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Functional divergence between the two
cerebral hemispheres contributes to
human fluid intelligence

Check for updates

Xinyu Liang 1,2,9 , Junhao Luo1,3,4, Qiuhui Bi5, Yaya Jiang1,6, Liyuan Yang1, Deniz Vatansever 2,

Elizabeth Jefferies 7 & Gaolang Gong 1,8,9

Hemispheric lateralization is linked to potential cognitive advantages. It is considered a driving force

behind the generation of human intelligence. However, establishing quantitative links between the

degree of lateralization and intelligence in humans remains elusive. In this study, we propose a

framework that utilizes the functional aligned multidimensional representation space derived from

hemispheric functional gradients to compute between-hemisphere distances within this space.

Applying this framework to a large cohort (N = 777),we identifiedhigh functional divergence across the

two hemisphereswithin the frontoparietal network.We found that both global divergence between the

cerebral hemispheres and regional divergence within the multiple demand network were positively

associated with fluid composite score and partially mediated the relationship between brain size and

individual differences in fluid intelligence. Together, these findings deepen our understanding of

hemispheric lateralization as a fundamental organizational principle of the human brain, providing

empirical evidence for its role in supporting fluid intelligence.

The left and right hemispheres of the human brain are not mere duplicates;
structural asymmetry and functional lateralization arewell demonstrated1–4.
While previous studies using multiple techniques, especially functional
magnetic resonance imaging (fMRI), have revealed the pivotal role of
hemispheric differences in supporting various human cognitive functions5,6,
the origin of these functional dissociations between the hemispheres
remains enigmatic and controversial. A prevailing perspective posits that
this divergence is rooted in evolution and is intimately linked with the
development of human intelligence7. This view suggests that to satisfy the
varying needs of different tasks in a complex world, the human brain
allocates functions asymmetrically across the two hemispheres to optimize
processing time8–10. This specialization not only enhances diversity in
information processing but also supports our capability for advanced
cognition11–13. According to this hypothesis, a certain level of “functional
divergence” between the two hemispheres contributes to human intelli-
gence, particularly formorefluid components14. Despitemounting evidence
from evolutionary and comparative studies to support the enhanced cog-
nitive capacity by brain lateralization15–17, there is little data in the literature

that directly demonstrates a relationship between hemispheric functional
divergence and fluid intelligence in humans.

Various hemispheric lateralization patterns in brain organization5,18,19

have been observed in previous studies based on resting-state functional
connectivity (rs-FC), which revealed that the degree of lateralization is
associated with specific aspects of cognitive performance, such as language
comprehension or visuospatial ability5. These measures capture isolated
aspects of functional divergence across the two hemispheres, and as such,
they are insufficient for understanding the contribution of hemispheric
lateralization to overall intellectual capacity. Moreover, the commonly
adopted approach for comparing functional lateralization often involves
using flipped or anatomically aligned hemispheres based on landmarks5,20.
This practice could result in a misalignment of the functional organization
across the hemispheres and hamper the accurate estimation of hemispheric
functional divergence. Precise estimation of functional distinctions between
hemispheres across the entire cortex requires not only structural alignment
based on homotopical landmarks but also improved functional
correspondence.
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To solve these technical issues, we adopted functional alignment (i.e.,
hyperalignment), aiming at facilitating functional correspondence between
the two hemispheres21. In contrast to existing connectivity alignment
methods22, we integrated the hemispheric functional connectivity gradients
developed in our previous work23.We first estimated functional gradients—
i.e., patterns that represent variations in connectivity space that explain the
most variance—for the two hemispheres separately, revealing similar but
slightly different patterns. This implies that the two hemispheres have a
shared functional space,which can then serve as a representational space for
functional alignment24,25. As a fundamental principle of organization, the
cognitive relevance of functional gradients could also facilitate our investi-
gation of fluid intelligence26,27.

In summary, we sought to explore the significance of between-
hemisphere functional divergence for supporting human fluid intelligence.
To address this issue, we used the resting-state fMRI dataset from the
Human Connectome Project (HCP)28. We examined within-hemisphere
vertexwise resting-state functional connectivity profiles, identified gradients
to define a common low-dimensional functional space, and then calculated

the between-hemisphere functional distance across homotopic vertices after
alignment to this representational space. We tested whether global or ver-
texwise hemispheric differences contributed to individual differences in
fluid intelligence. In addition, previous evidence has shown that brain size
plays a crucial role in both general intelligence29–31 and functional
lateralization32–35.While largerbrains are associatedwith increased cognitive
capacity, a trade-off between efficiency and energy costs constrains brain
size36. Hence, we propose that between-hemisphere functional divergence
might mediate the influence of brain size on fluid intelligence. Finally, we
investigated potential biological factors contributing to hemispheric func-
tional distance.

Results
Estimation of functional divergence between left and right

hemisphere

To precisely characterize the functional divergence between the two
hemispheres, we propose an analytical framework (as shown in Fig. 1a
and details in Fig. S1a) that leverages resting-state fMRI data from 777

Fig. 1 | The cortical variation of between-hemisphere functional distance. a To

compute between-hemisphere functional divergence, we first calculated functional

connectivity (FC) between vertices within each hemisphere based on vertexwise time

series data. Then we applied the diffusion map embedding method on hemispheric

FC matrices to obtain the functional gradients. These gradients form a low-

dimensional representation of the original functional connectivity space, in which

the distance represents the functional similarity between vertices. To ensure better

comparability between homotopic vertices within the representational spaces of the

left and right hemispheres, we employed functional alignment which brought the

individual left and right hemisphere embeddings into a group-level common

functional space. The final between-hemisphere functional divergence was mea-

sured as the Euclidean distance between each pair of homotopic vertices in a

6-dimensional common representational space. b The group average map of

between-hemisphere functional distance in theHCPdatasets (N = 777). cTo further

investigate between-hemisphere functional divergence at the network level, we

plotted the functional distances based on the Yeo 7-network parcellation. A set of

vertices that belonged to distinct networks across the two hemispheres was defined

as the mismatch zone. The whiskers in the boxplot represent data within 1.5 times

the interquartile range.
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right-handed young adults in the HCP cohort (female/male = 428/349;
age range = 22–36 years). We identified vertexwise hemispheric func-
tional gradients for each hemisphere on the 10k cortical surface, pro-
viding a more detailed and gradual transition than in our previous
work23. Together, these gradients describe a low-dimensional manifold
that represents the functional similarity in connectivity profile among
vertices26,37–39. Two low-dimensional manifolds were estimated separately
from individual left and right hemispheres and subsequently hyper-
aligned to a template representational space using Procrustes rotation, to
preserve their internal structures21. This template representational space
was derived from the group-level left-right averaged functional gradients
(Fig. S2a). Each vertex was characterized by a continuous profile span-
ning the dimensions of the template representational space. The
between-hemisphere functional distance was measured as the Euclidean
distance between each homotopic pair of cortical vertices in the template
representational space for each participant. The global functional
divergence between the left and right hemispheric modules was evaluated
by averaging vertexwise between-hemisphere functional distances across
the entire cortex. We further performed dimension selection based on the
balance between explained variance and test-retest reliability (Fig. S1b).
We calculated the intraclass correlation coefficient (ICC) of the global
metrics and found that it reached a plateau when utilizing the first 6
dimensional axes (global = 0.63, vertexwise = 0.44 ± 0.19). If more
dimensions were included, the dimensions with low explanatory rates
also introduced more noise components. Hence, a 6-dimensional
representation space, capturing 53.47% of the variance in connectivity,
was employed to measure between-hemisphere functional distances
across individuals. To further mitigate potential noise and reduce com-
parison time, both vertexwise and global between-hemisphere functional
distances were averaged across two sessions for each participant in the
subsequent analyses.

