
This is a repository copy of MS-EmoBoost: a novel strategy for enhancing self-supervised 
speech emotion representations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/228863/

Version: Published Version

Article:

Song, H., Zhang, L., Gao, M. et al. (3 more authors) (2025) MS-EmoBoost: a novel 
strategy for enhancing self-supervised speech emotion representations. Scientific Reports,
15 (1). 21607. ISSN 2045-2322 

https://doi.org/10.1038/s41598-025-94727-2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



MS-EmoBoost: a novel strategy for 
enhancing self-supervised speech 
emotion representations
Hongchen Song1, Long Zhang1, Meixian Gao1, Hengyuan Zhang1, Thomas Hain2 & 

Linlin Shan3

Extracting richer emotional representations from raw speech is one of the key approaches to improving 

the accuracy of Speech Emotion Recognition (SER). In recent years, there has been a trend in utilizing 

self-supervised learning (SSL) for extracting SER features, due to the exceptional performance of SSL 

in Automatic Speech Recognition (ASR). However, existing SSL methods are not sufficiently sensitive 
in capturing emotional information, making them less effective for SER tasks. To overcome this issue, 
this study proposes MS-EmoBoost, a novel strategy for enhancing self-supervised speech emotion 

representations. Specifically, MS-EmoBoost uses the deep emotional information from Melfrequency 
cepstral coefficient (MFCC) and spectrogram as guidance to enhance the emotional representation 
capabilities of self-supervised features. To determine the effectiveness of our proposed approach, 
we conduct a comprehensive experiment on three benchmark speech emotion datasets: IEMOCAP, 
EMODB, and EMOVO. The SER performance is measured by weighted accuracy (WA) and unweighted 

accuracy (UA). The experimental results show that our method successfully enhances the emotional 

representation capability of wav2vec 2.0 Base features, achieving competitive performance in SER 
tasks (IEMOCAP:WA,72.10%; UA,72.91%; EMODB:WA,92.45%; UA,92.62%; EMOVO:WA,86.88%; 
UA,87.51%), and proves effective for other self-supervised features.

Speech is one of the most common and direct forms of human communication, containing rich semantic and 
emotional information. Speech Emotion Recognition (SER) technology enables machines to focus on the non-
textual aspects of speech, uncovering the latent emotions in speech signals, thereby enhancing the machine’s 
emotional understanding and abilities to empathize. Currently, SER technology has been widely applied in 
various fields such as intelligent customer service1, health monitoring2, and educational teaching3  demonstrating 
significant practical value. However, the accuracy of SER can be influenced by many external factors, including 
but not limited to individual differences between speakers4, methods of extracting emotional features5, and the 
construction of recognition models6. These factors make accurate SER a highly challenging task.

In the early stages of SER research, scholars employed a series of computations and transformations on raw 
speech signals to derive artificially designed acoustic emotion features, such as prosodic and spectral features. 
These features were combined with traditional machine learning classifiers such as Gaussian Mixture Models 
(GMM)7, Support Vector Machines (SVM)8, and Hidden Markov Models (HMM)9 to complete SER tasks. 
With the advent of deep learning technologies, researchers began employing Convolutional Neural Networks 
(CNNs)10, Long Short-Term Memory networks (LSTMs)11, and Attention Mechanisms12 to extract deep 
emotional representations from either handcrafted features or directly from raw speech waveforms13. However, 
these approaches typically rely on extensive data annotation and necessitate the development of specialized 
models tailored for specific SER tasks and application scenarios14. In the context of languages or dialects with 
limited annotated data, the supervised learning method encounters significant challenges.

In recent years, researchers have proposed self-supervised representation learning methods to address 
the challenges mentioned above. Figure 1 illustrates the application process of self-supervised representation 
learning in the SER task. In the first phase, the self-supervised model utilizes unlabeled audio data combined 
with generative, contrastive, and predictive learning methods to acquire high-quality speech representations. 
In the second phase, the SER task either employs the learned representations from the frozen model or fine-
tunes the entire pre-trained model using labeled audio data. The generative method15 enables the model to 
generate or reconstruct data from inputs, thereby facilitating the learning of the intrinsic structures and patterns 
within the data. Conversely, the contrastive method16 strengthens the relationships between similar samples 

1College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China. 2School of 
Computer Science, The University of Sheffield, Sheffield, UK. 3College of Fine Arts and Design, Tianjin Normal 
University, Tianjin 300387, China. email: zhanglong@tjnu.edu.cn; shanlinlin@tjnu.edu.cn

