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ABSTRACT

Context. Vortices have been observed at various heights within the solar atmosphere and are suggested to potentially play great roles in
heating the solar upper atmosphere. Multiple automated vortex detection methods have been developed and applied to detect vortices.
Aims. We aim to improve the Γ-functions method for vortex identification by optimizing the value of Γ1min and the approach to
calculate Γ1 and Γ2 used to determine vortex center and edge. In this way, we can detect vortices more accurately and enable more
statistical studies that can improve our knowledge of the generation and evolution of vortices in the solar atmosphere.
Methods. We apply the automated swirl detection algorithm (ASDA, one representative of Γ-functions method) with different pa-
rameters to various synthetic data, with each containing 1000 Lamb-Oseen vortices, and search for the optimal Γ1min and kernel size
when calculating Γ1 and Γ2. We also compare another detection method using simulation and observational data to validate the results
obtained from the synthetic data.
Results. The best performance is found with the Optimized ASDA, which combines different kernel sizes (5, 7, 9, and 11) to calculate
Γ1 and Γ2 with a fixed Γ1min = 0.63 to detect vortex center. We find that more vortices can be detected by the Optimized ASDA with
higher location, radius, and rotation speed accuracies. The above results are further confirmed by comparing vortices detected by the
Optimized ASDA and the SWIRL method on CO5BOLD numerical simulation data and SST observational data.

Key words. Sun: activities – Sun: vortices – Method: improvement

1. Introduction

Rotational motions, spanning a wide range of spatial scales, have
been widely observed at various heights within the solar at-
mosphere(e.g., Wang et al. 1995; Li et al. 2012; Liu et al. 2012;
Su et al. 2012; Wedemeyer-Böhm et al. 2012; Panesar et al.
2013; Wang et al. 2016; Liu et al. 2019b,c; Tziotziou et al.
2023). Numerous studies have highlighted their potentially
significant role in channeling energy to the upper solar
atmosphere. It is widely accepted that various modes of
MHD waves, especially Alfvén waves/pulses, could be as-
sociated with various vortices, as demonstrated by numeri-
cal simulations (e.g., Shelyag et al. 2013; Chmielewski et al.
2014; Mumford et al. 2015; Mumford & Erdélyi 2015; Liu et al.
2019c; Battaglia et al. 2021; Kesri et al. 2024). Observa-
tional evidence also supports this connection. For instance,
Wedemeyer-Böhm et al. (2012) reported that magnetic torna-
does act as energy channels into the solar corona, based on man-
ual detection of chromospheric vortices. Additionally, Liu et al.
(2019c), by detecting small-scale vortices using an automated al-
gorithm, provided evidence that ubiquitous Alfvén pulses, trig-
gered by photospheric vortices, transport energy to the upper
chromosphere. Tziotziou et al. (2019) performed spectral anal-
ysis of a 1.7-hour vortex flow characterized by multiple inter-
mittent chromospheric swirls and found dominant oscillations
around 4 minutes, with both swaying (200–220 s) and rotational

motions, as well as significant oscillatory power up to 10 min-
utes, which indicates the presence of various MHD wave modes
at different heights. Tziotziou et al. (2020) further provided ob-
servational evidence of fast kink and localized torsional waves,
which are associated with small chromospheric swirls and sway-
ing motions within a persistent vortex flow. Small-scale vor-
tices in the photosphere are also believed to contribute to ener-
gizing the upper atmosphere (e.g., Parker 1983; Velli & Liewer
1999; Shelyag et al. 2013). Furthermore, theoretical studies sug-
gest that rotational motions could generate upward mass and mo-
mentum transfer, thereby leading to the generation of small-scale
jets (spicules, e.g., Scalisi et al. 2021, 2023).

Over time, vortex motions found in the solar atmosphere
have been classified into several types based on their dynamic
characteristics and formation mechanisms. The term "tornado"
in solar context was first introduced by Pettit (1932) to de-
scribe vortex motions, particularly those associated with promi-
nences. This category includes solar tornadoes (Pike & Mason
1998), giant tornadoes (Li et al. 2012; Su et al. 2012), mag-
netic tornadoes (Wedemeyer-Böhm et al. 2012), and small-scale
tornadoes (Tziotziou et al. 2018). Smaller vortical phenomena
have been called “swirls”, which include chromospheric swirls
(Wedemeyer-Böhm & van der Voort 2009), small-scale swirls
(Shetye et al. 2019), magnetic swirls (e.g., Chmielewski et al.
2014; Murawski et al. 2018), and downdraft swirls (Moll et al.
2011). Additionally, the term “vortex” is often used in theo-
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retical contexts derived from simulations, such as vortex tubes
(Muthsam et al. 2010), horizontal vortex tubes (Steiner et al.
2010), magnetized vortex tubes (Kitiashvili et al. 2013), and ki-
netic (K-) and magnetic (M-) vortices (e.g., Silva et al. 2020,
2021). One notable exception is the “photospheric intensity vor-
tex”, which, unlike the others, originates from observational
data and is often called “swirls” (e.g., Giagkiozis et al. 2018;
Liu et al. 2019b,c). In this work, we focus on the automated de-
tection of small-scale vortices (also named “swirls”).

Detecting small-scale vortices accurately and efficiently
from observations has long been a key challenge. The first
step in identifying numerous small-scale vortices from obser-
vational images is to reconstruct the horizontal velocity field
of each image. Techniques such as Local Correlation Track-
ing (LCT; November & Simon 1988), Fourier Local Correla-
tion Tracking (FLCT; Fisher & Welsch 2008), and Coherent
Structure Tracking (CST; Rieutord et al. 2007) use two con-
secutive intensity images to estimate the velocity field at the
photosphere. DeepVel (Ramos et al. 2017) and its U-Net ver-
sion, DeepVelU (Tremblay & Attie 2020), are deep fully con-
volutional neural networks that serve as end-to-end approaches
for estimating the velocity field also from two consecutive im-
ages. Tremblay et al. (2018) compared DeepVel, LCT, FLCT,
and CST, and found that FLCT performs adequately at subgran-
ular and granular scales (although it is outperformed by Deep-
Vel), but is the most effective at mesogranular and supergranular
scales. DeepVel, however, could potentially outperform the other
methods if trained with data at the corresponding spatial resolu-
tion. It is worth noting that LCT-based methods (e.g., LCT and
FLCT) are not always reliable for reconstructing the horizon-
tal velocity field, usually underestimating the actual speed (e.g.,
Verma et al. 2013; Liu et al. 2019b,c; Xie et al. 2025; Liu et al.
2025). This point will also be discussed in detail later.

Based on the estimated velocity fields, due to the biases
and limitations inherent in manual detection, various automated
methods have been proposed. For example, Strawn et al. (1999)
introduced the Maximum Vorticity Method, which identifies
overlapping vortex centers with the same sense of rotation when
the overall velocity field outlines a single rotational center. Fur-
thermore, Jiang et al. (2005) developed an algorithm based on
the Maximum Vorticity Method. Another widely adopted ap-
proach is the Γ-functions method, proposed by Graftieaux et al.
(2001), which accurately identifies vortex centers and bound-
aries. This method has led to further automated algorithms, such
as the Automated Swirl Detection Algorithm (ASDA) developed
by Liu et al. (2019b) and the Advanced Gamma Method (AGM)
proposed by Yuan et al. (2023). Moreover, based on the velocity
gradient tensor, the Rortex criterion was introduced by Tian et al.
(2018) and Liu et al. (2018) to measure the strength of pure local
rotation without contamination from shear. This makes Rortex a
reliable quantity for inferring rotational flow properties. Build-
ing on this, Cuissa & Steiner (2022) developed the SWirl Iden-
tification by Rotation-centers Localization (SWIRL) algorithm,
which applies the Rortex criterion for detecting swirls.

