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Abstract

Within the nuclear density functional theory framework, employing the Sky-
rme UNEDF1 functional and incorporating pairing correlations, we deter-
mined the spectroscopic electric quadrupole and magnetic dipole moments of
the ν11/2− and π7/2+ configurations in heavy, deformed, open-shell odd
nuclei with 50� Z� 64. The notions of self-consistent shape and spin
polarisations due to odd nucleons responsible for generating total electric
quadrupole and magnetic dipole moments were transformed into detailed
computational procedures. The alignment of intrinsic angular momentum
along the axial symmetry axis, necessitating signature and time-reversal
symmetry breaking, followed by the restoration of rotational symmetry,
proved to be essential components of the method. In contrast, the restoration of
particle number symmetry yields modifications of only about 1%. With the
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isovector spin-spin terms of the functional previously adjusted in near doubly
magic nuclei across the mass chart, the calculations were parameter-free.
Effective charges and g-factors were not employed. A reasonably good
agreement was achieved between the calculated and measured electric quad-
rupole moments. A similarly fair description of the magnetic dipole moments
was obtained for the intruder configurations ν11/2− alongside a poor
description of those for π7/2+.

Supplementary material for this article is available online

Keywords: nuclear density functional theory, electromagnetic moments,
electric quadrupole moment, magnetic dipole moment, angular momentum
projection, deformation, odd nuclei

1. Introduction

The advancement of laser spectroscopy techniques provides a wealth of information about the
fundamental properties of nuclei, including nuclear spins, electromagnetic moments, and
charge radii [1]. Electric quadrupole and magnetic dipole moments are among the most
commonly studied nuclear electromagnetic properties [2, 3]. The electric quadrupole moment
serves as a crucial tool for investigating nuclear deformation, while the magnetic dipole
moment offers insights into the configurations of valence nucleons (either particle or hole).
For a fixed configuration, the single-particle estimate of the magnetic moment, known as the
Schmidt limit [4], remains constant along the isotopic chain. Deviations of the measured
magnetic moments from the Schmidt value can be significant indicators of changes in internal
structure, core-polarisation effects, and nuclear two-body currents that influence the form of
the magnetic dipole operator. Theoretical calculations of both quadrupole and magnetic
dipole moments are often model-dependent; hence, comparisons with data can serve as
benchmarks to assess not only the validity of nuclear models but also to enhance under-
standing of the underlying physics of complex systems like nuclei.

In the present work, we expand the scope of the results presented in [5] to encompass the
region of lighter elements, ranging from tin to gadolinium. Within nuclear density functional
theory (DFT), we determine the spectroscopic electric quadrupole and magnetic dipole
moments of the nuclei depicted in figure 1. Our dual focus here is on studying (i) the neutron
intruder states 1h11/2 instead of 1i13/2 and (ii) the proton spin–orbit partner states 1g7/2 rather
than the intruder states 1h11/2. The goal is to identify and compare the principal features of
nucleon polarisation effects for parallel and antiparallel coupling of spin and orbital angular
momenta, respectively, and to investigate the properties of the selected orbitals upon crossing
the magic neutron shell N= 82. The abundance of experimental data, e.g. the new exper-
imental data on the electric quadrupole and magnetic dipole moments in tin isotopes [6] and
antimony isotopes [7], serves as an advantage of studying the neutron 1h11/2 and proton 1g7/2
configurations.

Non-perturbative shape and angular-momentum polarisations are the main features that
distinguish the nuclear DFT from approaches based on valence-space approximations. Within
the DFT picture, the unpaired nucleon determines the properties of an odd nucleus in the
following way. For small quadrupole deformations near the semi-magic systems, an I > 1/2
hole (particle) in the magnetic sub-state having the largest angular-momentum projection Ω
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equal to the total angular momentum I, Ω = I, induces the prolate (oblate) polarisation of the
nucleus. This rule is an immediate consequence of the geometrically driven dependence of the
orbital single-particle energy ò on the axial deformation β, that is, ( ( ))b~ W - + I I3 12 .