OPEN

Scientific Reports |        (2025) 15:21607 1| https://doi.org/10.1038/s41598-025-94727-2

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-94727-2&domain=pdf&date_stamp=2025-6-7


and distinguishes dissimilar ones through the comparison of various data samples. Meanwhile, the predictive 
method17 focuses on comprehending the dynamics of the data by predicting specific characteristics or future 
states. Prominent self-supervised models such as wav2vec 2.016 and HuBERT17 were initially designed to 
optimize the performance of speech recognition systems. Although the feature embeddings extracted by these 
models contain rich semantic information, their expression of emotional information is not prominent enough. 
When using either the last frame or the average of all frames as features for SER tasks, sequence-level features 
tend to be lost18.

To address the aforementioned issues, some researchers have proposed fine-tuning self-supervised pre-
trained models19,20 to enrich the emotional content within feature embeddings, making them more suitable for 
SER tasks. Another type of approach involves supplementing self-supervised speech features with additional 
emotional information from other modalities21 or acoustic features22. However, these solutions either focus on 
the model level, involving fine-tuning pre-trained models, or on feature fusion, integrating different modalities 
or types of acoustic features, without exploring the self-supervised features themselves. Therefore, our work 
revolves around enhancing the acoustic emotional information within self-supervised features themselves.

Existing speech enhancement technologies provide valuable insights into our work, even as they focus 
on improving speech quality and intelligibility in noisy environments. Jannu et al.23 have highlighted that 
an effective speech enhancement system relies on accurately modeling the long-term dependencies of noisy 
speech. Alongside utilizing Transformers for parallel processing, the system incorporates CNN to extract local 
information. Vanambathina et al.24 emphasized the importance of time-frequency (T-F) details and utilized 
a time-frequency attention (TFA) mechanism to capture significant T-F distributions of speech. Additionally, 
Jannu et al.25 implemented attention mechanisms to focus the model on semantically relevant and critical parts 
of the original waveform, and added two layers of Gated Recurrent Unit (GRU) at the bottleneck of the encoder-
decoder architecture to represent the correlations between adjacent noisy speech frames. Inspired by these 
studies, we have conducted a comprehensive analysis of self-supervised learning (SSL) features and meticulously 
assessed the potential contributions of attention mechanisms, CNNs, and other technologies in our work. 
We considered both the long-term dependencies and T-F details of speech to enhance self-supervised speech 
emotion representations. Our main contributions are as follows:

• We propose MS-EmoBoost, a novel strategy for enhancing self-supervised speech emotion representations, 
which effectively utilizes the deep emotional information in MFCC and spectrogram to enhance self-super-
vised features.

• Experiments on the IEMOCAP, EMODB, and EMOVO datasets have demonstrated that our method effec-
tively enhances the feature representation of the wav2vec 2.0 Base model.

• We prove that the MS-EmoBoost strategy is generalizable across various self-supervised feature extraction 
scenarios.

Related work
To ensure that speech emotion features accurately capture both the long-term dependencies of speech and 
T-F details, we have conducted an in-depth analysis of self-supervised features, examining their strengths and 
limitations. To address these limitations, we further explored additional acoustic features beneficial to our 
research and decided to robustly extract emotional information from these features to guide the enhancement of 
self-supervised features. In this section, we will review the development of SER, discuss the characteristics of self-
supervised features, and introduce some related literature in acoustic feature selection and model construction.

The emotions of a speaker often influence the production of speech signals26, and hence the characteristics 
of a speech signal can to some extent reflect the speaker’s emotional state. Inspired by this theory, researchers 
have utilized temporal and spectral algorithms to design three major types of acoustic features regarding 
speech emotion: prosodic features27, timbral features28, and spectral features29. These respectively capture the 
rhythm and pitch variations, timbre and sound quality, as well as the intensity and distribution of frequencies 
in speech signals. To capture the nonlinear relationships in speech signals, researchers have employed deep 

Figure 1. Framework for using self-supervised representation learning in speech emotion recognition.
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learning technologies to extract deep emotional features from either handcrafted acoustic features or raw speech 
waveforms. These features have made substantial contributions to the field of SER.

Stacked Transformer30 layers, as the core components of self-supervised models such as wav2vec 2.0 and 
HuBERT, can effectively model the contextual information of audio, thus adeptly capturing the long-distance 
dependencies within audio sequences. In contrast, these models demonstrate a somewhat limited ability to 
capture T-F details in speech. Therefore, utilizing spectral features rich in T-F details to enhance the emotional 
representation capabilities of these self-supervised models is a viable strategy.