Though the detection methods mentioned above have over-
come certain limitations and achieved notable progress, they still
exhibit some shortcomings. For instance, the Γ-functions method
identifies vortex centers and boundaries using the Γ1 and Γ2 cri-
teria, respectively. Graftieaux et al. (2001) proposed that regions
where |Γ2| > 2/π are predominantly governed by rotation, and
points where |Γ2| = 2/π are classified as the boundaries of vor-
tices. However, for center identification, they merely suggested
that |Γ1| reaches values between 0.9 and 1 near the vortex cen-
ter. A strict and universally accepted threshold for Γ1 (denoted as

Γ1min hereafter) to precisely identify vortex centers is still lack-
ing. In practice, a point is considered the center of a vortex if |Γ1|
exceeds Γ1min. For instance, Liu et al. (2019b) defined a point
where |Γ1| ≥ 0.89 as a vortex center, whereas Yuan et al. (2023)
used a lower threshold of 0.75 for Γ1min. Additionally, the selec-
tion of kernel size (ks) used to calculate Γ1 and Γ2 is also unclear.
Liu et al. (2019b) used a fixed kernel size of ks = 7 in ASDA,
while Yuan et al. (2023) proposed an adaptive method which is
illustrated in detail in Sect. 3.2. Which approach is more suitable
and whether there is a more accurate method to calculate the Γ
functions still needs further exploration.

In this paper, we improve the Γ-functions method by search-
ing an appropriate Γ1min and an optimal method to calculate Γ1

and Γ2. The paper is organized as follows. First, in Sect. 2 we
introduce the Γ-functions method and other methods utilized in
the study. Sect. 3 describes the details of the experiments con-
ducted and the corresponding results. We conclude our findings
and make discussions in Sect. 4.

2. Method

2.1. Γ-functions method

The main principles of the Γ-functions method are two functions
Γ1 and Γ2, used to identify vortex centers and boundaries, re-
spectively. Graftieaux et al. (2001) defined these two functions
as follows:

Γ1(P) =
1

N

∑

S

(PM ∧ UM) · z
||PM|| · ||UM||

=
1

N

∑

S

sin(θM),

Γ2(P) =
1

N

∑

S

[PM ∧ UM − ŨP] · z
||PM|| · ||UM − ||ŨP||

.

(1)

Here, P is a target point in the measurement domain and S is
a two-dimensional region surrounding it, containing N pixels.
In other words, S is the region used to calculate Γ1 and Γ2 and
therefore, N is equal to the square of the kernel size. M is a
random point in S and z represents the unit vector perpendicular
to the observational surface. θM denotes the angle between UM

(the velocity vector of point M) and PM (the vector from point P
to point M). The symbols ∧, ·, and ‖ · ‖ represent the vector cross

product, dot product, and norm, respectively. ŨP =
1
S

∫

S
U dS

is a local convection velocity around P. Graftieaux et al. (2001)
reported that |Γ1| reaches values ranging from 0.9 to 1 near the
vortex center and |Γ2| is equal to 2/π at the vortex boundaries.
Then, based on these two parameters, the center and boundaries
of each vortex can be decided.

2.2. Automated Swirl Detection Algorithm

Automated Swirl Detection Algorithm (ASDA) proposed by
Liu et al. (2019b) is an automated vortex identification algorithm
based on the Γ-functions method. ASDA contains two essen-
tial steps when performing vortex identifications on a data set
from observations or simulations. The first step is to estimate the
velocity field using Fourier Local Correlation Tracking (FLCT)
(Welsch et al. 2004; Fisher & Welsch 2008). Liu et al. (2019b)
developed an integrated Python wrapper for the FLCT code,
which is available at https://github.com/PyDL/pyflct.
Particularly, the pixel width of the Gaussian filter (sigma) is
set to 10, and low-pass spatial filtering (kr) and skip are set to
None. Fisher & Welsch (2008) gave a more detailed explanation
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Fig. 1. An example vortex V with its center P. M is a random point in
vortex V , with rotation speed vrM , expansion speed veM and speed vector
vM at this point. S is the region used to calculate Γ1 and Γ2 values of the
center P. vr , ve and v represent the average rotation speed, expansion
speed and speed vector of all points in S , centering on point P. sin θ̄ is
defined to the average value of sin(θM) for all points M within the region
S .

of other parameters not mentioned here. The next step is apply-
ing the Γ-functions method (Graftieaux et al. 2001) to the veloc-
ity field estimated by FLCT.

Liu et al. (2019b) made some minor adjustments to the Γ1

and Γ2 functions. For each pixel P, they defined the two param-
eters as follows:

Γ1(P) = ẑ · 1

N

∑

S

nPM × vM

|vM |
,

Γ2(P) = ẑ · 1

N

∑

S

nPM × (vM − v)

|vM − v| .

(2)

The symbols and vectors in Eq. (2) are similar to the cor-
responding ones in Eq. (1). More detailed interpretations of
these functions can be found in relevant previous studies (e.g.,
Liu et al. 2019a,b,c; Xie et al. 2025).

Figure 1 shows an example of a vortex V with its center P,
rotation speed vrM , expansion speed veM and speed vector vM at
any point M in region S used to calculate Γ1 and Γ2 values of
its central point P. We note that when ve is negative, it turns into
the contraction speed vc. Meanwhile, vr, ve and v represent the
average rotation speed, expansion speed and speed vector of all
points in S , centering on point P. sin θ̄ is defined to the average
value of sin(θM) for all points M within the region S .

Γ1(P) =
1

N

∑

S

sin(θM) := sin θ̄, (3)

which means that, θ̄ = sin−1 Γ1. Furthermore,

ve

vr

= cot θ̄ = cot(sin−1 Γ1),

Γ1 = sin(cot−1 ve

vr

).
(4)
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Fig. 2. (a) Velocity field of the region (green arrows) and the synthetic
vortex edge (black dashed circle) with center C (black text) and radius
r (black arrow and text). Blue solid curves and blue point (Cd) show
edge and center of the detected vortex, with effective radius rd (blue
text and arrow). The effective edge (blue dashed circle) is determined
by the effective radius rd . The background is the distribution of Γ1. (b)
Similar to panel (a) but with the background as the distribution of Γ2.

Therefore, if 0.89 is set as Γ1min, correspondingly,
ve

vr
=

cot(sin−1 0.89) = 0.5. For a vortex whose ve

vr
> 0.5, |Γ1| of its

center will be less than 0.89, thus it will not be detected as a
vortex by ASDA. For different values of Γ1min, we can analyze
their implications and identify the values of

ve

vr
of vortices that

may be excluded. This analysis will contribute to the subsequent
sections of the paper.

2.3. Validation with Synthetic Data

To find the optimal parameters of ASDA to detect vortices more
accurately, we need to compare the detection results with the
exact actual results we know. Therefore, we apply ASDA to syn-
thetic data for comparison, instead of numerical simulation or
observational data. In this study, we use Lamb-Oseen vortices
(Saffman 1995) as the synthetic vortices.
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Assuming the maximum rotation speed vmax and radius rmax

of a Lamb-Oseen vortex, then, a point with a distance r away
from the center has a rotation speed:

vr = vmax

(

1 +
1

2α

)

rmax

r

[

1 − exp

(

− α r2

r2
max

)]

, (5)

where, α ≈ 1.256. The expansion/contraction speed ve of the
vortex can be arbitrarily given. For example, Liu et al. (2019b)
chose ve = 0.2vr in their synthetic data. In this way, we can cor-
respond a Lamb-Oseen vortex with its Γ1 value of the center in-
tuitively. Figure 2 shows an example Lamb-Oseen vortex. Black
dashed curves in panels (a) and (b) are the boundaries and r is
its radius. Blue curves are the boundaries of the vortex detected
by ASDA and blue dashed lines show the edges decided by the
effective radius rd (Liu et al. 2019b). Meanwhile, the center of
the Lamb-Oseen vortex C with coordinate (x, y) and the detected
center Cd with coordinate (xd, yd) are located at the same pixel in
panels (a) and (b) of Figure 2. Following Liu et al. (2019b), the
location accuracy (Al), radius accuracy (Ar) and rotation speed
accuracy (As) of the detected vortex are defined as following,

Al = (1 − |(x, y) − (xd, yd)|
r

) × 100%,

Ar = (1 − |rd − r|
r

) × 100%,

As = (1 − |vrd − vr |
|vr|

) × 100%.

