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We systematically analyse the nuclear moments of inertia determined within the Skyrme and Gogny density 
functional theories. The time-odd mean fields generated by collective rotation are self-consistently determined 
by a novel exact iterative solution of the adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) equations. 
Although details of the results depend on the functional used, the calculated moments of inertia are in good overall 
agreement with the experimental data, with no adjustable parameters. To show the essential importance of the 
time-odd mean fields, we compared the ATDHFB moments of inertia with those obtained from the Inglis-Belyaev 
formula. For Skyrme density functionals, we find strong correlations between the effective mass and the impact 
of the time-odd mean fields on the rotational and vibrational collective inertia.

Collective motion provides a deep insight into the nuclear reaction 
mechanism and the quantum dynamics of many-nucleon systems. The 
low-energy collective motion is particularly interesting, usually accom-
panied by large electromagnetic moments and transition rates. To fully 
understand them, we must scrutinise the collective inertia, which mea-
sures the quantum system’s resistance to collective motion.

Studies of collective motion are important in nuclear physics and at-
tract experimental and theoretical attention. The ATDHFB method [1], 
established within the self-consistent nuclear density functional theory 
(DFT), is one of the most prominent microscopic approaches to describe 
the inertia of large-amplitude low-energy collective modes. The adia-
batic assumption is valid for collective motion when it is much slower 
than the single-particle motion of individual nucleons. It also bridges the 
microscopic many-body theory and phenomenological collective mod-
els solely based on collective variables.

An exact determination of the ATDHFB inertia requires an inversion 
of the two-body stability matrix [2]. For deformed and/or superfluid sys-
tems, such explicit inversion requires a prohibitive computational cost 
because of the large matrix dimensions involved. Due to such numerical 
difficulties, the ATDHFB method was often used in the cranking approx-
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imation [3], which neglects the dynamical residual interactions gener-
ated by the collective motion. Collective inertia obtained in the cranking 
approximation is equivalent to that calculated using the Inglis [4] or 
Inglis-Belyaev (IB) [5] formula. The situation is further worsened in the 
perturbative cranking approximation [6,3], where the inertia is calcu-
lated via energy-weighted moment tensors that involve only the diag-
onal element of the stability matrix. Such an omission of the residual 
interaction, especially in the time-odd mean-field channels, leads to a 
violation of the Galilean symmetry, which has severe consequences, for 
example, resulting in the incorrect translational mass, see, e.g., Ref. [7].

Despite the inconsistency caused by neglecting the time-odd mean 
fields, the cranking approximation has been used in theoretical studies 
of collective inertia, ranging from calculations of low-energy spectra [8] 
to evaluations of nuclear fission half-lives [9]. Such an inconsistency 
led to the enhancement factor adopted to correct the collective iner-
tia obtained from the cranking approximation [10]. To alleviate the 
inconsistency, a method based on the expansion of the inertia matrix 
was developed to solve the ATDHFB equation in the absence of pairing, 
which can evaluate the rotational moment of inertia with high preci-
sion of the order of 1% [11]. Recently, the similarity of the ATDHFB 
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method and the finite-amplitude method (FAM) at zero frequency was 
realised, and a quasiparticle FAM on top of the Skyrme energy density 
functional was developed to evaluate the Thouless-Valatin rotational 
moment of inertia [12]. With the pairing strength adjusted to the exper-
imental pairing gaps, the rotational moment of inertia in several axially 
deformed nuclei from the rare-earth and heavy-actinide regions was well 
reproduced, and the large and mass-dependent deviations from the val-
ues evaluated by the cranking approximation were confirmed. The FAM 
was also used in Ref. [13] for the full five-dimensional quadrupole adi-
abatic inertia.

This letter presents a novel iterative method for solving the ATD-
HFB equations exactly and efficiently. We implemented this method 
within the non-relativistic nuclear DFT framework and determined the 
adiabatic time-odd mean fields self-consistently. Below, we present a 
systematic analysis of the nuclear moments of inertia and a preliminary 
study of vibrational inertia in heavy deformed nuclei.

