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Text S1: Expanded geological setting

South China was situated at a low latitude during the Ordovician-Silurian (O/S)

transition (Fig. S1) and consisted of the Yangtze Block to the northwest and the

Cathaysia Block to the southeast (Lin et al., 2024). The northern margins of the South

China Block were flooded by the tropical, epicontinental Yangtze Shelf Sea, which

deepened toward the north and interconnected with the Panthalassa Ocean (Fig. 2 in

main text). Upper Ordovician to lower Silurian strata in the Yangtze region comprise

the basal Pagoda and Linhsiang limestones, representing early-mid Katian carbonate

platform environments (Zhan et al., 2016; Zhang et al., 2023); overlying carbonaceous

shales of the Wufeng Formation in deep-water shelf areas, and argillaceous

limestones and interbedded calcareous shales of the Daduhe Formation deposited in

shallow-water proximal shelf areas, representing regional sea-level rise and increased

terrestrial inputs due to the northward progression of the Kwangsian Orogeny (Chen et

al., 2014); the Hirnantian Kuanyinchiao Bed (KB), consisting of calcareous mudstones

with carbonate concretions and abundant shelly fossils of the cool-water
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fauna (e.g., brachiopods, trilobites, corals and gastropods) (Rong et al., 2020). This

flourished during the maximum glacio-eustatic sea-level fall and disappeared abruptly

with the end of the Hirnantian glaciation. The succeeding graptolitic shale of the

Lungmachi Formation deposited during post-glacial marine transgression and oceanic

euxinia from the latest Hirnantian to Rhuddanian (Zou et al., 2018). In the Yichang and

Central Guizhou uplifts, the Lungmachi Shale directly overlies the Linhsiang Limestone,

reflecting a Late Ordovician to early Silurian depositional hiatus, and exposure and

erosion of the Late Ordovician carbonates during the maximum Hirnantian glaciation

(Chen et al., 2018; Wang et al., 2013).

Figure S1. Late Ordovician (450~445 Ma) paleogeography showing the approximate

locations of compilated sections and cores (colored dots). The base map is adapted

with permission from Ron Blakey, © Colorado Plateau Geosystems Inc.
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In this study, we obtained samples from four sections across the Yangtze Shelf

(Fig. 2 in main text): the Wanhe section (103.4762°E, 27.7552°N), Shuanghe section

(104.8842°E, 28.3847°N), Mingtongchang section (108.5461°E, 31.7697°N) and

Liziping section (109.8689°E, 31.5686°N). We also compiled Ca/Al, calcite, total

organic carbon (TOC) and carbon isotope data from 13 globally-distributed locations

(Achab et al., 2011; Ahm et al., 2017; Bergström et al., 2016; Challands, 2008;

Hammarlund et al., 2012; Hammarlund et al., 2019; Hounslow et al., 2021; Jones et al.,

2016; LaPorte et al., 2009; Sánchez-Roda et al., 2024; Smolarek-Lach et al., 2019;

Stockey et al., 2020; Sullivan et al., 2018; Underwood et al., 1997; Young et al., 2020;

Young et al., 2010) (Fig. S1; Table S1) and 45 cores and sections in South China (Cao

et al., 2023; Chen, 2018; Dong et al., 2022; Fan et al., 2009; He, 2020; Hu et al., 2021;

Hu et al., 2024; Li, 2019; Li et al., 2019a; Li et al., 2021a; Li et al., 2024; Li et al., 2019b;

Li et al., 2019c; Li et al., 2021c; Liu, 2017; Liu et al., 2022; Liu et al., 2016; Lu et al.,

2021; Lu et al., 2022; Men et al., 2022; Qiu et al., 2020; Qiu et al., 2022a; Qiu et al.,

2022b; Shen et al., 2019; Shi, 2021; Sun, 2018; Wang et al., 2021; Wang et al., 2022; Xi

et al., 2021; Xiao et al., 2021; Yan et al., 2009; Yan et al., 2019; Zhang et al., 2022;

Zhang et al., 2009; Zhang et al., 2021; Zhou et al., 2017; Zou et al., 2018). (Fig. S2;

Table S2).
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Figure S2. Locations of all sections and cores used for the TOC and δ

13

C

compilation. The base map is taken from .