(6)

Here vr and vrd represent the real and calculated rotation speeds
of the Lamb-Oseen vortex.

3. Experiments and Results

3.1. Optimal Γ1min

As mentioned in the introduction, there are discrepancies and
uncertainties when choosing the value for Γ1min to determine
whether a detected feature is a vortex or not. Firstly, we refer
to the thoughts of testing ASDA (with a kernel size of 7) using a
series of synthetic data in Liu et al. (2019b). 1000 Lamb-Oseen
vortices are generated whose radii rmax and rotation speeds vmax

obey the following Gaussian distribution:

f (x) =
1
√

2πσ
exp(− (x − µ)2

2σ2
). (7)

Here, f (x) is the probability density of the variable x, µ is its
expected value, and σ is the standard deviation. Based on the
statistical results of detected photospheric vortices in Liu et al.
(2019b), we set the expected radius of the vortices to µr = 7.2
pixels with a standard deviation σr = 1.5 pixels. Similarly, the
expected rotation speed is defined as µv = 0.17 pixels per frame
with a standard deviation of σv = 0.07 pixels per frame. For ex-
pansion speed ve of each vortex, we set ve = κ · vr. Here, κ is
a parameter that also obeys the Gaussian distribution and we
set the expected value to µκ = 0.9 with a standard deviation
σκ = 0.2. Thus, according to the 3σ rule for Gaussian distri-
butions, approximately 99.7% of data points fall within ±3σ of
the mean, indicating that nearly all values of κ are concentrated
between 0.3 and 1.5. The range is wide enough to represent most
vortices. The generated vortices are then randomly divided into
two equal groups: one rotating counterclockwise (positive rota-
tion) and the other clockwise (negative rotation). A background
noise map of 5000 × 5000 pixel2 is generated, with each pixel

assigned a velocity with a random direction and a random mag-
nitude between 0% and 20% of µv. Next, the 1000 vortices are
randomly placed within this background noise map, ensuring no
overlap among them. This process results in a synthetic veloc-
ity map (named SD1, synthetic data 1) that closely resembles
observational data. Furthermore, we apply ASDA to SD1 using
different values of Γ1min from 0.45 to 0.89 to detect vortices. This
process is repeated 100 times. Detection results of vortices from
SD1 with noise levels of 0 and 20% are shown in Tables 1 and 2.

Table 1. Average detection rate, false detection rate, location accuracy,
radius accuracy, and rotation speed accuracy of the detection on all 1000
inserted vortices in SD1, with a velocity noise level of 0.

Γ1min
Detection False Detection Location Radius Rotation Speed

Rate Rate Accuracy Accuracy Accuracy
% % % % %

0.45 90.7 0.0 100.0 83.6 92.8
0.50 90.7 0.0 100.0 83.6 92.8
0.55 90.7 0.0 100.0 83.6 92.8
0.60 90.7 0.0 100.0 83.6 92.8
0.65 87.1 0.0 100.0 85.3 94.3
0.70 65.1 0.0 100.0 90.2 96.6
0.75 37.9 0.0 100.0 93.4 97.7
0.80 16.6 0.0 100.0 95.8 98.3
0.85 5.1 0.0 100.0 97.1 98.8
0.89 1.3 0.0 100.0 97.4 99.1

Table 2. Similar to Table 1 but with a noise level of 20%.

Γ1min
Detection False Detection Location Radius Rotation Speed

Rate Rate Accuracy Accuracy Accuracy
% % % % %

0.45 92.7 0.0 98.6 72.7 86.9
0.50 91.2 0.0 99.1 73.5 87.3
0.55 90.3 0.0 99.3 74.1 87.6
0.60 88.0 0.0 99.6 75.3 88.5
0.65 80.8 0.0 99.8 78.5 90.9
0.70 57.6 0.0 99.9 84.0 94.4
0.75 31.6 0.0 99.9 88.1 96.2
0.80 12.8 0.0 100.0 91.5 97.3
0.85 3.4 0.0 100.0 94.3 97.9
0.89 0.8 0.0 100.0 96.1 98.3

Tables 1 and 2 list the detection rate, false detection rate, lo-
cation accuracy, radius accuracy and rotation speed accuracy of
all detected vortices at velocity noise levels of 0 and 20% from
SD1. There is little difference in results with Γ1min from 0.45 to
0.60: the detection rates and accuracies for the location, radius,
and rotation speed all keep high levels. However, both detection
rates with the two different noise levels slightly decrease (3.4%
in Table 1 and 8% in Table 2) when Γ1min increases from 0.60
to 0.65, and both of the detection rates drop very quickly when
Γ1min is more than 0.65. Note that the false detection rate is con-
sistently zero with increasing Γ1min and the location accuracy, ra-
dius accuracy, and rotation speed accuracy all keep high levels.
This finding further proves the result in Liu et al. (2019b) that
ASDA is unlikely to detect a vortex at a location where there is
none.

It is mentioned that κ obeys the Gaussian distribution
N(0.9, 0.22) for all vortices in SD1, and nearly all values of κ
are between 0.3 and 1.5. This means that, theoretically, |Γ1| val-
ues of vortices centers should be almost distributed from 0.55
(sin(cot−1 1.5)) to 0.96 (sin(cot−1 0.3)). Therefore, about 99.7%
vortices could be detected by ASDA with Γ1min = 0.55, and for
any Γ1min ≤ 0.55, the detection rates should be very similar. This
is consistent with the observation from Tables 1 and 2. But it
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is also worth noting that, the detection rates only drop signif-
icantly when Γ1min is above 0.65, which may indicate that the
optimal value for Γ1min should be around 0.60 to 0.65. Moreover,
to avoid occasionality, we conducted two more experiments by
setting µr = 14.4 pixels with σr = 2.4 pixels, and µr = 3.6 with
σr = 0.8 pixels, respectively. Results for the above two exper-
iments are similar to the result of SD1, suggesting that ASDA
performs well in identifying vortices with different radii.

After considering the radii of vortices, we change the val-
ues of κ and take new experiments to explore how the ratio be-
tween the expansion and rotation speeds affects the results. A
new synthetic data SD2 similar to SD1 also containing 1000
Lamb-Oseen vortices is generated. The expected radius and the
standard deviation are also set to µr = 7.2 pixels andσr = 1.5 pix-
els, respectively, and the expected rotation speed is also defined
as µr = 0.17 pixels with a standard deviation of σv = 0.07 pixels.
However, for ve = κ ·vr, κ is set to obey the Gaussian distribution
N(0.5, 0.12) for all 1000 vortices in SD2 (comparing to κ obeying
N(0.9, 0.22) in SD1). Similarly, there are approximately 99.7%
of values of κ located between 0.2 and 0.8, which indicates that
values of |Γ1| at vortices centers are mostly concentrated between
0.78 (sin(cot−1 0.8)) and 0.98 (sin(cot−1 0.2)). There is little dif-
ference between the detection rates with Γ1min ≤ 0.78, as ex-
pected, however, an obvious fall occurs when Γ1min increases
from 0.75 to 0.80. To further validate these observations, another
experiment is conducted with a larger κ, obeying the Gaussian
distribution N(1.2, 0.22), with all other conditions being kept the
same as of SD2, generating the synthetic data SD3. The detec-
tion results for SD3 with different Γ1min under noise level of 20%
are shown in Table 3.

