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 A B S T R A C T

Forecasts are essential for climate adaptation and preparedness, such as in early warning systems and impact 
models. A key limitation to their practical use is often their coarse spatial grid spacing. However, another less 
frequently discussed but crucial limitation is that forecasts are often more precise than they are accurate when 
their grid spacing is finer than the scales they can accurately predict. Here, we adapt the fractions skill score, 
a metric conventionally used to quantify spatial forecast accuracy by the meteorological community, to help 
users navigate the trade-off between forecast accuracy versus precision. We demonstrate how this trade-off 
can be visualized for daily European precipitation, focusing on deterministic predictions of anomalies and 
probabilistic predictions of extremes, derived from three years of sub-seasonal forecasts from the European 
Centre for Medium-Range Weather Forecasts (ECMWF). Our results show that decreasing precision through 
spatial aggregation increases forecast accuracy, extends predictable lead times, and enhances the maximum 
possible accuracy relative to the grid scale, while increased precision diminishes these benefits. Notably, spatial 
aggregation benefits daily-accumulated forecasts more than weekly-accumulated ones, per unit lead-time. We 
demonstrate the practical value of our approach in three examples: communicating early warnings, managing 
hydropower capacity, and commercial aviation planning—each characterized by distinct user constraints on 
accuracy, spatial scale, or lead-time. The results suggest a different approach for using forecasts; post-processing 
forecasts to focus on the most accurate scales rather than the default grid scale, thus offering users more 
actionable information.
Practical implications

Our results address a critical need for more accurate and actionable 
sub-seasonal forecasts, especially at longer lead times when crucial 
decisions are made. By adapting the fractions skill score, we illustrate 
how users can visualize and optimize the trade-off between a fore-
cast’s spatial precision and its accuracy. Rather than relying on default 
high-resolution grids, we show that spatially aggregating forecasts 
can extend predictability and offer a clearer perspective on potential 
weather hazards. This approach not only complements existing forecast 
systems but also provides insights into when and where coarser-scale 
information is more dependable than finer scales. Ultimately, practi-
tioners gain a practical tool that highlights where and how forecast 
aggregation pays dividends for planning at longer lead times. We 
demonstrate the value of the tool using three real-world examples.

∗ Corresponding author at: NORCE Norwegian Research Center AS, Bergen, Norway.
E-mail address: etdu@norceresearch.no (E. Dunn-Sigouin).

In the first example, we show how early warning systems can 
benefit from the extended lead times offered by spatial aggregation. 
We demonstrate this using the 2023 Storm Hans case in Norway, which 
required timely alerts to protect lives and infrastructure. Even with the 
inherent uncertainty of precipitation forecasts, aggregating them across 
broader areas yields more robust indications of impending extreme 
rainfall. This method could allow forecasters to issue warnings earlier, 
while policy makers and emergency managers stand to gain crucial time 
to mobilize resources.

The second example focuses on hydropower operations, where de-
cisions are driven by localized hydrological processes but still benefit 
from a strategic view of precipitation patterns. Because releasing water 
from reservoirs too early can be costly, operators need maximum 
confidence in imminent rainfall forecasts. By matching the spatial 
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aggregation scale to the watersheds of interest, hydropower managers 
can zero in on the most relevant signals. Our analyses highlight how 
post-processing forecasts at a watershed scale sharpens the focus on po-
tential inflows, thereby supporting economically and environmentally 
sound reservoir management. Such tailored forecasting helps optimize 
water releases, reducing both flood risk, infrastructure damage and lost 
revenue opportunities.

In the third example, commercial aviation stands to benefit from 
spatial aggregation of forecasts when flights must be scheduled or 
canceled days in advance to minimize disruption. Spatial aggregation 
enables major carriers to detect the broader ‘‘footprint’’ of storms like 
Storm Hans well ahead of time, increasing confidence in decisions 
regarding flight cancellations, route changes, and resource allocation. 
Although individual airports lose fine-scale information, airlines can 
avoid the larger financial losses and passenger inconvenience that arise 
from last-minute adjustments over the entire network. This balance 
between lead time and accuracy can make flight networks more robust 
under uncertain weather conditions, ultimately improving safety and 
travel reliability while minimizing costs.

Taken together, these examples reveal how our adapted fractions 
skill score framework opens the door to ‘‘scalable’’ forecasts that users 
can customize to their unique spatial constraints. By offering a method 
to systematically aggregate forecasts, decision-makers can glean earlier 
and more trustworthy signals of potential high-impact events, optimiz-
ing their interventions in sectors ranging from disaster management to 
energy production and transportation. Our method does not eliminate 
all forecast uncertainties but provides a structured way to capitalize 
on known forecast strengths. In doing so, it encourages a shift from 
assuming that higher-resolution forecasts are always better, to aligning 
forecast precision with the scales that can actually be predicted and 
those most relevant to users.

1. Introduction

In an era increasingly defined by climate change, the importance 
of weather and climate forecasts for society has surged, encompassing 
predictions from days to a decade ahead (Merryfield et al., 2020; 
White et al., 2022; O’Kane et al., 2023). This shift reflects a broader 
understanding of the critical role these forecasts play in managing the 
variable and often extreme environmental conditions caused by climate 
variability and change, and their integration into society reflects a 
stronger push for adaptation and preparedness (Goddard, 2016; Tren-
berth et al., 2016; Coughlan de Perez et al., 2022). Forecasts support 
a number of international adaptation efforts such as the World Meteo-
rological Organization’s Global Framework for Climate Services (He-
witt et al., 2012), the United Nations Early Warnings for All initia-
tive (EW4ALL, WMO, 2022), and the European Union’s financial sus-
tainability taxonomy (European-Commission, 2020), and play a critical 
role in weather and climate services within the private sector (Cusick, 
2019; Lam et al., 2023; Price et al., 2024). Forecasts are also used to 
predict impacts that are societally important but not directly modeled 
by their systems (Merz et al., 2020). These impact models vary widely 
in design and what they predict, such as floods, droughts, shipping 
routes, insurance risk, disease spread, agricultural cycles and renewable 
energy production (e.g., Torralba et al., 2017; Röösli et al., 2021; 
Graham et al., 2022; Haupt et al., 2018, 2019a,b).

There is, however, a well-known usability gap between the produc-
tion of weather and climate information and its use (Lemos et al., 2012; 
Van den Hurk et al., 2018; Findlater et al., 2021). This gap is often 
attributed to the limited spatial resolution of forecasts, which often fails 
to meet the fine-scale precision required by users due to the prohibitive 
cost of high-resolution modeling.

Another less recognized yet crucial limitation to the practical use 
of forecasts, which is the focus of this paper, is the rapid decline in 
forecast skill at finer spatial scales as predictions extend into the future. 
This degradation in accuracy stems from faster error growth at smaller 
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scales, where predictability is inherently linked to spatial size (Lorenz, 
1969; Toth and Buizza, 2019). For instance, while slower large-scale 
cyclones spanning thousands of kilometers may be predictable over 
several days, smaller-scale thunderstorms operate on much shorter 
timescales, with predictability limited to a few hours. Spatial and 
temporal aggregation can be used to counteract this small-scale error 
growth by effectively filtering out high-frequency, small-scale noise, 
thereby enhancing the predictable signal from the lower-frequency, 
larger-scale circulation. Thus, aggregation helps to extend the limit 
of predictability, known as the ‘‘forecast skill horizon’’ (Buizza et al., 
2015; Buizza and Leutbecher, 2015), but at the cost of spatial or 
temporal precision.