The Wanhe section was situated in a nearshore shallow-water area of the Yangtze

Shelf Sea during the Late Ordovician. The basal part of this section consists of

medium-to thick-bedded nodular limestones of the Pagoda (or Baota) Formation (0–

19.8 m), representing a middle Sandbian– early Katian carbonate platform

environment with a relatively stable water depth and tectonic setting (Zhan et al.,

2016). Above the Pagoda Formation is the thin-bedded, nodular argillaceous

limestone of the Linhsiang (or Linxiang) Formation (19.8–29.8m), reflecting sea-level

fall (Zhan and Jin, 2007). The overlying Daduhe Formation can be divided into two

members: the lower member (29.8– 42.9 m) consists of thin-bedded argillaceous
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limestone interbedded with calcareous mudstone, while the upper member (42.9–51.9

m) comprises calcareous mudstone/shale intercalated with argillaceous limestone.

The topmost part of the Daduhe Formation is the Kuanyinchiao Bed (51.9–58.6 m),

which consists of lenticular argillaceous limestone and calcareous mudstone, and is

rich in shelly fossils (Fig. S2). The Lungmachi (or Longmaxi) Formation conformably

overlies the Kuanyinchia Bed and consists of black graptolitic shale in the lower part

(52. 6 m–58.6 m), grading up into silty shale or mudstone in the mid-upper part (58.6–

81 m).

During the late Katian, the Shuanghe section was consistently situated in a deep

inner-shelf setting. The Wufeng Formation in this section is composed of black

graptolitic shale and calcareous mudstone, with a thickness of 10 m (Zou et al., 2018).

The Kuanyinchiao Bed is about 60 cm thick and mainly comprises calcareous

mudstone and lenticular shelly mudstone. The Lungmachi Formation comprises black

graptolitic shale with a thickness of over 10 m.

The Mingtongchang and Liziping sections accumulated in a deep-water outer

shelf environment during the O/S transition. (Li et al., 2021b; Xiao et al., 2022).

Sedimentary successions and lithofacies in the two sections can be correlated with

the Shuanghe and Wangjiawan sections (Chen et al., 2006). Notably, the Wufeng

Formation is relatively thin (about 2 m), and the Kuanyinchiao Bed is composed of ~ 2

m of black calcareous siltstone at the Liziping section. The Lungmachi Formation

comprises black siliciclastic shale with abundant graptolites, with a thickness of over
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20 m in the two sections.

Text S2: Hirnantian carbonate-rich deposits―the Kuanyinchiao Bed

The Kuanyinchiao Bed, deposited between the Wufeng and Lungmachi shales, is

characterized by high carbonate concentrations and abundant shelly fossils of the

well-known, cool-water fauna, which includes brachiopods, trilobites, corals

and gastropods (Rong et al., 2020) (Fig. S3). The Kuanyinchiao Bed is widely

distributed on the Yangtze Shelf and records a dramatic eustatic sea-level drop (at

least 80 m; (Brenchley et al., 2006) during the peak Hirnantian glaciation (Zhan and

Jin, 2007). The thickest and most complete lithological sequence of the Kuanyinchiao

Bed is found at the Honghuayuan section of Tongzi, northern Guizhou Province, where

it reaches a thickness of over 5 m and consists of multiple layers of grey, mid-bedded

argillaceous limestone (Fig. S3A-B) intercalated with graptolitic shales. In the Wanhe

section, this formation is composed of lenticular argillaceous limestone and

calcareous mudstone with a thickness of 0.7 m (Fig. S3C-D).