In addition, we estimated the correlation between the hemispheric
differences within each of the top 6 gradients and the between-hemisphere
functional distance (Fig. S2b). The results indicated that global hemispheric
differences in the principal gradient (unimodal to transmodal; r = 0.65,
p < 0.001) and the tertiary gradient (default to task-positive; r = 0.68,
p < 0.001)makeparticularly large contributions to the individual differences
of global functional distance, while the secondary gradient (somatosensory
to visual; r = 0.32, p < 0.001) makes the lowest contribution. The remaining
gradients showed medium correlations (above 0.4) with the functional
distance. Overall, this analysis suggests that between-hemisphere functional
distance is an integration of multiple gradients rather than being solely
driven by any single gradient.

The between-hemisphere functional divergence varies across

networks

The spatial distribution of average maps of between-hemisphere functional
distance across all participants was first visualized on the cortical surface
(Fig. 1b). Notably, the between-hemisphere functional divergence varied
widely across the cortex, with greater hemispheric divergence in transmodal
regions than in primary and unimodal regions. To map between-
hemisphere functional divergence at the network level, we projected
divergence values onto the Yeo 7-network parcellation40. Given its asym-
metry in distribution, we adapted the parcellation by retaining only
homotopic vertices that belonged to the same network in both the left and
right hemispheres. The networks were arranged according to the degree of
hemispheric divergence in descending order from transmodal regions to
unimodal regions, including the frontoparietal control network (FPN),
dorsal attention network (DAN), default mode network (DMN), limbic
network, ventral attention network (VAN), somatomotor network (SMN),
and visual network (VN). In addition, vertices belonging to different net-
works across hemispheres were designated as a mismatch zone. The mis-
match zone was situated at the boundaries between adjacent networks and
showed a veryhighbetween-hemisphere functional distance, secondonly to
that of the FPN. Subsequent analysis indicated that the vertices belonging to

theDMNin the left hemisphere and the vertices belonging to the FPN in the
right hemisphere contributed the most to this mismatch zone (accounting
for 31.76%, Fig. S3).

The spatial variability of between-hemisphere functional dis-

tance reflects hemispheric functional specialization across

multiple tasks

We hypothesize that functional divergence between the two hemispheres at
rest could serve as a foundational backbone supporting segregated and
lateralized processes across a range of tasks. To validate this hypothesis, we
first examined whether the spatial distribution of between-hemisphere
functional distance aligns with the cortical pattern of overall functional
lateralization observed in meta-analytic task activations. We obtained an
overall functional lateralization index for the cortical surface acrossmultiple
cognitive domains (all 575 cognitive terms) from previous studies based on
the Neurosynth database2,41 (Fig. 2a). The significance of the spatial corre-
spondence for the between-hemisphere functional distance derived from
intrinsic connectivity and the overall functional lateralization index derived
from meta-analytic task data was assessed using a spin permutation test,
which generates the significance level (denoted as pspin) based on a null
distribution of randomly rotated brain maps that preserve the spatial cov-
ariance structure of the original data (using 10,000 permutations). Between-
hemisphere functional distance was significantly correlated with the dis-
tribution of overall functional lateralization (rho = 0.182, pspin = 0.010).

Furthermore, we conducted a topic term-based meta-analysis along
the between-hemisphere functional distance map within 5-percentile bins
for each hemisphere38,42. The resultant topic terms were sorted by their
positively weighted average positions along each hemisphere, revealing a
systematic shift from perception to higher-level cognition, especially cog-
nitive control, language, number processing andworkingmemory (Fig. 2b).
Although the order of topic terms was relatively consistent across both
hemispheres, meta-activation patterns differed for certain functions. Lan-
guage, long-term memory, mentalizing, and semantic categorization
exhibited a stronger associationwith the left hemisphere, whereas functions
such as facial expression discrimination, visual attention, and inhibition
aligned more closely with the right hemisphere (Fig. 2c).

Demographic and physiological associations with global

between-hemisphere functional distance

At the individual level, we initially focused on the relationships between
global between-hemisphere functional distance and demographic and
physiological factors, such as age, sex, handedness, and brain size, which
have been associated with hemispheric functional lateralization in previous
studies. Although we regressed out the parameters of in-scanner head
motion during preprocessing, we still included the mean framewise dis-
placement as a covariate in all subsequent analyses due to evidence that head
motion is a confound of intrinsic connectivity metrics as well as fluid
intelligence43. For each participant, the total brain volume was calculated by
summing the volumes of gray matter and white matter. For each factor, we
employed partial correlation, with the other factors serving as covariates.
Although the age range (22–36 years) of the adult participants was relatively
narrow, the global functional distance between the two hemispheres was
significantly positively correlated with age (r = 0.159, p < 0.001; Fig. S4a). In
terms of sex, the global between-hemisphere functional distance in males
was significantly greater than that in females (F(1,749) = 5.55, p = 0.019;
Fig. S4b). Global between-hemisphere functional distance was also posi-
tively correlated with total brain volume (r = 0.238, p < 0.001; Fig. 3a), as
larger brains showed a greater functional distance between the two hemi-
spheres. There was no correlation between the global between-hemisphere
functional distance and handedness score (r = 0.052, p = 0.155; Fig. S4c).

The global between-hemisphere functional distance mediates

the effect of brain size on fluid intelligence

We hypothesized that the overall functional divergence between the two
cerebral hemispheres positively contributes to enhancing fluid cognitive
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capabilities. To verify this hypothesis, we explored the association between
global between-hemisphere functional distance and fluid intelligence. Here,
we utilized the composite score of fluid intelligence from the National
Institutes of Health (NIH) Toolbox Cognition Battery44, which combines
scores on cognitive flexibility, executive inhibition, episodic memory,
working memory, and processing speed. The global between-hemisphere
functional distance was positively correlated with the fluid cognition com-
posite score (r = 0.125, p < 0.001), indicating that participants with a greater
hemispheric functional distance had slightly greaterfluid intelligence.Given
the significant relationship between total brain volume and fluid cognition
(r = 0.134, p < 0.001), we additionally included brain size as a covariate.
After controlling for total brain volume, the correlation between global
between-hemisphere functional distanceandfluid cognitionwasweaker but
still significant (r = 0.096, p = 0.008). To further explore which cognitive
domainmakes the strongest contribution to this relationship, we conducted
post hoc correlation analyses. Among the five subdomain scores, we only
observed a significant positive correlation between cognitive flexibility (the
performance score of Card Sort task) and global between-hemisphere
functional distance (r = 0.134, p < 0.001; Table S1).