While temporal aggregation is routine, it is rare to find weather 
and climate information – either from forecasts or projections – that 
has been aggregated spatially. For example, sub-seasonal forecasts 
(often referred to as extended-range or monthly forecasts) are usually 
presented in the form of weekly aggregated information, such as in 
the online charts catalogue of the European Centre for Medium-Range 
Weather Forecasts (ECMWF, https://charts.ecmwf.int/). However, in 
this case no spatial aggregation is done; the forecast charts are dis-
played at the model’s original grid spacing. Even commonly used 
daily-aggregated weather forecasts are shown on the default grid spac-
ing despite a well known decline in forecast skill at smaller spatial 
scales over just a few days. This can lead to a critical mismatch between 
the apparent precision in forecast products and the underlying accuracy 
in the data. Such misrepresentation risks undermining effective use of 
weather and climate information (Nissan et al., 2019; Fiedler et al., 
2021).

Two ways of making forecasts better fit user needs are improving 
their predictive skill at finer spatial scales or helping users more 
effectively utilize existing skill. While improving forecasts remains a 
formidable challenge (Bauer et al., 2015; Benjamin et al., 2019), re-
cent advances in machine-learning-based models have made significant 
strides, offering performance that now rivals traditional dynamical 
forecast models (Lam et al., 2023; Ben Bouallègue et al., 2024; Price 
et al., 2024). Despite these breakthroughs, it is widely acknowledged 
that there are likely intrinsic limits to the forecast skill horizon, which 
no amount of model improvement can overcome (Lorenz, 1969; Palmer 
et al., 2014). Thus, a pragmatic strategy involves helping users nav-
igate the inherent trade-off between spatial accuracy and precision, 
optimizing existing forecasts for their needs.

Various strategies using spatio-temporal aggregation have been sug-
gested (e.g., Gong et al., 2003; Gilleland et al., 2009; Jung and Leut-
becher, 2008; Buizza and Leutbecher, 2015; Gehne et al., 2016; Toth 
and Buizza, 2019; Van Straaten et al., 2020; Young et al., 2020; Rivoire 
et al., 2023). These focus mostly on quantifying the forecast skill hori-
zon where predictability is small and difficult to exploit in practice. An 
alternative, more user-oriented method is to use the fractions skill score 
(Roberts and Lean 2008), which quantifies where forecast predictability 
is high and usable. This approach, which aggregates forecasts over an 
increasing number of neighboring grid points, quantifies the trade-off 
between accuracy versus precision, and can be used to post-process the 
forecast according to the user’s preferred balance. The fractions skill 
score and a number of other closely related methods stand out for their 
intuitiveness and practical applicability, yet their use has been largely 
confined to the meteorological community (e.g., Gilleland et al., 2009; 
Jolliffe and Stephenson, 2012; Keane et al., 2016; Zhao and Zhang, 
2018; Schwartz, 2019; Cafaro et al., 2021).

In this study, we propose a novel methodology, based on the frac-
tions skill score, that realigns forecast capabilities with end-user re-
quirements, thereby enhancing their practical application. The inno-
vative aspect of this method lies in shifting its focus from verifying 
forecasts for meteorologists to optimizing them for users. The method 
is applied to sub-seasonal forecasts with lead times ranging from 1 day 
to several weeks—an essential time-frame for many decision-making 
processes (Merz et al., 2020; White et al., 2022).

https://charts.ecmwf.int/
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This work is part of the Climate Futures collaboration, an inter-
disciplinary and intersectoral initiative that, since 2020, has brought 
together public and private organizations in Norway to co-produce 
weather and climate prediction-based tools and services. A key case 
study involved working with Tryg Forsikring, a private insurance com-
pany, to incorporate forecasts into their decision-making in order to 
comply with sustainable finance regulations. The collaboration served 
two purposes: to inform insurance professionals on the practical limi-
tations of using forecasts, and to maximize the utility of forecasts for 
insurance impact modeling. Our experience with the insurance sector 
suggests our approach could be broadly applied to support a wide range 
of climate adaptation efforts across industries. The intended users are 
meteorologists and climate scientists who supply forecasts, or industry 
professionals who can use forecast data but lack forecast expertise.

In the next section we start by introducing the forecast dataset 
and outlining the methodology, which amounts to spatially aggregating 
forecasts before calculating commonly used metrics of forecast accu-
racy. In the results section, we apply the new method to evaluate the 
trade-off between precision and accuracy in European precipitation 
forecasts, derived from three years of sub-seasonal forecasts from the 
ECMWF. We explore how this method can aid users in interpreting 
deterministic predictions of precipitation anomalies and probabilistic 
predictions of extremes. To illustrate this, we use the example of Storm 
Hans, which struck Scandinavia, Northern Europe, and the Baltics in 
August 2023, with Norway bearing the brunt of its impact. Unusually 
approaching from the east rather than the west, the storm shattered 
century-old rainfall records in eastern Norway (Granerød et al., 2023). 
The resulting extreme rainfall triggered widespread flooding and land-
slides, severely damaging homes, roads, railways, and bridges, with 
estimated costs reaching 4 billion Norwegian Krone or 350 million 
euro (Ekroll, 2023). Over 10,000 insurance claims were filed, and ap-
proximately 2,400 people were evacuated—the largest such evacuation 
in Norway since World War II (KLP, 2023). With extreme rainfall events 
expected to become more frequent due to climate change (Hanssen-
Bauer et al., 2009), storm Hans exemplifies the growing challenges in 
climate adaptation.

Building on our findings and those of Roberts and Lean (2008), 
we end the paper by discussing how the method could be applied to 
forecasts in three different contexts — communicating early warnings, 
managing hydropower capacity, and commercial aviation planning — 
each characterized by distinct user-constraints on accuracy, spatial 
scale, or lead-time. In each case, we enhance forecast utility by post-
processing forecasts to focus on the most accurate spatial scales, rather 
than the default grid scale precision.

2. Data

We use three years (2020–2022) of sub-seasonal forecasts from the 
ECMWF (Buizza et al., 2018) downloaded from the MARS archive (ECMW
2024a). We use bi-weekly initializations on Mondays and Thursdays, 
for a total of 313 forecasts, each comprising 51 ensemble members 
running 46 days in the future. The initial 15 lead-time days are 
higher resolution (0.25◦ × 0.25◦ grid spacing) than the last 31 days 
(0.5◦ × 0.5◦), corresponding to approximately 28 km2 and 56 km2

at the equator, respectively. Accompanying each individual forecast 
is a set of retrospective forecasts. These were initialized on the same 
calendar day as the forecast over the previous 20 years and consist 
of 11 ensemble members. Such ‘‘hindcasts’’ provide an estimate of the 
climatological distribution accompanying each forecast.

The forecast-hindcast pairs correspond to different model versions 
over time (CY46R1, CY47R1, CY47R2, CY47R3) because the model 
is updated on the fly and our analysis spans multiple years. Changes 
in model cycles can influence model biases due to evolving model 
physics and data assimilation. While our approach (discussed in the 
next section) focuses on deviations from the model’s climatology, which 
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helps mitigate systematic differences across model cycles, residual bi-
ases in the forecasts may remain. However, we do not expect these to 
qualitatively impact our results.

We focus our analysis on Europe (33◦N to 73.5◦N and 27◦W to 
35◦E) and on predictions of daily and weekly-accumulated precipita-
tion. A corresponding analysis of daily and weekly-mean 2-m temper-
ature forecasts for two years (2020–2021) is included in the supple-
mentary materials. Forecast skill was verified relative to ERA5 reanaly-
sis (Hersbach et al., 2023) for the same grid, domain, and time period as 
the forecast. Although ERA5 exhibits known biases, such as a tendency 
for excessive drizzle (Lavers et al., 2022), it remains a convenient 
benchmark for verification because its resolution matches that of the 
forecast. We note, however, that other observational datasets may be 
used for verification, and that we do not expect this choice to impact 
our qualitative results. We also extended this analysis to storm Hans 
in 2023, incorporating additional forecasts and hindcasts initialized 
between 3 and 7 August alongside ERA5 data.

