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The spatial layout of antagonistic brain
regions is explicable based on geometric
principles

Check for updates

Robert Leech 1 , Rodrigo M. Braga 2, David Haydock 3, Nicholas Vowles1, Elizabeth Jefferies 4,

Boris Bernhardt 5, Federico Turkheimer 1, Francesco Alberti 6, Daniel Margulies 6,

Oliver Sherwood1, Emily JH Jones 7, Jonathan Smallwood 8,9 & František Váša 1,9

Brain activity emerges in a dynamic landscape of regional increases and decreases that span the

cortex. Increases in activity during a cognitive task are often assumed to reflect the processing of task-

relevant information, while reductions can be interpreted as suppression of irrelevant activity to

facilitate task goals. Here,we explore the relationship between task-induced increases and decreases

in activity from a geometric perspective. Using a technique known as kriging, developed in earth

sciences, we examined whether the spatial organisation of brain regions showing positive activity

could be predicted based on the spatial layout of regions showing activity decreases (and vice versa).

Consistent with this hypothesis we established the spatial distribution of regions showing reductions

in activity could predict (i) regions showing task-relevant increases in activity in both groupsof humans

and single individuals; (ii) patterns of neural activity captured by calcium imaging in mice; and, (iii)

showedahighdegreeof generalisability across task contexts.Our analysis, therefore, establishes that

antagonistic relationships between brain regions are topographically determined, a spatial analog for

the well documented anti-correlation between brain systems over time.

One of the most well-established features of brain activity is a landscape of
regional increases anddecreases in activity that emerge inhumans andother
mammals. For example, a distributed set of regions show systematic
decreases in activity when participants engage in a range of complex tasks1.
These regions are known as the default mode network, and have been
hypothesised to play a role in cognition and behaviour linked to memory
and other internally focused cognitive processes2. At the same time, a dif-
ferent set of regions show a tendency to increase activity when participants
perform tasks with increased cognitive demands, a system which is often
referred to as the multiple demand network and is assumed to play an
important role in executive control3.

Functional accounts typically argue that task-positive or task-negative
features of brain activity reflect how the brain implements different features
of cognition, such as the application of task rules in the case of executive
control3,4 or the use of long-term knowledge to guide cognition and beha-
viour in the case of the default mode network2. In contrast, in our current

study, we consider a complementary hypothesis: that regional increases and
decreases in brain activity observed during different states are the result of a
set of common topographic causes. To investigate this possibility, we
examined whether the spatial distribution of regions that show increases in
brain activity can be predicted by the regional distribution of regions that
show reductions in brain activity (and vice versa).

The importance of physical space as an organising principle has long
been recognised as fundamental for brain function. For instance, sensory
and motor functions are arranged as topological maps5 and processing
streams6,7. However, an increasing number of studies2,8–12 have highlighted
the possibility that geometric constraints may provide a set of general
principles that could explain the rich neural dynamics that are observed
across the cerebral cortex and would therefore help constrain how these
neural processes support different cognitive functions.

These geometric perspectives suggest that the specific spatial patterns
of activation and deactivation we observe with neuroimaging reflect the
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operation of topographical constraints that relate to how the brain functions
as a system. An analogy can be made with landscapes, where the pattern of
elevation on the Earth’s surface reflects processes that are distributed in
space (e.g., plate tectonics, volcanic activity, glaciation, andweathering). For
many of these phenomena, the peaks and valleys observed within a specific
landscape are a consequence of a small number of geological processes that
lead to predictable changes in elevation over space and time that are com-
mon across landscapes located in different parts of the globe. Although the
spatial processes actingon the cortex are likely tobe fundamentally different,
we hypothesised that the relative increases and decreases in neural activity
that emerge during specific states may, in part, be determined by the
operation of neural topographical principles. Such a view of brain function
would be supported by evidence that the pattern of regional increases in
activity canbepredictedby thedistributionof regions that showdecreases in
activity (and vice versa).

In order to determine whether common topographical principles
explain both increases and decreases in brain activity during tasks, we used
an approach that is commonly used to infer topographical features in
geology andother earth sciences. It is well established that because processes
like glaciation shape both the peaks of mountains and the valley floors.
Consequently, physical descriptions of the shape of a mountain peak con-
tains information that also describes the shape of the valley floor (and vice
versa). In a geological context, the relationship between peaks in valleys can
be captured by a spatial regression technique called Kriging13 that has been

applied in other domains such as ecology, geography, and climate sciences.
Kriging has recently been extended to work with large datasets of tens of
thousands of observations and accommodate spatial heterogeneity (i.e., the
possibility that underlying influences on a landscape's topography can vary
across space), making it a viable technique for facilitating its use in a neu-
roimaging context14.