Spectrogram is a visual representation of audio signals in time and frequency domains, typically depicted 
in varying colors or shades to indicate the intensity of spectral components. Beyond containing rich T-F 
information, spectrogram also encapsulates substantial emotional information. To effectively extract these 
details, researchers have undertaken extensive explorations and efforts. Zheng et al.31 focused on the differences 
in emotional expression among various spectrograms and constructed a Deep Convolutional Neural Network 
(DCNN) to learn representations of emotions from labeled training data segments. To maintain robust emotional 
recognition performance in complex scenarios, Huang et al.32 introduced a Semi-supervised Convolutional 
Neural Network (Semi-CNN) to learn salient emotional features from spectrograms. Wani et al.33 proposed 
the Deep Stride Convolutional Neural Network (DSCNN), which maintaining recognition accuracy while 
enhancing the computational speed of the model.

Mel frequency cepstral coefficient (MFCC) simulate the auditory characteristics of the human cochlea. They 
are derived from further processing of spectral information, thereby preserving essential information within the 
frequency domain and generating a set of feature parameters that are easier to handle and differentiate. Kumbhar 
et al.34 conducted preliminary investigations into emotion recognition from MFCC features using the LSTM 
algorithm, demonstrating its effectiveness in extracting deep features from MFCC. Bhandari et al.11 explored 
the impact of LSTM hidden layer size and output dimensions on extracting emotional information from MFCC 
features, presenting the practical implementation of an appropriate LSTM model in a SER system. Concurrently, 
Wang et al.35 considered the latent emotional information in both mel-spectrogram and MFCC, employing a 
standard LSTM to process MFCC features and proposing a Dual-Sequence LSTM (DS-LSTM) to handle mel-
spectrograms, jointly predicting the emotional category of speech.

Attention Mechanism assists models in identifying key frames within speech signals, thereby enhancing their 
emotional perception capabilities. Zhou et al.36 extracted multiplexed acoustic information, including visual 
representations of spectrograms and MFCC from audio signals and employed an attention mechanism to fuse 
the most salient information from both types of features to accomplish SER task. Li et al.37 used the self-attention 
mechanism to focus on emotionally significant segments within speech, utilizing gender classification as an 
auxiliary task to address the SER issue. Sun et al.38 proposed a novel MCSAN network that integrates the self-
attention module with the cross-attention module, effectively merging emotional information from both speech 
and text. Fu et al.39 introduced a new cross-modal fusion network based on self-attention and residual structures, 
CFN-SR, ensuring the efficient complementarity and integrity of emotional information from both audio and 
video. Naderi et al.40 proposed an attention-based method for effectively fusing wav2vec 2.0 transformer blocks 
with prosody features, utilizing transfer learning to significantly improve the accuracy of Cross-corpus SER 
(CCSER).

Proposed method
In this section, we introduce MS-EmoBoost, emphasizing how the system enhances emotional information 
with self-supervised feature extraction. As illustrated in Fig. 2, the proposed model is divided into three main 
components: acoustic feature extraction, self-supervised feature enhancement, and the final emotion recognition. 
Each of these components will be discussed in detail in subsequent subsections.

Acoustic feature extraction
The acoustic feature extraction component is designed to extract MFCC features, spectrograms, and self-
supervised features for subsequent feature enhancement tasks.In the following formulation, the original speech 
waveform is denoted as xw ∈ R

Tw×1, and the aforementioned features are all derived from this original speech 
waveform.

The MFCC feature extraction initially involves the pre-emphasis of the input speech signal, which aims to 
enhance the high-frequency components of the signal. Subsequently, the signal is segmented into multiple frames, 
and a window function is applied to each frame to reduce edge effects. Then, each frame signal is transformed 
from the time domain to the frequency domain with Fast Fourier Transform (FFT). In the frequency domain, 
the spectrum is processed by a filter bank based on the Mel scale, which simulates the human ear’s sensitivity 
to different frequencies. The log energies of the filter outputs are then compressed through the Discrete Cosine 
Transform (DCT), ultimately yielding the MFCC features, denoted by xm ∈ R

Tm×Dm .
The feature extraction process for spectrograms is similar to that of MFCC feature. It begins with some pre-

processing steps including pre-emphasis, framing, and windowing of the speech signal to prepare for further 
analysis. After pre-processing, the Short-Time Fourier Transform (STFT) is applied to each windowed frame, 
resulting in a matrix that encapsulates both time and frequency information. Subsequently, the logarithm of the 
amplitude spectrum is calculated and the results are normalized. This enhances the visibility of low amplitude 
frequencies and compresses the dynamic range, accentuating subtle energy variations. Finally, the required 
frequency components are extracted and the data shape is adjusted to produce the spectrograms, denoted as 
xs ∈ R