The iterative ATDHFB method is outlined as follows.1 In the nuclear 
DFT with pairing, the many-body wavefunction of the nuclear system is 
mapped onto a one-body quasiparticle density , whose time-evolution 
obeys the time-dependent Hartree-Fock-Bogoliubov equation [2,15],

𝑖ℏ̇(𝑡) = [(𝑡),(𝑡)] , (1)

where the dot represents the derivative over time, ̇(𝑡) = d(𝑡)∕d𝑡. 
We see that the static (time-independent) solution 0 then implies [
0,0

]
= 0.

At every time 𝑡, the one-body quasiparticle Hamiltonian (𝑡) =

𝜕𝐸[(𝑡)]∕𝜕(𝑡) is the derivative of the energy 𝐸[(𝑡)] of the nuclear 
system over the generalised density matrix (𝑡). In non-relativistic nu-
clear DFT, it is typically determined using either the zero-range Skyrme 
functional [16] or the finite-range Gogny functional [17].

In the adiabatic limit, we assume that the system progresses in time 
along the given collective path 𝑞(𝑡), namely 𝐸[(𝑡)] ≡𝐸[(𝑞(𝑡))]. Here, 
for simplicity, we consider only one collective coordinate 𝑞. In addition, 
we assume that the velocity �̇�(𝑡) of the collective motion is so small that 
the nucleus remains almost in static equilibrium at all times, that is,

(𝑞(𝑡)) ≃0(𝑞(𝑡)) + �̇�(𝑡)̃1(𝑞(𝑡)) +… , (2)

(𝑞(𝑡)) ≃0(𝑞(𝑡)) + �̇�(𝑡)̃1(𝑞(𝑡)) +… , (3)
[
0(𝑞(𝑡)),0(𝑞(𝑡))

]
≃ 0, (4)

where the equalities hold only up to terms linear in collective velocity 
�̇�(𝑡). All these densities and mean fields depend on time only parametri-
cally; that is, through the dependence on time of 𝑞(𝑡). This allows us to 
omit, for clarity, the implicit arguments 𝑞(𝑡) from the expressions that 
follow. In particular, the ATDHFB equation, which is the first-order part 
of the TDHFB equation (1), takes the following form,

𝑖ℏ
𝜕0

𝜕𝑞 
= [0, ̃1] + [̃1,0], (5)

where the derivative over 𝑞 replaced the time derivative, ̇0 = �̇�
𝜕0

𝜕𝑞 , 
and thus the ATDHFB equation became independent of the velocity �̇�.

Within the adiabatic approximation [1], the quasi-static zero-order 
densities and mean field are assumed to be time-even,  +0 = 0

and  +0 =0. In contrast, the first-order corrections are assumed 
to be time-odd,  +̃1 = −̃1 and 

+̃1 = −̃1.
For the collective rotation, the collective path is straightforward. It 

corresponds to the deformed state rotated in space by angle 𝜃, that is, 
|Φ(𝜃)⟩ = exp

(
𝑖𝜃𝐼𝑥

)
|Φ(0)⟩, about the selected axis 𝑥, and then using 

𝑞 ≡ 𝜃. In this case, the density derivative 𝜕0

𝜕𝑞 is given by the angular mo-

mentum 𝐼𝑥 matrix elements, which can be calculated analytically [18]. 

1 We presented details of the iterative ATDHF method (without pairing) in 
our recent conference publication [14].

For the collective vibration, it can be evaluated by the numerical differ-
entiation of the HFB densities [14] obtained by constraining, e.g., values 
of the axial quadrupole moment, 𝛿⟨Φ|�̂� − 𝜆�̂�20|Φ⟩ = 0, and then using 
𝑞 ≡ ⟨�̂�20⟩. This differs from Ref. [13], where the density derivatives 
were determined after solving the local quasiparticle random phase ap-
proximation equations.

Since ̃1 up to the first order depends linearly on ̃1, the ATDHFB 
equation (5) is a linear equation for ̃1 in many dimensions, which 
necessitates an impractical inversion of an exceedingly large stability 
matrix [2]. To circumvent this problem, the novel method proposed 
here transforms the ATDHFB equation (5) into an iterative fixed-point 
equation,

𝑖ℏ
𝜕0

𝜕𝑞 
= [0, ̃

(𝑛)

1
] + [̃

(𝑛−1)

1
,0], (6)

where ̃(𝑛−1)

1
is evaluated for ̃(𝑛−1)

1
and ̃(0)

1
≡ ̃

(0)

1
≡ 0. Then, at each 

iteration 𝑛 = 1,2,…𝑁 , the collective inertia can be evaluated as

(𝑛) =
𝑖ℏ

2 
Tr

(
𝜕0

𝜕𝑞 
[0, ̃

(𝑛)

1
]

)
, (7)

and the iteration stops when (𝑛+1) ≃(𝑛) within a prescribed suitable 
precision. In practical applications, about two dozen iterations suffice.

