 205 samples covering 39 cell-types from an available methylation atlas [5]. Blocks of co-methylated
CpGs that exhibited hyper- or hypomethylation speci�cally in MN were identi�ed (Methods) and taken
forward for further analysis. In total 8,729 regions were speci�cally hypomethylated in MN
(Supplementary Table 2); hypomethylation indicates increased genomic accessibility suggestive of MN-
speci�c function. A similar analysis identi�ed 5,690 blocks which were speci�cally hypomethylated in
the total set of human CNS neurons compared to other cell-types. The number of regions identi�ed per
cell-type varied dramatically from 61,693 for gallbladder to 436 for colon �broblasts.

MN-speci�c DNA methylation is linked to MN function but not to
genetic risk for ALS
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Cell-speci�c DNA methylation is typically hypomethylated [5], which should be coincident with increased
accessibility of underlying DNA over regulatory regions including enhancers [15]. As a validation of the
regions we have identi�ed, we examined the overlap of MN-speci�c hypomethylated enhancers and their
target genes, with independent measurements of MN gene expression and ALS heritability (Fig. 3A).

To derive associated genes from MN-speci�c hypomethylated DNA blocks, we applied the activity-by-
contact (ABC) model [13] to link regulatory regions to expressed genes within iPSC-derived MN
(Methods). We found the total list of hypomethylated regions is associated with 2,046 expressed genes.
We then tested this gene list for enrichment with human cell types and tissues included in ARCHS4 [16]
using Enrichr [17], and found they were most signi�cantly enriched for genes expressed speci�cally in
spinal motor neurons isolated from post-mortem tissue [18] (Fisher’s exact test, p = 4.22e-19, OR = 1.79,
using the ARCHS4 database [16], Fig. 3B). This demonstrates that the methylation pro�les of the iPSC
derived motor neurons are congruent with transcriptional pro�les of human motor neurons.

To further characterise the function of MN-speci�c hypomethylated genes we examined RNA-
sequencing from iPSC-derived motor neurons obtained from 245 ALS patients and 45 controls
(www.answerals.org) (Methods). Genes linked to hypomethylated regions in MN were highly expressed
within iPSC-derived MN compared to the background transcriptome (Wilcox rank sum test, p < 2.2e-16,
Fig. 3C) which is consistent with an important role in MN function. Four genes were reported as
differentially expressed (FDR < 0.05, negative binomial test) between ALS patients and controls in this
data, but genes linked to hypomethylated regions in MN were not enriched within ALS-associated
differentially expressed genes (Wilcoxon rank sum test, p = 0.25, Fig. 3D).

Finally, we performed LDSC [19] using a recent GWAS study of ALS [20] to examine disease-speci�c
heritability enrichment within MN-speci�c hypomethylated regions. Heritability for ALS was enriched
within hypomethylated regions but this was not statistically signi�cant (OR = 25.2, se = 26.05, p = 0.38,
LDSC, Methods). We conclude that MN-speci�c DNA hypomethylation is associated with gene
expression linked to MN function, but we �nd no conclusive evidence that there is a speci�c association
with genes dysregulated in MN in a disease context.

An optimum set of hypomethylated DNA regions for ALS biomarker
design
An important use of cell-type-speci�c methylation pro�les is for the deconvolution of complex mixes of
DNA to identify the proportions of contributing cell types. This has the potential to lead to a novel
biomarker of ALS: Cell-free DNA (cfDNA) found within plasma is released from dying cells and thus, the
quantity of DNA sourced from CNS neurons, and MN in particular, should be proportional to the rate of
MN death. Neuronal DNA is not normally seen in the plasma [5], which may be due to a low rate of
neuron death or to the blood brain barrier, but brain-derived DNA has been detected in plasma under
pathological conditions [21, 22] demonstrating its potential to serve as a biomarker.