Ts×Ds .
As illustrated in Fig. 3, the wav2vec 2.0 architecture employs a self-supervised learning framework, specifically 

designed to learn speech representations from raw audio waveforms. The process begins with the extraction of 
latent speech features through multiple layers of CNNs. These latent representations are then partially masked 
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and the masked representations are subsequently input into Transformer layers, which are designed to capture 
the contextual information of the audio data. By integrating masking techniques with contrastive learning 
methods, the model is capable of accurately identifying the true latent speech representations from a set of 
quantized representations associated with the masked time steps. In this study, we utilize wav2vec 2.0 Base16, 
which has been pretrained on the LibriSpeech (LS-960) dataset41, to extract self-supervised features from the 
raw audio waveforms.

 Xw = wav2vec 2.0 Base(xw) (1)

where Xw ∈ R
T

′

w
×D

′

w .

MS-EmoBoost module
The MS-EmoBoost Module utilizes key emotional information from MFCC features and spectrograms as 
guidance to highlight the emotional content within the wav2vec 2.0 Base features, while also incorporating 
certain frequency domain information to enhance the emotional representation capabilities of the self-supervised 
features. Figure 2 illustrates the structure and enhancement details of the MS-EmoBoost module.

Firstly, we need to extract the deep emotional representations Xm and Xs from MFCC features and 
spectrograms, respectively. The deep emotional representations of MFCC features are extracted with a Bi-LSTM 
with a dropout of 0.5. The deep emotional representations of the spectrograms are processed by the pretrained 
AlexNet42, which has demonstrated excellent performance in the field of computer vision (CV). The specific 
computation process is formulated as follows

Figure 3. Overview of wav2vec2.0.

 

Figure 2. Proposed model structure.
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 Xm = Bi-LSTM(xm)  (2)

 Xs = AlexNet(xs)  (3)

where Xm ∈ R
T

′

m
×D

′

m , Xs ∈ R
T

′

s
×D

′

s .
Secondly, we have designed a self-attention layer based on a residual structure. The configuration of 

the self-attention layer is intended to extract more critical emotional information from the deep emotional 
representations of both MFCC features and spectrograms. Meanwhile, the incorporation of the residual structure 
aims to prevent the loss of original feature information. The computation process is as follows

 X
′

m = Xm + Attention(Qm, Km, Vm)  (4)

 

Attention(Qm, Km, Vm) = softmax

(

QmKT

m
√

dKm

)

Vm  (5)

 X
′

s = Xs + Attention(Qs, Ks, Vs)  (6)

 

Attention(Qs, Ks, Vs) = softmax

(

QsKT

s
√

dKs

)

Vs  (7)

where X ′

m ∈ R
T

′

m
×D

′

m , X ′

s ∈ R
T

′

s
×D

′

s .
In this setup, X ′

m and X ′

s represent the MFCC features and spectrogram features post-attention application, 
respectively. dKm

 and dKs
 denote the embedding dimensions for these features. The calculation methods for 

Qm, Km, and Vm are provided here (which also applies to Qs, Ks, Vs).

 Qm = WoXm + b
Q
a  (8)

 Km = WkXm + b
K

a  (9)

 Vm = WvXm + b
V

a  (10)

where W  and b represent the weight matrices and bias vectors.
Following the attention process, the modified features X ′

m and X ′

s are flattened and go through a dropout 
operation (dropout rate = 0.1) to mitigate the risk of overfitting. Considering that both MFCC and spectrogram 
contain rich emotional guidance information, we employ linear layers equipped with ReLU activation function 
to project each onto a unified 128-dimensional space, followed by concatenation. Subsequently, in order to 
derive the feature enhancement matrix Xenh, the concatenated features are projected into a 149-dimensional 
space, followed by the application of a dimensional reshaping to facilitate subsequent enhancement processes, 
referred as fenh

 Xenh = fenh(linearm(X ′

m) ⊕ linears(X ′

s)) (11)

where Xenh ∈ R
1×T

′

w .
Finally, we multiply the self-supervised features extracted from the wav2vec 2.0 Base with the feature 

enhancement matrix to obtain the enhanced self-supervised features. This operation integrates the key 
information captured by the feature enhancement matrix with the acoustic representations from wav2vec 2.0 
BASE16, resulting in a stronger representation for emotion recognition task. The computation can be described 
as follows

 X
′

w = Xenh · Xw  (12)

where X ′

w ∈ R
1×D

′

w .