To investigate whether hemispheric difference mediates the influence
of brain size on fluid intelligence, we tested a mediation model including
total brain volume as the predictor, global between-hemisphere functional
distance as the mediator, and the fluid cognition composite score as the

outcome (path c, β = 0.17, p < 0.001; path a, β = 0.30, p < 0.001; path b,
β = 0.10, p = 0.014). Bootstrap simulation analysis (10,000 times) confirmed
a significant indirect effect (a × b = 0.03, 95% confidence interval = [0.02,
0.04], p < 0.001; Fig. 3a). Our findings suggest that between-hemisphere
functional divergence can partially explain the association between brain
size and fluid cognitive ability.

The role of vertexwise between-hemisphere functional distance

in fluid intelligence

As we identified a significant association between global between-
hemisphere functional distance and the fluid composite score, we further
aimed to investigate which specific brain regions are implicated in this
relationship. We employed a general linear model (GLM) capturing
between-hemisphere functional distance at the vertexwise level. After
controlling for age, sex, handedness, head motion and brain size, we found
that better fluid intelligence was associated with greater between-
hemisphere functional distance in the inferior parietal lobe (IPL; area
PFm, PF andPSL), the anterior dorsolateral frontal cortex (DLPFC; area a9-
46v, 46, IFSa and IFSp), the orbital prefrontal cortex (OFC; area p47r), the
anterior ventral insula (area AVI), and the dorsal part of the anterior cin-
gulate cortex (dACC; area 24dd) according to multimodal parcellation45

(Fig. 3b and Table S3). These regions were mainly located in the FPN or
mismatch zone in Yeo 7-network parcellation (Fig. S5). For instance, the

Fig. 2 | Spatial variability in between-hemisphere functional distance reflects

hemispheric functional specialization across multiple tasks. aWe calculated the

cortical map of the overall functional lateralization index across all 575 cognitive

terms. A significant correlation between the cortical map of overall functional

lateralization and the between-hemisphere functional distance map was found by a

spin test with 10,000 permutations. The shaded region around each line indicates the

95% confidence interval (CI). b Then we used Neurosynth’s ROI association

approach of regions of interest along the between-hemisphere functional distance

mapwith 24 topic terms. The terms were ordered by the positively weightedmean of

their location along the left and right hemisphere. c To visualize the hemispheric

difference in topic term-based decoding results between the left and right hemi-

spheres, we calculated the deviation of the correction coefficient (left–right) for each

topic term within corresponding 5-percentile bin. The pattern of deviation reveals a

general transition from weak to strong divergence in lateralization across cognitive

functions, including leftward lateralization associated with language and rightward

lateralization associated with visual attention.
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vertices comprising significant homotopic pairs in PFmwere affiliated with
distinct networks, as the left component was in the DMN, while the right
component was in the FPN.

In addition, we conducted a post hoc correlation analysis on all sig-
nificant vertices (179 vertices) as a combined mask. The average between-
hemisphere functional distance in the combined mask exhibited a positive
association with the fluid cognition composite score (r = 0.265, p < 0.001).
To test whether the average between-hemisphere functional distance in this
significantmask alsomediates the effect of brain sizeonfluid intelligence,we
performed a similar mediation analysis as above. Our findings

demonstrated a significant partial mediating effect of between-hemisphere
functional distance on the relationship between brain size and fluid intel-
ligence (path c, β = 0.17, p < 0.001; path a, β = 0.21, p < 0.001; path b,
β = 0.27, p < 0.001; a × b = 0.06, 95% confidence interval = [0.05, 0.07],
p < 0.001; Fig. 3c).

Potential biological determinantsaffectingbetween-hemisphere

functional distance

We evaluated how strongly between-hemisphere functional distance was
associated with cortical microstructure reflecting myelination. The cortical

Fig. 3 | Individual differences in between-hemisphere functional distance med-

iate the effect of brain size on fluid intelligence. a We observed significant cor-

relations between brain size, global between-hemisphere functional distance, and

fluid intelligence after controlling for age, sex, handedness, and mean framewise

displacement. We tested the significance of the hypothetical mediation pathway, in

which global between-hemisphere functional distance could partially mediate the

impact of brain size on fluid intelligence. Significance was tested by bootstrapping

(10,000 replacements). The shaded region around each line indicates the 95%CI.bA

GLM analysis was performed on vertexwise between-hemisphere functional dis-

tances to identify regions associated with intelligence, in which age, sex, handedness,

brain size, and mean FD were included as covariates. The resultant t maps for fluid

intelligence are shown. The regions with gray outlines were significant vertices after

FDR correction (one-tailed pFDR < 0.05). c The mean between-hemisphere func-

tional distances within a mask consists of all significant vertices also exhibited a

significant mediating effect on the relationship between brain size and fluid

intelligence.
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T1w/T2w map (Fig. 4a) has been proposed as an in vivo measure that is
sensitive to regional variation in gray matter myelin content46. We found
that cortical between-hemisphere functional distance was significantly
correlatedwithgroup-averagedT1w/T2w(averaged across the left and right
sides, rho =−0.55, pspin < 0.001), indicating a potential contribution of
myelination to between-hemisphere distance: the most functionally diver-
gent regions across the left and right hemisphere are also the least myeli-
nated. In addition, we tested the hypothesis that between-hemisphere
functional divergence is driven by evolutionary change. Our results indi-
cated that the spatial pattern of between-hemisphere functional distance is
well aligned with evolutionary cortical expansion indices (rho = 0.56,
pspin = 0.001), which reflect cortical expansion in humans relative to
macaques (Fig. 4b)47. Moreover, we found no significant correlation
between between-hemisphere functional distance and developmental
expansion (rho = 0.30, pspin = 0.035), which is a metric that reflects cortical
expansion inhumanadults relative tohuman infants (Fig. 4c). Together, our
results demonstrate that between-hemisphere functional divergence could
be an evolutionary outcome suggesting that it may confer functional
advantages that benefit survival and reproduction.

Validation analyses

To assess the robustness of our findings, we conducted a series of validation
analyses. We applied our proposed methodological framework to the pre-
processed rs-fMRI data from an independent dataset (Genome Super-
structure Project, GSP) to validate the spatial pattern of between-

hemisphere functional divergence48,49. To reduce computational demands,
we estimated the region-level between-hemisphere functional distances
using the Yan2023 800-area homotopic parcellation. The results indicate
that the spatial pattern of the group-averagedmap from theGSPdatasetwas
highly correlated with our main finding (rho = 0.74, p < 0.001), and its
distribution at the network level or spatial relevance with biological maps
was consistently robust (Fig. S6).