http://www.answerals.org/
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To deconvolute plasma cfDNA we optimised the UXM algorithm [5] for the low coverage (~ 10x) typical
of methylation studies of cfDNA; in particular we optimised the choice and con�guration of MN-speci�c
methylation blocks. The UXM algorithm was chosen as it makes use of read level methylation data, and
has achieved accurate deconvolution of cell types present at proportions as low as 0.1% [5].
Optimisation was performed using synthetic data generated by spiking WGBS data derived from plasma
cfDNA of healthy individuals, with sequencing reads derived from human MN at a known proportion
between 0.01%-10% (Methods, Fig. 4A). We simulated relatively low coverage (10x) to match coverage in
the actual ALS cfDNA samples. We observed a linear correlation between the actual and predicted
percentage of spike-in MN DNA with an adjusted r2 < 0.9 in all marker sets (Fig. 4B). A con�guration of
UXM using 500 MN-speci�c blocks with a minimum of 3 CpGs produced the highest detection
probability at 1% spike-in, but 500 blocks with a minimum of 4 CpGs performed better at both 0.5% and
0.1% spike-in (difference in detection probability between 0.1–0.2 at each % spike-in, Fig. 4C). However,
we note that at spike-ins of ≤ 0.5%, AUC was poor for all sets of MN marker blocks. The greatest AUC
(0.69) at 1% spike-in was achieved with 500 blocks with a minimum of 3 CpGs, in keeping with its higher
probability of detection (Supplementary Fig. 1A); this was the con�guration taken forward to analyse ALS
patient samples.

As seen in [5, 23], deconvolution frequently identi�ed false-positive cell-types within the synthetic
mixture (Supplementary Fig. 1B). We used a linear model to examine the effect of coverage and number
of marker regions the total number of cell types identi�ed in a sample. Both coverage (p = 0.04) and
number of markers (p = 3.7e-4) were signi�cantly negatively correlated with the number of cell types
identi�ed, suggesting that increased coverage and using more marker regions per cell-type will reduce
the number of cell types falsely identi�ed within a mixture.

MN-derived DNA is not detectable within plasma cfDNA
When we applied our optimised deconvolution utilising 500 MN-speci�c methylation blocks with a
minimum of 3 CpGs to plasma cfDNA WBGS from n = 12 ALS patients we did not identify MN-derived
DNA in any sample (Fig. 4D) suggesting that if MN DNA is present it is below the detectable limit of ~ 1%
of plasma cfDNA (Fig. 4B-C).

Neuronal-derived DNA is detectable in CSF cfDNA
The cerebrospinal �uid (CSF) surrounds the spinal cord and brain, and is encapsulated by the blood brain
barrier. It might be expected that CSF cfDNA is enriched in neuronal DNA compared to plasma and so we
attempted to fully characterise the contributing cell types within CSF cfDNA (Methods).

No WGBS data was available from ALS patient CSF cfDNA. We analysed four samples of WGBS CSF
cfDNA from hydrocephalus patients [24]. Coverage was very low (0.12-0.45x, Supplementary Table 3)
due to the low concentration of cfDNA within the spinal cord so samples were merged to improve
deconvolution accuracy. We discovered that neuronal and oligodendrocyte DNA comprised 13% and 14%
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of the total cfDNA with the remainder largely composed of a mix of blood, epithelial, and adipocyte cell
types (Supplementary Fig. 1); MN-derived DNA was not detectable in any sample. The contribution of
adipocytes may in part re�ect the lumbar puncture procedure used to collect CSF as DNA. The lack of a
number of CNS-speci�c cell-types such as microglia within the reference leads to a possible assignment
error which is impossible to quantify, and is likely responsible for the small proportion of epithelial and
pancreatic cell types identi�ed.