Finally, to illustrate the spatial scale of the data, we convert its 
spatial precision from gridpoint units to square kilometers, shown in 
the 𝑦-axis labels of Fig.  1. Specifically, we simply rescale the nominal 
28 km2 area represented by one gridpoint2 at the equator by the mean 
cosine of latitude within the domain, consistent with the spherical 
geometry of Earth’s surface. Consequently, one gridpoint2 within the 
European domain corresponds to approximately 15 km2.

3. Methodology

We assess forecast accuracy as a function of precision and lead 
time using modified versions of the Fractions Skill Score (FSS, Roberts 
and Lean, 2008). Here, accuracy refers to the skill of the forecast 
quantified using a skill score, and precision refers to the level of spatial 
aggregation of the forecast. We begin by summarizing the original FSS 
developed for the meteorological community in Section 3a, followed by 
our adaptations for end users in sections 3b,c,d. Next, we introduce a 
modified version of the Extreme Forecast Index (EFI, Lalaurette, 2003), 
which we use to demonstrate the value of optimizing forecast accuracy 
during Storm Hans in Section 5.

To facilitate the computation of scores and indices in the following 
sections, it is useful to first convert the reanalysis verification into 
the same format as the forecasts and hindcasts. Table  1 summarizes 
the variables and their dimensions defined in Section 3. Specifically, 
forecasts 𝑓 (𝑚, 𝑒, 𝑡, 𝑖, 𝑗) are characterized by dimensions of forecast ini-
tialization (𝑚), ensemble member (𝑒), lead time (𝑡), latitude (𝑖) and 
longitude (𝑗). These correspond to a verification 𝑣𝑓 (𝑚, 𝑡, 𝑖, 𝑗) from ERA5 
reanalysis, where 𝑒 = 1 and 𝑡 = 1 represents the 24-hour period after the 
forecast initialization date 𝑚. Similarly, hindcasts ℎ(𝑚, 𝑦, 𝑒, 𝑡, 𝑖, 𝑗) which 
include a hindcast year dimension (𝑦), correspond to a verification 
𝑣ℎ(𝑚, 𝑦, 𝑡, 𝑖, 𝑗) with 𝑒 = 1 that spans the past twenty years for each 
calendar date of forecast initialization 𝑚.

3.1. Fractions skill score

The FSS uses binary forecast and verification data to assess the skill 
of the forecast at different levels of spatial aggregation. Roberts and 
Lean (2008) developed their method using deterministic forecasts of 
precipitation, i.e., with only one ensemble-member. First, they con-
verted the forecast 𝑓 and verification 𝑣𝑓  to binary values based on a 
predefined absolute threshold (e.g., 4 mm). If the precipitation amount 
exceeded this threshold, the value was set to 1; otherwise, it was set to 
0. Next, for each grid point, they averaged surrounding points within a 
square of length 𝑛 (this process is referred to hereafter as aggregation), 
yielding an aggregated forecast 𝐹  and verification 𝑉𝐹  (see Eqs.  (1) 
and (2)). These aggregations are not binary, but have fractional values 
between 0 and 1. 

𝐹 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) = 1
2

𝑛
∑

𝑛
∑

𝑓
[

𝑚, 𝑡, 𝑖+𝑘−1−
(𝑛 − 2)

, 𝑗 + 𝑙−1−
(𝑛 − 1)

]

(1)

𝑛 𝑘=1 𝑙=1 2 2
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Table 1
Overview of variables and their dimensions defined in section 3.
 Dimension/Variable Description Section 
 𝑚 forecast initialization date 3  
 𝑒 ensemble member 3  
 𝑡 lead-time day 3  
 𝑖 latitude 3  
 𝑗 longitude 3  
 𝑦 hindcast year 3  
 𝑛 spatial aggregation level 3  
 𝑞 quantile 3  
 𝑓 (𝑚, 𝑒, 𝑡, 𝑖, 𝑗) forecast 3  
 ℎ(𝑚, 𝑦, 𝑒, 𝑡, 𝑖, 𝑗) hindcast 3  
 𝑣𝑓 (𝑚, 𝑡, 𝑖, 𝑗) forecast verification 3  
 𝑣ℎ(𝑚, 𝑦, 𝑡, 𝑖, 𝑗) hindcast verification 3  
 𝐹 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) aggregated forecast 3.1  
 𝑉𝐹 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) aggregated forecast verification 3.1  
 𝑀𝑆𝐸𝐹 (𝑛, 𝑚, 𝑡) mean-square error of aggregated forecast 3.1  
 𝑀𝑆𝐸𝑅𝐸𝐹 (𝑛, 𝑡) mean-square error of aggregated forecast relative to reference forecast 3.1  
 𝐹𝑆𝑆(𝑛, 𝑚, 𝑡) fractions skill score 3.1  
 𝑓 (𝑚, 𝑡, 𝑖, 𝑗) forecast anomaly 3.2.1  
 𝑣̃𝑓 (𝑚, 𝑡, 𝑖, 𝑗) forecast verification anomaly 3.2.1  
 𝐹 (𝑚, 𝑡, 𝑖, 𝑗) aggregated forecast anomaly 3.2.1  
 𝑉𝐹 (𝑚, 𝑡, 𝑖, 𝑗) aggregated forecast verification anomaly 3.2.1  
 𝑀𝑆𝐸𝐹 (𝑛, 𝑚, 𝑡) mean-square error of aggregated forecast anomalies 3.2.1  
 𝑀𝑆𝐸 ̃𝑅𝐸𝐹 (𝑛, 𝑚, 𝑡) mean-square error of aggregated forecast anomalies relative to reference forecast 3.2.1  
 𝐹𝑀𝑆𝐸𝑆𝑆(𝑛, 𝑡) fractions mean-square error skill score 3.2.1  
 𝐻(𝑛, 𝑚, 𝑡, 𝑖, 𝑗) aggregated hindcast 3.2.2  
 𝑉𝐻 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) aggregated hindcast verification 3.2.2  
 𝐹𝑞 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) aggregated forecast threshold value for quantile q 3.2.2  
 𝑉𝑞 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) aggregated verification threshold value for quantile q 3.2.2  
 𝑃𝐹𝑞

(𝑛, 𝑚, 𝑡, 𝑖, 𝑗) aggregated forecast probability for quantile q 3.2.2  
 𝑃𝑉𝑞

(𝑛, 𝑚, 𝑡, 𝑖, 𝑗) aggregated binary verification for quantile q 3.2.2  
 𝐵𝑆𝑞 (𝑛, 𝑚, 𝑡) brier-score of aggregated forecasts for quantile q 3.2.2  
 𝐵𝑆𝑅𝐸𝐹𝑞

(𝑛, 𝑚, 𝑡) brier-score of aggregated forecasts for quantile q relative to reference forecast 3.2.2  
 𝐹𝐵𝑆𝑆𝑞 (𝑛, 𝑡) fractions brier skill score for quantile q 3.2.2  
 ℎ𝑡ℎ𝑟𝑒𝑠ℎ(𝑞, 𝑚, 𝑡, 𝑖, 𝑗) hindcast threshold value 3.3  
 𝑓𝑟𝑓 (𝑞, 𝑚, 𝑡, 𝑖, 𝑗) fraction of forecast ensemble members over threshold 3.3  
 𝐸𝐹𝐼(𝑚, 𝑡, 𝑖, 𝑗) extreme forecast index 3.3  
 𝑣ℎ𝑡ℎ𝑟𝑒𝑠ℎ

(𝑞, 𝑚, 𝑡, 𝑖, 𝑗) verification hindcast threshold value 3.3  
 𝑓𝑟𝑣(𝑞, 𝑚, 𝑡, 𝑖, 𝑗) binary verification over threshold 3.3  
 𝐸𝑉 𝐼(𝑚, 𝑡, 𝑖, 𝑗) extreme verification index 3.3  
 𝐻𝑡ℎ𝑟𝑒𝑠ℎ(𝑛, 𝑞, 𝑚, 𝑡, 𝑖, 𝑗) aggregated hindcast threshold value 3.3  
 𝐹𝑅𝐹 (𝑛, 𝑞, 𝑚, 𝑡, 𝑖, 𝑗) fraction of aggregated forecast ensemble members over threshold 3.3  
 𝐹𝐸𝐹𝐼(𝑛, 𝑚, 𝑡, 𝑖, 𝑗) fractions extreme forecast index 3.3  
𝑉𝐹 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) =
1
𝑛2

𝑛
∑

𝑘=1

𝑛
∑

𝑙=1
𝑣𝑓

[

𝑚, 𝑡, 𝑖+𝑘−1−
(𝑛 − 2)

2
, 𝑗+𝑙−1−

(𝑛 − 1)
2

]

(2)

Grid points within the square of length 𝑛 but outside the domain 
defined in Section 2 (i.e., Europe) were set to zero. By comparing the 
mean square error of the aggregated forecast over the domain (Eq.  (3)) 
with that calculated from an aggregated reference forecast for each 𝑛, 
they obtained the FSS (Eq.  (4)). 