Table 3. Similar to Table 1 but for the detection results of SD3 with a
noise level of 20%

Γ1min
Detection False Detection Location Radius Rotation Speed

Rate Rate Accuracy Accuracy Accuracy
% % % % %

0.45 50.2 0.0 95.9 52.6 73.0
0.50 47.6 0.0 97.1 54.4 73.8
0.55 45.9 0.0 97.7 55.6 74.6
0.60 41.4 0.0 99.0 59.2 76.8
0.65 29.2 0.0 99.9 68.3 84.4
0.70 10.3 0.0 100.0 80.3 93.3
0.75 2.0 0.0 100.0 87.0 96.1
0.80 0.5 0.0 100.0 91.9 97.5
0.85 0.1 0.0 100.0 96.4 99.4
0.89 0.0

First of all, there is some commonality between the above
detection results under different conditions, as seen in Table 1,
Table 2, and Table 3. The detection rates all encounter the first
“quick” decrease from Γ1min = 0.60 to Γ1min = 0.65. The detec-
tion rates decrease by 3.4% in Table 1, 8% in Table 2, and 12.2%
in Table 3. According to Eq. (4), values of |Γ1| at vortices centers
in SD3 are mostly concentrated between 0.49 (sin(cot−1 1.8))
and 0.86 (sin(cot−1 0.6)). However, the detection rate is only
50.2% with Γ1min = 0.45, significantly less than 99.7%. It indi-
cates that some vortices are detected as candidate vortices by cri-
terion Γ1min but rejected by other criteria. Based on the method-
ology of ASDA mentioned in Sect. 2.2, we speculate that the
criterion on Γ2 might have also omitted some candidate vortices.
To verify this, we sample a small region (200 × 200 pixel2) of
SD3 to compare the location distribution of vortices with the
value distribution of Γ1 and Γ2.

There are a total of 10 synthetic vortices in the 200 × 200
pixel2 region, which are marked using black numbers in the

four panels of Figure 3. The blue and red curves represent the
boundaries of the detected vortices rotating counterclockwise
and clockwise, respectively. Panels (a) and (b) are the detection
results using ASDA with Γ1min = 0.60, panels (c) and (d) rep-
resent the results of detection results with Γ1min = 0.65. Back-
grounds in Figure 3 are the distributions of Γ1 and Γ2. Green ar-
rows represent the velocity fields and black dots in panels (a) and
(c) show where values of |Γ1| ≥ 0.60 and values of |Γ1| ≥ 0.65,
respectively. Meanwhile, black dots in panels (b) and (d) rep-
resent the points with values of |Γ2| ≥ 2/π. One can see from
Figure 3(a) and (c) that vortices Nr. 1, 4, 5, 6, 7, 8 and 10 are de-
nied as vortices with Γ1min = 0.60 and 0.65, among which Nr. 1,
4, 6, 7 and 8 are also denied by Γ2 (Fig. 3b and d). However, Nr.
5 and Nr. 10 pass the condition |Γ1| ≥ 0.60 though it is denied by
|Γ1| ≥ 0.65 and |Γ2| ≥ 2/π. This indicates that if we set Γ1min to
0.60 or less, some vortices will be accepted by the Γ1 condition
but refused by the Γ2 condition. Although it makes little influ-
ence to the detection results but may cause a massive waste of
computing resources for a huge dataset.

Secondly, for vortices Nr. 2 and 3, they are detected as a posi-
tive vortex and a negative vortex, respectively, with Γ1min = 0.60.
However, they are omitted by ASDA with Γ1min = 0.65, be-
cause |Γ1| values of points in vortices Nr. 2 and 3 are all less
than 0.65 and no points are identified as their centers. Note that
their boundaries are both detected successfully (see black dots
of Nr. 2 and 3 in Fig. 3b and d) according to the Γ2 criterion
(i.e., |Γ2| = 2/π at the vortex boundaries Graftieaux et al. 2001).
Then, it is concluded that vortices Nr. 2 and 3 are both real vor-
tices and when we set Γ1min = 0.65 or larger, they would not be
detected as vortices. In other words, if Γ1min is too large (0.65 or
larger), some real vortices would not be detected by ASDA and
therefore we will underestimate the number of vortices.

In conclusion, we can first determine whether a rotational
structure is a real vortex based on the Γ2 criterion. If its bound-
aries where |Γ2| = 2/π are identified, an optimal Γ1min should
be used to determine whether the candidate is a vortex or not.
The above experiments with different distributions of vortices
and different levels of noise suggest that the optimal Γ1min should
be between 0.60 and 0.65. To find the exact value of the optimal
Γ1min, we apply ASDA with Γ1min = 0.45 (enough small) to SD1
(ve = N(0.9, 0.22) · vr) and SD3 (ve = N(1.2, 0.22) · vr) with
both noise levels of 0. This makes the value range of ve/vr (0.3
∼ 1.8) wide enough to cover most distributions of ve/vr. Statis-
tically, the minimum values of |Γ1| of vortices centers detected
in SD1 and SD3 are 0.638 and 0.637, respectively. The values
are both between 0.60 and 0.65, which can explain the quick de-
creases from Γ1min = 0.55 to Γ1min = 0.60 in Tables 1, 2 and 3.
Therefore, we suggest the optimal value of Γ1min is 0.63, and we
can detect almost all vortices applying ASDA with Γ1min = 0.63.
This optimal value of Γ1min will be further tested and validated
with numerical simulation and observational data in the rest of
this section.

3.2. Influence of the kernel size

After considering the optimal value of Γ1min is 0.63, in this sub-
section, let us now explore the influence of the kernel size (ks)
in calculating Γ1 and Γ2. Liu et al. (2019b) specified N (ks2) as
49, which means that they selected 7 as the kernel size and cal-
culated Γ1 and Γ2 in a region of 7 × 7 pixel2 surrounding each
target point. The above specification will weaken vortices with
radii less than 4 pixels, which indicates that ASDA may fail to
identify some small-scale vortices (radii less than 4 pixels) and
would underestimate the number of vortices.
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(a) Distribution of Γ1

0 25 50 75 100 125 150 175
X (pixel)

0

25

50

75

100

125

150

175

Y 
(p

ixe
l)

1
2

3

4

5

6
7

8

9 10

(b) Distribution of Γ2
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(c) Distribution of Γ1
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(d) Distribution of Γ2
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Fig. 3. (a) and (b) are the distributions of Γ1 and Γ2 (backgrounds) in a 200 × 200 pixel2 region of SD2. The green arrows represent the velocity
field, and the numbers label the 10 synthetic lamb-Oseen vortices. The black dots in (a) are the points where |Γ1| are more than 0.60, and black
dots in (b) correspond to points where |Γ2| are more than 2/π. (c) and (d) are similar to (a) and (b), respectively. But the black dots in (c) and (d)
show the points where |Γ1| are more than 0.65 and |Γ2| are more than 2/π, correspondingly. The blue and red curves in these four panels represent
the boundaries of vortices rotating counterclockwise and clockwise, respectively.

Yuan et al. (2023) proposed the Advanced ΓMethod (AGM)
to identify vortices and used an adaptive version to optimize
AGM for vortex identification. The adaptive version is based on
a sequence of different kernel sizes, such as 3, 5, 7, 9, 11 and so
on. Yuan et al. (2023) noted that there are different values of Γ1

and Γ2 for the same point using different kernel sizes to calculate.
For example, if |Γ1| of a point is calculated less than Γ1min using

ks = 7 but more than Γ1min using ks = 9, then, this point may
be a potential vortex center and should not be omitted immedi-
ately. Therefore, Yuan et al. (2023) calculate values of Γ1 with
several kernel sizes (3, 5, 7, 9, and 11) and use the maximum |Γ1|
at each pixel under different kernel sizes. Yuan et al. (2023) also
suggested that varying the kernel size for each vortex provides
better identification and leads to more accurate statistical results
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of the vortex parameters. However, experiments carried out by
Yuan et al. (2023) were based on an arbitrary Γ1min = 0.75, and
how the different kernel sizes influence the detection results with
the optimal Γ1min = 0.63 needs further examination.

In this subsection, we first calculate Γ1 and Γ2 with kernel
sizes = 3, 5, 7, 9, and 11. At each pixel, only the maximal values
of |Γ1| and |Γ2| with different kernel sizes are combined. Swirl
detection based on ASDA is then applied to these combined Γ1

and Γ2 values from different kernel sizes. We name this version
VGCM-o (variable Γ calculating method-origin) and test it with
synthetic data with Γ1min = 0.63. According to Eq. (4), Γ1min =

0.63 corresponds to κ = ve/vr = 1.23, meaning that vortices
whose κ > 1.23 will be not detected by ASDA. Therefore, to
avoid the potential influence of Γ1min, SD2 is the most suitable
dataset to test VGCM-o with Γ1min = 0.63, because κ values
of vortices in SD2 are mostly located between 0.2 and 0.8. The
detection results of SD2 with noise levels ranging from 0 to 20%
are shown in Table 4.