The theoretical maximum proportion of MN-derived DNA within
plasma cfDNA is very low
We did not detect MN DNA in any ALS patient sample suggesting that if MN DNA is present it is below ~ 
1% of plasma cfDNA. We questioned if this was a detection de�ciency or whether there might be
insu�cient MN DNA for detection. To address this we modelled the theoretical maximum proportion of
MN DNA that might be expected within plasma cfDNA (Fig. 5A).

Recent work [25] has estimated the effect of cellular turnover on the proportion of DNA derived from
different cell-types detectable within plasma cfDNA. The proportion of DNA released from dying cells
that reaches cfDNA varies dramatically, from 3% of released DNA for megakaryocytes and endothelial
cells, to 0.003% for erythrocyte progenitors. Although there are > 86 billion neurons in the human CNS
[26], lower MN are a rare subtype of neurons, and previous work has estimated that there may be < 
500,000 in total [27]. Assuming optimum availability then 3% of released MN DNA will be detectable
within plasma cfDNA. If we assume all lower MN die over the course of disease, we can estimate the
theoretical maximum proportion of MN DNA as a part of total plasma cfDNA as a function of the rate of
disease progression (Methods, Fig. 5B). From this we can calculate that even for the fastest theoretical
disease progression rate, the plasma concentration of MN DNA would be several orders of magnitude
smaller than our threshold for detection, primarily because of the small number of MN relative to other
cell types. We have assumed a half life for cfDNA of 114 minutes [28]. In our simulation experiments we
achieved a detection probability greater than chance only when the proportion of cfDNA attributed to MN
was > 1% (Fig. 4B-C) which determined the threshold for theoretical detection.

We sought to estimate what rate of MN death would be required to produce a detectable concentration
within cfDNA. Using the proportion of DNA from cellular turnover detectable as cfDNA in the plasma
from endothelial cell and erythroblasts as maximum and minimum estimates, we show that even if all
lower MN died within 24 hours, their contribution to cfDNA would still be below the limit of detection for
WGBS (Fig. 5C). We consider this estimate of wider use to the �eld as it predicts whether a detectable
quantity of cfDNA will be present from a known rate of cell death.

Methods

Tissue culture and development of iPSC-derived MN
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Tissue culture of iPSCs and the derivation of pure MN cultures via small molecules is described
elsewhere [10].

Whole genome bisul�te sequencing (WGBS) of DNA derived
from iPSC-derived MN
We generated WGBS libraries following the Whole-Genome Bisul�te Sequencing Data Standards and
Processing Pipeline (https://www.encodeproject.org/data-standards/wgbs/). In brief, genomic DNA was
extracted from ~ 50,000 cells per technical replicate before shearing and bisul�te treatment. Libraries
were ampli�ed by PCR and puri�ed. Library concentrations were measured (Qubit). WGBS libraries were
paired-end sequenced on a NovaSeq 6000 system (Illumina) with target 30X coverage Raw data were
processed with the ENCODE 4 pipeline for WGBS according to ENCODE 4 standards. Files are available
at encodeproject.org with the following accession numbers: ENCSR734EFX, ENCSR509LMK,
ENCSR978LOX.

Paired-end FASTQ �les were mapped to the human (hg38), lambda, pUC19 and viral genomes using bwa-
meth (v.0.2.0) then converted to BAM �les using SAMtools (v.1.9)52. Duplicated reads were marked by
Sambamba (v.0.6.5) with parameters ‘-l 1 -t 16 --sort-buffer-size 16000 --over�ow-list-size 10000000’
[29]. Reads with low mapping quality, duplicated or not mapped in a proper pair were excluded using
SAMtools view with parameters ‘-F 1796 -q 10’. Reads were stripped from nonCpG nucleotides and
converted to PAT �les using wgbstools (v.0.2.0, downloaded from Github github.com/nloyfer/wgbs_tools
in September 2022), command wgbstools bam2pat --genome hg38. Methylation across the MN samples
was examined using a PCA plot, and technical replicates were found to have low heterogeneity.
Technical replicates were then merged to allow inclusion in the wgbstools pipeline.

