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PIP-Net: Pedestrian Intention Prediction in the Wild
Mohsen Azarmi , Mahdi Rezaei , He Wang

Abstract—Accurate pedestrian intention prediction (PIP) by
Autonomous Vehicles (AVs) is one of the current research chal-
lenges in this field. In this article, we introduce PIP-Net, a novel
framework designed to predict pedestrian crossing intentions
by AVs in real-world urban scenarios. We offer two variants
of PIP-Net designed for different camera mounts and setups.
Leveraging both kinematic data and spatial features from the
driving scene, the proposed model employs a recurrent and
temporal attention-based solution, outperforming state-of-the-art
performance. To enhance the visual representation of road users
and their proximity to the ego vehicle, we introduce a categorical
depth feature map, combined with a local motion flow feature,
providing rich insights into the scene dynamics. Additionally, we
explore the impact of expanding the camera’s field of view, from
one to three cameras surrounding the ego vehicle, leading to an
enhancement in the model’s contextual perception. Depending
on the traffic scenario and road environment, the model excels
in predicting pedestrian crossing intentions up to 4 seconds in
advance, which is a breakthrough in current research studies
in pedestrian intention prediction. Finally, for the first time, we
present the Urban-PIP dataset, a customised pedestrian intention
prediction dataset, with multi-camera annotations in real-world
automated driving scenarios.

Index Terms—Autonomous vehicles, pedestrian behaviour,
pedestrian crossing prediction, computer vision, deep neural
networks.

I. INTRODUCTION

PEDESTRIANS are the most vulnerable road users and

face a high risk of fatal accidents [1]. Ensuring pedes-

trian safety in automated driving, particularly in mixed AV-

pedestrian traffic scenarios, heavily relies on the AV’s capabil-

ity in “pedestrian intention prediction (PIP)” [2]. A PIP system

determines if a pedestrian is likely to cross the road shortly

(within the next few seconds). This study aims to investigate

the critical visual clues that pedestrians exhibit when they

intend to cross the road, and then provide a model which

predicts crossing behaviour, a few seconds in advance.

Anticipating pedestrian crossing behaviour is a difficult

task due to various environmental factors that affect human

intention [3]–[5]. Even in the simulated scenarios in which the

majority of parameters are under control, crossing prediction

is a challenging endeavour [6]. Factors like interactions with

other pedestrians, traffic signs, road congestion, and vehicle
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Fig. 1. Pedestrians’ crossing intention prediction in complex urban scenarios
via contextual data analysis and a multi-camera perception setup.

speed can influence pedestrians’ tendency to cross the road in

front of AVs [7].

Computer vision plays a crucial role in enabling AVs to

perceive their surrounding environment by analysing the visual

data captured via multiple sensors, such as cameras, LiDAR,

Radar, etc. Learning-based models, in particular deep neural

networks (DNNs), have shown remarkable success in various

computer vision tasks, including scene understanding, seman-

tic segmentation [8], road users classification, localisation [9],

and motion prediction [10]. Figure 1 illustrates some of the

perceivable factors such as depth, pedestrian pose, and sur-

rounding objects, that an autonomous vehicle should consider

to interpret the scene and estimate the pedestrians’ intention.

DNNs are particularly effective at learning complex patterns

and features from visual data, making them a natural fit for

tasks that involve analysing images or videos to comprehend

pedestrian behaviour [11]–[13]. They also offer significant

capabilities in multi-modal integration by providing a neural-

based mechanism to process and fuse all the perceived in-

formation from diverse sensors. This integration may enhance

the overall understanding of the environment and help to make

more accurate and safer decisions [14].

Several datasets, such as JAAD [15], PIE [16], and STIP

[17], use onboard camera recordings and their data are publicly

released for the study of pedestrians’ behaviour before and

during road crossing. However, most of the current research

works suffer from supplying a multi-camera setup to leverage

the benefits of sensor fusion and multi-modal perception.

In addition to the above-mentioned datasets, some baseline

approaches [18] have also been established for analysing the

visual cues and signals that pedestrians emit through their body

language and positioning. The approaches highlight the bene-

fits of combining these features with contextual information.

Contextual information may include factors such as the road’s

location, the time of day, weather conditions, the presence of

traffic signals or crosswalks, the type of road (urban, suburban,

rural), and the position and behaviour of other vehicles near
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the scene [19]. To the best of our knowledge, no extensive

research has been conducted to understand and interpret such

contextual details and their effects on pedestrian’s decision-

making.

In this study, we propose a customised DNN-based frame-

work, called “PIP-Net” that takes various features of pedestri-

ans, the environment, and the ego-vehicle state into account,

to learn the context of a crossing scenario and consequently

predict the crossing intention of pedestrians in real-world

AV urban driving scenarios. The main contributions of this

research are highlighted as follows:

• A novel feature fusion model is presented to integrate

AV’s surrounding cameras and combine visual and non-

visual modalities, as well as a hybrid feature map that

incorporates depth and instance semantic information of

each road user to comprehend the latent dynamics in the

scene.

• Introducing the multi-camera “Urban-PIP dataset”, which

includes various real-world scenarios of pedestrian cross-

ing for autonomous driving in urban areas.

• We examine the effectiveness of the various input fea-

tures, temporal prediction expansion, and the worthiness

of expanding the vehicle field of view from one camera

to three cameras based on the latest Waymo car camera

setup [20] to ensure the developed model will be in

line with the current technology developments in the AV

industry.

• Finally, we evaluate the effectiveness of the proposed

model on the widely utilised PIE dataset and the intro-

duced Urban-PIP dataset, outperforming the state-of-the-

art (SOTA) for crossing prediction.

II. RELATED WORKS

Recently, pedestrian crossing intention prediction research

has surged and gained significant attention within the au-

tonomous driving research community [11]–[13]. Most current

methods mainly address the problem by taking two aspects

into account: Discovering influential factors and features for

interpreting road users’ interactions [4], [6], [7], and design-

ing the analytic model to predict the pedestrians’ crossing

intention [15]–[19]. Both research directions mainly utilise

advanced learning-based techniques. Deep learning methods

have been fostered on multiple features of pedestrians and

the environment, whether derived from annotations, visual

information from videos or their combinations [2], [21].

The following two subsections are dedicated to introducing

approaches that utilise DNN-based architectures for spatio-

temporal analysis and feature selection/fusion.

A. Spatio-temporal Analysis

Recently, there has been a shift from still image analysis

to the incorporation of temporal information into the predic-

tion models. Rather than relying on individual images, most

contemporary methods utilise sequences of input images for

decision-making by their prediction models. This adaptation

recognises the significance of temporal data in enhancing the

prediction task, resulting in what is known as spatio-temporal

modelling.

Spatio-temporal modelling can be achieved through a two-

step process. Initially, visual (spatial) features per frame can

be extracted using a visual encoder such as 2D convolutional

neural networks (CNNs) [22], vision transformers (ViTs) [23],

or graph convolution networks (GCNs) [17]. Subsequently,

these extracted features are then fed into a temporal encoder

like recurrent neural networks (RNNs) [24], using long short-

term memory (LSTM) [25]–[27] or the gated recurrent unit

(GRU) modules [28]–[30]. For instance, in [24], [26], [31],

2D convolutions are employed to extract visual features from

image sequences, while RNNs encode the temporal relation-

ships among these features. These sequentially encoded visual

features are then inputted into a fully-connected layer to

generate the ultimate crossing prediction.