Emotion classification
We reshape the enhanced self-supervised features X ′

w  and employ a simple linear layer to complete the final 
task of emotion classification. The enhanced features are projected onto a 4-dimensional space to match the 
four emotion categories. The final predictions, ŷ, are generated using the softmax function, and the computation 
proceeds as follows

 ŷ = softmax(linear(X ′

w)) (13)

We employ the cross-entropy loss, which is widely used in classification tasks, as the loss function for this work. 
It measures the discrepancy between the model’s predicted probability distribution of emotions and the true 
label distribution. The formula for cross-entropy loss can be formulated as follows

 L = Lce(y − ŷ) (14)

where y is groundtruth.
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Experiment
Dataset
The first database, the Interactive Emotional Dyadic Motion Capture (IEMOCAP)43, is an English emotional 
speech database. It includes 12 hours of audio-visual data and text transcription data, recorded by ten actors (five 
males and five females) with scripted and improvised scenarios. The emotional annotations were independently 
provided by multiple annotators. In this study, we utilize all audio data recorded in both scripted and improvised 
scenarios. Following previous studies18,37, we merged the “excited” category into the “happy” category and 
focuses on identifying four emotion categories: “angry (1,103)”, “sad (1,084)”, “happy (1,636)”, and “neutral 
(1,708)”, which sums up to 5,531 acoustic utterances. We use a 10-fold leave-one-speaker-out(LOSO) cross-
validation strategy to assess the effectiveness of our method.

The second database, the Berlin Database of Emotional Speech (EMODB)44, is a German emotional speech 
database. It was recorded by ten native German experts (five males and five females), comprising a total of 
535 sentences designed to simulate everyday communication scenarios. The audio data encompasses seven 
categories of emotions (“angry”, “boredom”, “disgust”, “fear”, “happy”, “neutral”, and “sad”).In this study, we utilize 
all audio data from EMODB and use a 10-fold LOSO cross-validation strategy to evaluate the performance of 
our method in recognizing these seven emotional categories.

The third database, EMOVO45, is an Italian emotional speech dataset. It contains audio recordings from 
six native Italian speakers (three males and three females), encompassing a total of 588 utterances designed to 
reflect a range of emotional states. The database includes seven emotion categories: “anger”, “disgust”, “fear”, “joy”, 
“neutral”, “sadness”, and “surprise”. In this study, we utilize all available audio data from EMOVO and evaluate 
our method’s performance in recognizing these emotions using a 10-fold cross-validation strategy.

Experimental setup
In this study, we sample the acoustic utterances in the datasets at a rate of 16 kHz. Each audio segment is spilt 
into 3-second clips, with zero-padding employed to fill any segments that are shorter than 3 seconds. Our 
objective is to predict the emotional state of each audio segment. The emotional state of the entire acoustic 
utterance is determined by the average of the predictions from all its constituent segments. We employ Librosa46 
to extract 40-dimensional MFCC features in HTK style. During the extraction of the spectrogram, we use a 
40-millisecond Hamming window with a hop size of 10 milliseconds, where each windowed block is treated 
as a frame. The length of the Discrete Fourier Transform (DFT) is set to 800, and the first 200 DFT points are 
selected as the required frequency components. Consequently, each audio segment corresponds to a 300 * 200 
pixel spectrogram.

The proposed framework is implemented using PyTorch (version 1.10.1). All the experiments are conducted 
on an Nvidia RTX 3090 GPU. Considering the characteristics of various datasets, the parameter scale of the self-
supervised models, and the size of the pre-training data, we appropriately adjusted certain hyperparameters, 
such as the number of epochs, batch size, and early stopping patience to account for their potential impact on 
the experimental results. The overall description of the hyperparameters utilized in this work is highlighted in 
Table 1.