𝑀𝑆𝐸𝐹 (𝑛, 𝑚, 𝑡) =
1
𝐼𝐽

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1
[𝐹 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) − 𝑉𝐹 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗)]2 (3)

𝐹𝑆𝑆(𝑛, 𝑚, 𝑡) = 1 −
𝑀𝑆𝐸𝐹 (𝑚, 𝑛, 𝑡)
𝑀𝑆𝐸𝑅𝐸𝐹 (𝑛, 𝑡)

(4)

An FSS value of 1 signifies perfect forecast accuracy relative to 
the verification data, while an FSS value of 0 or less indicates the 
forecasts are no better or worse than a reference forecast. The choice of 
reference forecast is up to the user (e.g., random forecast, climatology 
or something else).

3.2. Modified fractions skill scores

Next, we modify the original FSS to better adapt it to end-users. The 
details of the modified scores are described in the next sections and the 
primary steps can be summarized as:

1. Aggregate the raw forecast and verification fields spatially fol-
lowing Eqs.  (1) and (2).
4 
2. Compute a standard grid point-wise score such as Mean Square 
Error or Brier Score.

3. Compute a skill score by comparing the score to a suitably aggre-
gated reference forecast and average over all spatial grid-points 
and forecasts.

3.2.1. Fractions mean-square error skill score
The Fractions Mean-Square Error Skill Score (FMSESS) quantifies 

the accuracy of ensemble-mean forecast anomalies, averaged across 
all grid points and forecasts, over varying spatial aggregation scales. 
Unlike the original FSS, which uses binary threshold-based values, the 
FMSESS incorporates anomalies relative to climatology. This modifi-
cation offers several benefits to users: (1) it generalizes the widely 
used mean-square error skill score across multiple spatial scales (Jolliffe 
and Stephenson, 2012), enabling better comparisons with past studies; 
(2) it simplifies the interpretation by providing a measure of accuracy 
independent of threshold; (3) it provides a better estimate of forecast 
skill by incorporating a mean-bias correction.

Forecast anomalies 𝑓 are computed by taking the ensemble-mean of 
the difference between the forecast and the hindcast climatology (Eq. 
(5)), while verification anomalies 𝑣̃𝑓  are calculated by subtracting the 
verification climatology from each verification 𝑣𝑓  (Eq.  (6)). 

𝑓 (𝑚, 𝑡, 𝑖, 𝑗) = 1
𝐸

𝐸
∑

𝑒=1

[

𝑓 (𝑚, 𝑒, 𝑡, 𝑖, 𝑗) − 1
𝑌

𝑌
∑

𝑦=1
ℎ(𝑚, 𝑦, 𝑒, 𝑡, 𝑖, 𝑗)

]

(5)

𝑣̃𝑓 (𝑚, 𝑡, 𝑖, 𝑗) = 𝑣𝑓 (𝑚, 𝑡, 𝑖, 𝑗) −
1
𝑌

𝑌
∑

𝑣ℎ(𝑚, 𝑦, 𝑡, 𝑖, 𝑗) (6)

𝑦=1
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We use a single date 𝑚 to define the climatologies for each forecast 
and verification for simplicity. A more robust estimate of the clima-
tology could be achieved by incorporating additional dates centered 
around the forecast/verification date, as demonstrated by ECMWF’s M-
climate (ECMWF, 2024b). However, we do not expect this choice to 
qualitatively affect our main results.

Aggregated forecast and verification anomalies 𝐹  and 𝑉𝐹  are then 
used to calculate the FMSESS similar to the original FSS (Eqs.  (7) and 
(9)). The aggregated version of the verification climatology (second 
term on the right-hand size of Eq.  (6)) is used as the reference forecast 
to calculate the reference mean-square error in the FMSESS (Eq.  (8)). 

𝑀𝑆𝐸𝐹 (𝑛, 𝑚, 𝑡) =
1
𝐼𝐽

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1
[𝐹 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) − 𝑉𝐹 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗)]2 (7)

𝑀𝑆𝐸 ̃𝑅𝐸𝐹 (𝑛, 𝑚, 𝑡) =
1
𝐼𝐽

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1
[𝐹 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) − 1

𝑌

𝑌
∑

𝑦=1
𝑉𝐻 (𝑛, 𝑚, 𝑦, 𝑡, 𝑖, 𝑗)]2

(8)

𝐹𝑀𝑆𝐸𝑆𝑆(𝑛, 𝑡) = 1 −
𝑀
∑

𝑚=1

𝑀𝑆𝐸𝐹 (𝑚, 𝑛, 𝑡)
𝑀𝑆𝐸 ̃𝑅𝐸𝐹 (𝑚, 𝑛, 𝑡)

(9)

3.2.2. Fractions brier skill score
The Fractions Brier Skill Score (FBSS) quantifies the accuracy of 

forecast extremes, averaged over all grid points and forecasts, across 
varying spatial aggregation scales. It introduces two key modifications 
to the original FSS. First, it provides a probabilistic assessment of skill 
by utilizing an ensemble of forecasts instead of a single deterministic 
forecast. Second, it uses a threshold value from a predefined quantile 
based on the hindcast climatology, rather than an absolute threshold. 
In this study, we demonstrate the method using the 0.1 and 0.9 quan-
tiles, corresponding to dry and wet extremes. Similar to the FMSESS, 
the FBSS offers distinct advantages to users: (1) it generalizes the 
widely-used Brier Skill Score across multiple spatial scales (Jolliffe and 
Stephenson, 2012), enabling better comparisons with past studies; (2) 
it improves the evaluation of extremes via probabilistic scoring and 
quantile-based bias correction.

We start by defining a threshold value for extremes for a given 
quantile 𝑞. First, we calculate aggregated hindcast 𝐻(𝑛, 𝑚, 𝑒, 𝑦, 𝑡, 𝑖, 𝑗) and 
verification 𝑉𝐻 (𝑛, 𝑚, 𝑦, 𝑡, 𝑖, 𝑗) for each 𝑛 following Eqs.  (1) and (2). The 
forecast threshold value 𝐹𝑞(𝑛, 𝑚, 𝑡, 𝑖, 𝑗) is then computed for the quantile 
𝑞 from a sample of 𝑒 ensemble members and 𝑦 hindcast years in hindcast 
𝐻 . Correspondingly, the verification threshold value 𝑉𝑞(𝑛, 𝑚, 𝑡, 𝑖, 𝑗) is 
computed for the quantile 𝑞 from a sample of 𝑦 hindcast years in 
verification hindcast 𝑉𝐻 .