An alternative approach is extracting both spatial and tem-

poral features involves the utilisation of 3D CNNs (Conv3D)

[32] or Transformer architecture [33]. 3D CNNs can directly

capture spatio-temporal features by substituting the 2D kernels

within the convolution and pooling layers of a 2D CNN with

their 3D equivalents. For instance, in works such as [34]–

[37], a framework based on a 3D CNN is employed to directly

extract sequential visual features from sequences of pedestrian

images. The ultimate prediction is then made using a fully-

connected layer. Transformer architecture uses self-attention

mechanisms [38] to capture long-range relationships, both

within a single frame (spatial) and between different frames

(temporal). This helps in thoroughly analysing pedestrian

dynamics [39]–[42]. Furthermore, hybrid models combining

CNNs, RNNs, and attention mechanisms have been explored

[43]–[45] to leverage the strengths of these approaches.

B. Feature Selection and Integration

Reliance on a single pedestrian feature for crossing predic-

tion, such as using only the pedestrian’s pose kinematics [46]

or bounding box [41], has resulted in context-free crossing

predictions that neglect other scene-specific modalities and

miss traffic and situational awareness. Instead, it is possible

to treat various types of information, such as the pedestrian’s

image, body pose keypoints, bounding box, vehicle dynamics,

and the broader contextual backdrop as distinct input channels

for the prediction model [13].

Studies such as [47]–[49] have incorporated human poses or

skeletons into pedestrian crossing prediction tasks alongside

various features such as pedestrian’s local image, bounding

box, and vehicle speed, to construct the intention classifier.

This approach has shown improved prediction accuracy but

often neglects other important features or lacks proper atten-

tion to feature integration.

The investigation into the types of features, such as pedestri-

ans and environmental context, is still ongoing. For instance,

pedestrian-to-vehicle distance is considered one of the most

influential factors in pedestrians’ decisions to cross [6]. This

feature is typically estimated as a single measure between the

target pedestrian and the ego vehicle [4], [50], while relative

velocity and closing speed, which refers to how quickly the
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gap between the ego vehicle and the pedestrian is decreasing,

are also investigated [51]. Alternatively, a depth map of the

scene (see Figure 2e) can be used to assess the distance from

other road users and possibly reveal the underlying dynamics

[52]. However, the depth map is susceptible to noise due to

rough estimation, which can lead to inaccuracies in scenarios

involving multiple pedestrians crossing [53].

On the other hand, some studies specifically concentrated

on feature integration. For instance, vision and non-vision

branches fusion [43] suggest how to efficiently combine di-

verse data modalities at different stages of a DNN model to

surge the intention prediction accuracy. Another study [11] is

conducted to merge two visual and three non-visual elements

of the pedestrian, scene, and subject vehicle in a multi-stream

network. From a different perspective, in studies such as

[12], [45], local and global contextual information has been

weighted by an attention mechanism and fused together to

apply a prediction on Joint Attention in Autonomous Driving

(JAAD) [15] and Pedestrian Intention Estimation (PIE) [16]

datasets.

C. Research Gaps

Despite advancements in pedestrian crossing intention pre-

diction, several key gaps persist, as outlined in recent surveys

[2], [5], [21]. In this study, we focus on addressing four

research gaps:

1) Pedestrian crossing intention highly relies on the distance

of the AV to the pedestrian and the relative distance of the

pedestrian to other road users, which may fall into various

categories of instance segmentation (e.g., cars, other pedestri-

ans, etc.). None of the reviewed research has considered the

simultaneous impact of both features on pedestrian intention.

2) To the best of our knowledge, no prior study has

considered instance segmentation to smooth and normalise

the distance measurement of road user instances. In this

article, we propose a new concept of Categorical Depth which

integrates the classic noisy depth measurement with instance

segmentation to gain more accurate depth information and

provide context-aware spatial data.

3) The reviewed models, often have limited generalisability

and are incapable of performing in the wild and real-world

automated driving scenarios, as they have normally been tested

with a human-driven vehicle [54]. Our study focuses on the

real-world Waymo dataset, which is collected from an AV’s

field of view. Our added pedestrian intention annotations to

this dataset help address the issue of inadequate annotated

ground-truth data availability in this field of research.

4) There is a shortage of dedicated neural network archi-

tectures capable of effectively accommodating and extracting

maximal multi-camera information from around the AV for

context recognition, hence an accurate model for predicting

pedestrian crossing intentions. Camera integration is proposed

in this study to cope with the limited field of view.

III. METHODOLOGY

We propose the PIP-Net model, which is based on deep

neural networks for predicting pedestrian crossing intention.

Fig. 2. Analysing pedestrians’ features and traffic scene dynamics through:
a) Pedestrian localisation, highlighted with bounding boxes, b) Gesture under-
standing with pose estimation, c) Object categorisation through segmentation,
d) Global motion patterns using optical flow, and e) Estimating distance via
a global depth heatmap.

The model incorporates spatial-temporal features such as road

users’ positioning, pose, and dynamic movements, along with

a hybrid feature map, the categorised semantic and depth

information as input to the network. A multi-camera stitching

and integration model is developed to facilitate panoramic

viewing, enabling a synchronised pedestrian ID assignment

and tracking across the entire multi-view scene, thus enhancing

the PIP-Net model’s understanding of spatial characteristics

and contextual information.

An overview of the proposed architecture is illustrated

in Figure 3. The input features are categorised into spatial

kinematic data and contextual data, and they are passed to

the model through distinct pipelines based on their data type.

Finally, the recurrent module and attention module are utilised

to improve temporal data processing.

A. Spatial Kinematics

Kinematic input data includes the positioning of the pedes-

trian in the scene with reference to the detected pedestrian

bounding box Pbb, pedestrian body pose keypoints Pbp, and

the ego-vehicle speed Vs.

The data is arranged in a gated recurrent unit (GRU) layer

[28], beginning with the Bounding Box feature Pbb. It indicates

the location of the pedestrians which is detected through

the customised You-Only-Look-Once algorithm for road user

detection [55]. This feature is defined as:

Pbb = {bt−m
i , bt−m+1

i , ..., bti}, (1)

where bi = [x1, y1, x2, y2] ∈ R
4 represents the coordinates of

a pedestrian bounding box. It consists of the top-left ([x1, y1])
and the bottom-right coordinates ([x2, y2]). The dimension of
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Fig. 3. The overview of the proposed DNN-based framework. PIP-Net receives Spatial Kinematic and Spatial Context data, and applies multi-modal
feature fusion and multi-camera integration with temporal and attention-based analysis to predict the pedestrians’ crossing intentions. Shift and Padding units
adjust the location of the target pedestrian with respect to the corresponding camera. Aggregation module (A) fuses the cameras’ features as shown in Figure
5.

the bounding box matrix Pbb is determined as m×4, where m

is the observation sequence length which indicates the number

of frames that are observed to predict the pedestrian crossing.