Table 4. Average detection rate, false detection rate, location accuracy,
radius accuracy, and rotation speed accuracy of the detection on all 1000
inserted vortices in SD2 applying VGCM-o with Γ1min = 0.63, with a
velocity noise level ranging from 0 to 20%.

Noise Detection False Detection Location Radius Rotation Speed
Level Rate Rate Accuracy Accuracy Accuracy

% % % % %

0 100.0 0.0 100.0 97.0 99.7
5% 113.9 12.6 -31.3 86.3 86.6

10% 116.2 14.5 -86.9 84.8 84.3
15% 113.8 13.1 -47.9 85.5 85.2
20% 114.1 13.8 -50.5 84.4 83.0

Table 4 shows that the detection maintains high accuracy for
the location, radius, and rotation speed of vortices at a noise level
of 0. However, when there is noise, even with a noise level of
only 5%, the detection rate is above 100% and there are false de-
tections. The location accuracy turns negative, which indicates
that the detected vortex center is outside the synthetic vortex.
The radius accuracy and rotation speed accuracy still keep high
levels. To confirm these findings, we also change the radii of
vortices in SD2 to larger and smaller values and still obtain sim-
ilar detection results. This suggests that VGCM-o performs well
in identifying vortices when there is no noise, but detects some
false vortices and yields unreliable vortex centers when noises
exist in the dataset, which is very common when the dataset is
obtained from observations.

To study the reasons for the poor behavior of VGCM-o with
noisy data and search for a better method to calculate Γ1 and Γ2,
we recalculate the values of Γ1 and Γ2 of SD2 using different
single kernel sizes (ranging from 3 to 15) and apply detection
parts of ASDA to these Γ1 and Γ2 values, also with Γ1min = 0.63.

The detection results are shown in Table 5. We find that the
detection rate is highest when ks = 9 and the detection rate turns
lower if ks increases (9, 11, 13, and 15) or decreases (5 and 7).
Moreover, only when ks = 3, the detection rate is more than
100%, and false vortices are detected, with very poor location,
radius, and rotation speed accuracies. It is clearly shown that the
detection results with VGCM-o and ks = 3 are similar and there-
fore, the bad detection results with VGCM-o should result from
ks = 3. To verify this, we revise VGCM-o by removing ks=3
when calculating Γ1 and Γ2.

In Table 5, VCGM-1 uses kernel sizes of 5, 7 and 9, VCGM
uses kernel sizes of 5, 7, 9 and 11, and VGCM-2 uses kernel
sizes of 5, 7, 9, 11 and 13. It is shown that for these three combi-

nations of different kernel sizes, the detection rates are all at high
and reasonable levels (< 100%), with high location, radius and
rotation speed accuracies. Not a single false vortex has been de-
tected, indicating that the detection results are better after aban-
doning ks = 3. Moreover, the results of VGCM, VGCM-1, and
VGCM-2 are all better than the results of using any single kernel
size, which proves the variable Γ-functions method does con-
tribute to the more accurate detection of vortices. Considering
that the detection rates of VGCM and VGCM-2 are the same and
both 0.3% higher than the detection rate of VGCM-1, VGCM
(with kernel sizes of 5, 7, 9 and 11, and costing less computation
power compared to VGCM-2) is found to be the best for SD2
whose vortices radii follow the Gaussian distribution of N(7.2,
1.62).

Next, let us vary the radii of vortices in SD2 to smaller and
larger values following N(3.6, 0.82) and N(14.4, 2.42), respec-
tively, and repeat the above experiments. Both results support
our findings that the bad detection results with VGCM-o result
from ks = 3. When only using a single kernel size, ks = 5 is
the best choice for smaller vortices but ks = 19 is the best for
larger vortices. This suggests that the best single kernel size is
always close to the average radius of vortices in the dataset. Al-
though we also find that a Variable Γ Calculating Method con-
taining this best single kernel size performs better, the improve-
ment compared to VGCM (kernel sizes = 5, 7, 9 and 11) is very
little (∼1%) but costs significantly more computing resources.
Moreover, because it is impossible to know the average radius
of vortices in observational data, we can not adjust the Variable
Γ Calculating Method by selecting specific kernel sizes. There-
fore, in practice, VGCM (with kernel sizes of 5, 7, 9 and 11) is
most suitable to detect vortices accurately and meanwhile avoid
false detections.

Table 5. Average detection rate, false detection rate, location accuracy,
radius accuracy, and rotation speed accuracy of the detection on all 1000
inserted vortices in SD2 applying different kernel sizes and different
versions of the Variable Γ Calculating Method (VGCM) with Γ1min =

0.63, with a velocity noise level of 20%.

Kernel Detection False Detection Location Radius Rotation Speed
Size Rate Rate Accuracy Accuracy Accuracy

% % % % %

3 105.5 11.8 -26.8 70.3 77.3
5 96.0 0.0 99.6 88.7 95.9
7 97.2 0.0 99.8 91.3 96.7
9 98.0 0.0 99.8 90.0 95.9

11 97.9 0.0 99.8 85.0 93.1
13 96.4 0.0 99.6 77.7 89.0
15 93.4 0.0 99.3 70.0 84.3

VGCM-o 114.1 13.8 -50.5 84.4 83.0
VGCM-1 98.1 0.0 99.8 94.3 97.7
VGCM 98.4 0.0 99.9 95.0 97.8

VGCM-2 98.4 0.0 99.9 95.3 98.0

3.3. Validation with numerical simulation data

3.3.1. Photosphere

In Sect. 3.1 and 3.2, we concluded that VGCM is a suitable ap-
proach to calculate Γ1 and Γ2 and Γ1min = 0.63 is a more prac-
tical choice than 0.89 (Liu et al. 2019b) and 0.75 (Yuan et al.
2023). We name this version of the improved ASDA, which cal-
culates Γ1 and Γ2 using VGCM and detects vortices with Γ1min =

0.63, as the Optimized ASDA. We note that the above results
are obtained by experiments with various synthetic data, and
whether Optimized ASDA can be applied to observational data
is to be studied. Therefore, before applying Optimized ASDA to
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Fig. 4. (a) and (c) are both the first frame of CO5BOLD simulation data and SST observational data, showing the Bz from CO5BOLD simulation
and the photospheric intensity from SST observations, respectively. The cyan (blue) and black (red) curves in panel (a) (panel (c)) denote the
boundaries of counter-clockwise and clockwise vortices detected by SWIRL (ASDA). (b) and (d) show the close-up views of the purple box in
panel (a) and the yellow box in panel (c), respectively. Green arrows in (b) and (d) represent the velocity field.

observational data, let us test it with advanced numerical simu-
lation obtained with the CO5BOLD code (Freytag et al. 2012).
CO5BOLD has been widely used to model stellar atmospheres,
such as the Sun, solar-type stars, red giants, and white and brown
dwarfs (Straus et al. 2017). Different solvers, such as a hydrody-
namic module or a magnetohydrodynamic module, and radiative

transfer schemes can be chosen to simulate variable situations,
due to a modular construction of the code (Straus et al. 2017).

In this subsection, we use data from the radiative MHD code
for the simulation of the surface layers of the Sun. The sim-
ulation was based on a relaxed, purely hydrodynamical model
with an initial vertical and homogeneous magnetic field of 50 G.
The HLLMHD solver (Harten et al. 1983; Schaffenberger et al.
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Fig. 5. Comparisons between the detection results obtained from the Optimized ASDA and SWIRL with numerical simulations. Panels (a), (b),
and (c) are detection results from the photospheric simulation data. The blue curve and red horizontal line in panel (a) show the average numbers
of vortices per frame detected by the Optimized ASDA and SWIRL, respectively. The purple curve represents the number of overlapping vortices
detected by the Optimized ASDA and SWIRL. The green curve is the corresponding overlapping rate. Panel (b) depicts the slope of each point at
the green curve in panel (a). The blue and red histograms in panel (c) denote the distributions of the radius of the overlapping vortices detected
by the Optimized ASDA and SWIRL. Panels (d), (e), and (f) are similar to (a), (b), and (c), respectively, but are the results of the chromospheric
simulation data.