In deep-water environments, the Kuanyinchiao Bed is generally less than 1 m thick

and consists of lenticular, shelly argillaceous limestone and calcareous mudstone

(Zhang et al., 2016), such as a 0.6 m thick lenticular shelly limestone at Shuanghe

(inner shelf; Fig. S3E-G ), a 0.27 m thick lenticular shelly limestone at Huangying

(mid-shelf; Fig. S3H-I), and a 0.3 m thick shelly calcareous mudstone at Qiliao

(mid-shelf; Fig. S3J). In outer-shelf regions, there is an increase in siliciclastic content,

but this formation remains rich in carbonate. For instance, at the Liziping section, the
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Kuanyinchiao Bed is distinguished by ~ 2 m of calcareous siltstone (Fig. S3K).

Notably, Hirnantian carbonate-rich deposition is widespread throughout other

continents (Jones et al., 2011; LaPorte et al., 2009; Melchin and Holmden, 2006). Even

in deep basin settings, significant carbonate enrichments (indicated by elevated

CaCO

3

and Ca/Al values) occur in the Hirnantian intervals, suggesting a global-scale

carbonate burial event.
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Figure S3. Representative field photographs of the Kuanyinchiao Bed (KB)

throughout the Yangtze Shelf. A: The boundary between the Lungmachi Formation
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and the Kuanyinchiao Bed at the Honghuayuan section, Tongzi, Guizhou. B:

Enlargement of mid-bedded argillaceous limestone and calcareous siltstone within the

Kuanyinchiao Bed in Fig. S3A. C: Lenticular argillaceous limestone and calcareous

mudstone of the Kuanyinchiao Bed at the Wanhe section, Zhaotong, Yunnan. D:

Enlargement of shelly argillaceous limestone in Fig. S3C showing brachiopods (yellow

dashed circles). E: Black lenticular shelly limestone at the Shuanghe section,

Changning, Sichuan. F– G: Enlargement of shelly limestone in Fig. S3E showing

brachiopods (the yellow dashed circle). H: The O-S transition succession at the

Huangying section, Wulong, Chongqing. I: Enlargement of shelly limestone seen in Fig.

S3H showing that have been pyritized. J: Calcareous mudstone of the

Kuanyinchiao Bed at the mid-shelf Qiliao section, Shizhu, Chongqing. K: Calcareous

siltstone of the Kuanyinchiao Bed at the out-shelf Liziping section, Zhuxi, Hubei.

Text S3: Materials andmethods

A total of 200 outcrop samples were collected from the four sections in the Yangtze

region, South China, including 108 samples from the Wanhe section, 43 samples from

the Shuanghe section, 25 samples from the Mingtongchang section, and 24 samples

from the Liziping section. Before geochemical analysis, the fresh samples were

carefully trimmed to remove weathered surfaces, visible veins and pyrite nodules. The

remaining sample was then powdered to approximately 200 mesh using an agate mill.

All samples were analyzed for major elements and total organic carbon (TOC) content

at the Key Laboratory of Petroleum Resources of the Northwest Institute of

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159



Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.

Additionally, 157 samples from the Wanhe, Mingtongchang and Liziping sections were

analyzed for organic carbon isotopes, and 84 samples from the Wanhe (41) and

Shuanghe (43) sections were analyzed for carbonate carbon isotopes, Ca isotopes

and trace element (Sr, U) concentrations in carbonate minerals at the State Key

Laboratory of Geological Processes and Mineral Resources, China University of

Geosciences, Wuhan, China. All data are shown in Table S3.

Organic carbon contents and isotopes

Prior to analysis, ~0.1 g of dried sample powder was decarbonated via two sequential

dissolutions with 4 M HCl at room temperature. Samples were then washed with

deionized water to remove all remaining acid and dried at 50℃. TOC contents were

measured using a CS-902C High Frequency Infrared Carbon Sulfur Analyzer. The

analytical reproducibility was better than ±0.1% based on duplicate analyses. Organic

carbon isotopes (δ

13

C

org

) were analyzed using a Finnigan MAT253 Mass

Spectrometer and reported in standard δ-notation relative to the Vienna Peedee

Belmnite (VPDB) standard. The analytical reproducibility of δ

13

C

org

was better than ±

0.1‰.