We define t as the decisive moment, 0.5 ∼ 4 seconds before

the crossing event.

The Body Pose feature Pbp is defined as:

Pbp = {pt−m
i , pt−m+1

i , ..., pti}, (2)

where the pose keypoints are obtained using YOLO-Pose [56],

which estimates the pose of a person by detecting 17 keypoints

joints, including the shoulders, elbows, wrists, hips, knees,

ankles, eyes, ears, and nose. The keypoints are represented by

a 34-dimensional vector, pi, which contains the 2D coordinates

of each joint for the i-th pedestrian at time t.

The Vehicle Speed is also defined as:

Vs = {st−m
i , st−m+1

i , ..., sti}, (3)

where si refers to the exact speed of the ego-vehicle in km.

B. Spatial Context

Contextual input data includes pedestrian features, such

as a pedestrian-bounded image (Local Content, Plc) and

corresponding motion flow analysis of the pedestrian (Local

Motion, Plm), the environment features like semantic segmen-

tation of the scene (Semantic Context, Esc), as well as our

proposed hybrid feature map (Categorical Depth, Ecd), which

refines depth information for specific pedestrians and vehicles

in the scene.

The Local Content feature Plc is defined as:

Plc = {lct−m
i , lct−m+1

i , ..., lcti}, (4)

where lci denotes the feature vector that is output by applying

the CNN backbone to an RGB image. An ImageNet pre-

trained VGG19 network is used as the CNN backbone, with

a maximum pooling layer as suggested in [43]. Subsequently,

a GRU is applied recursively to process the temporal dime-

sion of the feature. The RGB image contains an individual

pedestrian, cropped based on the bounding box location and

subsequently warped to dimensions of 224 × 224 × 3 pixels,

which is the optimum spatial size in the network [23].

The Local Motion feature Plm is derived from the dense op-

tical flow analysis within the pedestrian-bounded image. This

analysis is more consistent than examining the entire scene,

which can be affected by ego-vehicle motions. We opt for

a more advanced optical flow approach using Flownet2 [57].

This deep learning-based method offers improved accuracy

and faster run-time performance. The Local Motion is defined

as:

Plm = {lmt−m
i , lmt−m+1

i , ..., lmt
i}, (5)

where lmi is considered as the localised i-th pedestrian motion

descriptor. A Conv3D layer is used to extract a feature vector

of size (m, 512), where m represents the observation sequence

length. The fueature vector is then passed through a 3D max-

pooling layer (MP3D) with a kernel size of 4× 4 and a GRU

module. This process yields a (m, 128) vector, this vector is

then inputted into a GRU layer, resulting in an (m, 128) vector,

suitable for concatenation with the Local Content feature

vector.

The Semantic Context feature Esc is defined as:

Esc = {sct−m, sct−m+1, ..., sct}, (6)

where sc refers to the semantic segmentation of objects within

the entire scene encompassing road structure and users. This

feature ensures that the model considers the spatial distribution

of classes for both moving and static objects within the

scene. The semantic information is extracted by Slot-VPS

[58] model, which is a panoptic video segmentation algorithm

that not only offers semantic segments but also a unique ID

for each instance of the objects in the scene. The segmented
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(a) The depth heatmap of instances

(b) The normalised heatmap per each instance

(c) Categorical depth map

Fig. 4. Colour-coded visualisation of road users’ distance to the ego-

vehicle after the tripe camera stitching. 4a is the proportion of the global
depth heatmap which pedestrians and vehicles occupy; 4b is the normalised
heatmap values per each instance; 4c is a visualised Ecd feature in an
RGB format in which pedestrians and vehicles integrated into the blue and
red channel, respectively, and high-intensity values indicate closer users. A
categorical depth map has a positive effect on removing the camera stitching
effect and increasing the clarity and saliency of pedestrians and vehicles in
the scene.

classes include 8 dynamic classes (person, rider, car, truck,

bus, train, motorcycle, and bicycle) and 11 static classes

(traffic light, fire hydrant, stop sign, parking meter, bench,

handbag, road, sidewalk, sky, building, and vegetation). The

instance segments corresponding to pedestrians and vehicles

are integrated into the Categorical Depth feature, denoted as

Ecd, using the following formulation:

Ecd = {cdt−m, cdt−m+1, ..., cdt}, (7)

where cd represents the hybrid feature map containing depth

information for pedestrians and vehicles within the scene. The

depth data are initially estimated using the ManyDepth model

[59] and encoded in a heatmap representation, resulting in

a global depth heatmap. As illustrated in Figure 2e, high-

intensity spots (white and oranges) indicate proximity to the

ego vehicle, while low-intensity spots (navy blue and black)

represent greater distances. However, our experiments revealed

that the global depth heatmap is unreliable due to inconsisten-

cies in providing clear object boundaries. To address this, the

pedestrian and vehicle instances are cropped using instance

masks obtained from the Slot-VPS, as shown in Figure 4a.

Subsequently, the intensity of pixels within each instance is

normalised by averaging, yielding a normalised heatmap as

seen in Figure 4b. This process ensures a clear and consistent

depth estimation for each class, as depicted in Figure 4c.

Both inputs, Esc and Ecd, undergo extraction via three

Conv3D layers to be assessed for the spatio-temporal analysis.

The feature dimensions are gradually reduced (512 → 256 →
128 → 64) by repeatedly subjecting them to max-pooling

layers. This process not only selects the most important infor-

mation from the local neighbourhood of each pooling window

Fig. 5. The multi-camera feature aggregation module. In this example, the
front-left camera (FL) is the sentinel camera, where the target pedestrian is
observed. The padding module expands the Camera Index value and provides
a camera indicator mask for combining with Sense Context and Categorical

Depth features.

but also reduces the spatial dimensions (width and height) of

the feature maps and the computational complexity of the

network. Then the features are organised using a flattened

layer, resulting in a one-dimensional array that is suitable for

concatenation and can be fed into a fully-connected layer (FC).

Finally, the data is passed through a GRU module. The outputs

of the three GRUs are combined and concatenated into a single

output, which is then passed through an attention mechanism.

C. Cameras Features Integration

The incorporation of multiple cameras might be beneficial

for capturing complex traffic scenarios, such as intersections,

thanks to providing a surrounding field of view. In these sce-

narios, pedestrians may approach the road from the sides rather

than directly in front of the vehicle. They may also choose to

cross the road while a vehicle is changing lanes or making

a turn. By incorporating left and right-side cameras, we can

gather critical information about pedestrians in adjacent lanes

or at the side of the vehicle. The Waymo dataset is one of

the best options with three cameras (c = 3) that also offer

a diversity of real-world pedestrian crossing scenarios. The

cameras are named front-left (FL), front (F), and front-right

(FR) positioned from the AV’s left to right angles (as shown in

Figure 2). The synchronised videos provided have an approxi-

mately 11% overlap along the edges. These overlapping areas

can introduce redundancy in data and make it challenging to

precisely determine the pedestrian’s position, movement, and

intention when it moves from one camera scene to another.