In our study we apply Kriging (Fig. 1, top) to the distribution of brain
activity observed in a range of different situations and using different
imaging techniques (fMRI and calcium imaging). Specifically, we examined
whether the spatial distribution of vertices that show reductions in activity
(i.e., vertices on the cortical surface that showa relative deactivation) are able
to predict the distribution of vertices that show activity increases (i.e., ver-
tices with a relative increase in activity) and vice versa (Fig. 1, bottom). Our
findings highlight that this can be donewith remarkable accuracy indicating
that: (i) many of the observable features of task-positive brain activity are
spatially linked to reductions in activity (and vice versa); (ii) that this is not
tied to a specific modality of brain imaging and (iii) while there are unique
task-positive activity patterns arising from the spatial configuration of task
deactivation for each task there are also important similarities seen when
human perform different cognitive tasks, explaining why often different
tasks can have similar neural profiles. Together, these analyses establish that
the task-positive and task-negative dimensions of brain activity are at least
partly an emergent property of cortical geometry. More generally, they

Fig. 1 | The spatial regression approach (Kriging). Top, schematic of the spatial

regression approach: A an illustration of a signal (elevation and color) in a 2D

physical space, with black spheres indicating sampled points where the signal has

been measured. B Distances and similarities of the signal between sampled points

(black lines) can be used to approximate the spatial process of the continuous signal.

This spatial process can be used to predict unsampled points (white sphere) based

only on distance to sampled points (white lines). C 2D cut through, showing using

samples (black points) from one extreme to predict the other extreme (white point).

Bottom, application of the spatial regression approach to the cortical surface.

DA cortical surface map is identified, for example, activations from a cognitive task.

EThemap is projected onto a sphere, and F thresholded to retain a subset of regions;

here, those that show deactivation for the chosen task. Next, G a multiresolution

regular lattice is created on the sphere, to estimate spatial covariance andH performs

spatial prediction of the whole-brain map, including in particular the out-of-mask

(task-positive) regions. Finally, these can be compared to the true out-of-mask

values (i.e., observed task-positive activity).
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underscore the importance of mapping both regional increases and
decreases in activity in theoretical approaches to the brain basis of cognition.

Results
We first demonstrate the utility of kriging as a technique for explaining the
spatial distribution of increases and decreases in brain activity using group
average BOLD activity from the Human Connectome Project15. We took a
single group-averaged contrast z-scoremap (e.g., 0-Back relative tobaseline)
for each of the seven cognitive tasks (see Fig. 2). Each task map was thre-
sholded to retain the lowest 25% of cortical vertices (i.e., most negative
values; excluding the medial wall), and the resulting mask was used as
the input for spatial prediction.We performed Lattice Kriging by projecting
the masked input data onto a multiresolution spherical lattice and using
thepatternof changes in activity as a functionof distance to approximate the
underlying spatial process and, based on this, predict all vertices on
the cortical surface (except the medial wall). The model was estimated
separately for each task, without prior training on other datasets; as such,
each separate model was only provided with the thresholded spatial dis-
tribution of activity decreases for that specific task. In this analysis, pre-
dictions are entirely based on regions showing decreases in activity and we
assesswhether this is able topredict thedistributionof positive activity in the
unseen vertices. Consistent with our hypothesis that a set of common
topographical principles explains both increases and decreases in brain
activity during tasks, we (Fig. 2A) generated a set of predictions for each task
(Fig. 2B), which showed reasonable correspondence to the “true” task
patterns (Fig. 2C) (see Supplementary Fig. 1 for the inverse predictions, i.e.,
predicting task negative vertices from super-threshold task-positive
vertices).

We quantified the relationship between predicted and true increases in
brain activity in the out-of-mask vertices (Fig. 3A). Spearman’s correlations
between predicted and empirical activity ranged from ρ = 0.57 (for the
Emotion task) to ρ = 0.77 (for the theory of mind task). The presence of
autocorrelation unrelated to task activity (e.g., resulting from thermal noise,
registration error between subjects, etc.) means that some positive correla-
tion in out-of-mask prediction is to be expected by chance. Therefore, we

also calculated the correlation between true and predicted activity within a
restricted set of vertices (Fig. 3B).We restricted the correlation between real
and predicted activity to verticeswith task-positive activity (i.e., z-score > 0),
excluding any vertices outside of the predictor mask whose activity was
negative (z < 0). This restricted analysis still showed positive correlations
between real and predicted activity (range of Spearman’s ρ across
tasks = 0.34–0.8). This demonstrated that the model does not just predict
the location of vertices with positive BOLD activity (or assign all vertices a
given distance from themask as positive), but also predicts the variability in
activity across these task-positive vertices. Supplementary Fig. 2 shows
results using higher and lower thresholds to make the mask. Overall pre-
dictive accuracy was somewhat dependent on the level of the threshold (i.e.,
the amount of vertices included in the mask) as expected; however, the
relative predictive performance across the different tasks was broadly con-
sistent across all three threshold levels.