Next, we compute the Brier Score 𝐵𝑆𝑞 for a given quantile 𝑞. First, 
we calculate the aggregated forecast 𝐹 (𝑛, 𝑚, 𝑒, 𝑡, 𝑖, 𝑗) and verification 
𝑉𝑓 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) for each 𝑛. Then, we compute the forecast probability 
𝑃𝐹𝑞 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) by determining the fraction of ensemble members 𝑒 in 
forecast 𝐹 (𝑛, 𝑚, 𝑒, 𝑡, 𝑖, 𝑗) that exceed the threshold value 𝐹𝑞(𝑛, 𝑚, 𝑡, 𝑖, 𝑗). 
Similarly, we compute the binary verification 𝑃𝑉𝑞 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) based 
on whether the verification 𝑉𝑓 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) crosses the threshold value 
𝑉𝑞(𝑛, 𝑚, 𝑡, 𝑖, 𝑗), assigning 1 to values above the threshold and 0 below. 
The squared difference between the forecast probability and the binary 
verification is then averaged over all values in the domain (Eq.  (10)). 

𝐵𝑆𝑞(𝑛, 𝑚, 𝑡) =
1
𝐼𝐽

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1
[𝑃𝐹𝑞 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗) − 𝑃𝑉𝑞 (𝑛, 𝑚, 𝑡, 𝑖, 𝑗)]

2 (10)

Finally, the FBSS is computed by comparing the Brier Score of the 
forecast with one calculated from a reference forecast and averaging 
over all forecasts (Eq.  (11)). The reference forecast used in the reference 
Brier Score is simply the quantile 𝑞 used to define the threshold (𝑞 = 0.9
or 𝑞 = 0.1). 

𝐹𝐵𝑆𝑆𝑞(𝑛, 𝑡) = 1 −
𝑀
∑ 𝐵𝑆𝑞(𝑛, 𝑚, 𝑡) (11)

𝑚=1 𝐵𝑆𝑅𝐸𝐹𝑞 (𝑛, 𝑚, 𝑡)

5 
3.2.3. Statistical significance of skill scores
Statistical significance of the FMSESS and FBSS (Eqs.  (9) and (11)) 

is evaluated using bootstrapping. We generate a distribution of scores 
for each spatial scale 𝑛 and lead-time 𝑡 by resampling the forecasts 𝑚
10,000 times with replacement. The null hypothesis is that the score is 
zero or negative, i.e., less than the climatological reference forecast. A 
score is considered significantly more skillful (at the 5% level) than the 
reference if 95% of the resampled distribution is greater than zero.

3.3. Fractions extreme forecast index

The skill scores introduced in the previous sections quantify the 
accuracy of past forecasts. However, for these insights to inform real-
time decision-making, users require a method to apply them opera-
tionally. Roberts and Lean (2008) proposed post-processing forecasts 
via spatial aggregation, enabling users to optimize the balance between 
accuracy and precision based on a past assessment of forecast skill. A 
key limitation of spatial aggregation is that it reduces the amplitude of 
raw forecast values, making them less intuitive for users accustomed to 
working with unprocessed data. To address this, we propose normaliz-
ing the aggregated forecast by an aggregated reference, similar to the 
procedure to define the Extreme Forecast Index (EFI, Lalaurette, 2003). 
The EFI measures how extreme a probabilistic forecast is relative to its 
climatology by comparing the cumulative distributions of the forecast 
and its corresponding hindcast, and is operationally employed by the 
ECMWF. In this subsection, we outline the computation of the EFI and 
then detail our modifications to enhance its applicability for end-users.

To compute the EFI, threshold values are first defined for each 
quantile 𝑞 varying from 0 < 𝑞 < 1 in steps of 𝛥𝑞. The hindcast threshold 
ℎ𝑡ℎ𝑟𝑒𝑠ℎ(𝑞, 𝑚, 𝑡, 𝑖, 𝑗) is determined as the value of the 𝑞th quantile from 
a sample of 𝑒 ensemble members and 𝑦 hindcast years in hindcast 
ℎ(𝑚, 𝑒, 𝑦, 𝑡, 𝑖, 𝑗). Then, for each forecast 𝑓 (𝑚, 𝑒, 𝑡, 𝑖, 𝑗), the fraction of 
ensemble members below the hindcast threshold ℎ𝑡ℎ𝑟𝑒𝑠ℎ(𝑞, 𝑚, 𝑡, 𝑖, 𝑗) is 
computed, called 𝑓𝑟𝑓 (𝑞, 𝑚, 𝑡, 𝑖, 𝑗). The EFI is derived by summing the 
difference between the quantile 𝑞 and the corresponding forecast frac-
tions 𝑓𝑟𝑓 (𝑞, 𝑚, 𝑡, 𝑖, 𝑗) across all quantiles, normalized by 𝑞(1 − 𝑞), and 
multiplied by the quantile step 𝛥𝑞 (Eq.  (12)). 

𝐸𝐹𝐼(𝑚, 𝑡, 𝑖, 𝑗) = 2
𝜋

1
∑

𝑞=0

𝑞 − 𝑓𝑟𝑓 (𝑞, 𝑚, 𝑡, 𝑖, 𝑗)
𝑞(1 − 𝑞)

𝛥𝑞 (12)

EFI values range from −1 to 1, where −1 indicates that the entire 
cumulative forecast distribution is below the cumulative hindcast dis-
tribution, and +1 indicates it is entirely above. An |𝐸𝐹𝐼| > 0.8 typically 
signifies an extreme event (ECMWF, 2024c).

For comparison with the forecast, we define an analogous Extreme 
Verification Index (EVI) using the verification 𝑣(𝑚, 𝑡, 𝑖, 𝑗), verification 
hindcast 𝑣𝐻 (𝑚, 𝑦, 𝑡, 𝑖, 𝑗), verification hindcast threshold 𝑣ℎ𝑡ℎ𝑟𝑒𝑠ℎ (𝑞, 𝑚, 𝑡, 𝑖, 𝑗)
and verification fraction 𝑓𝑟𝑣(𝑞, 𝑚, 𝑡, 𝑖, 𝑗) in Eq.  (13). The verification 
hindcast threshold is determined as the value of the 𝑞th quantile from 
a sample of 𝑦 hindcast years in the verification hindcast, and the 
verification fraction is set to 1 if the verification lies above the threshold 
and to 0 if it lies below. 

𝐸𝑉 𝐼(𝑚, 𝑡, 𝑖, 𝑗) = 2
𝜋

1
∑

𝑞=0

𝑞 − 𝑓𝑟𝑣(𝑞, 𝑚, 𝑡, 𝑖, 𝑗)
𝑞(1 − 𝑞)

𝛥𝑞 (13)

The Fractions Extreme Forecast Index (FEFI) is computed in the 
same way as the original EFI except it utilizes the aggregated fore-
casts 𝐹 (𝑛, 𝑚, 𝑒, 𝑡, 𝑖, 𝑗), hindcasts 𝐻(𝑛, 𝑚, 𝑒, 𝑦, 𝑡, 𝑖, 𝑗), hindcast threshold 
𝐻𝑡ℎ𝑟𝑒𝑠ℎ(𝑛, 𝑞, 𝑚, 𝑡, 𝑖, 𝑗) and forecast fraction 𝐹𝑅𝐹 (𝑛, 𝑞, 𝑚, 𝑡, 𝑖, 𝑗) with the 
additional aggregation dimension 𝑛 (Eq.  (14)). 