Such dependence on I and Ω originates from the expectation value of a small
quadrupole perturbation, ˆ ˆb~H Q1 20, of the standard spherical mean-field eigenstates
|NℓIΩ〉. From the Wigner–Eckart theorem, the expectation value ⟨ ∣ ˆ ∣ ⟩W WN I Q N Iℓ ℓ20 of
the quadrupole perturbation is proportional to the Clebsch–Gordan coefficient

( ( )) (( ) ( )( ))/= W - + - + +W
WC I I I I I I3 1 2 1 1 2 3I
I
,20

2 [8]. Indeed, the orbital Ω = I then
has the highest (lowest) energy ò ∼ βI(2I − 1) for β > 0 (β < 0) and thus determines the
shape of the hole (particle) state.

In nuclear DFT, this perturbative picture undergoes an essential modification. Indeed, the
non-zero quadrupole moment of a single hole (particle) occupying a magnetic sub-state with
Ω = I induces a prolate (oblate) deformation to the total mean field, which, in turn, causes the
non-zero quadrupole moments of the core nucleons. The induced total quadrupole moment of
the core further deforms the entire mean field and, consequently, influences the quadrupole
moment of the hole (particle). These mutual polarisations are summed up in the self-con-
sistent solution, generating the odd nucleus’s total quadrupole moment Q, which in open-shell
systems becomes large, well beyond the perturbative effect. Since the mutual polarisations act
throughout the full space of single-particle states, no effective polarisation charges are needed
to determine Q.

Analogous to the self-consistent shape polarisations, the non-zero magnetic dipole moment
of the odd nucleon induces non-zero magnetic dipole moments in the core nucleons, which, in
turn, influence the magnetic dipole moment of the odd nucleon. In the self-consistent solution,
these mutual angular-momentum polarisations (spin and orbital alike) produce the total
magnetic dipole moment μ of the odd nucleus in the same direction as the magnetic dipole
moment of the odd nucleon. The time-odd mean-field sector of the energy functional
determines the magnetic polarisation strength of the odd hole or particle. If the time-odd
mean-field sector is neglected, only the magnetic moment of the odd nucleon survives. Again,
since the mutual polarisations act throughout the full space of single-particle states, no
effective g-factors are needed. As shown in [9], this feature of nuclear DFT removes the
adjustable effective parameters customarily used in valence-space approaches.

Figure 1. Schematic illustration of the set of odd-Z (diamonds) and odd-N (circles)
nuclei considered in the present work.
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For axial shapes, and especially for determining the magnetic dipole moments μ, the
nuclear DFT’s polarisation picture requires the following two elements:

• Aligning the odd particle’s angular momentum along the axis of axial symmetry.
Compared to other possible shape-alignment orientations, this allows for the largest
values of the angular momentum projections (AMPs) and thus gives the strongest
polarisation effects.

• Restoring the angular momentum symmetry, which allows for determining the
spectroscopic moments that are directly comparable to experimental values.

In [5, 9], we presented a brief literature overview of theoretical approaches used to
determine nuclear electromagnetic moments; see also a recent review article [1]. Since then,
the work in this direction has continued in several publications, such as the shell model
[10–14], self-consistent Theory of Finite Fermi Systems [15, 16], Quasiparticle Phonon
Nuclear Model [17], interacting boson-fermion model with configuration mixing [18, 19],
Hartree–Fock–Bogolyubov (HFB) [20–22] and Hartree–Fock plus BCS (HF+BCS)

approaches [23], ab initio IMSRG with projected generator coordinate method (PGCM) [24],
ab initio in-medium no-core–shell model (IM-NSCM) with PGCM [25], ab initio no-core–
shell-model [26, 27], ab initio valence-space in-medium similarity renormalisation group
(VS-IMSRG) [7, 12, 28], covariant density-functional theory (CDFT) [11], generator coor-
dinate method within the multireference covariant density-functional theory (MR-CDFT)

[29], multi-reference energy density functional (MR-EDF) calculations [30], and rigid triaxial
rotor plus particle model [31]. In parallel, the methodology used in the present study was
tested against experimental data in [32–37].

In [12–20], the results were obtained by employing effective charges and/or g-factors,
with disparate values and justifications. Numerous diverse physical effects could be hidden
and mixed under such numerical constants. These could include a limited size of the single-
particle phase space, inadequate shape and/or angular-momentum polarisations, restrictions
on conserved or broken symmetries or shape-alignment orientations, missing terms or defi-
ciencies in the interactions or functionals, triaxial and/or octupole deformability, contribu-
tions from two-body meson-exchange currents, or maybe even a few more unknown
unknowns, which potentially can all influence deviations between theory and experiment and
deserve dedicated studies.