2005, 2006) was used to ensure the positivity of the gas pres-
sure. The magnetic and plasma boundary conditions were both
periodic at the sides, while the magnetic field was enforced to
be vertical at the top and bottom of the box. The Cartesian sim-
ulation box has a grid spacing of 960 × 960 × 280 grid cell3

and the cell size is 10 km in each spatial direction, which rep-
resents a total size of 9.6 × 9.6 × 2.8 Mm3. The height of box
(labelled as z) ranges from -1240 km to 1560 km, with z = 0 km
representing the average optical depth τ500 = 1. Therefore, the
simulation domain encompasses layers near the solar surface, in-
cluding the convection zone, photosphere, and up to the middle
chromosphere (Cuissa & Steiner 2024). This simulation started
at t = 0 s and run for about 7680 s (i.e. about 2.1 h), with a ca-
dence of 240 s. Discarding the first 1600 s of the simulation (this
is typically the time for the initial magnetic field to relax), 26
data cubes were obtained, from t = 1680 s to t = 7680 s.

Cuissa & Steiner (2022) proposed an innovative and auto-
mated method for vortex identification, named SWIRL. This al-
gorithm mainly involves two steps: (1) estimating the vortex cen-
ter map for each image and, (2) clustering the estimated centers
and deciding the vortices. In more detail, for a point with co-
ordinate (x, y) and velocity (vx, vy), the vorticity ω, the velocity
gradient tensor U, the real eigenvector ur, the swirling strength
λ, and the Rortex R can be computed based on the definitions
in Cuissa & Steiner (2022). Then, we can calculate the radial di-
rection and curvature radius of this point, which can decide its
estimated vortex center (EVC).

Applying this method, one can get the EVC map of each im-
age. Furthermore, based on the EVC maps, the number of EVCs
in each grid cell (EVC density) can be counted using the clus-
tering by fast search and finding of density peaks (CFSFDP)
algorithm proposed by Rodriguez & Laio (2014). Then, clus-
ter EVCs are obtained based on some criteria (see details in
Cuissa & Steiner (2022)), and candidate vortices are identified.
After noise removal, identified vortices and noisy grid cells are
distinguished. Based on this, several properties of each vor-
tex can be obtained, including its center coordinate, effective
radius defined by Cuissa & Steiner (2022), and rotational di-
rection (counter-clockwise or clockwise). More details about
the SWIRL method can be found in Cuissa & Steiner (2022).
Cuissa & Steiner (2024) recommended a set of SWIRL algo-
rithm parameters used to detect vortices in the above simulation
data cubes. Next, we carry out comparisons between the vor-
tex detection results by Optimized ASDA and SWIRL applied
to the photospheric velocity field of the numerical simulation by
Cuissa & Steiner (2022).

Panels (a) and (b) in Figure 4 show an example Bz from
the first frame of the CO5BOLD simulations at the photo-
sphere. Cyan and black curves depict the boundaries of counter-
clockwise and clockwise vortices identified by SWIRL, with the
purple box shown in detail in panel (b). Here, when applying
Optimized ASDA, we still employ VGCM to calculate Γ1 and
Γ2 but vary the value of Γ1min from 0.45 to 0.89 to explore how
the vortex detection would be affected with different Γ1min cri-
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teria. Detection results from Optimized ASDA and SWIRL are
shown in Figure 5.

In Figure 5(a), the blue curve shows the average number of
photospheric vortices per frame detected by Optimized ASDA
under different Γ1min values from the 26 photospheric simula-
tion data cubes. The number decreases almost linearly as Γ1min

increases. The number of vortices detected by SWIRL is de-
picted with the horizontal red line. The purple curve presents
the number of vortices detected by both Optimized ASDA and
SWIRL. It is seen that when Γ1min is less than 0.5, almost all
vortices detected by SWIRL are also detected by the Optimized
ASDA. However, the number of overlapping decreases slowly
with increasing values of Γ1min when Γ1min is less than 0.65,
above which, the overlapping number decreases rapidly. To un-
derstand the decreasing tendency of the number of overlapping
vortices more clearly, we calculate the overlap rates, which is
defined by the percentage of overlapping vortices over the total
number of vortices detected by SWIRL (green curve in Fig. 5a).
Figure 5(b) shows the slope at each point along the green curve
in Figure 5(a). The slopes of the overlap rate at Γ1min = 0.45,
0.63 and 0.80 are -0.07, -0.53 and -3.56, respectively. The two
bright teal dotted vertical lines in panels (a) and (b) both repre-
sent the results of Γ1min = 0.63. The overlap rate decreases much
more (panel a) and more quickly (panel b) from Γ1min = 0.63
to 0.80 than from Γ1min = 0.45 to 0.63. This suggests that most
vortices detected by SWIRL can also be identified by Optimized
ASDA with Γ1min = 0.63 or less. But, when Γ1 becomes larger,
Optimized ASDA will miss a significant number of vortices thus
underestimating the number of vortices in the data. These results
are consistent with what we have obtained from the synthetic
data in Sect. 3.1 and Sect. 3.2, further supporting that 0.63 is an
optimal choice for Γ1min.

We also note that Liu et al. (2019b) and Cuissa & Steiner
(2022) computed the effective radius of vortices using the same
method, which is defined as the radius of a circle that has the
same area as the vortex:

Re f f =

√

Ae f f

π
. (8)

Here, Ae f f is the effective area of a vortex, decided by the num-
ber of grid cells within the vortex and the size of cells. Therefore,
we pay attention to the distributions of the radii of those vortices
which are detected by both Optimized ASDA and SWIRL. These
distributions are shown in Figure 5(c), with little difference be-
tween the distributions of the radii of vortices detected by Op-
timized ASDA and SWIRL. The expected values of the vortex
radius detected by Optimized ASDA and SWIRL are 71.05 km
and 61.37 km, with their corresponding standard deviations of
19.88 km and 21.90 km, respectively. The above results suggest
that Optimized ASDA with Γ1min = 0.63 can not only detect
most vortices identified by SWIRL (and more vortices ignored
by SWIRL) but also perform very well in determining the radii
of the detected vortices. These again support our previous find-
ings about Optimized ASDA from synthetic data.

3.3.2. Chromosphere

In this subsection, we explore the performance of Optimized
ASDA by applying it to the chromospheric data in the above-
mentioned numerical simulation. The utilized chromospheric
simulation data cubes are in the same horizontal domain and
sampled at the same time as those chosen in Sect. 3.3.1. How-
ever, the height corresponding to the bottom of the chromosphere

is at z = 700 km, higher than the height (z = 100 km) of photo-
spheric data cubes in Sect. 3.3.1.

The results are similar to those obtained from the photo-
spheric simulation data cubes, shown in Figure 5(d)-(f). It is
seen in panel (d) that the blue curve, representing the number
of vortices detected by Optimized ASDA, also experiences an
almost linear decrease with increasing values of Γ1min. The pur-
ple and green curves are also very similar to their corresponding
curves in panel (a), although more vortices have been detected
by both Optimized ASDA and SWIRL from the chromospheric
data. Similar to panel (b), panel (e) depicts the slope of each
point along the green curve in panel (d), and the slope of overlap
rates are -0.07, -0.53 and -3.70 at Γ1min = 0.45, 0.63 and 0.80, re-
spectively. The difference between the slopes from Γ1min = 0.45
to 0.63 is neglectable compared to the variation of the slope with
Γ1min from 0.63 to 0.80. This suggests that the above analysis on
chromospheric detection results is consistent with results from
the photospheric simulation data and also supports the conclu-
sion that 0.63 is an optimal value for Γ1min. Moreover, the radii of
overlapping vortices detected by the Optimized ASDA seem to
be slightly smaller than the radii detected by SWIRL, as shown
in Figure 5(f). The expected values of the radii detected by Opti-
mized ASDA and SWIRL are 98.17 km and 92.97 km, with the
corresponding standard deviations of 37.78 km and 18.02 km,
respectively.