𝐹𝐸𝐹𝐼(𝑛, 𝑚, 𝑡, 𝑖, 𝑗) = 2
𝜋

1
∑

𝑞=0

𝑞 − 𝐹𝑅𝐹 (𝑛, 𝑞, 𝑚, 𝑡, 𝑖, 𝑗)
𝑞(1 − 𝑞)

𝛥𝑞 (14)

Thus, the FEFI quantifies how extreme the forecast is relative to its 
climatology across different spatial scales.
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Fig. 1. Forecast accuracy and lead-time gained for daily-accumulated precipitation over Europe as a function of lead time and spatial precision. Left panels show the Fractions 
Mean-Square Error Skill Score (FMSESS) for anomalies (a) and the Fractions Brier Skill Score (FBSS) for 0.9 and 0.1 quantile extremes in (c) and (e), respectively. Hatching 
indicates skill scores that are not statistically significant at the 5% level assessed via bootstrapping. Cross-hatching denotes scores surpassing the highest accuracy obtained at the 
grid scale. Right panels follow the same conventions as the left ones, except that shading represents the lead time gained or lost by spatially aggregating the forecasts. Black, blue 
and red arrows in (b) illustrate the lead-time gained when spatially aggregating an example forecast at the grid-scale. See Section 4 for further details.
4. Quantifying accuracy versus precision in European precipita-
tion forecasts

In this section, we evaluate the impact of spatial aggregation on 
sub-seasonal precipitation forecasts. We calculate FMSESS and FBSS for 
daily and weekly-accumulated precipitation over the entire European 
domain, examine their regional variations, and compare the results 
with those for 2-m temperature forecasts. By quantifying the trade-off 
between spatial accuracy and precision, we offer a clearer understand-
ing of how spatial aggregation influences forecast performance.

Spatial aggregation improves the accuracy of daily-accumulated 
precipitation forecasts. Fig.  1a shows the FMSESS for daily-accumulated 
precipitation anomalies across various lead times and spatial scales. 
At the grid-scale, accuracy is high initially (> 0.8) but decreases 
with lead-time (< 0.1), with forecasts remaining skillful for up to 10 
6 
days (in agreement with Rivoire et al., 2023). Spatial aggregation not 
only increases accuracy for a given lead time but also extends the 
forecast skill horizon (as pointed out by Buizza et al., 2015; Buizza 
and Leutbecher, 2015), indicated by the right-slanted skill contours 
and significance hatching. This approach also improves accuracy for 
extreme precipitation, measured by the FBSS for the 0.9 and 0.1 
quantiles, although forecasting extremes is generally less accurate than 
forecasting anomalies (compare Fig.  1a and 1c,e). Notably, low precip-
itation extremes can show reduced accuracy with spatial aggregation 
(left-slanted contours close to the grid-scale for lead times greater than 
8 days in Fig.  1e). Near the grid-scale, forecasts are more accurate for 
low precipitation thresholds due to the model’s tendency to predict no 
precipitation. Greater spatial aggregation raises the likelihood of non-
zero precipitation thresholds, making the predictions more challenging 
and reducing accuracy.
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Fig. 2. Forecast accuracy at lead-day 5 for daily-accumulated precipitation over Europe, evaluated at two levels of spatial precision: the grid-scale (left) and 33 gridpoints2 (right). 
Shading denotes the Fractions Mean-Square Error Skill Score (FMSESS) for anomalies in (a,b) and the Fractions Brier Skill Score (FBSS) for the 0.9 and 0.1 quantile extremes in 
(c,d) and (e,f), respectively. Hatching indicates skill scores that are not statistically significant at the 5% level assessed using bootstrapping. Red squares in the upper-right corner 
of the panels denote the spatial scale of forecast precision.
Reducing precision can extend predictable lead-times of daily-
accumulated precipitation by a few days. The green shading on the 
right-hand side panels of Fig.  1 illustrates the lead-time gained by 
spatial aggregation. For example, a forecast with a precision of 1 grid 
point2 and an accuracy of 0.5 that is spatially aggregated to a precision 
of 33 grid points2 represents an accuracy gain of 0.25 (black arrow). 
This increase in accuracy is equivalent to gain in 2 lead-time days 
(blue arrow) because the aggregated forecast drops to the same level 
of accuracy as the grid-scale forecast two days later (red arrow). For 
low precipitation extremes, reducing precision can also lead to a loss 
of lead-time relative to the grid-scale (pink shading, Fig.  1f), though 
this mainly occurs where forecast accuracy is low (< 0.2).

The highest levels of forecast accuracy are only achievable with 
spatial aggregation. Cross-hatching in Fig.  1b,d,e shows where forecast 
accuracy exceeds the maximum achievable accuracy at the grid scale, 
i.e., lead-time 𝑡 = 1. Gains from spatial aggregation are substantial for 
anomalies (0.8 to 0.95) and high precipitation extremes (0.5 to 0.7), 
and even greater for low precipitation extremes (0.3 to 0.7). Overall 
similar results are found for winter and summer only forecasts, where 
winter generally exhibits higher accuracy (Figs. S1 and S2).
7 
Spatial aggregation also improves regional forecast accuracy of 
daily-accumulated precipitation. Fig.  2 shows latitude-longitude maps 
of forecast accuracy for daily-accumulated precipitation at lead-day 5, 
comparing two spatial precision levels: the grid scale (left) and 33 
grid points2 (right). The FMSESS and FBSS are calculated regionally 
at each latitude and longitude by omitting the domain average in 
Eqs.  (7) and (10). It is important to note that the spatially aggregated 
forecasts are displayed with the same grid spacing as the raw forecasts 
(e.g., 0.25◦ × 0.25◦), but their effective spatial resolution is reduced 
since each grid point represents the aggregate of its neighboring grid 
points. At the grid scale, forecast accuracy varies regionally, with 
higher accuracy over mountainous regions like western Norway and 
the Alps, and is higher for anomalies than extremes (Fig.  2 left). Spatial 
aggregation increases overall forecast accuracy and extends the forecast 
horizon, as indicated by the darker shading and reduced hatching in 
the right-hand versus left-hand panels of Fig.  2. This suggests that the 
European domain-averaged results in Fig.  1 generally hold regionally. 
Similar patterns are observed for different lead times and seasons (not 
shown).
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Fig. 3. As in Fig.  1 except for weekly-accumulated precipitation forecasts.
When measured per unit lead-time, spatial aggregation benefits 
weekly-accumulated precipitation forecasts less than daily-accumulated 
ones. Fig.  3 shows forecast accuracy for weekly-accumulated precip-
itation anomalies and extremes across various lead-times and spatial 
scales. At the grid-scale, forecast accuracy is high in the first week, low 
in the second, and as skillful as climatology in the third or fourth, con-
sistent with daily-accumulated precipitation forecasts (compare Figs. 
3 and 1, left). However, the improvements from spatial aggregation 
for weekly-accumulated forecasts are marginal compared to those for 
daily-accumulated forecasts when assessed per unit lead-time: 0.2–0.4 
weeks versus 2–3 days (compare the slanted grey accuracy contours in 
Figs.  3 and 1, right). Regionally, spatial aggregation modestly improves 
accuracy and extends the forecast skill horizon for anomalies, but less 
so for extremes (compare left and right-hand panels of Fig.  4).

Surface temperature forecasts, while generally more accurate than 
precipitation forecasts, benefit less from spatial aggregation. Figure 
S3 shows forecast accuracy for daily-mean temperature anomalies and 
extremes across various lead times and spatial scales. Forecast accuracy 
8 
remains similar with spatial aggregation, in contrast to precipitation, 
as indicated by the more vertical skill contours and shorter lead-time 
gains relative to the grid-scale (shading, compare Fig. S3 with Fig.  1). 
Weekly averaged temperature anomalies and extremes display similar 
traits, with a forecast skill horizon of 3 weeks across all spatial scales 
(Fig. S4). More spatially homogeneous temperature fields compared to 
precipitation fields result in more accurate forecasts at smaller scales, 
diminishing the benefits of spatial aggregation.