Therefore, we merge the cameras using the Panoptic stitching

over time approach [20], excluding the overlapping regions

and giving higher priority to the front-view camera. Figure 2

illustrates an example of different types of features that have

been extracted from three cameras, and then stitched together

to constitute a single wide image.

We define Sentinel Camera as a variable that indicates the

index of the camera (Cix) on which the target pedestrian

has been observed. Using the Camera Index, we can adjust

the pose and bounding box coordinates with respect to the

sentinel camera. This task will be accomplished by the Shift
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unit, as shown in Figure 3 in cyan, which extends the global

coordinates from the leftmost camera to the rightmost one,

and applies these adjustments to the inputs. In this context, the

Padding unit is responsible for generating a zero binary mask

of size c× 512× 512, where the c-th dimension corresponds

to the sentinel camera being set to one. Here, c represents the

number of cameras. As the aggregation module (A) shown in

Figure 5, the binary masks are combined with the input vectors

i.e., Esc and Ecd. Subsequently, a pointwise convolution (Conv

1×1) operator aggregates all the features across cameras. This

process combines features from different channels (cameras)

at each spatial location, allowing a weighted combination of

input features.

D. Temporal and Attention Module

To account for the temporal context of input features, GRU

is employed. When describing the recursion for the GRU

equation, the variables at the j-th level of the stack can be

outlined as follows:

ztj = σ(xt
jW

xz
j + ht

jW
hz
j + bzj ), (8)

rtj = σ(xt
jW

xr
j + ht

jW
hr
j + brj), (9)

h̃t
j = tanh(xt

jW
x
j + (rtj ⊙ rt−1

j )Wh
j + b), (10)

ht
j = (1− ztj)⊙ ht−1

j + ztj ⊙ h̃t
j , (11)

where σ(·) denotes the logistic sigmoid function xt
j is the input

feature at time step t. The reset and update gates at time step t

are denoted as rtj and ztj , respectively, and the weights between

the two units are represented by W . The hidden state at the

previous time step and the current time step are represented

by ht−1

j and ht
j , respectively.

To assess the significance of the processed features during

network training, the attention mechanism [38]) is utilised to

focus on specific segments of features, thereby enhancing the

effectiveness of feature analysis. The resulting vector from the

attention module is defined as follows:

A = tanh(Wc[hc : hm]), (12)

hc =
∑

st

αthst , (13)

where Wc represents a weight matrix, hc denotes the cumula-

tive sum of all attention-weighted hidden states, hm signifies

the final hidden state of the encoder, hst corresponds to the

preceding hidden state of the encoder, and αt denotes the

vector of attention weights, which is defined as follows:

αt =
exp(score(hm, h̃s)

Σtm
st=1

exp(score(hm, h̃st))
, (14)

score(hm, hst) = hT
mWphst (15)

where tm is the input sequence length at time t. hT
m represents

the transpose of the hm vector, and Wp is a weight matrix that

can be estimated through the training phase of the network.

In the tile of the network, the outputs of the attention

modules are concatenated and then forwarded through the

last attention module and an FC layer. The ultimate output,

normalised to a range between zero and one using the Sigmoid

function, represents the predicted probability of a pedestrian

crossing.

IV. EXPERIMENTS

In this section, we conduct four distinct experiments to

thoroughly assess the robustness of the proposed framework.

Each experiment is designed to provide unique insights into

various aspects of the model’s performance. We compare

our model against the PIE dataset in four different inter-

vals ranging from 1 to 4 seconds, allowing us to scrutinise

the model’s predictive capabilities for an in-time response

in different driving scenarios. Additionally, we evaluate the

model’s performance under varying temporal resolution and

observation time. The second experiment examines the impact

of the introduced Categorical Depth and Local Motion features

in enhancing the framework’s prediction accuracy. The third

experiment evaluates the model generalisability and reliability

on a diverse dataset from Waymo’s self-driving vehicles. This

investigation ensures that the framework performs effectively

across different real-world scenarios. Lastly, we investigate the

scalability of the model by assessing the framework’s ability

to handle one to three cameras simultaneously, expanding

its view angles. This provides insights into the model’s effi-

ciency when processing information from multiple cameras.

This multi-faceted evaluation allows us to gain a detailed

understanding of the model’s effectiveness in comparison to a

singular experiment.

A. Datasets

The JAAD [15] and STIP [17] datasets suffer from no

annotation in terms of ego-vehicle speed values. Furthermore,

there is a slight bias in these datasets, as the majority of

annotations indicate the cases of crossing which may not

result in effective training of deep models. Therefore, the

evaluations were conducted on the Pedestrian Intention Es-

timation (PIE) [16] dataset, which is extensively employed

in the majority of prior studies. Additionally, we utilised our

custom dataset named Urban-PIP, specifically annotated for

pedestrian crossing behaviour, built upon the Waymo [20]

dataset. Waymo is a widely used dataset for traffic perception

by AVs thanks to the diversity of the video data from urban

and rural environments under various driving conditions and

situations. The specifications of datasets are briefly mentioned

in Table I.

The evaluation metrics are based on [18], including ac-

curacy (Acc), precision, and recall rate, which quantify the

model’s ability to accurately predict the binary classification

task. Additionally, the area under the ROC curve (AUC),

indicates the model’s proficiency in distinguishing between

different classes, and F1 score, represents the harmonic mean

of precision and recall rate.

1) PIE dataset: The dataset is recorded on a sunny clear

day for 6 hours in HD format (1920 × 1080). Each video

segment lasts approximately 10 minutes, resulting in a total of

6 sets. We utilised approximately 50% (880 samples) of the

dataset for training, 40% (719) for testing, and 10% (243) for

validation as per the same split proportion as [12]. Regarding

occlusion levels, partial occlusion is defined when an object

is obstructed between 25% and 75%, while full occlusion

occurs when the object is obstructed by 75% or more. The
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TABLE I
DATASET SPECIFICATIONS

Specification PIE Urban-PIP

Autonomous Driving No Yes
Number of Cameras 1 3
Auxiliary Sensors OBD LiDAR, Radar, IMU
Lighting Conditions Daylight Daylight, Nighttime
Demographic Information Age, Gender None
Video clip lengths 10 min 16 sec
Total Number of Frames 909,000 32,790
Total Number of Annotated Frames 293,000 32,790
Total Number of Pedestrians 1,842 1,481
Crossed Pedestrians 519 409
Not Crossed Pedestrians 1,323 1,072

dataset includes the vehicle speed, heading direction, and GPS

coordinates.