Carbonate carbon isotope analysis

About 100 mg of sample powder was weighed into a 10 mL Na glass vial, and then

sealed by a butyl rubber septum. After flushing with helium gas, the sample was
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reacted with 100% phosphoric acid at 72°C to release CO

2

. The carbonate carbon

isotope (δ

13

C

carb

) compositions of the released CO

2

were then measured with a

MAT253 Mass Spectrometer and isotope data was calculated as permil (‰) relative to

the VPDB standard. The analytical reproducibility was better than ±0.1‰.

Elemental analysis of whole-rock samples

Bulk major element analyses were measured using a PANalytical Sequential X-ray

Fluorescence (XRF) spectrometer. Prior to analysis, powdered samples were dried at

105°C. Approximately 4 g of dried sample powder was weighed into a mold with boric

acid lining the edges and bottom. The powdered samples were pressed into a pellet

with an inner diameter of 32 mm using a ZHY-401A press machine at a pressure of 30

tons. The raw data were analyzed using SuperQ (Version 5.0) Software. The analytical

precision for all major elements was maintained at better than ±3%.

For bulk trace element analysis, ~50 mg of sample powder was weighed into

Teflon beakers. Sequentially, 1.50 mL of 68% HNO

3

, 1.5 mL of HF, and 0.01 mL of

HClO

4

were added to the Teflon beakers. Afterwards, the Teflon beakers were placed

on a hotplate at 140°C. Dissolved samples were evaporated to dryness,then

re-dissolved in 1.50 mL HNO

3

and 1.50 mL HF. Then the capped Teflon beakers were

placed into an oven at 195°C for over 48 h. Dissolved samples were evaporated to

dryness, and then 3 mL HNO

3

was added. Re-dissolved samples were evaporated to

dryness, and then 3 mL 50% HNO

3

was added and the beakers placed into an oven at

150°C for 24 h. The dissolved samples were transferred into 100 mL tubes, and Rh
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internal standard solution was added. Deionized water was added into the tube to 100

g, ensuring the concentration of Rh in the solution was 50 mg/mL. The final solutions

were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS

Agilent 7700e).

Elemental analysis of carbonate minerals

For the analysis of trace elements in carbonates, about 200 mg of sample powder was

individually weighed into centrifuge tubes, and 2 mL of deionized water was added.

After 10 mins vibration, the samples were centrifuged at 4000 rpm for 10 mins and all

supernatant was removed. The deionized water washing procedure was repeated.

After washing, the samples were dried and finely re-ground. Next, about 50 mg of the

dried sample powder was weighed into a new centrifuge tube, and 0.25 mL of acetic

acid (0.86 M) was added. The samples were sonicated for 30 minutes, then allowed to

react at room temperature for 24 h. Subsequently, the samples were centrifuged again

at 4000 rpm for 10 mins, and the supernatant was removed. To ensure complete

removal of absorbed Ca, the acetic acid washing procedure was repeated. Afterwards,

the samples were then re-dried and re-ground. Subsequently, the samples were

re-dissolved with 0.5 mL of 0.86 M acetic acid. After 30 minutes vibration, the samples

were allowed to react at room temperature for 24 h. Subsequently, the samples were

centrifuged again at 4000 rpm for 10 mins, and the supernatant was carefully

transferred into a new Teflon vial. This final extraction with acetic acid was repeated

twice for each sample, with all supernatants added into the same Teflon vial. The
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resulting solution was analyzed for trace elements using an ICP-MS (Agilent 7700e).