Evaluation metrics
To comprehensively evaluate our approach, we employ both Weighted Accuracy (WA) and Unweighted Accuracy 
(UA) to evaluate the model’s performance across different emotion categories. WA considers the number of 
samples in each category within the dataset, assigning greater weight to categories with larger sample sizes, 
thus adjusting their impact on the overall accuracy. In contrast, UA treats all categories equitably, assessing 
the model’s overall performance by calculating the average accuracy across various emotional categories. This 
approach ensures a fair evaluation of all categories, making it especially suitable for situations with imbalanced 
categories. The computation for WA and UA can be described as follows

 

WA =

∑
k

i=1
ni

∑
k

i=1
Ni

 (15)

Hyperparameter Value

Number of epochs 100/150

Learning rate 1e-5

Activation function ReLU

Dropout rate 0.1

Optimizer Adam

Loss function Cross entropy

Batch size 64/32/16

Early stopping patience 8/20

Table 1. Hyperparameters employed for this study.
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UA =
1

k

k∑

i=1

ni

Ni

 (16)

where ni is the number of correctly classified utterances in the i-th class, Ni is the total number of utterances in 
the i-th class, and k is the number of emotion classes.

Results and analysis
In this section, we evaluate the performance of our model on different datasets (IEMOCAP, EMODB, EMOVO) 
through model comparison experiments. Ablation studies are meticulously designed to further investigate the 
effectiveness of the MS-EmoBoost strategy and assess the importance of its key components. Additionally, we 
conduct generalization experiment to ascertain the robustness of the MS-EmoBoost strategy across diverse self-
supervised models.

Results and comparison
Table 2 provides a comprehensive comparison of various models on the IEMOCAP, EMODB and EMOVO 
datasets, highlighting the significant contributions of our MS-EmoBoost model in the field of SER. The table 
categorizes the models by year and details their performance in terms of WA and UA.

Specifically, our MS-EmoBoost strategy achieved 72.10% WA and 72.91% UA on the IEMOCAP dataset, 
effectively addressing the shortcomings in emotional information representations within self-supervised 
features. It significantly surpasses methods that employ multi-task learning (MTLemo+int47), entirely fine-
tuning (EF-w2v-base48), and multi-acoustic features fusion (Co-attention18). Moreover, MS-EmoBoost achieved 
outstanding results on the EMODB dataset, with 92.45% WA and 92.62% UA, as well as 86.88% WA and 87.51% 
UA on the EMOVO dataset. These results not only highlight its strong adaptability across different emotional 
speech databases but also its remarkable ability to accurately capture and classify a wide range of emotional 
states.

Overall, the MS-EmoBoost strategy has made substantial advancements in enhancing self-supervised speech 
emotion expressions, demonstrating the potential of self-supervised learning paradigms to improve the efficiency 
of SER systems. This establishes a promising direction for future research to explore further improvements and 
applications in diverse real-world scenarios.

The confusion matrix in Fig. 4 displays the performance of our method on the IEOMCAP dataset across four 
emotional categories. Observations indicate that the system generally performs well on the IEMOCAP dataset, 
particularly in recognizing the emotions of anger and sadness. However, it exhibits weaker performance in 
identifying happy and neutral emotions. A significant confusion between happy and neutral categories is noted, 
particularly with many happy samples being misidentified as neutral. This issue may stem from the abundant 
sample data for happy and neutral emotions, which could lead the model to learn non-representative features 
and noise during the training process.

The confusion matrix results (Figs. 5 and 6) demonstrate the emotion recognition performance of the proposed 
method on the two datasets. Experiments indicate that the model achieves excellent overall performance on the 
EMODB dataset, with nearly perfect recognition accuracy for anger, sadness, and neutral emotions. However, 
significant confusion is observed between happiness and anger as well as between fear and happiness on this 

Year References Model Dataset WA (%) UA (%)

2022 Yue et al.47 MTLemo+int IEMOCAP 68.29 70.82

2021 Wang et al.48 EF-w2v-base IEMOCAP 70.75 -

2024 Striletchi et al.49 TBDM-Net::BT IEMOCAP 70.05 71.78

2023 Ye et al.50 TIM-NET IEMOCAP 71.65 72.50

2022 Zou et al.18 Co-attention IEMOCAP 71.64 72.70

2024 Ours MS-EmoBoost IEMOCAP 72.10 72.91

2023 Mihalache et al.51 FCNNS EMODB 82.9 82.6

2024 Goel et al.52 CAMuLeNet EMODB 86.2 -

2024 Striletchi et al.49 TBDM-Net::BT EMODB 88.23 90.01

2023 Liu et al.53 Cascaded Attention Network EMODB 91.58 88.76

2023 Chauhan et al.54 CwGHP EMODB 90.81 92.59

2024 Ours MS-EmoBoost EMODB 92.45 92.62

2023 Ma et al.55 emotion2vec EMOVO 61.21 62.97

2021 Tuncer et al.56 TSP+INCA EMOVO 79.08 79.08

2024 Striletchi et al.49 TBDM-Net::BT EMOVO 82.12 84.20

2022 Wen et al.57 CPAC EMOVO 85.40 85.40

2024 Ours MS-EmoBoost EMOVO 86.88 87.51

Table 2. Comparison with the state-of-the-art systems in terms of WA (%) and UA (%). Significant values are 