2) Urban-PIP dataset: The dataset captures diverse traffic

conditions, ranging from busy intersections to quieter residen-

tial streets, with dynamic environmental changes. Pedestrian

behaviour may be influenced by the actions of nearby vehicles

or other pedestrians, making intention prediction more chal-

lenging. It is recorded under various weather conditions, in-

cluding sunny, cloudy, rainy, and foggy, in three geographical

locations using a multi-sensor setup. This multi-modal dataset

is collected via a combination of LiDAR, cameras, radar, and

IMU sensors mounted on the ego-vehicle. LiDAR provides

360◦ field of view with approximately a 300-meter range by

beaming out millions of laser pulses per second and measuring

the time of laser beam flight from the sensor to the surface

of an object, then reflecting from the object to the sensor on

the ego vehicle. The radar system has a continuous 360◦ view

to track the presence and speed of road users in front, behind

and sides of the vehicle. The multi-camera perspective (left,

front, and right) offers a richer contextual understanding of

pedestrian interactions compared to single-camera datasets like

PIE and JAAD. The cameras simultaneously capture the traffic

scene videos in HD format (1920× 1080), The IMU module

uses accelerometers and gyroscopes with input from GPS,

maps, wheel speeds, as well as laser and radar measurements

to provide position, velocity, and heading information to the

vehicle.

The Urban-PIP dataset captures both daylight and night-

time scenarios, making it more diverse and challenging than

datasets such as PIE, JAAD, and STIP, which are limited to

daylight conditions. The inclusion of low-light environments

introduces additional challenges, where the visibility of pedes-

trians is reduced, and sensor data may become noisy, leading

to challenges in detecting and tracking pedestrians’ behaviour

accurately.

In this study, the experiments are conducted using camera

sensors as they provide rich visual information, including

detailed information about pedestrian behaviour, their body

language, and contextual information that can be crucial

for predicting crossing intentions. Also, the affordability of

camera sensors has made them a practical choice for current

research on crossing prediction. We annotated 1,481 pedestrian

crossing intentions from the front cameras including 448 in the

front-left camera, 541 from the front camera, and 492 from

the front-right camera.

3) Frontal Urban-PIP dataset: To assess models limited

to a single camera, we introduce a subset of the Urban-

PIP dataset, named Frontal Urban-PIP (FU-PIP), focusing on

pedestrians observed only by the front camera. This subset,

featuring 55 pedestrians with crossing intentions and 129

without, ensures a fair comparison will be conducted with

similar methods which are limited to a single camera only.

B. Hardware and Implementation Settings

All proposed models were executed on a CUDA parallel

computing platform with an Nvidia Quadro RTX A5000 GPU,

64GB of RAM and an Intel Core i9 13900K 24-core processor

and the Torch environment.

PIP-Net was trained using the RMSProp optimiser. 256

hidden units were used for the GRUs, and the sigmoid (σ)

activation function was applied to the GRUs for handling

spatial kinematic data. To mitigate overfitting, a dropout rate

of 0.5 was introduced after the attention block. Additionally,

an L2 regularisation term of 0.0001 was incorporated into the

last fully connected layer.

PIP-Net-α: This model is designed for a single camera

setup. The model is trained on the PIE dataset and evaluated

against the PIE test set and the FU-PIP datasets. The model

doesn’t have the Camera Index pipeline within its architecture.

Thereby, the outputs of the Max-pooling 3D (MP3D in Figure

3) are directly forwarded to the flattened block, and the Shift

blocks are deactivated. A learning rate of 5× 10−5 was used

for 300 epochs with a batch size 10. The model was tested on

the FU-PIP dataset to evaluate its generalisability.

PIP-Net-β: This model is designed for multi-camera setups

to be evaluated against Urban-PIP with three cameras. The

training of this model is performed using the Urban-PIP

dataset with various observation times, a learning rate of

4× 10−5 across 400 epochs, and a batch size of 6. The split

ratio for training and testing samples is 80% (1,181 samples)

and 20% (296 samples) of the dataset, respectively.

C. Temporal Resolution and Observation Time

Temporal resolution plays a crucial role in pedestrian cross-

ing prediction, as it determines the frequency at which visual

observations are sampled over time. To analyse its impact,

we conducted experiments by varying the stride length while

keeping the observation sequence length fixed at m = 15
(processing 15 frames), as followed the benchmark [18].

This approach allows us to expand the temporal window

without increasing the model’s parameters, enabling a trade-

off between capturing long-term dependencies and maintaining

computational efficiency. We experimented with five different

temporal resolutions over PIE videos by varying the stride

from 1 (processing every frame) to 5 (processing every fifth

frame), leading to observation times ranging from 0.5 sec-

onds to 2.5 seconds. Figure 6 presents the performance of

our proposed model, PIP-Net−α, across different temporal

resolutions. The results indicate that increasing the stride

initially improves performance, as observed with stride 1,

which achieves the best results (Acc: 0.915, AUC: 0.897, F1:

0.846). However, beyond stride 2, the performance degrades,
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Fig. 6. Performance of PIP-Net−α across different temporal resolutions:
As the stride increases, the sampling frequency decreases, expanding the
observation time from 0.5 to 2.5 seconds, influencing the model’s ability to
predict pedestrian crossings.

suggesting that excessive temporal gaps between frames may

lead to loss of fine-grained motion cues critical for precise

crossing prediction. This aligns with other studies that suggest

the intuition that the closer to crossing events, the more visual

information clues will be revealed [29], [42], [44].

TABLE II
PERFORMANCE RESULTS OF PIP-NET-α, MEMORY USAGE, INFERENCE

TIME, AND OBSERVATION TIME FOR DIFFERENT TEMPORAL STRIDES AND

SEQUENCE LENGTHS ON PIE DATASET.

s m OT Params M IT Acc AUC F1

1
10

0.3s
5.5M 1.4GB 55ms

0.913 0.907 0.835
2 0.5s 0.921 0.935 0.882

1
15

0.5s
5.9M 1.8GB 58ms

0.915 0.897 0.846
2 1.0s 0.907 0.891 0.836

1
20

0.6s
6.6M 2.5GB 62ms

0.908 0.911 0.853
2 1.3s 0.896 0.874 0.810

s: Temporal Stride; m: Sequence Length (frame); OT: Observation Time (second);

Params: Number of model parameters (million); M: Memory usage (gigabyte); IT:

Inference Time (millisecond).

To further investigate the impact of temporal dependen-

cies, we conducted experiments by varying the observation

sequence length m while keeping the temporal stride fixed at

1 and 2. The objective was to determine whether increasing

the number of frames to process improves prediction per-

formance or introduces redundancy or irrelevant information.

Table II presents the results, including the number of model

parameters, memory usage, and inference time for different

configurations. Our findings indicate that a shorter sequence

length (m = 10) with a temporal stride of 2 (s = 2)
achieves the highest prediction performance (AUC = 0.938,

F1 = 0.882) while maintaining computational efficiency. This

configuration (s = 2,m = 10) keeps the observation time

to 0.5 seconds like (s = 1,m = 15) but with fewer frames

processing. Furthermore, this setting requires fewer learnable

parameters (5.5M) and lower memory usage (1.4GB), leading

to a more efficient inference time of 55ms. These results

suggest that increasing sequence length beyond a certain

threshold may introduce redundant or irrelevant information

about pedestrians’ crossing intentions.

D. Comparative Results

Table III highlights the performance of our method on

the PIE dataset. The observation time (m) has been set to

15 frames, the same as the previous methods, to ensure

a fair comparison with other methods. PIP-Net-α, achieves

TABLE III
PERFORMANCE COMPARISON ON THE PIE DATASET.