A practical solution of the iterative equation (6) can be most easily 
obtained in the quasiparticle basis, where it reads, cf. Refs. [19,3],

𝑍(𝑛+1)
𝜇𝜈

=
1 

𝐸𝜇 +𝐸𝜈

(𝑖ℏ𝐹 −𝐸
(𝑛)

1
)𝜇𝜈 , (8)

where the antisymmetric matrices 𝑍 = 𝜑+̃1𝜒 , 𝐹 = 𝜑+ 𝜕0

𝜕𝑞 𝜒 , and 

𝐸1 = 𝜑+̃1𝜒 are defined by the standard quasiparticle (𝐸𝜇 > 0) and 
quasihole (𝐸𝜇 < 0) wave functions 𝜒 and 𝜑, respectively, having the 
form

𝜒 =

(
𝐴

𝐵

)
, 𝜑 =

(
𝐵∗

𝐴∗

)
, (9)

with 𝐴 and 𝐵 defining the general Bogoliubov transformation. Positive 
quasiparticle energies (𝐸𝜇 ,𝐸𝜈 > 0) are taken in Eq. (8).

To proceed with the iteration in Eq. (8), 𝐸(𝑛)

1
is computed from 𝑍(𝑛), 

which closely resembles the standard iteration of the HFB equation. 
Indeed, at each iteration, we first perform the singular value decom-
position (SVD) of the antisymmetric matrix 𝑍 = 𝑈Ω𝑉 +, where 𝑈 and 
𝑉 are unitary and Ω is diagonal and non-negative; that is, Ω𝜇𝜈 = 𝛿𝜇𝜈𝜔𝜇

and 𝜔𝜇 ≥ 0. Next, we observe that the eigenequation for the Hermitian 

matrix  =

(
0 𝑍

𝑍+ 0

)
(the first-order density matrix ̃1 expressed in 

the quasiparticle basis) takes the following form:



(
𝑈

±𝑉

)
=

(
±𝑈Ω

𝑉 Ω

)
= ±

(
𝑈

±𝑉

)
Ω. (10)

This indicates that the eigenvectors of  occur in pairs of opposite 
eigenvalues, and the matrix  can be represented as the sum of its eigen-
vectors2 as follows:

 =
1

2

(
𝑈 𝑈

𝑉 −𝑉

)(
Ω 0

0 −Ω

)(
𝑈+ 𝑉 +

𝑈+ −𝑉 +

)
. (11)

Therefore, the first-order correction matrix, ̃1 =+, for  =(
𝐴 𝐵∗

𝐵 𝐴∗

)
, can be obtained through the inverse Bogoliubov transfor-

mation, and thus it can be represented in its final form as,

̃1 =

(
𝐴1 𝐵′

1

∗

𝐵1 𝐴′
1

∗

)(
Ω 0

0 −Ω

)(
𝐴+
1

𝐵+
1

𝐵′
1

𝑇
𝐴′
1

𝑇

)

2 Note that the eigenvectors in Eq. (10) are normalised to 2. This is so because, 
in the standard definition of the SVD, the columns of the unitary matrices 𝑈 and 
𝑉 are normalised to 1.
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=

(
𝜌1 𝜅1
−𝜅∗

1
−𝜌∗

1

)
= 𝜒1Ω𝜒

+
1
−𝜑1Ω𝜑

+
1
, (12)

where 𝜌1 and 𝜅1 are the first-order corrections to the standard density 
matrix and pairing tensor [2], and

𝜒1 =

(
𝐴1

𝐵1

)
=

1 √
2

(
𝐴𝑈 +𝐵∗𝑉

𝐵𝑈 +𝐴∗𝑉

)
, (13)