given in bold.
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dataset. Similarly, in the EMOVO dataset, high recognition accuracy is achieved for all emotion categories 
except joy, with recognition accuracy for sadness and neutral emotions exceeding 95%. Nevertheless, a notable 
misclassification phenomenon is observed between happiness and surprise. These misclassifications may stem 
from two factors: first, the existence of similarities or overlapping regions in the acoustic feature space among 
different emotion categories; second, the model’s failure to adequately capture discriminative features during the 
feature extraction process. Therefore, future work will focus on optimizing the feature extraction module of the 
model by introducing more refined feature representation methods to enhance its ability to distinguish between 
closely related emotional states.

Ablation study
To further validate the effectiveness of this approach, we have designed an ablation study on emotional guidance 
information. Additionally, to verify the significance of the attention module within the MS-EmoBoost feature 
enhancement strategy, an ablation experiment on the attention module has also been conducted. The ablation 
study was conducted on the IEMOCAP dataset.

Emotional guidance information
Table 3 presents the results of ablation experiments on emotional guidance information. The baseline model 
using only wav2vec 2.0 Base without emotional guidance information exhibits relatively lower accuracy. This 
suggests that while wav2vec 2.0 Base possesses strong capabilities in extracting speech features, it may not 
sufficiently capture emotional details in SER tasks. Upon separately considering MFCC and spectrogram as 

Figure 5. Final normalised confusion matrix of MS-EmoBoost on the EMODB dataset.

 

Figure 4. Final normalised confusion matrix of MS-EmoBoost on the IEMOCAP dataset.
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guiding features for the baseline model, WA and UA showed significant improvements, each increased by at least 
5 percentage points. This indicates that emotional information within self-supervised features was highlighted 
and complemented. Furthermore, when considering both MFCC and spectrogram in conjunction, employing 
the MS-EmoBoost strategy yielded optimal performance, with WA and (UA reaching 72.1% and 72.91%, 
respectively. Compared to the baseline model, this shows improvements of 8.07% and 7.24%, respectively.

Figures 7 and 8 display the t-SNE visualizations of wav2vec 2.0 Base features with and without MS-EmoBoost, 
respectively. In these figures, the numbers 0, 1, 2, and 3 correspond to the four emotions: angry, sad, happy, and 
neutral. By comparing the two images, it can be observed that the features enhanced with the MS-EmoBoost 
strategy exhibit clearer classification boundaries and stronger clustering of data points within each category. 
This improved clustering and distinction among categories suggest that the enhanced features have greater 
classification abilities, enabling better performance in the final task of emotion classification.

The results of the emotional guidance information ablation experiments indicate that utilizing MFCC or 
spectrogram individually for guiding self-supervised feature enhancement task significantly improves the 
overall performance of the model. However, combining both yields the best results. This underscores the crucial 
role of emotional guidance information in SER task. Our proposed MS-EmoBoost feature enhancement strategy 
effectively enhances the performance of the wav2vec 2.0 Base features, facilitating its capability in accomplishing 
SER task.

Attention module in MS-EmoBoost
Table 4 compares of recognition results within our proposed MS-EmoBoost module with and without an 
attention module. The experimental results clearly demonstrate the positive impact of incorporating the 
attention module into the model. Without the attention module, the model achieved a WA of 67.85% and an 
UA of 68.95%, in contrast to 72.10% WA and 72.91% UA with attention. This improvement underscores the role 
of the attention module in enabling the model to focus on more crucial emotional information. The attention 
module aids the model in prioritizing crucial emotional information within MFCC features and spectrograms, 
effectively enhancing the model’s recognition performance in SER task.

Generalization experiment
To evaluate the generalizability of our proposed MS-EmoBoost self-supervised feature enhancement strategy 
across different self-supervised models (model size, type, and pre-training data), we conducted experiments 
using three distinct models: wav2vec 2.0 Large-LS-960, HuBERT Base-LS-960, and HuBERT Large-LL-60k. 
These models were evaluated on the IEMOCAP, EMODB and EMOVO datasets. The experimental results are 
shown in Table 5.

Model WA (%) UA (%)

baseline (wav2vec 2.0 Base)18 64.03 65.67

wav2vec 2.0 Base+MFCC 70.69 71.43

wav2vec 2.0 Base+Spectrogram 69.93 71.74

wav2vec 2.0 Base+MFCC+Spectrogram 72.10 72.91

Table 3. Ablation experiment results of emotional guidance information. Significant values are given in bold.