In Fig. 3C, we also observe the similarity in out-of-mask predictive
performance (derived from each task-negative pattern of activity) across
eachof the seven tasks. This illustrates that for themajority of the tasks (with
the exceptionof themotor task), thepredicted solution iswell-aligned across
tasks (although it is always strongest for prediction of its own out-of-mask
activity). This indicates amixture of task-general and task-specific aspects of
the task-negative spatial configuration.An informative summarymeasure is
the overlap in the number of tasks predicted to have positive activity at each
vertex (Fig. 3D, E), regions that tend to show good spatial agreement
between predicted and real data.

In Fig. 3D, E, we observed evidence of both a shared pattern of task-
positive activity predictable from task-negative activity for the majority of
tasks, as well as elements that are unique to each task.

To further evaluate the task-specific component of the spatial predic-
tion, we next directly compared predictive performance across pairs of tasks
(Fig. 4, top).We generated a binarymask based on the intersection of a pair
of (previously generated) task-specific masks. We used Kriging to recon-
struct the underlying cortical activation maps from a subset of task activity
which was spatially restricted only to the intersection mask (i.e., we pre-
dicted both increases and decreases in brain activity). Finally, we compared

Fig. 2 | Spatial prediction from task-negative activity patterns. A Vertices with the lowest (<25%) group-average task activation were used to form a predictor mask.

B Spatial regression was used to predict task activity at all remaining vertices, and compared to C the true pattern of activity.
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the predicted map to both tested empirical task maps to quantify whether
the predicted map is more similar to the corresponding empirical map
(whose activationwithin the intersectionmaskwas used for prediction).We
repeated this across all 42 pairs of tasks. This allowed us to systematically
compare predictive performance for pairs of tasks based on matching
subsets of vertices in the predictor mask. As such, this was a highly con-
strained test of the hypothesis that the spatial distribution of task activity
within the predictor mask allows for meaningful spatial prediction outside
of themask (and is not driven just by the location of task-negative vertices).
Figure 4, bottom, shows the comparison of out-of-mask similarity between
each pair of tasks (true versus alternative task). Out of all 42 task compar-
isons, the true task used to generate the prediction had greater predictive
performance than the alternative task 39 times (Fig. 4, bottom A). Similar
results were obtained when the out-of-mask performance was restricted to
either a minimum distance from any vertex in the mask (0.1 radians,
�3mm; Fig. 4, bottomB), or only to vertices that had positive activity in the
real pattern of activity (Fig. 4, bottom C).

So far, we have shown that the inputmasks based on regional decreases
can predict regions that show positive activity. A complementary perspec-
tive on spatial prediction can be obtained by constraining input data to
predefined brain regions or networks, and assessing their relative ability to

predict activity in the rest of the brain. Therefore, we also defined masks
from seven canonical intrinsic connectivity networks16 and used these to
generate spatial predictions of activations for vertices outside of each mask.
Figure 5 shows the correlation between out-of-mask real and predicted
activity for each network and each task. Across tasks, the networks covering
large primary sensorimotor systems (i.e., visual and somatomotor net-
works) performed poorly; conversely, association networks (fronto-parietal
and default mode networks) showed the best performance. The default
mode network (Network 7) is similar in size to the sensorimotor networks
(Networks 1 and 2), whereas Network 6 is much smaller, indicating
that predictive success is not merely a consequence of network size
(i.e., spatial area and number of vertices). The limbic network also
performed poorly, although we note that some regions this network
have been associated with signal dropout and related issues so may be
less biologically meaningful17.

To assess whether these results arise because of the specific spatial
location of each network on the cortical surface, we repeated the analyses
following spatial or “spin” permutation of each mask on the sphere18,19 and
using the location of the rotated masks to make predictions. We found
similar out-of-mask predictive performance for true networks and for
rotated networks (all p-values > 0.05, FDR or Bonferroni correction). This

Fig. 3 | Assessing the agreement between predicted and true patterns of activity.

Left panel, A scatter plots of the relationship between true and predicted out-of-

mask vertices for each task. B The relationship between predicted and real activity

restricted only to vertices with a true task-positive BOLD response (i.e., z > 0).