𝜑1 =

(
𝐵′
1

∗

𝐴′
1

∗

)
=

1 √
2

(
𝐴𝑈 −𝐵∗𝑉

𝐵𝑈 −𝐴∗𝑉

)
. (14)

This compares perfectly well with the standard eigenstates of the 
static solution 0 (9), which appear in pairs with eigenvalues 0 and 1,

0 =

(
𝐴 𝐵∗

𝐵 𝐴∗

)(
0 0

0 1

)(
𝐴+ 𝐵+

𝐵𝑇 𝐴𝑇

)

=

(
𝜌0 𝜅0
−𝜅∗

0
1 − 𝜌∗

0

)
= 𝜑𝜑+. (15)

We see that the zero-order density matrix 0 (15) is given as a sum of 
the zero-order quasihole wave functions 𝜑 (9) with all quasioccupation 
factors equal to 1. Similarly, the first-order density matrix ̃1 (12) is 
given as a sum of both the first-order quasiparticle and quasihole wave 
functions 𝜒1 and 𝜑1 (13)–(14) with the opposite quasioccupation factors 
of +𝜔𝜇 and −𝜔𝜇 , respectively.

This enables an easy adaptation of the standard iteration of the HFB 
equation [2] to the novel iterative solution of the ATDHFB equation pre-
sented in Eq. (8). Indeed, we first determine the time-odd density matrix 
𝜌1 and the time-odd pairing tensor 𝜅1 in Eq. (12) based on the quasiparti-
cle wave functions (13) and (14). Second, we employ the standard HFB 
algorithm [2] to determine the time-odd mean field Γ1 and the time-

odd pairing field Δ1 from 𝜌1 and 𝜅1, leading to ̃1 =

(
Γ1 Δ1

−Δ∗
1

−Γ∗
1

)

and 𝐸1 = 𝜑+̃1𝜒 . Third, we utilise Eq. (8) to determine the matrix 𝑍
for the next iteration. And fourth, the SVD of the matrix 𝑍 enables the 
closure of the self-consistent loop by providing the quasiparticle wave 
functions (13) and (14).

We see that the iterative equations (6) and (8) involve only one-
body quasiparticle matrices, and the stability matrix does not need to 
be evaluated or inverted. Obviously, in the first iteration, in which ̃1

is neglected, (1) gives the IB collective inertia.
The method was implemented in the non-relativistic density func-

tional solver HFODD [20,21], which solves the nuclear DFT equations 
by expanding the quasiparticle wavefunction on a three-dimensional 
Cartesian harmonic-oscillator basis and allows for the self-consistent de-
scription of nuclei with arbitrary shapes. The precision of the iterative 
method was verified by comparing the calculated Thouless-Valatin mo-
ments of inertia with those obtained from cranking calculations, yielding 
perfect agreement [14,18].

The IB collective inertia has been widely used in multiple studies of 
nuclear collective motion. However, it was soon realised that the cal-
culated values were too low to describe the data. As a result, in most 
applications, the IB values were multiplied by ad hoc factors of about 
1.3, see, e.g., recent Refs. [23–25] and references cited therein. Those 
were purely empirical factors meant to compensate for the unknown ef-
fects of the time-odd mean fields. In the present work, having a rapid and 
efficient method to include those effects, we microscopically determined 
the ratios of the ATDHFB and IB moments of inertia and compared the 
full ATDHFB results with the data.

To this end, we performed systematic ATDHFB calculations for the 
Gd, Dy, Er, Yb, Hf, W, and Os isotopes with neutron numbers between 
82 and 126. Two different Skyrme functionals, SkM* [26] and UN-
EDF1 [27], and one Gogny functional D1S [28] were used for this 
purpose. For SkM*, the volume pairing with the neutron and proton 
strengths of −178.83 and −211.20 MeV fm3 [12] were used, respec-
tively. For UNEDF1, the mixed pairing of the type 𝑉 𝑡

0
(1 − 𝜌∕𝜌sat) was 

used with the neutron and proton parameters 𝑉 𝑛
0
= −223.278 and 𝑉 𝑝

0
=

Fig. 1. Calculated ATDHFB (circles) and IB (triangles) moments of inertia com-
pared with the values extracted from the experimental data (squares) [22].