 

Figure 6. Final normalised confusion matrix of MS-EmoBoost on the EMOVO dataset.
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The experimental results demonstrate that the MS-EmoBoost strategy effectively enhances the emotional 
expression capabilities of various self-supervised models, significantly improving their accuracy in the SER tasks 
across different datasets. Notably, the HuBERT Base-LS-960 model exhibited the most substantial improvement 
on the EMODB dataset, with WA and UA increasing by 15.46% and 16.51%, respectively. This substantial 
improvement fully validates the effectiveness of the MS-EmoBoost strategy.

In contrast, the HuBERT Large-LL-60k model exhibited relatively limited improvements across the three 
datasets, which can be primarily attributed to its inherent architectural complexity and extensive pre-training 
on large-scale data, enabling it to extract relatively comprehensive emotional features during the self-supervised 
learning phase and thus leaving minimal room for further optimization through MS-EmoBoost. Furthermore, 
the model’s emotional recognition accuracy on the EMOVO Italian dataset remained significantly lower than that 
of other models, both before and after enhancement, potentially due to linguistic disparities that hindered its full 
adaptation to the specific characteristics of the Italian language environment. On the IEMOCAP and EMODB 
datasets, the application of MS-EmoBoost resulted in the HuBERT Large-LL-60k model’s WA outperforming its 
UA, indicating that the enhanced model achieves higher classification accuracy in categories with larger sample 
sizes.

Attention module WA (%) UA (%)

w/o attention 67.85 68.95

w/ Attention 72.10 72.91

Table 4. Ablation experiment results of attention module in MS-EmoBoost. Significant values are given in 

bold.

 

Figure 8. wav2vec 2.0 Base w/MS-EmoBoost.

 

Figure 7. wav2vec 2.0 base.
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In summary, MS-EmoBoost not only effectively enhances the performance of various SSL models across 
different languages in SER tasks but also reveals the intricate relationship between model complexity, pre-
training data scale, and the effects of feature enhancement. These findings provide valuable insights for further 
research in the field of self-supervised learning.

Conclusion and future work
In this study, we propose MS-EmoBoost, which effectively addresses the insufficient sensitivity issue of self-
supervised features in capturing emotional information. By leveraging the emotional information in MFCC 
and spectrogram, MS-EmoBoost enhances the emotional representation capabilities of self-supervised features. 
Extensive experiments conducted on various self-supervised models such as wav2vec 2.0 and HuBERT confirm 
the effectiveness and generalization capability of the MS-EmoBoost strategy. The results on the IEMOCAP, 
EMODB, and EMOVO datasets demonstrate significant improvements in WA and UA metrics across all tested 
models. Furthermore, ablation studies on the IEMOCAP dataset underscore the pivotal roles played by attention 
modules and emotional guidance information, synergistically contributing to the superior performance of our 
approach. In summary, the MS-EmoBoost strategy demonstrates its extensive application potential in SER tasks.

The performance of the MS-EmoBoost strategy relies on the quality of emotional guidance information 
contained in MFCC and spectrogram. In real-world settings, speech data often includes noise and other 
distortions, which can undermine the effectiveness of SSL feature enhancement, thus affecting the accuracy of 
emotion recognition. To address these challenges, future research will focus on several key areas: First, given 
the sensitivity of MFCC and spectrogram to window length, we plan to evaluate the impact of different window 
lengths on the emotion recognition task using multiple datasets. Secondly, we will integrate acoustic information 
from diverse emotional layers and explore effective methods for merging deep emotional insights. Additionally, 
we will investigate the feasibility and strategies of enhancing SSL features with additional modal information. 
Considering the high computational demands of the SSL-based emotion recognition framework, which may 
hinder deployment on resource-limited devices, we will also evaluate the feasibility of model compression and 
pruning techniques to facilitate real-time applications on edge devices.

Data availability
The IEMOCAP dataset is publicly available at https://sail.usc.edu/iemocap/index.html. The EMOVO dataset is 
publicly accessible at  h t t p s :  / / w w w .  k a g g l e  . c o m / d  a t a s e  t s / s o u  r a b h y /  e m o v o -  i t a l i a n - s e r - d a t a s e t / d a t a. Additionally, 
the EMODB dataset is available at http://emodb.bilderbar.info/start.html. All data generated and analyzed  d u r i 
n g this study are included in this published article.
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