Comparing vortices detected from the photosphere and chro-
mosphere suggests that there are more vortices in the solar chro-
mosphere than the photosphere in the numerical simulation.
This is consistent with the observational fact that more vor-
tices are detected by ASDA from the chromospheric observa-
tions than from the photospheric observations (Liu et al. 2019c).
Cuissa & Steiner (2024) suggested that the growth of vortex
radii could be explained by the steep decrease in mass den-
sity from the photosphere to the chromosphere, which results
in the expansion of the plasma ascending into the chromospehre
(Nordlund et al. 1997).

In summary, based on the above results and comparisons
done using data from the CO5BOLD numerical simulation, we
conclude that 0.63 for Γ1min is also an optimal choice for detect-
ing vortices from numerical simulation data.

3.4. Validation with observational data

The data analyzed in this subsection consists of high-resolution
photospheric images centered on the Fe I 630.25 nm spectral
line, with a spectral window width of 0.45 nm. These observa-
tions were acquired using the CRisp Imaging SpectroPolarimeter
(CRISP; Scharmer 2006; Scharmer et al. 2008) on the Swedish
1-meter Solar Telescope (SST; Scharmer et al. 2003). Conducted
on July 7, 2019, between 08:23:36 UT and 08:39:18 UT, the ob-
servations targeted a quiet-Sun region near the central meridian.
The field of view (FOV), centered at (xc = 0′′, yc = −300′′),
covered an area of 56.5′′ × 57.5′′. The pixel size of the data is
0.059′′ (∼ 43.6 km), with a spatial resolution estimated to be at
least 87.2 km, corresponding to twice the pixel size. The images
were taken with an average cadence of 4.2 seconds, and the FOV
was rotated 70 degrees clockwise relative to the Sun’s north pole.

Figure 4 also presents an example photospheric intensity
map of SST observations in panel (c). Blue and red curves out-
line the boundaries of vortices detected by ASDA. Correspond-
ingly, panel (d) shows the close-up view of the yellow box in
panel (c).

Similar to Figure 5, Figure 6 shows the comparison results
between vortices detected by ASDA and SWIRL from the SST
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Fig. 6. Similar to Fig. 5 but for comparing the detection results obtained from the Optimized ASDA and SWIRL with observational data.

observations. The number of vortices detected by ASDA and
SWIRL is shown with the blue curve and the red horizontal line
in Figure 6(a), with the purple and green curves depicting the
number of the overlapping vortices and the overlapping rate. Fig-
ure 6(b) shows the slope of each point along the green curve in
panel (a), with slopes at Γ1min = 0.45, 0.63 and 0.80 as -0.03,
-0.48 and -4.44, respectively. The quick drop of the slope from
Γ1min = 0.63 to 0.80 also happens, similar to Figure 5(b) and (e)
for the numerical simulation data. Moreover, the detected radii
by Optimized ASDA and SWIRL also show almost the same dis-
tributions, with close expected values (322.24 km vs. 300.46 km)
and standard deviations (67.54 km vs. 52.29 km), as shown in
Figure 6(c). The above results are highly consistent with the vor-
tex detection results from numerical simulation data in Sect. 3.3,
indicating that Optimized ASDA with Γ1min = 0.63 also performs
well in detecting vortices from the solar observational data.

We have also explored the influence of kernel sizes on the
detection of vortices using both numerical simulation data and
observational data. We detect vortices from Γ1 and Γ2 calcu-
lated with VGCM, VGCM-o, and a single kernel size 7, all with
the optimal Γ1min = 0.63. The results are similar, and here, we
take the results from the photospheric simulation data for ex-
ample. There are more vortices (∼ 9%) detected with VGCM
and VGCM-o than with a single kernel size 7 and correspond-
ingly, more vortices detected by SWIRL are overlapped by vor-
tices detected with VGCM and VGCM-o. These results support
the results in Sect. 3.2 that the Variable Γ Calculating Method
is more suitable than a single kernel size for calculating Γ1 and
Γ2. Moreover, the number of vortices detected with VGCM-o
is slightly more (∼ 2%) than the number detected with VGCM,
but the numbers of overlapping vortices with SWIRL are iden-
tical. This indicates that it is very likely that the additional vor-
tices detected with VGCM-o are false detections, supporting our
previous conclusions that VGCM is more accurate in detecting
vortices than VGCM-o.

4. Conclusions and discussions

In this paper, we employed the automated swirl detection algo-
rithm (ASDA, an automated algorithm based on the Γ-functions
method) to detect vortices from synthetic data generated with
diverse conditions. We also aimed to improve the Γ-functions
method for vortex identification. We analysed the effect vary-
ing the values of Γ1min, which determines the centers of vortices,
and applied various ways of calculating Γ1 and Γ2 to search for
an optimal value of Γ1min and the best method to calculate Γ1

and Γ2. ASDA with the above improvements is named Opti-
mized ASDA. In this section, we briefly summarize our results
and present some discussions on the potential implications of the
Optimized ASDA.

In the first stage of this work, we fixed the kernel size ks =
7 to calculate Γ1 and Γ2 and applied ASDA with different val-
ues of Γ1min to synthetic data 1 (SD1). No matter the velocity
noise is 0 or 20%, the detection rates showed little difference
when Γ1min ≤ 0.60 but decreased quickly once Γ1min > 0.60. For
SD1, κ, which was defined as κ = ve/vr in Sect. 3.1, was set to
obey the Gaussian distribution N(0.9, 0.22). Theoretically, about
99.7% vortices could be detected by ASDA with Γ1min equaling
0.55 or less, based on the deductions in the third paragraph in
Sect. 2, which was proven by the experimental results shown in
Tables 1 and 2. By exploring the variation of the radii of vortices
(larger and smaller) in SD1 and repeating the experiments, we
found similar results, which indicated that ASDA performs well
in detecting vortices with different radii.

Via changing κ to smaller (N(0.5, 0.12)) and larger (N(1.2,
0.22)) values, we built two new datasets SD2 and SD3. Similar
results were found that when Γ1min is less than 0.60, the detection
rate by ASDA is almost invariable. It is worth noting that, the
detection rate (∼50%) of vortices at Γ1min = 0.45 on SD3 with a
noise level of 20% is lower than expected (99.7%). By studying
an example region in SD3 with 10 synthetic vortices, we found
that some candidates were excluded by the Γ2 criterion when
Γ1min is too small. These results suggest that negative impacts on
the performance of ASDA would be introduced with either too-
big or too-small values of Γ1min. Further tests on more synthetic
data revealed an optimal value of 0.63 for Γ1min.

Next, we fixed the Γ1min to 0.63 and searched for an appropri-
ate method to calculate Γ1 and Γ2. Motivated by the adaptive ver-
sion of the Advanced ΓMethod proposed by Yuan et al. (2023),
we presented the Variable Γ Calculating Method (VGCM) to cal-
culate the two Γ functions. To explore the best method, contrast
experiments on SD2 were conducted by using different calculat-
ing method: single kernel sizes (ranging from 3 to 15) and sev-
eral versions of the Variable Γ Calculating Method (VGCM-o,
VGCM-1, VGCM, and VGCM-2), with results shown in Table 4.
False vortices were detected only when using a single kernel size
ks = 3 and VGCM-o (kernel sizes = 3, 5, 7, 9, and 11), which
indicated ks = 3 resulted in poor detection results. Moreover,
by comparing the detection results with other methods, shown
in Table 4, we found that the Variable Γ Calculating Method
performed better than single kernel size, and VGCM (with ker-
nel sizes = 5, 7, 9, and 11) costed less computing sources than
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VGCM-1 and VGCM-2 but still revealed similar performance
in detecting vortices in SD2. Similar comparison results were
obtained when changing the radii of vortices in SD2 to larger
and smaller. These results suggest VGCM is the most suitable
method to calculate Γ1 and Γ2.