Genome segmentation into methylation blocks
Using all three of our samples and all 205 samples from a methylation atlas we segmented the genome
into 1,630,133 blocks of 4 or more CpGs using the wgbstools command ‘wgbstools segment --min_cpg 4
--max_bp 5000’. PAT and BETA �les for all 207 available samples mapped to GRCh38 were downloaded
from GEO (accession number GSE186458) [5] on the 20th of September 2022. As per the original
publication we excluded two cardiomyocyte samples due to low coverage. We also segmented the
genome into 1,938,130 blocks of 3 CpGs were identi�ed using the wgbstools command wgbstools
segment --min_cpg 3 --max_bp 5000; these blocks of 3 CpGs were used only for marker selection.

Unsupervised clustering of DNA methylation pro�les
Average methylation per block (of at least 4 CpGs in size) for each sample was extracted using the
wgbstools command ‘beta_to_table’, replacing blocks with less than 10x coverage in a sample with ‘NA’.
We then selected the top 1% of blocks by variance, excluding blocks with any ‘NA’ values across all
samples, and used these for clustering. Unsupervised clustering was performed using Python version
3.10.8, Dask version 2023.9.2, SciPy 1.9.1, options method='average', metric='cityblock',
optimal_ordering = True.
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Derivation of MN-speci�c hypomethylated genomic regions
We applied the wgbstools command ‘�nd_markers’ together with all 205 samples used for
segmentation. Default parameters were used to remove low coverage regions, samples with a read
depth of less than 5 in a segment had the value set to NA, and segments with greater than 1 in 3 NA
values in either the target or background cell type were removed. Regions were considered MN-speci�c if
there was a difference of at least 0.3 between the mean motor neuron methylation and mean of all other
samples’ methylation within that block, and the p value of a t-test was equal to or below 0.05.

Identi�cation of genes linked to MN-speci�c
hypomethylated genomic regions
We implemented the ABC model [13] following the guidelines provided at
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction. First, we called peaks for the ATAC-
seq pro�ling using MACS2, and then identi�ed the candidate enhancer elements using
“makeCandidateRegions.py” with parameters peakExtendFromSummit = 250 and nStrongestPeaks = 
150000. The black-listed regions generated by the ENCODE 4 (https://www.encodeproject.org/) were
used for removing enhancers overlapping regions with anomalous sequencing reads. Second, we
applied “run.neighborhoods.py” to quantify the enhancer activities by counting ATAC-seq and H3K27ac
ChIP-seq reads in candidate enhancer regions. RNA-seq pro�ling of iPSC-derived MNs was also provided
to inform expressed genes. Quantile normalisation was applied using K562 epigenetic data as the
reference. At last, using “predict.py” we computed the ABC scores by combining the enhancer activities
(calculated by the second step) with the Hi-C pro�ling. Hi-C data was �t to the power-law model. The
default threshold 0.02 was used to de�ne valid E-P links.

Transcriptome analysis
For AnswerALS data, gene expression pro�ling of iPSC-derived MNs and phenotype data were obtained
for 245 ALS patients and 45 neurologically normal controls (https://www.answerals.org/). Gene
expression was normalised by the The trimmed mean of M-values normalisation method (TMM). We
used a negative binomial test to determine genes differentially expressed between ALS patients and
controls. Signi�cance testing was performed for all genes expressed in MN (n = 22,976) de�ned as count
above zero in more than half of samples; in addition we excluded the bottom 25% of genes based on
mean count across all samples.

Generation of synthetics mixes of MN-derived DNA
together with plasma cfDNA
WGBS of plasma cfDNA samples produced by Caggiano C. et al. [12] were downloaded from
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164600 in February 2023, including 12 ALS
patients and 12 healthy volunteers. Raw FastQ �les were trimmed with Trim Galore version 6.7 using the
options ‘trim_galore --paired -clip_R1 4 --clip_R2 4 --three_prime_clip_R1 12 --three_prime_clip_R2 12’ and
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then aligned to GRCh38 using the bowtie 2 aligner in Bismark version 22.3. Duplicate reads were
removed with Bismark and Samtools version 1.16.1 was used to remove reads with a MAPQ score below
10. BAM �les were then converted to PAT and BETA �les using wgbstools.