Calcium isotope analysis of carbonate minerals

In this study, we only analyzed Ca isotope compositions of carbonate minerals, rather

than whole-rock samples. The same extraction procedure for carbonate as described

above for testing trace elements in carbonate rocks was applied. Therefore, the initial

dissolved sample solutions used for Ca isotope measurements are identical to the

final dissolved sample solutions for carbonate trace element analysis. Firstly, an

aliquot containing about 40 μg of Ca was transferred into a 7 mL vial. The solution

was dried and re-dissolved with 400 mL of 4 mol/L HNO

3

and then loaded on DGA

extraction chromatography resin to purify. About 6 mL of 4 mol/L HNO3 was added to

completely rinse off matrix elements. 3 mL of deionized water was subsequently

added to quantitatively elute the Ca. The purified sample solutions were evaporated to

dryness and re-dissolved with 2 mL of 0.35 mol/L HNO

3

prior to calcium isotope

measurements. The final sample solutions were measured for calcium isotope ratios

using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS;

Nu Plasma 1700) operated in high-resolution mode. The Ca isotopic compositions of

the samples are reported as δ-notation relative to seawater (δ

44

Ca–SW):

δ

44

Ca (in‰) = [(

44

Ca /

40

Ca)

sample

/ (

44

Ca /

40

Ca)

SW

- 1] × 1000

Measurement uncertainty for each sample is ±0.06‰ (two-standard deviation:

2SD) and the long-term external precision of δ

44

Ca is better than ±0.07 ‰ (2SD) (Li et

al., 2018). In this study, the average δ

44

Ca value of the SRM 915a standard relative to
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seawater was 1.92 ± 0.07‰.

Age model

Each of our samples and compiled data were assigned chronometric ages using

age-constrained graptolite zones (Fig. S4). The Stage boundary ages and durations of

each graptolite zone are derived from the latest International Chronostratigraphic

Chart (v2023/09) and the 2012 Geologic Time Scale (Cooper et al., 2012). For a few

global shallow-water sections without graptolite zones, we used well-established

conodont or chitinozoan zones. Global correlation among graptolite, conodont and

chitinozoan biozones was based on the framework of Goldman et al. (2023). Linear

ages were constructed assuming a constant sedimentation rate within the

age-controlled graptolite zone.
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Figure S4. Global correlation chart of graptolite zonation and referenced ages from

the Upper Ordovician to Lower Silurian (Chen et al., 2000; Chen et al., 2006; Cooper et

al., 2012; Goldman et al., 2023).

Processing of compiled δ

13

C

org

data

A total of about 2100 data points from 42 drill cores and outcrop sections were used

to map lateral variability in δ

13

C

org

values on the Yangtze Shelf across the Hirnantian
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glaciation. According to our age framework, we assigned an interpreted age to all data

points. To reduce the influence from outliers, we extracted six δ

13

C

org

values with 1 Ma

intervals between 447.5Ma and 442.5Ma from the 10% LOWESS (locally weighted

scatterplot smoothing) fitted δ

13

C

org

curves (Fig. S5) for each section. The LOWESS

regression was performed using Matlab Software. Maps of δ

13

C

org

were created using

Surfer software, and a kriging method was applied for map grids.

Figure S5. Example of six extracted δ

13

C

org

values from the 10% LOWESS fitted curve

in the Wanhe section.

Text S4: Framework for calcium isotope and diagenesis interpretations

Carbonate minerals preferentially sequester light Ca isotopes from seawater,

exhibiting a δ

44

Ca offset of ~-1.5‰ for aragonite and ~-0.9‰ for calcite compared to
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contemporaneous seawater (Gussone et al., 2020). However, post-depositional

diagenetic processes (in particular, early marine diagenesis) can alter and reset

original δ

13

C and δ

44

Ca signals recorded in carbonate sediments (Fantle and Higgins,

2014; Higgins et al., 2018). Paired measurement of δ

44

Ca, Sr/Ca and U/Ca ratios is a

potential approach to constrain the extent and style of early marine diagenetic

alteration in carbonate rocks (Ahm et al., 2018; Higgins et al., 2018). Shallow-water

carbonate sediments are often associated with fluid-buffered alteration, characterized

by extensive exchange between porewater and seawater, resulting in isotopic

equilibrium between diagenetic carbonate minerals and seawater (Hoffman and

Lamothe, 2019; Holmden et al., 2024). In such open diagenetic regimes, the δ

44

Ca

values in diagenetic minerals are expected to increase to approach contemporaneous

seawater compositions (~0‰ in modern seawater, ~-0.7‰ to ~-0.25‰ in the Late

Ordovician seawater) (Holmden, 2009; Holmden et al., 2024), while Sr/Ca and U/Ca

ratios would be lowered compared to primary aragonite or calcite (Busch et al., 2022).