In addition, we repeated the main analyses while regressing out the
global signal of the whole brain (Fig. S7) or in two separate acquisitions
(Fig. S8), and our key results were consistently replicated. To estimate the
stability of the association between global between-hemisphere functional
distance andfluid intelligence andhow this is influencedby sample size50, we
examined 1000 random subsamples at a range of sampling rates (15
intervals evenly spaced from50 to750).The associationbecomes stable once
the sample size reaches 650 (Fig. S9). To validate a general vertexwise
association between between-hemisphere functional distance and fluid
intelligence, we adopted a leave-one-subject-out cross-validation (LOOCV)
analysis. The observed fluid intelligence score and predicted scores gener-
ated by support vector regression showed significant positive correlation
(r = 0.146, p < 0.001, Fig. S10).

To substantiate the efficacy of our proposed framework, we also con-
sidered whether alternative measures of hemispheric functional difference
would identify relationships with fluid intelligence. Specifically, we com-
puted the homotopic FC51 and the lateralization of within-hemisphere FC
strength18 for each pair of homotopic vertices. Homotopic FC describes the

Fig. 4 | Spatial variability in between-hemisphere functional distance relates to

biological maps. a Cortical maps of myelin, (b) evolutionary expansion, and (c)

developmental expansion were utilized to test the potential biological basis for

between-hemisphere functional distance. Their spatial correspondenceswith group-

averaged between-hemisphere functional distances are plotted. The significance

level was determined by a spin test with 10,000 permutations with the Bonferroni

correction (pspin < 0.0125). The shaded region around each line indicates the 95%CI.
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functional synchrony of time series data, while the lateralization of within-
hemisphere FC strength reflects the absolute degree of hemispheric differ-
ences in functional integration within each hemisphere. Compared to
between-hemisphere functional distance, homotopic FC displayed a com-
parable ICC across scan sessions (global = 0.68, vertexwise = 0.60 ± 0.14),
whereas the ICC of lateralization of within-hemisphere FC strength was
much lower (global = 0.52, vertexwise = 0.18 ± 0.07, Fig. S11). Notably,
neither globalmetric demonstrated statistically significant correlations with
the fluid cognitive composite (homotopic FC: r =−0.021, p = 0.569; later-
alization of within-hemisphere FC strength: r = 0.007, p = 0.854; Table S4).
This demonstrates the value of our approach based on dimensions of
intrinsic connectivity; by focusing on a small number of variables that
explain the most functional variance, it is possible to discern hemispheric
differences that predict individual differences in cognition.

Discussion
By leveraging state-of-the-art functional alignment and connectivity gra-
dient techniques, we introduced an analytical framework to assess between-
hemispheredistance in a functional representational space,which effectively
quantified the level of functional divergence in each brain region and
showed spatial alignment with lateralized response patterns in task meta-
analysis.Ourfindings revealed a greater functional distance between the two
hemispheres within the frontoparietal network and between mismatched
pairs of vertices belonging to the left DMN and right FPN. Notably, these
regions with high between-hemisphere functional distances are involved in
higher-order cognitive functions, particularly cognitive control.We directly
verified the association between global between-hemisphere functional
distance and fluid intelligence, thereby providing the empirical evidence for
thehypothesis thathemispheric specializationaffords functional advantages
acrossmultiple cognitive domains in humans.Global and regional between-
hemisphere functional distance alsomediated the influence of brain size on
fluid intelligence. Finally, we demonstrated the contribution of structural
features to the spatial pattern of between-hemisphere functional distance,
including the effects of cortical myelination and evolutionary area expan-
sion. These discoveries collectively bridge a significant gap, elucidating the
intricate mechanisms behind the formation of functional hemispheric
lateralization to support fluid cognitive intelligence.

The cortical pattern of between-hemisphere functional divergence
shows high similarity with previous hemispheric lateralization patterns
observed across multiple levels of functional activity and connectivity,
including meta-analytic activation2, within-hemisphere integration18,52–54,
between-hemisphere integration and segregation5,6,19,55, and hemispheric
gradients23–25. Our results provide amore holistic delineation of the complex
structure of hemispheric lateralization by simultaneously considering
multivariate differences in functional connectivity profiles derived from
gradient decomposition26,37,39; in this way, we are able to better identify the
impact of lateralization on fluid intelligence. In comparison to our previous
work23, this high-dimensional space captures subtle interactions among
gradients and largely avoids the methodological problems of traditional
asymmetry indices ([L− R]/[L+ R]), such as arbitrary cut-offs that classify
dominance, non-normal distributions, and inapplicability of negative
values56,57. Additionally, validation using an independent dataset highlights
the robustness of the spatial pattern of between-hemisphere functional
divergence. Overall, our proposed functional distance provides more
accurate, sensitive, and reliable estimates of brain lateralization, offering
broad applicability for studies examining functional hemispheric
dissociations.

Although the homotopic vertices or regions are defined by their high
functional similarity and anatomical correspondence across hemispheres,
their roles in specific tasks can differ significantly58–60. Our results reveal a
consistent spectrum of increasing functional lateralization in both hemi-
spheres, transitioning from unimodal functions (e.g., visual, auditory, and
sensorimotor processing) to higher-level cognition (e.g., cognitive control,
working memory, language, social cognition, and decision-making).
Regions with lower functional divergence likely rely more on

interhemispheric communication to support unimodal functions55, yet
distinct lateralized patterns emerge for specific cognitive processes. This
aligns with established theories linking the left hemisphere to language
processing60,61 and long-term memory62 and the right hemisphere to the
facial processing63, visual attention34, and inhibition64. Collectively, our
findings suggest that resting-state functional divergence may provide a
structural foundation (i.e., backbone) for lateralization functions in various
task demands.

Leveraging this metric of between-hemisphere functional distance, we
revealed an association between hemispheric lateralization and individual
differences in fluid intelligence. This link is consistent with, and helps to
unify, previous findings suggesting that specific cognitive processes are
supported by lateralized patterns of functional organization, including
visuospatial attention and long-termmemory5,13,52. These benefits to specific
aspects of cognition might facilitate fluid abilities. In the two-component
theory of intelligence, fluid intelligence is thought to be associated with
metacognition and the executive control of cognitive processing to achieve
adaptive cognition14. Previous studies suggested that fluid intelligence
emerges from the integration of reasoning, working memory capacity,
processing speed, and executive functions65–67. Notably, we identified a
unique association between functional divergence and cognitive flexibility,
one of the five subdomains of fluid intelligence. This finding aligns with a
previous study on lateralization in dynamic functional connectivity, which
reported that both the average laterality and dynamic laterality fluctuations
are significantly associated the cognitive flexibility, asmeasured by the Card
Sort task68. We speculate that brain functional lateralization supports cog-
nitive flexibility by allocating specialized roles to each hemisphere: the right
hemisphere often facilitates inhibition and shifting for rapid adaptation,
while the left hemisphere maintains structured, rule-based processes
required to hold task goals64,69,70. This division of labor enhances dynamic
and adaptive problem-solving, and greater functional divergence with this
framework may expand cognitive capacity, ultimately improving fluid
behaviors.