Using wgbstools command ‘mix_pat’, synthetic mixes of MN sample PGP_M_55_iPSC (Supplementary
Table 1) or cerebral neuron sample Cortex-Neuron-Z0000042F [5] and the either the 12 plasma cfDNA
samples from healthy volunteers, or the 4 CSF cfDNA samples from hydrocephalus patients were
created. By down- or up-sampling the cfDNA and neuronal reads, spike-ins were made at 0–10%, and
coverage was varied from 2.5-30x.

Deconvolution of plasma cfDNA and optimisation of a
deconvolution algorithm
We derived uniquely hypomethylated regions for each cell-type to use for deconvolution. In this process
we excluded the two samples used for spike-in to prevent over�tting. Segmentation was repeated as
before to derive two sets of regions, one with a minimum length of 3 CpGs and one with a minimum
length of 4 CpGs. For both sets of regions cell type speci�c marker regions were found using wgbstools
‘�nd_markers’ with a minimum difference between target and background means of 0.3 and a t-test p-
value equal to or below 0.05. To derive different numbers of marker regions, for each cell-type the marker
regions were ordered by the difference between the 75th-centile in the target group and the 2.5th centile
in the background and then 25, 50, 100, 250, 300, 400, or 500 marker regions were selected. Marker
regions for all cell types were then used to create an atlas of the fragment based methylation for each
region across all cell types using the UXM tool downloaded from
https://github.com/nloyfer/UXM_deconv on the 31st of January 2023. We then used UXM to deconvolve
the synthetic mixes, producing estimated cell type contributions for each mix. These were then analysed
using R version 4.3.1 (2023-06-16). To optimise region selection we tested using smaller or larger
regions, and more or less regions per cell-type in order to maximise the probability of detection of
spiked-in DNA, and minimise the normalised root mean squared error (RMSE).

Deconvolution of CSF cfDNA
WGBS of CSF cfDNA samples [30] were downloaded from
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142241 in April 2023, including four
hydrocephalus patients. Reads were trimmed with trim-galore version 6.7 using the paired option and
default settings. Due to low mapping e�ciency of the reads we followed the ‘Dirty Harry’ protocol
described by the creators of the Bismark software. Reads were �rst aligned as paired end reads using
the bowtie aligner within Bismark. Unmapped R1 reads were then aligned in directional mode, and R2
reads were then aligned in pbat mode before combining them into a single �le. Duplicate reads were
then removed with Bismark, then Samtools version 1.16.1 was used to remove reads with a MAPQ score
below 10 before converting them into PAT and Beta �les using wgbstools.
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Theoretical estimate of the maximum of MN-derived DNA
within plasma cfDNA
The concentration of cfDNA produced from cell death is given by the standard pharmacokinetic equation
for concentration produced by a drug infusion at a constant rate.

C = d( k0* t1/2 ) / ( ln(2) * Vd )