C Similarity across tasks of predicted activity for all out-of-mask vertices. D The

overlap of positive predicted values across all tasks; E the real overlap of positive

values across all tasks.
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Fig. 4 | Assessing the task-specificity of spatial predictions. Top: The approach

consists of creating a mask from the intersection of two task-specific masks, pre-

dicting activation for one task across the rest of the cortex, and then assessing

whether the predicted output is more similar to the (expected) true task than to the

alternative task. Bottom: Pairwise similarity in true versus alternative task perfor-

mance, based on:AAll out-of-mask vertices;BOut-of-mask vertices further than 0.1

radians from any vertex in the predictor mask; C Out-of-mask vertices with

empirical activity z > 0.

Fig. 5 | Predicting task activation frommasks defined by intrinsic connectivity networks. A The similarity matrix (correlation values) between real and predicted out-of-

mask activity profiles; B Scatter plots of the out-of-mask predictions compared to activity for each network and each task.
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indicates that the superior predictive performance of heteromodal (rather
than unimodal) networks is due to their spatially distributed nature, rather
than the specific location of their sub-regions.

We next demonstrate that the prediction of variation in task-positive
activity from the task-negative troughs of activity is a result of the spatial
autocorrelation in the data. In Fig. 6A, we observe that the accuracy of the
prediction is related to theminimumdistance along the cortexof eachvertex
from the task negative mask for all seven tasks, with accuracy reducing at
longer distances. Second, we generate a set of surrogate maps which match
the spatial autocorrelation for each task but randomize the specific locations
of peaks and trough using the recently proposed Eigenstrapping method20

(Fig. 6B). We observe that the predictive accuracy of the true task map is
similar to the accuracy observed for 200 surrogate maps, for all tasks (all
p-values > 0.065, uncorrected formultiple comparisons). This indicates that
the spatial regression is taking advantage of spatial autocorrelation structure
in the data to make successful predictions.

So far, we have established that increases in brain activity in humans
while theyperform tasks, as assessed by fMRI, can be predicted based on the
spatial distribution of regions that show decreases in activity. Next we
explore two alternative accounts of our data that emerge from con-
temporary views on the validity of fMRI as a tool formapping human brain
activity: (i) the blurring of signals caused by group averaging and (ii) the lack
of biological reality in the fMRI signal.

It is often argued that the method of inter-subject averaging blurs
regions with distinct functional profiles so that the time series loses its
biological meaning. To address this possibility, we repeated the spatial
prediction analysis for three tasks from 10 heavily sampled individual

participants from theMidnight Scan Club21. Similarly to the group analysis,
for each individual, a mask formed from the lowest quartile of vertices was
used to predict individual activity for vertices across the cortex. As with the
group analysis, the predicted activity was generally similar to real activity,
both at the individual level and when averaging the results of individualized
predictions (Fig. 7A, B). We also repeated the pairwise comparisons of
different tasks (Fig. 4, top) at the individual level, by predicting from the
mask of the intersection of the lowest quartile of vertices for each pair of
tasks.Aswith theHCPdata,we observed greater out-of-mask prediction for
true tasks than the alternative tasks (Fig. 7C). For 7/10 subjects, prediction
was superior for true tasks for all 6 task pairs; for the remaining three
subjects, prediction for the true task was superior for 5/6 task pairs. In other
words, prediction was superior for the true task for 57/60 task pairs across
individual subjects (Fig. 7D). This analysis rules out the possibility that our
ability topredict increases inbrain activity basedon the spatial configuration
of task-negative activity is an artifact of group averaging.

Until now, we have considered BOLD responses calculated from
human fMRI; however, fMRI is often argued to lack the biological reality
that is possible with more direct metrics of neural functions, such as
intercranial recordings or calcium imaging. Since our analysis depends on
the topography of the cortex, recordings of single regions are unsuitable to
test our spatial hypothesis. Instead, we investigated whether this approach
generalizes to a more direct metric of neural activity: calcium imaging
recordings from visual cortex while a mouse watched a movie (Fig. 8). For
individual time points, we used the top 25% of pixels to form a mask and
used spatial prediction to make out-of-mask predictions (Kriging on a 2D
lattice covering the visual cortex). Note that, unlike the human fMRI

Fig. 6 | Statistical features underlying spatial predictions. Upper panel: A the

relationship between distance (great circle distance) and predictive accuracy for each

of the tasks. Lower panel, spatial prediction using randomized task activation maps:

B illustration of the first three Eigenmodes generated using Eigenstrapping20. These

were used to generate 200 randomized versions of each task map while

approximately preserving the spatial autocorrelation; these surrogate maps were

then thresholded (<25% of vertices) and used to spatially predict out-of-mask ver-

tices. C The similarity (Spearman’s ρ) between true and predicted out-of-mask

vertices for the original task map (diamonds) and the randomized maps (dots).
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analyses, which were calculated on contrast maps, this analysis used time
series data to predict task-related reductions or increases in activity over
time. As with the fMRI data, we observed that long-distance out-of-mask
spatial predictions of the pattern of deactivating pixels could be calculated
based only on the spatial pattern within the extreme of the distribution.
Specifically, we observed positive correlations between real and predicted
out-of-mask pixels for 420/540 (78%) time-points, and a mean Spearman
correlation of ρ = 0.62. This result held even when restricting the out-of-
mask prediction to a minimum distance of 25 pixels from the input mask
(332/540, 61%, ρ = 0.31) (Fig. 8D). Our final analysis, therefore, shows that
patterns of activity increases in brain activity can be estimated based on
geometry frommeasures of brain activity that are traditionally seen asmore
biologically plausible than fMRI.

Discussion
In this study, we established that the spatial configuration of both increases
and decreases in cortical task activity is the result of a common topographic
principle. Specifically, across multiple tasks—and for both group averaged
and individual data—we found that the spatial organisationof extreme task-
negative activity can be used to predict task-positive activity patterns (and
vice versa). We could predict not just the spatial location of task-positive
activity, but the magnitude of task-positive activity values in a task-specific
way. Further, by using intrinsic connectivity networks at rest, we show that

networks with different spatial characteristics differ for predicting cortex-
wide activity and that this likely reflects the networks’ spatial distribution,
rather than its spatial location. Finally, we show in calcium imaging data
across mouse visual cortex, that these spatial dependencies are not only
restricted to humans or to BOLD functional MRI data.

Our findings indicate that task-positive and task-negative patterns of
brain activity, which may be associated with different cognitive processes,
are spatially linked and are likely the result of set of topographical principles
that influence howneural processes unfold over space and time.Our results,
therefore, can be considered as a spatial analogue of the finding that some
brain networks are temporally anti-correlated22; our analysis shows that
observed activity patterns are such that neural activity is also anti-correlated
over space. These spatial constraints are in many ways not surprising given
the geometric organisation underlying both the distribution of whitematter
connections and the preponderance of local connectivity across the cortex23.
Moreover, they are also predicted by approaches that emphasise how
topographic features influence the function of specific brain networks (for
example, the defaultmode network11, or the general topography of observed
brain activity based on descriptions of its structure12.

From a cognitive perspective, one puzzling feature of the task-positive
and task-negative features of brain activity is the broad range of situations in
which it is important3. For example, the multiple demand network, as the
name implies, shows a pattern of increased activity across a range of

Fig. 8 | Spatial prediction in a mouse. A Real activity for a single time point. Labels

are: primary visual cortex (V1), lateromedial area (LM), anterolateral area (AL),

rostrolateral area (RL), anteromedial area (AM), and posteromedial area (PM).

B Predicted activity from a mask of the top 25% of pixels. C Real versus predicted

activity in out-of-mask pixels (shaded area are negative values—the mask was

defined by extreme positive values). D Top right, distribution of Spearman rank

correlations between out-of-mask (>25 pixel distance) real and predicted activity

across time points. The black dashed line is the mean correlation.

Fig. 7 | Individual participant analyses. A The thresholded activity pattern, cor-

responding prediction and underlying real activity pattern for the three tasks for an

illustrative participant projected on an average surface. B Averaging the indivi-

dualized predictions and real activity across participants. C Out-of-mask pairwise

similarity (correlation) comparing each task (i.e., the predicted compared to true

activity for one task compared to the other tasks). D The same as C but for each

individual participant.
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different tasks, each of which differs in superficial details (for example, they
may differ on the type of stimulus, the rate of stimulus presentation, and
features of task structure). Likewise, regions in the default mode network,
such as the posterior cingulate cortex, show reductions in activity inmanyof
the same sorts of tasks that activate during the multiple demand network,
and greater activity in situations in tasks that all share a reliance onmemory
(e.g., semantic knowledge, episodic memory or social cognition)2,24. At a
cortical level, therefore, the task-positive/task-negative axis of brain function
describes spatial patterns of brain activity that occur across a range of
specific situations and that may share abstract cognitive features (such as a
role of executive control), but also differ in superficial features of the
situation inwhich they are observed (e.g., the Stroop task is not the same as a
working memory task). Although the generality of the increases and
decreases in brain activity are now well documented, they beg a specific
question: what features of cognition are encoded by features of brain activity
that are common to tasks that differ in the specific features of cognition and
behaviour that they depend upon? In this regard, ourfindings are important
because they explain that this persistent spatial motif may occur across
many superficially different cognitive settings because of the impact of one
or more topographical features that shape how brain activity varies across
the cortex. In other words, if at least a part of the brain activity pattern we
observe during tasks is a result of spatial phenomenawhich are derived from
geometric constraints, then consistent patterns of deactivation and activa-
tion shouldbe expected in taskswhichmaybedifferent in specific features of
cognition or behaviour. This is analogous to the way that a small set
of common geological processes can explain basic features of the landscape
of mountain ranges, even if they occur in different continents25.