Our vertexwise analysis revealed that lateralization in theDLPFC,AVI,
and IPL is significantly associated with fluid intelligence. In general, the
identified regions in the left hemisphere are more engaged in language and
semantic processing, while their right counterparts play a stronger role in
visuospatial and attentional functions2,5. The activation ofDLPFCand IPL is
consistently left-lateralized during semantic processing task59,60, whereas the
right IPL is crucial for visuospatial attention, with damage to this region
linked to spatial hemi-neglect71. A study further demonstrated a double
dissociation between the left DLPFC and right IPL for verbal and visuos-
patial decisions, with their increased interactions with the ACC being
restricted to the respective unilateral hemisphere during task execution72.
Additionally, these regions are activated during cognitive flexibility and
working memory tasks linked to intelligence, with the left side showing a
stronger response than the right65,70,73.

At the network level, these significant regions fall within the mis-
match zone and FPN, which have been reported to function as processing
hubs across multiple cognitive tasks, supporting cognitive functions that
enable flexible behavior74,75. Notably, the FPN is associated with the
integration of information across networks to facilitate flexible and
adaptive cognition76. Studies have shown that bipartite subsystems of the
FPN differentially support distinct aspects of cognitive control24,76,77. The
Control-A subsystem (including the dorsolateral prefrontal cortex) is
more closely coupled with attention regions in the DAN, while the
Control-B subsystem (including the IPL and the DLPFC) is more closely
coupled with memory regions located in the DMN. Adaptive cognition
needs to integrate controlled retrieval of meaningful information from
memory with external goal-driven attention. Depending on the demands
of cognitive tasks, these subsystems within the FPN may induce distinct
patterns of lateralization. For example, the control of semantic cognition
aswell as internal states could involve amore leftward asymmetric pattern
of network coupling than the control of spatial attention23. We speculate
that these segregated patterns of connectivity for control subsystems
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across hemispheres could give rise to functional benefits such as reduced
interference and shorter network restructuring time78.

Our findings extend key theoretical accounts of human fluid
intelligence. The identified regions in the DLPFC, AVI, dACC, and IPL
closely align with core regions implicated in multiple theoretical net-
works that underpin human intelligence. The parieto-frontal integration
theory (P-FIT) proposed by Jung and Haier66 suggests that a lateralized
distributed network, including the dorsolateral prefrontal cortex and
superior and inferior parietal lobule, integrates knowledge to support
reasoning and problem solving. Similarly, the multiple demand (MD)
system located in the prefrontal and parietal cortex has been suggested to
be a key network supporting fluid intelligence79. The MD system is
typically assumed to be bilateral due to themethodology used to identify
this network, which relies on shared activation patterns across a wide
range of tasks80; these tasks may manifest varying degrees of lateraliza-
tion but become symmetrized after averaging across different activation
patterns. A latest network neuroscience theory also suggests that the
dynamics and flexibility of frontoparietal network are strongly asso-
ciated with the fluid intelligence81. Our discoveries extend these theories
by showing that frontoparietal system can be asymmetrically active and
that between-hemisphere functional divergence within this system acts
to support fluid intelligence.

The positive association of brain sizewith general intelligence has been
validated in multiple in vivo human studies, including meta-analyses
(r = 0.24, N = 8036 from 148 independent samples)30, and in large cohorts
including the HCP (r = 0.24, N = 896)31 and the UK Biobank (r = 0.28,
N = 7201)29. Despite the existence of this moderate association, the reasons
why and how brain size could affect human intelligence are still debated30.
Brain size could be a proxy for neuronnumber,whichmayhave contributed
to the evolution of higher cognitive abilities in primates. However, given
species-specific constraints (reflecting the ratio of brain-body size), neural
capacity could be enhanced through left versus right functional
differences9,10,82. Many studies have shown a relationship between whole-
brain size and brain lateralization32,33,83. Our findings provide vital evidence
to support this hypothesis in human, suggesting that divergent functions
across hemispheres are beneficial for human fluid intelligence, especially for
people who have larger brains. This may be a consequence of both a
reduction in the time-consuming transmission of information and the
prevention of interference between the hemispheres, maximizing the effi-
ciency of neural processing78.

However, the following two factors should be considered with caution
when interpreting and inferring the findings related to the association
between brain size and human intelligence. First, previous studies have
shown that individual differences in intelligence could be influenced by
numerous other structural or functional factors, such as neuronal efficiency,
whitematter integrity, functional connectivity, and large-scale organization,
rather than just overall brain size84. Brain size should not be viewed as the
sole definitive predictor of intelligence; instead, it is only one of many
complementary correlates of cognitive and intellectual abilities30. Secondly,
although notable differences exist in brain size and structure betweenmales
and females, previous studies suggest that sex differences in intelligence are
negligible84,85. Instead of focusing on the sex-related differences, our present
study only concentrated on a more general mechanism in human. As such,
we included sex as a covariate and regressed it out in all of our analyses. Our
findings cannot be directly applied to interpreting the potential sex differ-
ences in the relationship between brain size and intelligence, which is still
unknown and warrants further investigation.

Our findings also revealed that prominent between-hemisphere
divergence is located in regions linked to dramatic cortical expansion dur-
ing evolution86. Evolutionary cortical expansion has been implicated in
human cognitive capacities, such as language87. Our results further suggest
that evolutionary cortical expansion, rather than developmental processes,
plays a considerable role in shaping the spatial distribution of functional
lateralization across the entire cortex. The significant association between
corticalmyelination and between-hemisphere divergence is also compatible

with the idea that more lateralized regions have a smaller density of inter-
hemispheric connections2,88.

There are, of course, potential limitations of this study. First, extracting
vertexwise gradients has high computational cost, and future work is
required to optimize the balance between spatial resolution and computa-
tional cost to make this analysis approach more efficient. Second, structural
white matter connections are likely to be relevant to between-hemisphere
functional distance, and further research is needed to explore how structural
and functional connectivity patterns contribute to functional divergence.
Third, we confined our analyses to healthy young right-handed adults, and
further research is needed to generalize our conclusions to left-/bilateral-
handed adults, children, or elderly individuals. Finally, the lifespan trajectory
of between-hemisphere functional distance warrants future investigation to
reveal its development.

In sum, this study highlights the significant contribution of between-
hemisphere functional lateralization to human intelligence, and themethod
we developed could serve as a catalyst for the continued exploration of the
origins and significance of brain lateralization.