Where C is the concentration in the plasma, k0 is the infusion rate, t1/2 is the half life, Vd is the volume of
distribution, and d is the proportion of DNA from cell death present in the plasma. We were able to
calculate the theoretical maximum concentration of MN DNA within plasma cfDNA as a function of the
time period over which the DNA was released i.e. disease duration by making reasonable assumptions
for each of these values. Using the values given for a 70kg 20–25 year old man as has historically been
used as standard, the volume of plasma is 3.0L [31]. In the absence of a ground-truth for the proportion
of DNA released from dying MN that reaches plasma cfDNA, we used observed maximum and minimum
proportions for other cell-types: from 3% for megakaryocytes and endothelial cells to 0.003% for
erythrocyte progenitors [25]. Infusion rate is given by the rate of cell death, and converted to weight of
DNA using the conversion 1 diploid genome = 6.46pg [32]. The total number of lower MN has been
estimated at ~ 500,000 [27] and we estimate a constant rate of loss over the disease course based on
the observation that neuro�lament levels, a biomarker of neuronal death, rise prior to disease onset then
reach a stable concentration that is proportional to speed of progression [33]. The half life of plasma
cfDNA has been measured using a variety of means, including the decrease in foetal cfDNA following
pregnancy, the decrease in tumour cfDNA following surgery, and the increase and decrease in cfDNA
following exercise [34]. A key point is to distinguish between the distribution half life and steady state
half life. As shown by experiments with radiolabeled double stranded DNA [35], following an infusion
DNA is taken up by soft tissues causing its concentration in the plasma to decrease rapidly until an
equilibrium is reached with equal movement of DNA between the soft tissues and plasma. Following this
the concentration of DNA will reach a steady state where its concentration is determined by the infusion
rate and the steady state half life. We use 114 minutes as our estimate for the steady state half life as
this is based on the fall in circulating tumour DNA following complete resection of the tumour [36].
cfDNA from the tumour would have reached a steady state prior to the surgery and its decrease from the
surgery would be in line with the steady state half life. When estimating the proportion of cfDNA we use
the concentration of 297pg/ul as the expected concentration of plasma cfDNA as this was the average
concentration in controls age and sex matched to ALS patients [12].

Discussion
ALS is currently an incurable and invariably fatal neurodegenerative disease [37]. Biomarkers are crucial
for translational medicine and the recent development of serum NfL as a biomarker for ALS [1] has been
key to the development of new treatments [38]. However, a key de�ciency of NfL measurement is that it
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is not speci�c to MN [3], the primary degenerating cell in ALS. We and others have hypothesised that
detection of cell-speci�c methylation of DNA within plasma cfDNA might provide an alternative and
more speci�c biomarker for ALS. Here we show theoretically and experimentally that this goal is
potentially not achievable using WGBS of plasma cfNDA, at least under the experimental conditions we
encountered. Alternative approaches are needed which may include alternative bio�uids or detection
methods.

We have developed a MN-speci�c set of hypomethylated genomic regions using WGBS in iPSC-derived
MN from neurologically normal individuals, together with an atlas of tissue-speci�c methylation [5]. We
demonstrate that these regions are associated with genes which are key to MN function but not
signi�cantly enriched with ALS genetic risk. Our regions are likely to be useful for future works aiming to
detect DNA derived from MN using different detection methods.

Our simulations and our measurements suggest that the sensitivity of WGBS is limited to 1% of plasma
cfDNA which is signi�cantly greater than the theoretical maximum proportion of plasma cfDNA derived
from rapidly degenerating MN, which we determine to be 1.6*10− 5%. This is due to the relatively small
number of MN compared to the ongoing turnover of other cell-types. It is not inconceivable that MN-
derived DNA could be detected at this level but targeted ampli�cation together with more sensitive
detection will be necessary.

An important limitation to our work, and the majority of deconvolution algorithms, is that they assume
the sequenced DNA fragments are randomly distributed across the genome, which is not correct. It is
known that the formation of cell-free DNA from genomic DNA leads to preferential preservation of
nucleosome-bound DNA, so cell-free DNA from different cell types or tissues produces fragmentation
patterns with greater depth at sites bound to nucleosomes [39]. Enrichment of MN-speci�c methylation
blocks used for detection with nucleosome-bound genomic regions could potentially improve the
performance of detection.