After finding 0.63 is the optimal value of Γ1min and VGCM
(kernel sizes = 5, 7, 9, and 11) is more appropriate for calcu-
lating Γ1 and Γ2, ASDA can be optimized for more accurate
vortex identification, named as the Optimized ASDA. To val-
idate the reliability of the Optimized ASDA, we employed it
to detect small-scale vortices in numerical simulation data of
the solar atmosphere from the radiative MHD CO5BOLD code
and observational data of the photosphere by SST. The compar-
ison results are all similar and consistent with the conclusions
in Sect. 3.1 and Sect. 3.2 that the choice 0.63 of Γ1min and the
application of VGCM to calculate Γ1 and Γ2 are both more suit-
able than the original ASDA. However, we noted that the num-
bers of vortices detected by the Optimized ASDA were all more
than the numbers detected by SWIRL, showing 39.8%, 80%, and
91.3% more vortices for the photospheric, chromospheric simu-
lations, and the SST photospheric observations, respectively (see
Fig. 5a, d and Fig. 6a). A possible reason is that SWIRL missed
some vortices. Cuissa & Steiner (2022) and Cuissa & Steiner
(2024) noted two drawbacks of SWIRL: (1) the detection is not
strictly Galilean invariant, which means some vortices with ro-
tation speeds comparable to the flow speeds could be missed
by SWIRL. They also pointed out that this shortcoming should
not affect photospheric vortices because they are predominantly
rooted in intergranular lanes and moving slowly relative to the
vortical flow speed (Tziotziou et al. 2023). (2) the parameters for
clustering and detection in SWIRL call for adjustments when ap-
plied to different data.

The above two reasons could result in the underestimation of
the vortices number detected by SWIRL, but whether the addi-
tional vortices detected by the Optimized ASDA in Figure 5(a),
(d) and Figure 6(a) are true vortices or not needs further explo-
ration. In other words, the optimized ASDA might have overes-
timated the number of vortices, which could also contribute to
the fact that there have been more vortices detected by the Opti-
mized ASDA.

The top panel of Figure 7 shows a small 2 × 2 Mm2 region
of the photospheric numerical simulation domain in CO5BOLD.
The green arrows represent the velocity field, and the blue and
red curves show the boundaries of positive (counterclockwise)
and negative (clockwise) vortices detected by the Optimized
ASDA, while the cyan and black curves depict the boundaries of
positive and negative vortices detected by SWIRL. Most vortices
are identified by the Optimized ASDA and SWIRL at the same
time, and the effective radii decided by the Optimized ASDA and
SWIRL are also similar, which is consistent with the similar vor-
tex radius distributions in Figure 5(c). However, some vortices
are only detected by the Optimized ASDA, shown in the regions
labeled as R1, R2, and R4 outlined with grey squares. The middle
and bottom panels of Figure 7 depict close-up views of the three
regions. In panel R1, the positive vortex identified by Optimized
ASDA appeared to be an actual vortex, but SWIRL missed it.
Similar circumstances also occurred in panels R2 and R4. It sug-
gests that SWIRL does ignore some true vortices detected by
Optimized ASDA, explaining the number gaps in Figure 5(a),
(d), and Figure 6(a). On the other hand, it is somewhat intrigu-
ing that the counter-clockwise vortex in R2 seems to be not true
according to the streamline plot, while the other clockwise one is
really a true one. This result further supports the concerns raised

Fig. 7. Top panel: A small region of the CO5BOLD photospheric simu-
lation domain. Green arrows represent the velocity field. Blue and cyan
colors are vortices detected by the Optimized ASDA and SWIRL rotat-
ing counter-clockwise. In contrast, the red and black ones rotate clock-
wise for swirls detected by the Optimized ASDA and SWIRL, respec-
tively. Bottom panel: Close-up views of four rectangle regions outlined
with grey squares in the top panel.

earlier that the Optimized ASDA could detect some false vor-
tices.

It is observed that the boundary of the vortex detected by
the Optimized ASDA in panel R4 does not quite conform to the
velocity field (the red dotted circle seems more suitable). It sug-
gests that the algorithm for determining the vortex boundaries
by the Optimized ASDA remains to be improved. Moreover, we
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note that a vortex identified by SWIRL (outlined by the black
circle in Fig. 7 R3) is detected as two separate vortices by the
Optimized ASDA. However, investigating the velocity field, we
can see that the vortex identified by SWIRL is not a real one.
The oval vortex at the top left and another at the bottom right,
detected by the Optimized ASDA, are, in turn, more consistent
with the actual velocity field. These observations suggest that
the Optimized ASDA performs better than SWIRL in detecting
non-standard shaped vortices and yielding a more accurate num-
ber of vortices in the solar atmosphere. It is worth noting that,
in this work, noise is inserted into the velocity map to generate
the synthetic data. However, whether this kind of synthetic data
is well-suited for generating non-standard vortices (like vortices
detected by the Optimized ASDA in Fig. 7 R3) remains unclear.
One future task conducting a more detailed analysis of non-
standard vortices could lead to further improvement of ASDA
and other vortex identification methods.

Liu et al. (2019c) found that abundant photospheric vortices
excite Alfvén pulses, which propagate upward and carry energy
flux into the upper chromosphere. They noted that the energy
flux (FA) carried into the upper chromosphere by a single Alfvén
pulse is estimated to be 1.9-7.7 kW m−2. The average energy flux

(FA) is defined as:

FA =
FANπR

2

S FOV

, (9)

where N and R are the average number of vortices in each frame
and vortex effective radius. S FOV represents the area of the field-
of-view (FOV) of the observation. We employed the original
ASDA with Γ1min = 0.89 and the Optimized ASDA with Γ1min =

0.63 to the SST observation mentioned in Sect. 3.4. On average,
39.6 and 308 vortices are detected by the original ASDA and the
Optimized ASDA, with corresponding average vortex radius of

308 km and 271 km, respectively. Therefore, using Eq. (9), FA is
found to be around 12.6-51.2 W m−2 and 75.9-308.3 W m−2 by
employing the original ASDA and the Optimized ASDA, respec-
tively. The former flux is not enough to balance the local radia-
tive energy losses (∼ 100 W m−2) (Withbroe & Noyes 1977) in
quiet-Sun regions. It is worth noting that, as mentioned before,
the Optimized ASDA might overestimate the number of vortices,
and SWIRL could underestimate the number. Thus, the energy
flux (75.9-308.3 W m−2) estimated from the Optimized ASDA
can be viewed as an upper limit of the flux supplied by the photo-
spheric vortices. Meanwhile, we can also provide a lower limit,
which is around 39.4-160.2 W m−2, by using the number (160)
of vortices identified by SWIRL. The above results from the
Optimized ASDA and SWIRL indicate that the average energy
flux related to photospheric vortices is very likely enough to bal-
ance the energy losses. It further supports the fact that prevalent
photospheric vortices could play significant roles in heating the
upper atmosphere (e.g., Shelyag et al. 2013; Chmielewski et al.
2014; Mumford et al. 2015; Mumford & Erdélyi 2015; Liu et al.
2019c; Battaglia et al. 2021).
Γ-functions method (and relative automated algorithms, such

as ASDA) for vortex identification heavily depends on the esti-
mated horizontal velocity field. Methods used to calculate the
horizontal velocity fields all have their drawbacks. For example,
the most common technique FLCT we used in this work should
be applied with caution when estimating granular and subgran-
ular flows (Tremblay et al. 2018; Cuissa & Steiner 2024). More-
over, Verma et al. (2013) and Liu et al. (2019b,c) pointed out
that FLCT underestimates the horizontal velocity field by a fac-
tor of approximately three and influences the characteristics

of detected vortices, such as the rotation speed and expansion
speed. In this work, synthetic data was employed to improve the
Γ-functions method. Therefore, our results are general and inde-
pendent of the velocity estimation method.

Concerning the significant influence of the reconstructed ve-
locity fields, a key point of future work is to check the reliability
of different velocity estimation methods and search more reliable
approaches for different observations.

One of our recent studies (Liu et al. 2025) used a neural net-
work technique trained on high-resolution data (with a pixel size
of ∼12 km, comparable to the diffraction limit of the Daniel K.
Inouye Solar Telescope, DKIST, Rimmele et al. 2020) from re-
alistic radiative numerical simulations of the solar photosphere.
The built neural network model performs significantly better
than FLCT at these small scales. It is worth investigating how
these different methods of estimating the photospheric horizon-
tal velocity fields would affect the vortex detection results by the
Optimized ASDA.
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