Materials and methods
Dataset

The participants in the present study were from the HCP S1200 release28.
TheHCPwas reviewed and approved by the Institutional EthicsCommittee
of Washington University in St. Louis, Missouri. All participants gave
written informed consent. All ethical regulations relevant to human
research participants were followed. For more details, please refer to Van
Essen et al. 2013. In our study, we excluded 146 HCP participants with
quality control issues (including codes A, B, and C from the HCP minimal
preprocessing pipeline). A further 190 HCP participants were excluded
owing to their lack of rs-fMRIdata. To avoid the possible confounding effect
of handedness, we further excluded 18 HCP participants with bilateral
handedness and 75 HCP participants with left handedness (setting the
scores on the Edinburgh Handedness Questionnaire of ±20 as the
threshold). The final sample included 777 right-handed young
adults (female/male = 428/349; age range = 22–36 years; handedness
[mean ± SD] = 79.55 ± 17.85).

Cognitive assessment

Participants in the HCP dataset were subjected to a wide range of validated
cognitive tests derived from the NIH Toolbox Cognition Battery (NIH-
TCB, http://www.nihtoolbox.org), which mainly focused on five domains:
language, executive function, episodic memory, processing speed, and
working memory. Based on the specific tests above, three composite scores
were derived from the task scores: crystallized cognition composite, fluid
cognition composite, and total cognition composite44.Here,we focusedonly
on the fluid cognition composite, which broadly assesses processing speed,
memory, and executive functioning and has demonstrated remarkable
reliability and robust construct validity67. It comprises scores on the
Dimensional Change Card Sort for executive cognitive flexibility, the
Flanker task for executive inhibition, the picture sequence memory task for
episodic memory, the list sorting task for working memory, and the Salt-
house pattern comparison task for processing speed. A detailed description
of each cognitive test and its scoring can be found on the HCP website
(http://www.humanconnectome.org/documentation/Q1/behavioral-
measuresdetails.html).

MRI acquisition

All MRI data were collected using the same 3 T Siemens Skyra magnetic
resonance machine at the University of Washington, with a 32-channel
head coil28. Specifically, rs-fMRIwas acquired by using a gradient-echo echo
planar imaging (GE-EPI) sequence with the following parameters: repeti-
tion time (TR) = 720ms, echo time (TE) = 33.1ms, flip angle (FA) = 52°,
bandwidth = 2290Hz/pixel, field of view (FOV) = 208 × 180mm2, matrix =
104 × 90, voxel size = 2 × 2 × 2mm3, multiband accelerated factor = 8, sli-
ces = 72, and total scan time of 1200 frames = 14min and 24 s. During the
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scan, participants were asked to open their eyes and stare at a white cross on
the screen with a black background. There were two rs-fMRI sessions
(REST1 and REST2) acquired on the two consecutive days, each including
the two runswith a left-to-right (LR) and a right-to-left (RL) phase encoding
direction. TheT1-weighted imageswere acquiredbyusing amagnetization-
prepared rapid gradient-echo imaging (MPRAGE) sequence with the fol-
lowing parameters: TR = 2400ms, TE = 2.14ms, reversal time (TI) = 1000
ms, FA = 8°, FOV = 224 × 224mm2, voxel size 0.7 mm isotropic, and total
scan time = 7min and40 s. TheT2-weighted imageswere acquired byusing
a T2-SPACE sequence with the following parameters: TR = 3200ms,
TE = 565ms, FA = 8°, FOV = 224 × 224mm2, voxel size 0.7 mm isotropic,
and total scan time = 8min and 24 s.

Resting-state fMRI postprocessing

We used the HCP minimally preprocessed data89. For rs-fMRI, the proce-
dures of the HCP minimal preprocessing pipeline (version 2.0) include
magnetic gradientdistortion correction, EPI distortion correction, nonbrain
tissue removal, Montreal Neurological Institute (MNI) standard space
registration, and intensity normalization90. The resulting data were further
denoised by using independent component analysis (ICA) with the FIX
tool91,92, which can effectively distinguish and remove the components of
spatiotemporal signals caused bynonneuronal or structural noise, especially
head movement. The individual resulting time series were projected to the
standard 32k_fs_LR surfaces, on which the homotopic vertices are topo-
graphically corresponding.

We subsequently implemented several postprocedures on the mini-
mally preprocessed rs-fMRI data. First, linear detrending was performed to
minimize the effects of low-frequency drift93. Second, a set of nuisance
variables that were not related to neural signals, including average white
matter and cerebrospinal fluid signals, was regressed out. Given the con-
troversy regarding the removal of global signals94, we did not regress out the
global signals in our main results. Third, we performed temporal bandpass
filtering (0.01–0.1 Hz) on the time series to minimize high-frequency
physiological noise95. To better remove motion artifacts, we further per-
formed data censoring (i.e., scrubbing) without interpolation96. For each
participant, we censored the time frames whose framewise displacements
(FDs) exceeded 0.5 mmand the framesone before and two after. Finally, the
residual BOLDtime series on the 32k_fs_LR surfaceweredownsampled to a
homemade 10k_fs_LR surface to reduce computing resource consumption.
Following the steps described in themanual for surface resampling (https://
wiki.humanconnectome.org/download/attachments/63078513/
Resampling-FreeSurfer-HCP_5_8.pdf), we created an identity sphere with
10242 vertices to maintain the hemispheric correspondences between
homotopic vertices. The ADAP_BARY_AREA method was used for the
metrics to reduce the errors caused by resampling.

Functional gradients estimation and between-hemisphere

functional alignment

Using preprocessed rs-fMRI images, we estimated hemispheric functional
gradients following our previous work23. Rather than focusing on the region
level, we used the vertexwise connectivity in this study to obtain a high-
resolution delineation. After masking out the combined medial wall across
the two hemispheres, the entire cortical surface included 9354 paired
homotopic vertices. To remove the influence of imaging phase encoding in
each rs-fMRI session, we concentrated the time series of the LR and RL
phase encoding runs97. For each pair of vertices, the Pearson correlation
coefficient (converted to Fisher’s Z values) of the time series was computed
as the FC strength. Thus, for each subject, two 9354 × 9354 within-
hemisphere FCmatrices (left and right)were generated. For each vertex, the
within-hemisphere FC profile was defined as a vector (i.e., the corre-
sponding column from the within-hemisphere FC matrix above), repre-
senting its connectivity to other vertices within the same hemisphere.

For each hemisphere, we utilized the BrainSpace toolbox to estimate
functional gradients98. First, thewithin-hemisphere FCprofile vector of each
region was thresholded by retaining the 10% of connections with greatest

strength and setting the remaining connections to zero, as was done
previously38. For each pair of vertices within the same hemisphere, the
normalized angle similarity coefficient was calculated to quantify the
similarityof their thresholdedFCprofile vectors99. The similaritymatrixwas
subsequently subjected to the diffusion map embedding algorithm, which
yielded multiple continuous components, i.e., functional gradients100. Here,
the parameter α of manifold learning was set to 0.538. The resultant func-
tional gradients can be seen as a collection of continuous axes as a low-
dimensional representation of the initial high-dimensional connectivity
space. For each vertex, its scores on specific gradient components along
those continuous axes formed a set of coordinates depicting its location in
the low-dimensional representation space.