Our analyses establish links between the spatial distribution of
increases and decreases in brain activity that can be parsimoniously
explained by assuming that a set of common spatial principles governs both
positive and negative changes in brain activity observed during tasks.
Nonetheless, our analysis leaves open several important questions. On its
own, techniques such as Kriging will not directly elucidate the specific
cortical mechanisms underlying the spatial processes; instead, they reveal
the dependency structures between regional patterns of brain activity, even
when these are not obvious. These spatial dependencies act as constraints
that should be incorporated into theoretical cognitive neuroscientific
accounts (e.g., task-positive and task-negative systems should not be treated
as fully independent systems when ascribing cognitive functions). Further,
they can be used to guide the application of more mechanistic, generative
models, especially in the context of cognitive tasks. For example, recently,
Pang and colleagues12 argued that the neural activity observed during fMRI
can be explained by a process in which neural activity is an emergent
property of the mechanisms which shape the cortex, arguing that observed
brain activity is the result of resonance of spatial features of brain organi-
sation that can be explained by neural field theory. It is possible, therefore,
that the spatial phenomenon described in our analysis may be explicable in
similar terms.

Methodologically, the spatial regressionmethodusedhere, is applied to
a single input brain map, without prior training on a separate dataset (as is
common in supervised machine learning). While we only applied this
method to functional imaging data, including human fMRI and mouse
calcium imaging, this approach can be applied to a wider range of cortical
maps, across imaging modalities and species. For example, a relevant can-
didate for future work aremaps of human anatomical, electrophysiological,
and genetic organisation26. Future application of these and related methods
(e.g27.) to a wider range of maps is likely to further enhance our under-
standing of the spatial relationships between distributed cortical systems.

Future developments also need to focus on the spatial properties of the
surfacemeshused for spatial regression.Here,weperformed the analyses on
an approximately spherical cortical projection; while computationally effi-
cient, this projection involves distortion from the true sulcal and gyral
geometry of the cortex. Performing spatial regression on a more accurate
cortical representation (e.g., mid-thickness surface projection) is an active
area of ongoing work which has the potential to substantially improve the

accuracy of spatial predictions. We also made simplifying assumptions for
computational efficiency, such as that the spatial autocorrelation is spatially
homogeneous, which is unlikely to be the case10,27. Although technically
challenging, incorporating spatial heterogeneity into the spatial regression
models in the future will also lead to more accurate characterisation of the
dependency between antagonistic patterns of brain activity. The choice of
preprocessing steps will also affect the character and magnitude of spatial
autocorrelation in the dataset (e.g., steps such as global signal regression)
and shouldbe considered systematically in futurework. Finally,weobserved
considerable variability in predictive accuracy across different tasks. There
are a number of reasons that this may be the case: acquisition differences
(e.g., for the HCP dataset, the FMRI tasks varied in length from 2 to 5min)
and task designs differences (e.g., length of rest periods) both substantially
impact BOLD signal sensitivity; equally, the cognitive functions involved in
the tasks as well asmore general aspects of e.g., arousal vary across the tasks.
Futureworkwithmore balanced task designs and systematicmanipulations
will be necessary to allow us to disambiguate whether variation in the
strength of spatial dependency between antagonistic networks is a result of
cognitive differences or a statistical artefact of task design.

The evidence that geometry constrains the observed patterns of brain
activity during tasks has implications for interpreting the links between
brain activity, on the one hand, and cognition and behaviour, on the other.
For example, it is often standard practice tomake inferences about a region’s
function based on observed increases in functional activity within a specific
task. Our data suggests that these inferences could also take into account
regions that show reductions in activity, since in many situations the
increases in activity contain information about the task context that is also
contained in the pattern of reductions. More generally, computational
models linking brain geometry, activity, and behavior are necessary to
understand the cognitive implications of these geometric constraints. For
example, the balance of task evoked activation and deactivation have been
considered as spatial homeostatic processes28–30 that can facilitate richer
behavioral dynamics in a reservoir computing model30; incorporating
geometric dependencies between task-positive and negative distributions of
activity in such computational models may allow for a more mechanistic
understanding of the functional role of the spatial dependencies observed
here.Moregenerally, ourfindings show that fundamental functional roles of
the cortex (especially at a meso- and macro-scopic scale) are poorly
understood; futureworkwill need tomoredirectly consider the implications
of the cortex as a physically embedded spatial system.