Model Acc AUC F1 Precision Recall

ATGC [15] 0.59 0.55 0.39 0.33 0.47
Multi-RNN [30] 0.83 0.80 0.71 0.69 0.73
SingleRNN [31] 0.81 0.75 0.64 0.67 0.61
SFRNN [29] 0.84 0.82 0.72 0.75 0.80
PCPA [18] 0.87 0.86 0.77 0.75 0.79
CAPformer [23] 0.88 0.80 0.71 0.69 0.74
PPCI [43] 0.89 0.86 0.80 0.79 0.81
GraphPlus [49] 0.89 0.90 0.81 0.83 0.79
MCIP∗[11] 0.89 0.87 0.81 0.81 0.81
CIPF∗[12] 0.91 0.89 0.84 0.85 0.83
PIT∗ [42] 0.91 0.92 0.82 0.84 0.81
VMIGI [44] 0.92 0.91 0.87 0.86 0.88

TrEP [39] 0.92 0.93 0.86 0.87 0.84
PIP-Net-α (Ours) 0.92 0.94 0.88 0.89 0.88

All models are evaluated at ETC = 0.5s. Results marked with ∗ are reported from

the original article due to unavailable source code.

the highest values in all metrics, showcasing its prowess in

capturing the crossing intention classification.

In comparison to MultiRNN, SingleRNN, and SFRNN,

which rely on CNN encoders for visual features and RNN-

based encoder-decoder structures, PIP-Net-α achieves sig-

nificant improvements by integrating a more diverse set

of input features, capturing both pedestrian kinematics and

environmental context more effectively. Unlike transformer-

based (CAPformer) and graph-based (GraphPlus) architec-

tures, which struggle with motion generalisation and real-time

inference, PIP-Net-α leverages an RNN-based architecture to

maintain temporal continuity and robust sequential reasoning,

resulting in higher predictive performance. Furthermore, the

proposed feature fusion approach, combining three kinematic

and four contextual features, enables a more comprehensive

scene understanding, improving AUC by +4% compared to

CIPF, which integrates eight pedestrian-vehicle interaction

features.

While recent models such as PIT, VMIGI, and TrEP have

introduced advanced techniques for long-range dependencies,

relational learning, and uncertainty estimation, their effec-

tiveness remains constrained by the inherent limitations of

their respective architectures. PIT, incorporating self-attention

mechanisms and Temporal Fusion Blocks, enhances sequence

modelling but requires heavy computational resources, limiting

real-time feasibility. VMIGI, which applies a multimodal

fusion strategy with GCN-based relational learning, strength-

ens interaction reasoning but struggles with fast motion sce-

narios due to graph structure limitations. TrEP, adopting a

transformer-based evidential prediction framework, explicitly

models uncertainty by correlating it with human annotator

disagreement, yet its reliance on pure transformer encoding

leads to weaker sequential motion modelling. In contrast, PIP-

Net-α effectively balances multimodal integration, temporal

consistency, and computational efficiency, making it the most

well-rounded solution for pedestrian crossing prediction in

dynamic urban environments, modelling uncertainty and cor-

relating it with human annotator disagreement.

1) Crossing Time Prediction: Depending on the traffic

scenario, the model’s prediction performance may vary. The

model can predict the pedestrians’ estimated time to cross

(ETC), 1 to 4 seconds in advance. For example, an ETC=2
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Fig. 7. Comparative analysis of prediction performance is conducted for future
time points in the study. Models are evaluated in terms of their predictive
accuracy from 1 second to 4 seconds ahead.

means the model expects or predicts the target pedestrian

crosses in 2 seconds.

We evaluated the performance of the proposed PIP-Net-α

model across various ETCs from 1 to 4 seconds. Figure 7

presents a comparison of the Acc, AUC, and F1 performance

of PIP-Net-α with two recent prediction models, CIPF and

MCIP, using the PIE dataset. All three models exhibited a

decline in performance across all metrics as the Estimated

Time to Cross (ETC) increased, i.e. when the models tried to

have a longer-term prediction. Notably, the most significant

drop in AUC occurred between the ETC = 1-second and ETC

= 2, with MCIP and CIPF models decreasing by 6.8% and

6.7%, respectively. This is while our model shows a 6.6%

decrease in the AUC from ETC = 1 to 2. The Accuracy

also shows gradual decreases from the 3-second to the 4-

second interval, with all models experiencing a decrease of

approximately 1% (MCIP) and 2% (CIPF), respectively. As

can be seen, the proposed model with green dashed lines

consistently outperformed the other models for all ETCs.

2) Ablation Study: To investigate the inner workings of

the proposed models, incorporating interpretability methods

such as Grad-CAM [60] can enhance understanding by visual-

ising which parts of the image influence predictions. However,

in complex models that process heterogeneous input modal-

ities and sequential data, these techniques may not always

provide clear or actionable insights. Although VIMGI [44]

successfully visualised the visual encoder, such methods often

focus on individual components, missing feature interactions

and kinematic data that affect predictions. Our approach,

similar to studies such as CIPF [12], MCIP [11], TrEP [39] and

CAPformer [23], emphasises performance-driven modelling,

prioritising accuracy and efficiency. We have conducted com-

prehensive ablation studies to address interpretability concerns,

providing valuable insights into our model’s decision-making

processes.

The baseline model, α0, comprises the primary input fea-

tures recognised in the task of pedestrian intention prediction,

including Bounding Box, Body Pose, Local Content, Semantic

Context, and Vehicle Speed [11]–[13], [23], [51]. Ablation

experiments were conducted on the best-performing configu-

ration, as presented in Table II, with s = 2 and m = 10. The re-

sults demonstrate that excluding the Bounding Box input leads

TABLE IV
PIP-NET-α VARIANTS USING DIFFERENT INPUT FEATURES.

Variant GM LM MD CD Acc AUC F1 IT

α0 - - - - 0.893 0.907 0.830 25

α1 ✓ - - - 0.904↑ 0.913↑ 0.827↓ +10

α2 - ✓ - - 0.898↑ 0.919↑ 0.839↑ +3

α3 - - ✓ - 0.884↓ 0.902↓ 0.836↑ +12

α4 - - - ✓ 0.914↑ 0.924↑ 0.867↑ +27

α5 ✓ - ✓ - 0.883↓ 0.903↓ 0.827↓ +22
α - ✓ - ✓ 0.921↑ 0.938↑ 0.882↑ +30

Features: GM is Global Motion, LM is Local Motion, MD is ManyDepth, and CD is

Categorical Depth, IT: Inference Time (milliseconds). The up arrow indicates an

improvement, and the down arrow indicates a decrement in comparison with the

baseline variant.

to an 8.6% decrease in accuracy compared with the baseline,

whereas omitting the Body Pose parameter results in a lower

accuracy reduction of 3.5%. This represents less importance

of body pose compared to the bounding box which may seem

counter-intuitive. However, our further investigations confirm

that the bounding box data is notably more important and

useful as it includes the pedestrian’s moving trajectory and

tracking history over time, providing valuable spatio-temporal

information. While body poses spatio-temporal information

is not very important. The body pose only seems to matter

when the pedestrian is about to cross the road in the last few

frames before crossing. Otherwise, the body pose in previous

moments, such as when the pedestrian is on the sidewalk, is

redundant.