To ensure the comparability of the representational spaces between the
left and right hemispheres, as well as across participants, we generated a
group-level hemispheric gradient template for subsequent functional
alignment21. Specifically, we averaged all left and right within-hemisphere
FC matrices across all participants and then generated template gradients
from this average within-hemisphere FC matrix. We retained the first 10
gradient axes as the template space, accounting for the majority of the
variance (approximately 66.15% in REST1 and 65.85% in REST2) in the
initial connectivity space. Procrustes rotationwasutilized to align thefirst 10
gradient axes for both the left and right hemispheres of each individual with
the group-level template space while keeping the internal structure of each
hemisphere unchanged101.

Between-hemisphere functional distance estimation

Inspired by a previous study102, we quantified ametric, namely the between-
hemisphere functional distance in the common representation space. Each
axis of this representation space was defined by the values along the group-
level hemispheric template gradients. For each participant, the individual
representation spaces of both the left and right hemispheresweremapped to
the common representation space through the functional alignment pro-
cedure described above. Hence, the vertexwise between-hemisphere func-
tional distancewas calculated using the Euclidean distance between for each
pair of homotopic vertices based on their aligned gradient scores. The global
functional distance between the left and right hemispheres was further
computed by averaging the vertexwise between-hemisphere functional
distances across the entire cortex, which is equivalent to the Euclidean
distance between the hemispheric centroids. To determine the optimal
dimension for characterizing the distance, we proceeded with a dimension
selection process to balance the explained variance and the test-retest
reliability. We calculated the intraclass correlation coefficient (ICC) of the
global between-hemisphere functional distance between the two scan ses-
sions and found that it had already reached a plateau when utilizing the first
6 dimensional axes. If more dimensions had been included in the calcula-
tion, thedimensionswith lowexplanatory rates couldhave introducedmore
noise components. Finally, we used the between-hemisphere functional
distances calculated in the 6-dimensional functional space (as shown
Fig. S2a), which accounted for approximately 53.47%of the total variance in
REST1and52.49%of the total variance inREST2.Thebetween-hemisphere
functional distances were further averaged across two sessions for each
participant to reduce potential noise as well as comparison time.

To estimate the contribution of hemispheric differences along each
gradientdimension to thefinal high-dimensional distance,we calculated the
similarity between the proposed between-hemisphere functional distance
and the absolute hemispheric difference in score for each of the first 6
gradients. The similarity was calculated by Pearson correlation for both the
spatial distribution within each participant and the global measurement
across participants.

Hemispheric consistency of Yeo 7-network parcellation

The original Yeo’s seven networks (the somatomotor, visual, dorsal atten-
tion, ventral attention, limbic, and frontoparietal networks, and the default
mode networks) parcellation exhibited an asymmetrical distribution. The
atlas of Yeo 7-network was initially resampled to the homemade 10k_fs_LR
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surface. For each network, we preserved the homotopic vertices whose
identity labels belonged to that specific network. In cases where there were
vertices with mismatched identities belonging to different networks in the
two hemispheres, we designated those vertices as a mismatch zone. The
mismatch zone situated along the boundaries between adjacent networks
and the DMN in the left hemisphere and the FPN in the right hemisphere
contributed the most to the observed zone (accounting for 31.76%). We
plotted the constituents of the mismatch zone (Fig. S3) by using Circos
(http://mkweb.bcgsc.ca/tableviewer/).

Neurosynth decoding of the between-hemisphere functional

distance map

To determine the cognitive functions associated with the investigated
between-hemisphere functional distance map, we conducted two distinct
types of meta-analyses utilizing the Neurosynth database (http://
Neurosynth.org). Following the methods of a recent study, we estimated
the overall functional lateralization index across cognitive domains2. Initi-
ally, we selected available cognitive terms (575 in total) from the current
Neurosynth database.We applied the Neurosynth tool to generate a whole-
brain meta-activation image for each cognitive term in MNI space. After
aligning these meta-activation images to a symmetric image template, we
projected the values onto the standard 32k_fs_LR surface and then
resampled them to the 10k_fs_LR surface. Only pairs of cortical homotopic
vertices exhibiting positive meta-activation were retained for each term.
Then the functional lateralization indices of themeta-activation values were
calculated by using the conventional lateralization index formula (LI =
abs[L− R]/[L+ R]). To generate an overall functional lateralization map
spanning all cognitive domains, we simply averaged the nonzero values
across all 575 cognitive terms for each vertex. The resulting map was sub-
sequently utilized to assess the spatial correspondence between brainmaps.

In addition, we performed meta-analytic functional decoding
according to the method of Margulies et al.38. The group-averaged cortical
between-hemisphere functional distance map was divided into increments
of five percentiles. From these 20 maps, spanning 0–5% up to 95–100%, we
generated region of interest (ROI) masks. These masks were projected onto
the volumetric MNI152 standard space based on the left and right surfaces,
and the resulting volumetric maps were converted into binary forms for
input into the meta-analysis. The feature terms used in this study were
derived from the 50 sets of topic terms103, and 24 topic terms related to
cognitive functions were manually selected following the method of a pre-
vious study38. For each ROI map, the output of the analysis yielded a cor-
relation linked to the selected feature term. In each hemisphere, these terms
were subsequently arranged based on their positively weighted means for
visualization purposes. We additionally compared the hemispheric differ-
ences (left-right) between the correlations of each topic term.We visualized
the terms according to their average differences in correlation in ascending
order. The meta-analysis was implemented through Neurosynth’s ROI
association approach in NiMARE (v0.0.11).

Estimation of individual brain size

The total brain volume was defined as the estimated brain size, which was
calculated as the sum of the total amount of intracranial brain tissue (gray
and white matter). The FreeSurfer (version 5.3) pipeline in HCP minimal
processing had already performed skull stripping and tissue segmentation89.
We used the data from the ‘FS_IntraCranial_Vol’ column in the sheets
provided by the HCP.

Cortical maps for microstructure and expansion

Group-averaged T1w/T2w maps (N = 1096) were obtained from the HCP.
The hemispheric T1w/T2w maps were further averaged across the left and
right hemispheres, resulting in a single map representing the myelin
information for each vertex (Fig. 4a)46. Cortical expansion maps were esti-
mated by Hill and colleagues47. The evolutionary expansion index was
evaluated in humans relative to macaques (Fig. 4b), and the developmental
expansion index (Fig. 4c) was estimated in human adults relative to human

infants. These cortical maps were resampled onto our homemade
10k_fs_LR surface.