Methods
Data

Group average task data. We used data from the seven group-average
taskmaps were taken from theWU-MinnHCP 900 subjects data release.
Preprocessing was performed by the researchers within the HCP, no
additional preprocessing was performed. The data was A single contrast
map for each task was used, as follows: the working memory task
“0-back” contrast; the gambling task “reward” contrast; the motor task,
“average” contrast; the language task “math” contrast; the social task
“theory-of-mind” contrast; the relationship task “match” contrast; and
the emotion task “faces contrast. Full details of the pre-processing
pipeline and creation of the group average maps can be found at the
HCP900 release notes15.

Task FMRI data was first pre-processed according to theminimal pre-
processingpipelineprior toprojection intonative and thencommonsurface
space; this involved: gradient distortion correction, motion correction
(using FSL’s FLIRT), field map correction, boundary-based registration to
the participant’s T1w scan and projection onto the participant’s cortical
surface. Cortical surface construction was performed using Freesurfer fol-
lowed by theMSMAll surface registration pipeline. The task FMRI data was
projected onto the fs_LR 32k mesh using the standard HCP fMRISurface
pipeline. This involved mapping the voxels in the cortical ribbon onto each
participant’s cortical surface and transforming them based onto the fs_LR
32k surfacemesh.Minimal 2mmsurface-based spatial smoothingwas then
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applied to the timeseries data. The pipelines are available at https://github.
com/Washington-University/HCPpipelines.

To derive BOLD contrast maps, predictor task time courses were
convolved with a double gamma hemodynamic response function, tem-
poral derivative terms were calculated for each predictor; the time courses
were high-passfilteredwith a 200 s cutoff. FSL’s FILMwas used to correct of
temporal autocorrelation. Fixed-effects analyses were performed to com-
bine individual runs and FSL’s FLAME mixed effect model was used to
derive group level z-statistic task contrasts surface maps. Because the data
contains related subjects which was not modelled, associated p-values are
not valid and were not used in subsequent analyses.

The xyz-coordinates for each BOLD contrastmapwere extracted from
both the 32kMultimodal Surface Matching31mid-thickness projection (for
display purposes), and from the spherical projection (for spatial regression
and prediction).

Individual participantdata.Weused individual task contrastmaps from
the Midnight Scan Club dataset21. We used the preprocessed data from
the ten participants’ contrast maps for three tasks (Mixed, Memory and
Motor), resampled into 32k vertex atlas; full details of the preprocessing
are available at OpenNeuro ds000224.

Calcium-imaging data. Preprocessed mouse calcium imaging data was
taken from32. We used the spatio-temporal data from a single mouse
while watching amovie, consisting of 400 × 400 pixel images (with a pixel
size of 0.01 mm2) acquired at 540 time-points. Details of data acquisition
and preprocessing are available at32.

Spatial predictionwith LatticeKriging. Lattice Kriging (LatticeKrig14) is a
method for performing spatial prediction using Kriging (a form of Gaussian
process regression) with large datasets. It involves building a multi-resolu-
tion, compactly supported set of radial basis functions on a regular lattice
covering the spatial domain, approximating the covariance structure of the
data and allowing for spatial predictions. The sparse basis function
decomposition of the spatial covariance in Lattice Kriging guarantees a
positive semi-definite covariance matrix (not possible for standard Kriging
on a whole spherical mesh), allowing for valid spatial prediction models and
highly computationally efficient spatial prediction to the whole cortical
surface (10,000 s of vertices). Alternate recent feasible approaches, e.g., Fixed
Rank Kriging33 and INLA34, could also be evaluated in future.

Human data

For human data, we use the LatticeKrig implementation with spherical
geometry (using the spherical projection of the FSLR 32k cortical atlas).We
use the default parameters from the LatticeKrig example on the sphere
(LKSphere). This involved three levels of spatial resolution (153, 625, 2523)
of Wendland basis functions built on an icosahedron grid by repeatedly
subdividing the triangles of an icosahedron into roughly equidistant
points; the relative weighting of the three resolutions was set as
alpha = [1,0.25,0.01], based on default of LKSphere example from Latti-
ceKrig. Vertex locations in Cartesian spacewere converted to longitude and
latitude and great circle distances were used to calculate distances between
vertices and basis function centres and perform spatial prediction. There
was no parameter search or model optimization; however, we show pre-
dictive performance on out-of-sample vertices for different key parameters
in Supplementary Fig. 3 (the number of levels for themultiresolution lattice,
the relative importance of the different resolutions, and the correlation
range).While there is variability in the resultswithdifferentparameters (e.g.,
reducing the number of levels in general reduces predictive performance),
the results are broadly consistent, showing similar predictive performance
across the different tasks as the original model.