It is possible that use of an alternative bio�uid might enable detection of MN-speci�c DNA. CSF is the
obvious choice given that, unlike blood, it is not separated from MN by the blood brain barrier (BBB).
However, the extremely low concentration of cfDNA in CSF – 0.4ng/mL versus 7.7ng/mL in plasma [40]
– may again be prohibitive. Our preliminary analysis suggests that neuronal but not MN-derived DNA is
detectable within CSF cfDNA via WGBS, but this did not include sequencing data from ALS patients.

Our study has contributed WGBS data from iPSC-derived MN (encodeproject.org, Methods) and the
identi�cation of MN-speci�c hypomethylated genomic regions. We have not achieved a new biomarker
for ALS but we have delineated the challenge for this approach through both theoretical calculations and
experimental measurements. We have shown that WGBS of cfDNA derived from plasma is not likely to
lead to a new biomarker for ALS and that future research should focus on developing our MN-speci�c
regions with a more sensitive detection method.
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Figure 1

Derivation and biomarker evaluation of a hypomethylated DNA signature from whole genome bisul�te
sequencing (WGBS) of human motor neurons. MN-speci�c DNA hypomethylation was used to assess
the proportion of MN DNA within cfDNA in plasma from ALS patients (n=12) and CSF from controls
(n=4). We sort to verify the validity of MN-speci�c DNA hypomethylated regions by linking regions to
target genes and cross-checking those genes with independent observations of MN gene expression; we
hypothesised that correctly identi�ed hypomethylated regions should indicate regions of open, active
and transcribed chromatin which should be statistically enriched in measures of MN-speci�c gene
expression. We linked regions to target genes using the activity-by-contact (ABC) model [13].

https://paperpile.com/c/RHr1tE/S6l64
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Figure 2

iPSC-derived MN maintain a DNA methylation signature consistent with human adult neurons. (A) Whole
genome bisul�te sequencing (WGBS) of genomic DNA derived from human iPSC-derived MN was used
to derive a pro�le of genomic methylation within MN for comparison with methylation pro�les of 205
samples covering 39 cell-types [5]. (B) Unsupervised clustering was used to assess cell-similarity and
revealed that iPSC-derived MN (blue text) cluster together with human CNS neurons (green text).

https://paperpile.com/c/RHr1tE/FUBzx
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Figure 3

MN speci�c DNA methylation is linked to MN function but not to genetic risk for ALS. (A) We used
independent measurements of MN gene expression and ALS heritability to verify the biological validity of
identi�ed MN-speci�c hypomethylated genomic regions. MN-speci�c hypomethylated genes are
enriched with genes expressed in human MN (B) and in human iPSC-derived MN (C). MN-speci�c
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hypomethylated genes are not differentially expressed in ALS iPSC-derived MN compared to control MN
(D).

Figure 4

Optimised set of MN-speci�c hypomethylated genomic regions is not detectable in ALS patient plasma
cfDNA. (A) We used a synthetic mix of WGBS reads from non-diseased plasma cfDNA together with
spike-in reads from iPSC-derived MN to determine the optimum set of MN-speci�c regions for detection
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in ALS patient biosamples. (B) At spike-ins of 1-10% there is a linear relationship between spike-in and
predicted MN DNA concentrations for all sets of MN-speci�c methylation blocks; p<0.02, adjusted
r2>0.998, Pearson's product moment correlation coe�cient.  (C) At spike-ins ≲1% it is possible to detect
reads derived from MN-speci�c regions but the detection probability is <0.5. (D) MN-speci�c DNA is not
detectable within ALS patient plasma. 

Figure 5

The theoretical maximum proportion of MN-derived DNA within plasma cfDNA is very low. (A) We can
estimate the proportion of plasma cfDNA derived from MN based on the number of MN dying, the
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proportion of released DNA which reaches plasma cfDNA and the half-life of cfDNA. (B) For different
disease durations between one and �ve years we estimate the proportion of plasma cfDNA derived from
MN; and (C) we estimate the rate of MN-death necessary to achieve a given concentration within plasma
cfDNA.
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