The impact of removing Local Content causes a decrease in

accuracy by 1.7%. It appears to lack comprehensive features

on pedestrians’ intentions, given the wide variety in appear-

ance and accessories they may have. Excluding Semantic

Context leads to a 3.4% accuracy decrease as it includes details

about road layout such as sidewalk positioning and drivable

zones.

Interestingly, removing the Vehicle Speed feature results in

a 3.8% drop in accuracy, making it the second most important

input. This aligns with the findings of the study by [23], which

states that a model trained with the ego-vehicle speed tends to

focus on the ego-vehicle speed adjustment (e.g. deceleration)

to learn the pedestrian intention, rather than learning to predict

the intention from the pedestrian behaviour.

Table IV shows a comparison of the two input features

used in the proposed model, including scene motion and depth

information, along with their impact on inference time. The

α2 variant demonstrates that the local motion feature can

exhibit superior performance when compared to the global

motion feature (2d), which includes optical flow analysis of

the entire scene. While optical flow is typically sensitive

to any movement between consecutive frames, it appears

that local motion can provide a coarse-grained feature and

treat more concisely to account for pedestrians’ velocity and

direction of movement, regardless of other irrelevant objects in

the surroundings. Additionally, local motion introduces only

a modest increase in inference time (+3ms), making it an

efficient feature choice.

Regarding depth information features, the categorical depth

feature proposed stands out as the most effective standalone

feature, as evidenced by the results of variant α4 in Table IV,
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highlighting the significance of pedestrians’ distance to the

ego-vehicle and their interactions with other road users in the

traffic scene. However, this improvement comes at the cost of

a notable increase in inference time (+27ms). Conversely, α3

performs the weakest among the variants when compared with

the baseline, which utilises the global depth heatmap of the

entire scene (2e). This underperformance may be attributed

to the unstable estimation of depth for irrelevant surrounding

objects. This is addressed in the categorical depth by focusing

only on pedestrians and vehicles, and then applying per-

instance normalisation (as shown in Figure 4).

Finally, the optimal outcome is attained by taking into

account both the local motion and categorical depth map in α,

leading to enhancements in the baseline regarding Acc, AUC,

and F1 score by 3.14%, 3.1%, and 6.2%, respectively. This

improvement, however, comes with the highest inference time

(+30ms), emphasising the trade-off between model complexity

and real-time applicability. The full model (α) achieves 55

milliseconds (≈ 18 FPS) inference time while maintaining

high prediction performance, ensuring its suitability for real-

time autonomous systems.

3) Generalisation: The PIP-Net-α evaluation is presented

against the SOTA methodologies on the FU-PIP dataset in

Table V. Notably, the models have never seen the scenarios

in their training phase. The outcomes of other methods were

generated using the pre-trained weights they provided. Overall,

models exhibit limited generalisation capability on Urban-PIP,

suggesting that our dataset is a more challenging benchmark

compared to PIE. Given its environmental variety and inclu-

sion of nighttime scenes, we believe our findings are largely

transferable to PIE and JAAD, which mainly comprise daylight

conditions and may not fully capture real-world complexities.

Most models show improvements over ATGC across various

metrics, with each demonstrating unique strengths. However,

we witnessed a decrement in terms of performance for PCPA,

PPCI, CAPformer, and GraphPlus. As far as the research

curiosity demand, we investigated the architecture of these

models, and it turned out they are suffering from low-quality

global context (see Figure 8) and body pose features. This is

caused by the feature extractor algorithms, i.e., the semantic

segmentation and pose estimator they have used, which hinder

the classifier from judging based on precise features.

In our model, we enhanced semantic context representation

by employing panoptic segmentation instead of conventional

semantic segmentation. Unlike semantic segmentation, which

classifies each pixel into a category for a single image,

panoptic segmentation processes video sequences to generate

temporally consistent object segments, distinguishing between

object instances and semantic categories simultaneously. How-

ever, failure cases arise in challenging scenarios, particularly

in low-light conditions or occluded scenes. Figure 8 illus-

trates qualitative comparisons between Slot-VPS (used in our

model) and DeepLabV3 [61] (used in previous works). During

daytime, Slot-VPS [58] provides sharper instance boundaries

and more stable object tracking. However, at night, we ob-

serve increased misclassification and temporal inconsistencies,

where pedestrians may be incorrectly segmented as part of

the background or falsely merged with nearby objects. These

TABLE V
PERFORMANCE COMPARISON ON THE FRONTAL URBAN-PIP DATASET.

Model Acc AUC F1 Precision Recall

ATGC 0.52 0.51 0.35 0.32 0.44
Multi-RNN 0.64 0.63 0.49 0.51 0.48
SingleRNN 0.65 0.64 0.54 0.57 0.53
SFRNN 0.65 0.65 0.55 0.58 0.53
PCPA 0.62 0.60 0.50 0.52 0.47
PPCI 0.63 0.61 0.51 0.55 0.47
CAPformer 0.64 0.60 0.55 0.58 0.54
GraphPlus 0.64 0.61 0.57 0.59 0.56
VMIGI 0.65 0.61 0.57 0.58 0.55
TrEP 0.64 0.62 0.58 0.59 0.57
PIP-Net-α (Ours) 0.73 0.71 0.69 0.70 0.68

Fig. 8. Comparison of semantic and panoptic segmentation, where panoptic
segmentation offers more precise scenes in daylight by distinguishing object
instances and semantic categories, leading to improved global context repre-
sentation.

Fig. 9. Body pose estimation on local image rather than on the entire image
enables more precise and reliable pose extraction.

segmentation errors propagate to downstream predictions, po-

tentially leading to incorrect pedestrian intention estimates,

especially when multiple pedestrians are present.

We observed more precise body pose information by apply-

ing pose estimation on the local image region containing the

pedestrian rather than the entire scene image. This method

ensures a more focused and accurate pose representation,

reducing noise and ambiguity caused by irrelevant background

elements. Figure 9 illustrates how our approach successfully

retrieves clear and precise pose data in scenarios where apply-

ing pose estimation on the entire scene fails to obtain reliable

pose information. Applying the pose estimation algorithm to
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the local image region results in more robust and consistent

pose features.

While these enhancements contribute to better generalisa-

tion, performance variations in challenging conditions empha-

sise the need for further research into feature extraction under

adverse lighting and occlusions to ensure model reliability

across all operational scenarios.

4) View Angle Expansion: We explored the enhance-

ment of the field of view using three cameras to enable

the autonomous vehicle to perceive a larger portion of its

surroundings. For this purpose, we train PIP-Net-β with three

different observation times (m) of 10, 20, and 30 frames.

Subsequently, we examined how the prediction performance

evolves as expand the ETC prediction horizon from 1 to 4

seconds. As depicted in Figure 10, the accuracy of crossing

intention prediction decreases as the ETC prediction expands.