The same analysis approach was taken for both group and individual
task functional MRI datasets. Vertex values for each contrast map were
sorted (after removing themedial wall) and the bottom25%of verticeswere
used to create a mask (these were negative values, corresponding to task-

negative evoked responses). The spherical coordinates of vertices (calculated
from their 3D-coordinates on the sphere) in the mask, and the corre-
sponding task contrast values,were entered into aLatticeKrigingmodel and
used to predict all out-of-mask vertices (i.e., vertices outside of the mask).
Subsequent analyses compared prediction on all out-of-mask vertices to the
corresponding true values, as well as only the subset of out-of-mask vertices
that hadpositive task-evoked responses. Similar analyseswere repeatedwith
different thresholds to define themasks (i.e., bottom 15% and bottom 35%).

Task-specificity of spatial predictions

To assesswhether spatial prediction is task-specific, each taskwas compared
pairwise to each other task (e.g., “Task 1” and “Task 2” below). A con-
junction mask was created based on the subset of vertices that were in the
bottom 25% for both tasks. To assess prediction, a mask of out-of-mask
vertices was created for the remaining 75% of vertex values for Task 1.
Vertex values (and their locations) within the conjunction mask were then
used to predict out-of-mask vertices based separately on Task 1 and Task 2
values. The predictions from both tasks on out-of-mask vertices were then
compared to the true values for Task 1, to assess whether predictive per-
formance was higher for thematching task (Task 1) than for the alternative
task (Task 2). This created anon-symmetric out-of-maskpairwise similarity
matrix between tasks. Two additional restricted out-of-mask masks were
created, as a stricter test of predictive performance: (1) only out-of-mask
vertices that also had task-positive values (for Task 1); and (2) only out-of-
mask vertices that were also at Haversine distance greater than 0.1 radians
from the predictor (i.e., input) vertices.

Effect of intrinsic network architecture on spatial prediction

Acanonical seven-network decomposition of the cortex16was used to create
masks of vertices. Task contrast values for all vertices (both positive
and negative) within each mask were used to predict vertices outside the
mask for each of the seven tasks. To assess whether the spatial location
of networks influenced predictive performance, the location/orientation of
the networks on the brain was shuffled 500 times using random “spin”
rotations of the spherical projection of the cortical surface18,35. These were
then used to spatially predict task contrast values for out-of-mask vertices;
this resulted in a null distribution of predictive performance from the
rotated masks19.

Generating randomizedmapswithsimilar spatial autocorrelation

The Eigenstrapping method20 was used to generate 200 surrogate cortical
maps with similar spatial dependency structure to each of the task contrast
maps. We performed a spectral decomposition of the cortical surface to
generate 200geometric eigenmodes.These eigenmodeswere then randomly
rotated, combined and resampled to create cortical maps with random
patterns with approximatelymatched spatial autocorrelation to the original
task maps.

Mouse data

A separate lattice kriging model was performed for each of the 540 time
points for the calcium imaging data from a single mouse watching a movie.
Given that this is spatio-temporal data rather than a contrast map, there is no
equivalent to task positive/task negative pixels. Instead, for each time point,
from pixels with a non-zero value, the top 25% of pixels were used to create a
mask and the corresponding pixel values and all pixel locations were used to
predict the response for: (i) out-of-mask pixels; (ii) out-of-mask pixels at a
minimum distance of 25 pixels from any pixel within the input mask.

For the mouse data, the cortical surface (composed of 57867 pixels)
is imaged as a 2-D plane. Therefore, a 2-D regular lattice was used for
Kriging, with multi-resolution basis functions with three levels. See the
code for full details.

Performance was assessed by comparing Fisher transformed correla-
tion values between predicted and real values for each time point. Both
t-tests and autoregressive models were used to assess whether the average
correlation was greater than chance across time points.

https://doi.org/10.1038/s42003-025-08295-2 Article

Communications Biology |           (2025) 8:889 9

https://github.com/Washington-University/HCPpipelines
https://github.com/Washington-University/HCPpipelines
www.nature.com/commsbio


Reporting summary

Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data included in the present analyses were acquired with informed
consent (where appropriate) and are available at the following sources:
https://db.humanconnectome.org/ https://openneuro.org/datasets/ds000224
https://nih.figshare.com/collections/Dataset_for_Sit_Goard_Distributed_
and_Retinotopically_Asymmetric_Processing_of_Coherent_Motion_in_
Mouse_Visual_Cortex/5018363.

Code availability
Code to repeat the analyses is publicly available at: https://github.com/
ActiveNeuroImaging/SpatialAnticorrelations.
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