In summary, our results highlight and quantify the fundamental 
trade-off between accuracy and precision in sub-seasonal precipitation 
forecasts. Spatial aggregation, which reduces precision, increases fore-
cast accuracy, extends predictable lead times, and enhances maximum 
possible accuracy compared to the grid scale. Conversely, increased 
precision tends to diminish these benefits. This trade-off is more im-
portant at higher temporal precision (e.g., daily versus weekly aggre-
gation), and for spatially inhomogeneous variables (e.g., precipitation 
versus temperature). It is important to note that our results are based on 



E. Dunn-Sigouin et al. Climate Services 39 (2025) 100594 
Fig. 4. As in Fig.  2 except for weekly-accumulated precipitation forecasts at lead-week 2.
averages over hundreds of forecasts, but there are windows of opportu-
nity where individual forecasts can predict more accurately and further 
ahead (Mariotti et al., 2020). While these findings are well-recognized 
within the meteorological community (Buizza and Leutbecher, 2015; 
Toth and Buizza, 2019), they are often underappreciated by users 
who could benefit from them, even potentially leading to the misuse 
of forecasts (Nissan et al., 2019; Fiedler et al., 2021). In the next 
section, we demonstrate how users can leverage these findings with 
three practical examples.

5. Use-cases

In this section, we illustrate how spatial aggregation can make fore-
casts more usable. Roberts and Lean (2008) proposed post-processing 
real-time forecasts via spatial aggregation, optimizing spatial precision 
based on the accuracy of historical forecasts. They envisioned a coarse 
forecast at longer lead-times, becoming finer as the forecast horizon 
shortens and predictability increases at smaller scales. However, they 
did not provide a practical demonstration.

Here, we take their idea further and present three different use-cases 
for spatial aggregation, schematically illustrated in Fig.  5: optimized 
accuracy (blue arrow), fixed spatial precision (red arrow), and fixed 
9 
lead time (black arrow). These use cases are tailored to a smaller Scan-
dinavian domain (see Fig.  6a) and illustrate how the approach can be 
employed strategically to optimize forecasts given specific user-defined 
constraints. Rather than replacing existing practices using grid-scale 
forecasts, our approach offers a complementary perspective, and sug-
gests avenues for further investigation in each of the three examples 
presented.

5.1. Optimized accuracy

Forecast accuracy often constrains how far ahead decisions can be 
made. This is particularly true for forecasters, who need to issue early-
warnings at extended lead times. Using Storm Hans as an example, 
which first struck Norway on August 7th 2023, we illustrate how 
spatial forecast aggregation can give forecasters an earlier indication 
of extreme precipitation and thus help them issue more timely early 
warnings.

Fig.  6a–f shows forecasts of ensemble and daily-mean precipitation 
on August 7th at various lead times, comparing grid-scale precision 
(left) and spatially aggregated forecasts (right), while Fig.  6g shows 
the corresponding observed precipitation at the grid-scale. Spatial ag-
gregation is progressively increased with lead time to increase forecast 
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Fig. 5. As in Fig.  1a except for the Fractions Mean-Square Error Skill Score (FMSESS) over the Scandinavian domain shown in Fig.  6. Black, blue and red arrows denote the 
use-cases described in Section 5.
accuracy (blue arrow in Fig.  5). Spatial aggregation could be used to 
maintain a constant forecast accuracy by following along a specific 
contour (e.g., 0.7), but since these do not span several lead-time days, 
here we ‘optimize’ accuracy by aggregating diagonally across contours 
of constant accuracy. Regions with FEFI and EVI values above 0.8, 
marked by red stippling, highlight areas of extreme precipitation in the 
forecasts and observations, respectively.

At the grid scale, forecasts capture the general pattern of precipita-
tion over eastern Norway and Sweden, with the FEFI signaling extreme 
precipitation reasonably well up to lead day 3 (see Fig.  6a,c,e with g). 
Spatially aggregated forecasts at lead days 1, 3 and 5 achieve accuracy 
comparable to grid-scale forecasts at lead day 1, as demonstrated by 
FMSESS and FBSS0.9 values (contrast Fig.  6a,c,e with b,d,f). Most 
importantly, it is difficult to infer from the grid-scale forecast alone that 
localized extreme rainfall at lead day 5 would evolve into a widespread 
event across Scandinavia (compare red stippling Fig.  6a and Fig.  6g). 
In contrast, the spatially aggregated forecast at lead day 5 offers a 
clearer and earlier indication of the approaching large-scale extreme 
event (compare red stippling Fig.  6b and Fig.  6g). This is because spatial 
aggregation filters out small-scale noise and amplifies the larger-scale, 
predictable signal at longer lead times. Similar results are found up to 
lead day 7 (Fig. S5).

The Norwegian Meteorological Office issued a red alert for ex-
treme rainfall on August 6th, just one day before Storm Hans struck 
Norway (Granerød et al., 2023). The decision to issue such alerts is 
guided by stringent internal procedures, balancing the need for timely 
warnings against the risk of false alarms. Our findings suggest that 
incorporating spatial aggregation into existing forecasting workflows 
could extend the lead time of early warnings for high-impact events 
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like Storm Hans.

5.2. Fixed spatial precision

Forecast users are often constrained by the spatial scales at which 
they operate. In hydropower, for instance, the size of the watershed 
dictates both the volume of incoming precipitation and the timing of 
downstream impacts. When reservoirs near full capacity, Norwegian 
operators are often forced to discharge water in anticipation of rainfall 
events (NRK, 2020; TV2, 2024) to avert flooding and infrastructure 
damage. However, such preemptive measures can be costly since the 
water could be used to generate higher-priced electricity at a different 
time. Leveraging the watershed’s size to refine precipitation forecasts 
could help operators optimize decision-making.

By spatially aggregating forecasts to match the watershed’s spatial 
extent (red arrow in Fig.  5), operators could enhance forecast accuracy 
at the scale that matters most for their decisions. This refinement could 
enable hydropower managers to decide sooner, and with increased 
certainty, when and how much to discharge water. Crucially, this 
approach goes beyond simply spatially averaging the raw forecast over 
the watershed, since it maintains the default grid-spacing but each grid 
cell aggregates data from its surrounding neighbors (e.g., Fig.  2). As 
a result, the method incorporates the spatial uncertainty of precipita-
tion that could occur near but not necessarily over the watershed at 
longer lead times (e.g., as illustrated by Storm Hans in Fig.  6), thereby 
extracting a stronger predictable signal from the forecast. This added 
granularity yields a more nuanced perspective of potential rainfall that 
could ultimately feed into the basin.



E. Dunn-Sigouin et al.

Fig. 6. (a-f) Forecasts of storm Hans on August 7th 2023. Shading denotes the ensemble-mean daily-accumulated precipitation for lead days 5 (a,b), 3 (c,d) and 1 (e,f), shown 
at the grid-scale (left) and with progressively increasing levels of spatial precision (right). Red squares in the upper-right corner of the panels denote the spatial scale of forecast 
precision. The FMSESS and FBSS for 0.9 quantile extremes are displayed in the top left hand corner of each panel. (g) Daily-accumulated precipitation during Storm Hans on 
August 7th 2023 according to data from the ERA5 reanalysis. Red stippling denotes Fractions Extreme Forecast Index (FEFI, panels a-f) and Extreme Verification Index (EVI, panel 
g) values greater than 0.8, signaling an extreme event.
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5.3. Fixed lead-time

Fixed operational lead times can constrain how weather forecasts 
are applied. In commercial aviation, for instance, large-scale mid-
latitude storms, such as Storm Hans (Fig.  6), often disrupt flight sched-
ules across multiple airports and regions over extended periods. Be-
cause major carriers maintain extensive route networks on tight sched-
ules, they often decide two to three days in advance whether to cancel, 
reroute or maintain flights given incoming severe weather (NBC, 2011; 
nytimes, 2017). These early go/no-go choices are critical for allocat-
ing resources and enabling passengers to arrange alternative travel 
plans. Delaying such arrangements significantly heightens the risk of 
disruptions for passengers and additional operating costs.

Aggregating forecasts at broader spatial scales offers a practical 
means of increasing their accuracy at these fixed lead times (black 
arrow in Fig.  5). As demonstrated by the forecast maps in Fig.  6, airlines 
could synthesize forecasts across larger geographic areas to gain a more 
robust sense of whether a major winter system will develop at the 
time when critical decisions need to be made. Although this aggre-
gated approach drops fine-grained precision at individual airports, it 
can strengthen confidence in the storm’s overall footprint. This would 
facilitate timely and decisive operational adjustments that span the 
geographically extensive networks of major carriers.