−247.896MeV fm3, and with 𝜌sat = 0.32 fm−3. Since the time-odd sectors 
of those Skyrme functionals were originally not adjusted to data, here 
we fixed them by employing the adjustments performed in Ref. [29].

In Fig. 1, the calculated ATDHFB and IB moments of inertia are com-
pared with the values extracted from the experimental data using the 
measured values of the first 2+ excitation energies [22] and the rota-
tional model formula, Expt. = 3ℏ2∕𝐸1

2+
.

Within the set of studied isotopes, the moments of inertia increase 
with the neutron number and reach maxima around 𝑁 = 100 where the 
neutron 2𝑓7∕2 orbital becomes occupied, and then decrease. In all iso-
topes, the calculated ATDHFB moments of inertia are larger than the IB 
moment of inertia as the time-odd mean fields make significant contribu-
tions. When compared to the SkM* functional, the calculated moments 
of inertia obtained for UNEDF1 are systematically larger, even though 
these two Skyrme functionals predict quite similar quadrupole deforma-
tions. For example, the IB moment of inertia of 166Er are 27.584 ℏ2/MeV 
for SkM* and 36.401 ℏ2/MeV for UNEDF1, the ATDHFB moments of 
inertia are 34.950 and 41.342 ℏ2/MeV, whereas the quadrupole defor-
mations 𝛽20 are 0.320 and 0.324, respectively.

Both SkM* and UNEDF1 are very successful Skyrme functionals in 
predicting nuclear ground state properties. However, as most of the nu-
clear density functionals are, SkM*, UNEDF1, and D1S are calibrated to 
experimental masses and charge radii and their parameters relating to 
nuclear dynamical properties are not fully constrained. Therefore, the 
predictions of the collective inertia by different functionals vary. The 
Gogny functional D1S again generates a similar quadrupole deforma-
tion of 𝛽20 = 0.322 for 166Er, whereas the predicted IB and ATDHFB 
moments of inertia are 27.865 and 41.147 ℏ2/MeV, respectively. The 
large deviations between the IB and ATDHFB moments of inertia indi-
cate that the Gogny functional D1S predicts strong time-odd mean fields 
for nuclear collective rotation.
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Fig. 2. Distributions of the residuals between the IB moments of inertia and the 
experimental values (dotted line) and between the ATDHFB moments of inertia 
and the experimental values (solid line) for SkM* (a), UNEDF1 (b), and D1S (c) 
functionals, respectively.

In Fig. 2, the distribution of the residuals between the calculated 
moments of inertia and the experimental values (Th. −Expt.) of all the 
experimentally available isotopes between 𝑁 = 86 and 122 are pre-
sented for SkM*, UNEDF1, and D1S functionals, respectively. The shift 
between the distribution of the residuals for IB and ATDHFB moments 
of inertia can be clearly observed, which shows the importance of the 
time-odd mean field.

Sudden increase of the deformation in the Hf, W and Os isotopes 
around 𝑁 = 100, predicted by UNEDF1 and D1S, is not visible in the 
experimental data, possibly because triaxiality is neglected in our cal-
culations. Therefore, in the following we present the statistical analysis 
corresponding to both excluding and including these nuclei, with the 
latter results given in parentheses.

For SkM*, the mean value of the residual between the IB moment of 
inertia and the experimental data is −2.55 (−2.21) ℏ2/MeV, that is, for 
this functional, the IB formula underestimates the moment of inertia. 
On the contrary, an overestimation is predicted by the ATDHFB method 
with a mean value of 2.54 (3.06) ℏ2/MeV. In both cases, the distribu-
tions are fairly narrow with standard deviations of 4.33 (4.21) ℏ2/MeV 
and 3.36 (3.48) ℏ2/MeV for IB and ATDHFB, respectively. For D1S, the 
IB formula also underestimates the moment of inertia while the AT-
DHFB method overestimates them, but the distributions of the residual 
are wider than for SkM*. For UNEDF1, wider distributions are also found 
but both the IB formula and ATDHFB method overestimate the experi-
mental values.