By contrast, the isotopic signatures of δ

13

C and δ

44

Ca in deep-water carbonate

sediments may be preserved during early marine diagenesis due to sluggish porewater

circulation (in a closed system) and the majority of the re-precipitated Ca is inherited

from the precursor carbonate minerals (under sediment-buffered conditions) (Ahm et

al., 2018; Hoffman and Lamothe, 2019; Holmden et al., 2024). In the cross-plots of

δ

44

Ca vs. Sr/Ca and δ

44

Ca vs. U/Ca (Fig. S6), our mudstone/shale samples from the

Shuanghe section and most shale samples from the Wanhe section plotted in or near
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to the sediment buffered field, showing no apparent covariation between Sr/Ca and

δ

44

Ca, or U/Ca and δ

44

Ca. The carbonate samples from the Wanhe section are closer

to the seawater-buffered field, exhibiting a broadly negative covariation between Sr/Ca

and δ

44

Ca, as well as U/Ca and δ

44

Ca. In addition, limestone samples have lower

Sr/Ca and U/Ca values, and high δ

44

Ca values. This is consistent with shallower

sedimentary settings for carbonate rocks, which were characterized by extensive

exchange between porewater and seawater, resulting in δ

44

Ca signals of carbonate

minerals increasing to seawater values, along with the loss of some Sr and U (Busch

et al., 2022). We thus suggest that our shale samples deposited from the relatively

deep-water settings preserve the original δ

44

Ca signals and can be used to reconstruct

local marine Ca cycling. By contrast, δ

44

Ca signals of carbonate samples from the

Wanhe section may have been altered during early marine diagenesis.

Figure S6. Cross-plots of δ

44

Ca vs. Sr/Ca and δ

44

Ca vs. U/Ca. The δ

44

Ca value of bulk

silicate Earth (~-0.96‰ relative to modern seawater) is from Fantle and Tipper (2014).

The range of δ

44

C values of primary calcite and aragonite are calculated based on the

average fractionation factors of -0.9‰ and -1.5‰ for the two carbonate minerals,
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respectively, (Gussone et al., 2020), as well as the estimated δ

44

Ca ranges (~-0.7‰ to

~-0.25‰) of Late Ordovician seawater from Holmden, 2009 and Holmden et al., 2024.
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Figure S7. Sea-level history in the Wanhe and the Shuanghe sections. Overall, black

shale facies with low Ti/Al, Zr/Al, Al+K+Ti, bulk Ca (Ca

bulk

) and carbonate Ca (Ca

carb

)

concentrations are interpreted to reflect rising sea-level and associated

carbonate-platform drowning (Fanton and Holmden, 2007; LaGrange et al., 2020; Li et

al., 2021a). The light-purple shaded band denotes low sea-level intervals. δ

13

C

org

and

bulk Ca data for the Shuanghe section are replotted from Zou et al. (2018). The

log-transformed anhysteretic remanent magnetization (ARM) profile of the Wanhe

section is redrawn from Zhong et al. (2020). Notably, in the Daduhe Formation of the

WH section, sea-level fluctuations correlate well with 405 thousand year Milankovitch

cycles, and can be compared with long-term transgression‒regression cycles in the

coeval Wufeng Formation of the SH section.
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Figure S8. Sea level, Ca contents and carbon isotope comparison among the Monitor

Range (A) (Holmden et al., 2012), Anticosti (Jones et al., 2019) (B), Wanhe (C), and

Shuanghe (D) sections.
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