6. Conclusions and discussion

Despite an abundance of available forecast data, much of it remains 
underutilized, pointing to a critical usability gap (Lemos et al., 2012; 
Van den Hurk et al., 2018; Findlater et al., 2021). In this study, we 
highlight and quantify a crucial yet often overlooked challenge to their 
practical use: forecasts are often more precise than they are accurate 
when they are presented on a denser grid spacing than the scales they 
can accurately predict. This mismatch stems from the loss of accuracy 
at smaller spatial scales as forecasts extend further out in time (Lorenz, 
1969; Toth and Buizza, 2019): a constraint known as the forecast skill 
horizon (Buizza et al., 2015; Buizza and Leutbecher, 2015). While 
many meteorologists recognize this trade-off, non-expert users may 
remain unaware, risking both the missed potential of predictability at 
larger scales and over-interpretation at finer scales. As forecasts become 
increasingly important to support climate adaptation and preparedness, 
users and providers can benefit from recognizing and accounting for the 
trade-off between forecast accuracy and precision.

It is informative to consider this limitation through the lens of Mur-
phy’s (1993) classic framework for ‘‘good’’ forecasts, which comprises 
three key measures: correspondence between the forecaster’s judgment 
and the delivered forecast (consistency), how well the forecast cor-
responds to observed conditions (quality), and the practical benefit 
of the forecast to users (value). Although much attention focuses on 
how forecast quality impacts value, we argue that issuing forecasts at 
the default grid spacing, even when forecasters recognize diminished 
accuracy at those scales, reduces consistency. This lack of consistency, 
in turn, diminishes value: users unaware of the limitation may make 
suboptimal decisions, whereas those who are aware must contend 
with greater complexity in using the forecast. Indeed, Murphy (1993) 
anticipated this problem, noting that ‘‘forecasts and judgments may be 
inconsistent . . . in terms of their spatial and/or temporal specificity’’, 
and called for practical solutions to address such mismatches.

Here, we modified the original fractions skill score to help users 
balance the trade-off between forecast precision and accuracy, trans-
forming this metric from its traditional role in verifying spatial forecast 
accuracy for meteorologists into a tool for optimizing forecasts for 
end-users. We applied this approach to daily European precipitation 
forecasts, quantifying the balance for both deterministic predictions 
of anomalies and probabilistic predictions of extremes, using three 
years of sub-seasonal data from the European Centre for Medium-Range 
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Weather Forecasts (ECMWF). Our results show that decreasing preci-
sion through spatial aggregation increases forecast accuracy, extends 
predictable lead times, and enhances the maximum possible accuracy 
relative to the grid scale, while increased precision diminishes these 
benefits.

We hope that users will employ our approach to optimize forecasts 
for their specific application. Implementing this involves: (1) identify-
ing the geographic region of interest, (2) verifying past forecasts with 
a chosen metric, and (3) aggregating real-time forecasts accordingly. 
We demonstrated the practical value of our approach in three contexts: 
communicating early warnings, managing hydropower capacity, and 
commercial aviation planning—each characterized by distinct user-
constraints on accuracy, spatial scale, or lead-time. These use-cases 
showed that focusing on the scales where forecasts are most accurate, 
rather than the default grid-scale, can offer users more actionable in-
formation. Instead of replacing existing practices, our approach offers a 
complementary perspective, and highlights multiple avenues for further 
investigation in each of the three examples.

Aggregating forecasts is a well-established practice, yet its im-
plementation is often done by forecast providers rather than end-
users. For example, the ‘‘ready-set-go’’ framework (Goddard et al., 
2014) links forecasts across timescales to general preparedness levels, 
from monthly seasonal predictions (ready), to weekly sub-seasonal 
forecasts (set), and finally to daily weather forecasts (go), with each 
system having finer spatial and temporal precision as the forecast 
window shortens. Another approach is to filter forecasts into a few 
distinct large-scale patterns that are more predictable, called weather 
regimes (Michelangeli et al., 1995), as done operationally by ECMWF. 
Both these approaches implicitly involve aggregation, but the scales are 
set by either the modeling system or the regime classification, not the 
users. Our approach builds on these approaches but takes a step further, 
giving the user the ability to tailor forecasts according to their desired 
spatial scales.

Machine learning models hold considerable promise to improve 
both forecast accuracy and precision, potentially narrowing the usabil-
ity gap (Eyring et al., 2024). However, these new approaches are likely 
not a panacea, and are subject to similar physical constraints which 
limit conventional models (Ben Bouallègue et al., 2024). It is widely 
acknowledged that there are fundamental limits to the forecast skill 
horizon (Lorenz, 1969; Palmer et al., 2014), and emerging evidence 
suggests that machine learning-based forecasts are not exempt from 
this constraint (Keane et al. 2025, Mid-latitude versus tropical scales of 
predictability and their implications for forecasting, in review). So, even if 
machine learning models produce ever finer-scale forecasts, users are 
still likely to face the challenge posed by the forecast skill horizon, and 
to require methods to deal with it, as discussed here.

Our findings show that spatial aggregation enhances the accuracy 
of daily-accumulated precipitation forecasts to a greater extent than 
weekly-accumulated ones, per unit lead time. This suggests that tem-
poral aggregation compensates to some extent for spatial aggregation, 
which has implications for how forecasts are used and communicated. 
For example, sub-seasonal forecasts are often presented as weekly 
aggregates (https://charts.ecmwf.int/), leveraging time averaging to 
enhance accuracy at extended lead times. Correspondingly, intuition 
based on the forecast skill horizon suggests that these predictions 
should be interpreted on spatial scales larger than the grid-scale. How-
ever, our results for both precipitation and temperature show weekly-
aggregated forecasts have similar accuracy across spatial scales (Fig.  3 
and S4). Thus, the decision not to spatially aggregate these forecasts is 
sound; grid-scale forecasts appear to be more usable than we expected, 
provided temporal aggregation is applied.

Further refinements to our approach could enhance its usability 
and broaden its relevance. For instance, employing alternative fractions 
skill scores, such as those proposed by Necker et al. (2024), may 
better assess probabilistic spatial forecast accuracy. Accounting for 
geographic variations in forecast skill, as shown in Fig.  2, would further 
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improve adaptability across regions and applications. While refining 
the domain to a smaller area of interest is a straightforward solution, 
other approaches are possible, such as applying different levels of 
spatial aggregation in different regions of the domain as suggested 
by Roberts and Lean (2008). Beyond accuracy, incorporating other 
metrics of forecast quality, such as reliability and discrimination, could 
be more relevant to users (Murphy, 1993; Weisheimer and Palmer, 
2014). In practice, it is possible to quantify these metrics on the same 
axes as Fig.  5, swapping out forecast accuracy for alternatives. Finally, 
the fractions extreme forecast index could be further modified to weight 
the most extreme quantiles, changing its sensitivity to severe events.

Our results suggest that spatially aggregating weather forecasts 
could enhance the accuracy of downstream impact models, which are 
increasingly important for climate adaptation and preparedness (Merz 
et al., 2020). Optimizing their inputs might be simpler and more 
effective than improving their basic design. Implementing this ap-
proach, however, poses technical challenges. Physics-based impact 
models, such as those producing hydrological forecasts, require physi-
cal consistency between input variables (e.g., rainfall and temperature) 
which is disrupted by aggregation. On the other-hand, data-driven 
impact models, which are not constrained by physical laws and are 
being used in a variety of sectors including insurance, agriculture, and 
even hydrology, could be trained to capture the relationship between 
aggregated weather forecasts and impacts. Exploring the feasibility of 
this approach could be an interesting avenue for further research.
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