Spatial permutation testing

To assess the spatial alignment to previously characterized corticalmaps, we
employed the Spearman correlation coefficient (rho), which tested the
association of between-hemisphere functional distance maps with the fol-
lowing public or homemade atlases: 1) the overall functional lateralization
index across cognitive domains2, 2) the evolutionary and developmental
cortical expansionmaps estimatedbyHill and colleagues47 and3) themyelin
(T1w/T2w)maps46. The significance of the alignmentwas determinedusing
a spatial spin test with 10,000 permutations, establishing a two-sided sig-
nificance level (denoted as pspin) for assessing the statistical significance of
rho. During the spin test, the brainmapswere randomly rotated tomaintain
the spatial covariance structure of the original data, and themedial wall area
was removed. This procedure was implemented by using the ‘spin_per-
mutations’ function in BrainSpace. The Bonferroni method was applied to
correct for the 4 comparisons, as pspin < 0.05/4 = 0.0125 was considered to
indicate statistical significance.

Statistics and reproducibility

Prior to the statistical analyses, 9 participants were excluded due to a lack of
cognitive scores. We further identified 13 participants as outliers, whose
values for at least one of the relevant variables (including global between-
hemisphere functional distance, total brain volume, and cognitive scores)
exceeded three standard deviations (SDs) from the corresponding mean of
the entire group. Ultimately, a total of 755 participants were included in
subsequent statistical analyses focused on individual differences. First, we
tested the association between individual global between-hemisphere
functional distance and demographics. In light of evidence that head
motion is a substantial confound in functional connectivity analyses,
although a series of head motion control and denoising techniques were
applied during preprocessing, we also utilized the mean framewise dis-
placement value across all runs as a covariate in our analysis to account for
the potential effects of headmovement. Partial correlation was employed to
examine the relationships with age, handedness, and total brain volume,
while the F test was applied to compare the two sex groups (Fig. S4). To
assess the association between global between-hemisphere functional dis-
tance and fluid composite score, we used partial correlations with age, sex,
handedness, mean framewise displacement, and total brain volume as
baseline covariates. As a post hoc analysis, we conducted additional tests to
explore the relationship between global between-hemisphere functional
distance and each of the subdomain scores using partial correlation. Their
significance was corrected using the Bonferroni method, with a significance
threshold of p < 0.01 (0.05 divided by 5) deemed to indicate statistical
significance.

To assess the stability of the association between global between-
hemisphere functional distance and fluid intelligence, we estimated the
sampling variability by calculating the distribution of the correlations in
different subsamples50. Specifically, we randomly selected participants with
replacement from the full sample (n = 755) at equally spaced sample sizes
(15 intervals; from 50 to 750). For each sample size, we randomly sub-
sampled the participants 1000 times. The sampling variability (95% con-
fidence interval) at each sampling interval for both correlation coefficients
and their significances is presented in Fig. S9.

The vertexwise between-hemisphere functional distances were
initially smoothed with an 8 mm FWHM kernel prior to statistical ana-
lysis; this was implemented by a workbench command (“-metric-
smoothing”) based on the group-averaged left mid-thickness surface. A
general linear model (GLM) was applied on each vertex with age, sex,
handedness, total brain volume, and mean framewise displacement as
covariates. Since we were interested only in brain regions that had a
significant positive contribution to cognitive scores, we employed a one-
tailed test. To correct the multiple vertexwise comparisons, the cortical
vertices with false discovery rate (FDR)-corrected pFDR < 0.05 were
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considered as significant. The statistical analysis of cortical vertices was
performed by using the BrainStat toolbox104.

To estimate the generalization of vertexwise prediction of fluid intel-
ligence, leave-one-subject-out cross-validation (LOOCV) was used. In each
iterative analysis, a linear support vector regression (SVR, C = 1) algorithm
was trained as prediction mode using CANlab core functions105 based on
n− 1 participants, and the model is then tested on the remaining partici-
pant. Each participant was left out once. The performance of LOOCV was
evaluated by calculating the Pearson coefficient between observed and
predicted scores. To determine regions made reproducible contribution to
the prediction model, bootstrap procedures with 5000 samples (with
replacement) were conducted.

Mediation analysis

Todeterminewhether between-hemisphere functional distance couldplay a
mediating role in the effect of brain size on fluid intelligence/cognitive
flexibility, we conducted a mediation analysis using the multilevel
mediation and moderation (M3) toolbox (https://github.com/canlab/
MediationToolbox). A mediation analysis tests whether the observed cov-
ariance between a predictor (X, brain size) and an outcome (Y, cognition)
could be explained by a mediator (M, between-hemisphere functional dis-
tance). A significantmediation effect is obtainedwhen the inclusion ofM in
a path model of the effect of X on Y significantly alters the slope of the X–Y
relationship. Age, sex, handedness, andmean framewise displacement were
included as covariates in the mediation model. This mediation model
consists of four paths: (1) path c, the group effect on motor performance,
that is, the total effect of the predictor on the outcome; (2) path a, the group
effect on brainmeasures; (3) path b, the correlation between brainmeasures
and motor scores, after controlling for the group factor; and (4) the a × b
effect, which is referred to as the indirect effect and is indicative of whether
the predictor-outcome relationship was significantly reduced after con-
trolling for the mediator. We used bootstrapping (10,000 replacements) for
significance testing106.

Validation analysis

To validate our proposed methodological framework, we calculated the
between-hemisphere functional distance at the region level using an inde-
pendent dataset. For further details, please refer to the Supplementary Text.
In addition, we performed the analyses again in two separate acquisition
(REST1 and REST2) or by using the processed data after global signals
regression to validate our main findings, including both global and ver-
texwise correlation analyses and mediation analyses. We also conducted
assessmentsof alternative hemispheric functional differencemeasures using
different methodologies to substantiate the efficacy of our proposed fra-
mework. Specifically, we computed the homotopic FC as well as the later-
alization of within-hemisphere FC strength. The homotopic FC was
calculated by Pearson’s correlation between the time series of homotopic
vertices, representing the temporal synchrony between hemispheres51. The
sumof positive values in thewithin-hemisphere FCprofilewas computed as
within-hemispheric integration for each vertex. The lateralization ofwithin-
hemisphere FC strength was computed using the LI formula on within-
hemispheric integration for each pair of homotopic vertices18. As our focus
was solely on the magnitude of hemispheric differences, we exclusively
employed absolute values. For these two measures, we also examined their
test-retest reliability and associations with behavioral fluid intelligence
scores.

Reporting summary

Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in the
paper and the Supplementary Materials. The HCP rs-fMRI and myelin
data are publicly available (https://www.humanconnectome.org/). The

calculated vertexwise hemispheric gradients have been deposited in OSF
(https://doi.org/10.17605/OSF.IO/PVDJQ)107, and other generated cortical
maps are available on GitHub (https://github.com/liang-xinyu/Between-
hemisphere-Functional-Divergence)108.

Code availability
The code used in this paper is publicly available on GitHub (https://github.
com/liang-xinyu/Between-hemisphere-Functional-Divergence)108.
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