It should be stressed that for the Skyrme functionals SkM* and UN-
EDF1, there is some uncertainty in the form and strength of the pairing 
force, which may consistently shift the IB and ATDHFB moments of 
inertia up or down. Therefore, firm conclusions on whether the IB or 
ATDHFB values describe the data better are not possible. Even though 
an analogous uncertainty does not apply to D1S, as its pairing properties 
are fixed by the parameters of the functional, the results are inconclu-
sive here too. Therefore, we now proceed to directly compare the IB and 
ATDHFB moments of inertia to delineate the role of the time-odd mean 
fields in the adiabatic collective rotational motion.

In Fig. 3, we display the ratios of the ATDHFB and IB moments 
of inertia calculated with the Skyrme functionals SkM* and UNEDF1, 
and Gogny functional D1S. For SkM*, the ratios mostly lie consistently 
between 1.2 and 1.3, with a few exceptions in the even isotopes of 
186−192Yb, 186Gd, and 188Dy. For UNEDF1, however, the situation is en-
tirely different. The ratios are in the region of 1.2–1.3 only if the neutron 
number is very close to the magic numbers 82 and 126, whereas in the 
mid-shell region, the ratios become significantly smaller. For D1S, large 
deviations from the region of 1.2–1.3 are found, that is, for the osmium 
isotopes with neutron numbers from 84 to 94, the ratios could be as large 
as 1.5 or 1.6. Moreover, for all studied functionals, the ratios heavily de-
pend on the elements and also vary with neutron numbers. Therefore, 

Fig. 3. Ratios of the ATDHFB and IB moments of inertia obtained for the SkM* 
(a), UNEDF1 (b) and D1S (c) functionals compared with the empirical enhance-
ment factors of 1.2–1.3 (shaded areas).

Fig. 4. Correlation between the effective mass and the ratio between the AT-
DHFB and the IB rotational (a) and vibrational (b) collective inertia in 166Er, 
calculated with various Skyrme functionals.

no single value of the overall enhancement factor between ATDHFB and 
IB moment of inertia could be justified.

To quantitatively clarify the dependence of results on density func-
tionals, we used the seven commonly used Skyrme density functionals 
(SIII [30], SkM* [26], SkXce [31], SkO’ [32], SLy4 [33], UNEDF0 [34], 
and UNEDF1 [27]) with volume pairing to scrutinize the ratios ATD-
HFB/IB of rotational and axial vibrational collective inertia in 166Er, 
see Fig. 4. The rotational and vibrational collective inertia ratios are 
linearly correlated with the isoscalar effective masses 𝑚∗ that character-
ize given functionals and decrease with slopes of −0.582 and −0.323, 



Physics Letters B 868 (2025) 139685

5

X. Sun, J. Dobaczewski, M. Kortelainen et al. 

respectively. The correlations are quite strong with coefficients of de-
termination (𝑅2) of 0.9027 and 0.9352. This shows that for these two 
collective modes, the impact of the time-odd fields on nuclear collective 
inertia proceeds through the isoscalar current terms 𝒋2 of the func-
tionals, 𝜌𝜏 − 𝒋2 [30], which are linked to the effective-mass terms 𝜌𝜏
by the gauge or Galilean invariance constraints. Nevertheless, even at 
𝑚∗∕𝑚=1, the ratios ATDHFB/IB are larger than one, which shows that 
other time-odd mean fields also play a non-negligible role.

In summary, we proposed a novel iterative method to solve the AT-
DHFB equations exactly and we applied it to investigate the rotational 
moments of inertia in deformed nuclei. For two Skyrme functionals 
SkM* and UNEDF1 and one Gogny functional D1S, we determined the 
rotational moments of inertia of the even-even nuclei between gadolin-
ium and osmium. We obtained a good overall agreement with exper-
imental data, although improvements in functional parameterizations, 
especially in the pairing channel, are required. The efficiency of our 
method bids well for the possibility of including the rotational moments 
of inertia in future adjustments of nuclear functionals.

The focus of our study was on comparing the ATDHFB and Inglis-
Belyaev (IB) moments of inertia and gauging the impact of the time-odd 
mean fields on the nuclear collective motion. We showed that using a 
fixed numerical multiplicative factor to model the ATDHFB inertia in 
terms of the IB approximation is not justified. Our results show that the 
ratios ATDHFB/IB of moments of inertia significantly depend on neutron 
and proton numbers, deformations, and functionals.
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