However, the accuracy often increases with the enlargement of

observation time. Intriguingly, when ETC = 4 and m = 30 the

accuracy was lower compared to m = 20. This discrepancy

arises from the model predicting pedestrians to be crossing

based on long-term observations when, in reality, they did

not cross. This highlights the observation that a pedestrian’s

previous actions do not always accurately indicate their future

intentions, as they can change their mind and act in an instant

[3].

5) Computational Cost of Multi-Camera Integration:

To assess the computational cost of integrating three cameras,

we evaluated the inference time, memory usage, and parameter

count of PIP-Net-β with stitched multi-camera inputs. Our

results indicate that while computational demands increase, the

model remains suitable for real-time execution. Specifically,

the three-camera version required 9.9M parameters, 2.9GB of

memory, and an inference time of 127ms (≈ 7.8 FPS). This

represents an approximate 1.8× increase in model size, 2.1×

in memory usage, and 2.3× in inference time compared to

the single-camera setup (PIP-Net-α). The feature integration

module efficiently mitigates redundancy, ensuring that multi-

camera integration remains feasible for real-world deployment.

E. Observational Results

We present the qualitative results of the PIP-Net-α in Figure

11 for FU-PIP datasets. The crossing probability is represented

by a probability bar, where higher values (reddish colour) indi-

cate a high probability of the pedestrian crossing. Pedestrians

with no intention to cross are depicted with greenish bounding

boxes and lower values on the probability bar.

Figure 12 presents the qualitative results of PIP-Net-α on

12 sample scenarios in the PIE and FU-PIP dataset. The model

successfully predicted cases in rows (a) to (c), demonstrating

robustness across varying daylight ambient lighting conditions.

In row (c) of FU-PIP, the model accurately inferred the

crossing intention of a pedestrian despite partial occlusion.

However, in row (d) of PIE, the model struggled to make

a correct prediction, when the pedestrian was nearly fully

occluded.

In row (d) of FU-PIP, it seemed the model correctly

predicted the intention of the pedestrian who stepped onto

Fig. 10. Comparison of the crossing intention accuracy (Acc) for PIP-Net-β
models (in three cameras mode) across various observation sequence lengths
(m). The results are based on the Urban-PIP dataset.

(a) A non-signalised junction

(b) A signalised junction with a blue light

(c) A signalised junction with a red light

Fig. 11. A representation of the proposed model’s analysis on traffic video

scenes of FU-PIP dataset. Three distinct images showcase intersections and
traffic light conditions with probability bars positioned in front of pedestrians,
aligning with their body pose direction. These bars visually represent the
model’s predicted probability of each detected pedestrian crossing within the
next 2 to 4 seconds into the future.

the road for crossing. However, the pedestrian subsequently

abandoned the crossing and stepped back. In such rare cases,

where the pedestrian ultimately does not cross, the ground

truth is labelled as “not crossing”, consistent with the annota-

tion criteria of the PIE and JAAD datasets.

In row (e) of PIE, the ego vehicle was accelerating, and
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Fig. 12. Qualitative results on 12 sample scenarios. Rows with blue ticks
represent successful predictions by the model and red crosses indicate wrong
predictions. t demonstrates the prediction at the decisive moment and (t+ ϵ)
shows the ground truth (dashed bounding boxes). Red bounding boxes denote
crossing, while blue denotes not crossing.

a hesitation in crossing was observed in the pedestrian’s

behaviour. Interestingly, the model predicted a 43% probability

of crossing, but this is below the 50% probability threshold

to be accepted as a crossing event. However, we hypothesised

that the acceleration of the ego vehicle might have a dominant

effect over visual observations. To investigate this, we applied

the permutation feature importance approach, as suggested in

[51], and replaced the speed value with a scenario in which

the ego vehicle was decelerating. Notably, the model then

predicted an 88% probability of crossing intention for this

case. This finding aligns with previous studies suggesting that,

in certain scenarios, the model prediction heavily relies on

ego-vehicle speed.

In row (f) of PIE, the ego vehicle was preparing to turn

left while the pedestrian was inclined to cross the intersect-

ing road. This suggests that incorporating additional motion-

related information about the ego vehicle, such as the heading

angle/steering angle, could help to address such cases.

We also evaluated the model’s performance in nighttime

scenarios, as shown in rows (e) and (f) of FU-PIP. In these

cases, the model failed to classify pedestrian crossing inten-

tions accurately. This poor performance can be attributed to

two primary factors: (1) the reduced accuracy of input features

extracted from panoptic segmentation and depth estimation

under low-light conditions, and (2) the limited number of

nighttime samples in the training dataset, which likely led to

model underfitting in such scenarios.

V. CONCLUSION AND FUTURE WORK

This paper presented a framework called PIP-Net for pre-

dicting pedestrian crossing intentions in real-world urban self-

driving situations. Two variants, α and β, were introduced to

support different camera setups. By utilising both kinematic

data and spatial features of the driving scene, the proposed

model employed a recurrent and temporal attention-based

methodology to predict pedestrians’ future crossing intentions

accurately. Through quantitative and qualitative experiments

on the PIE dataset, the proposed model achieved state-of-the-

art performance with a 94% AUC and an 88% F1 score.

The Urban-PIP was introduced as a new dataset for the

pedestrian crossing prediction task, including various AV

driving scenarios and comprehensive annotations on a multi-

sensory setup, thereby enabling a better future investigation

of crossing behaviour studies. Our model demonstrated a gen-

eralisation capability when applied to the Urban-PIP dataset

by +9%, +10%, and 12% improvement compared with other

models in terms of accuracy, AUC, and F1 score, respectively.

This was underlined by the scene feature extractors employed

in training our model.

To enhance the visual encoding of road users and their rel-

ative distances to the ego vehicle, we introduced a categorical

depth feature map. This, combined with the sliced motion flow

feature, provided salient information about the dynamics of the

scene. Our results reveal that they cumulatively enhanced the

accuracy and F1 score of the baseline model by +3.1% and

+6.2%, respectively. Additionally, we investigated the impact

of expanding the view angle using three cameras and enlarging

prior observation frames.

Our algorithm achieved 85.4% accuracy in predicting pedes-

trian crossing intentions 2 seconds in advance and 79.3%

accuracy for predictions between 2 and 4 seconds in advance.

However, the algorithm is sensitive to the quality and precision

of the input features, specifically, scene context and body pose

information.

Overall, this study paved the way for developing multi-

modal solutions for pedestrian crossing prediction and pro-

vided insights to effectively protect vulnerable road users

by foreseeing the crossing behaviour of nearby pedestrians.

Following the approach taken by seminal works in the field

this study also focused on RGB cameras; however, we ex-

tended the use of a single camera to multiple cameras (left,

front, and right) to evaluate the effectiveness of contextual

information expansion. As one of the possible future work,

we recognise the potential benefits of integrating data from

other sensors, such as LiDAR and radar, to further enhance the

model robustness in adverse weather or challenging lighting

conditions. Specifically, LiDAR can offer more precise and

reliable depth estimation, enhancing the Categorical Depth

representation beyond what can be achieved with monocular-

based depth estimation algorithms.
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