The paper is organised as follows. In section 2, we present details of the computational
scheme employed in this work, and in section 3, we present the results obtained. Three
subsections of section 4 discuss various aspects of the precision of the calculations related to
the harmonic oscillator (HO) basis used, section 4.1, pairing strengths, section 4.2, and effects
of particle number projection (PNP), section 4.3. Conclusions and outlook are presented in
section 5.

2. Methodology

Following the concepts of shape and angular-momentum polarisations presented above, we
outline the procedures we used to calculate nuclear electromagnetic moments systematically.

(i) In the first step, we performed the standard HF calculation for the spherical 100Sn
nucleus.

(ii) In the next step, we broke the spherical and time-reversal symmetries of 100Sn by
introducing small axial quadrupole constraints Q̄20 of about ±0.9 b, and a constraint on
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the z-component of the angular angular momentum Jz for a small cranking frequency
ωz = 0.001 MeV/ÿ. The constraint on Jz (using a small cranking frequency ωz) enforces
the alignment of the angular momenta along the axis of axial symmetry of the deformed
nucleus. Together with the constraint on Jz, the two quadrupole constraints gave us
weakly deformed prolate and oblate 100Sn states with the projections of the single-
particle angular momenta quantised along the axial-symmetry z-axis. In this way, in the
spectrum of single-particle states, we could identify two Nilsson orbitals, ν[505]11/2−

and π[404]7/2+, which originate from the spherical neutron 1h11/2 and proton 1g7/2
states, respectively. The prolate and oblate single-particle states defined in this way were
fixed and used to tag blocked quasiparticles for all open-shell odd nuclei considered in
this work. In what follows, we refer to them as prolate and oblate tags.
The tagging mechanism was implemented in the following way [38]. In each
iteration of the HFB self-consistent procedure [39], the code scanned the two-

component quasiparticle wave functions c =m
m

m

*

*

B

A

⎛

⎝
⎜

⎞

⎠
⎟ and determined the overlaps =m

(( ∣ ) ( ∣ ˆ ˆ ))f fn m n m
+

* *B T A Tmax , between the fixed-tag single-particle wave function fν and

the upper m*B or time-reversed lower quasiparticle component ˆ ˆ
m

+
*T A T . Then, the

maximum overlap m defined the quasiparticle state μ to be blocked. The tagging
mechanism has the advantage of being insensitive to the energies of quasiparticles, which
can change from one iteration to another. Most importantly, it is also insensitive to
whether the quasiparticles are predominantly of the particle or hole character; that is, it
allows for following them when they cross the Fermi energy.
The tagging mechanism is based on the strong affinity between the self-consistent
quasiparticle states and single-particle states near closed shells. This affinity is the crux of
our method for following specific configurations across a range of particle numbers.
In summary, we first defined the fixed single-particle states ν[505]11/2− and π[404]7/2+

by applying the quadrupole constraints ¯ = Q 0.920 b. Then, we selected the one-
quasiparticle state by maximising the overlap m between the quasiparticle wave
functions and the previously defined fixed single-particle states ν[505]11/2− and
π[404]7/2+.

(iii) In the next step, for each considered nucleus, depicted in figure 1, we performed a tagged
quasiparticle-blocking calculation by setting the average constant neutron and proton pairing
gaps to 1MeV [40]. We also imposed axial quadrupole constraints for prolate and oblate tags
with large values of ¯ = +Q 1020 and −10 b, respectively. This allowed us to determine
stable starting reference solutions suitable for obtaining the final self-consistent states.

(iv) In the next step, we determined the final self-consistent states by substituting the fixed
pairing gaps with the neutron and proton pairing forces and relaxing the quadrupole-
moment constraints. In this step, the pairing correlations were self-consistently determined.
At the same time, during the self-consistent iteration, for both prolate and oblate tags, the
quadrupole deformations slid back to lower quadrupole deformations, reaching the prolate
and oblate minima, respectively. Both tags led to the same self-consistent solution in all
cases where only a single minimum existed, whether prolate or oblate.

(v) In the last step, for all self-consistent solutions, we restored the rotational symmetry [41] by
projecting the intrinsic states on good angular momenta of I= 11/2 or 7/2ÿ for the ν11/2−

and π7/2+ configurations, respectively. At this point, the preserved axial symmetry and
fixed quantised values of the AMPs along the axial symmetry axis allowed for reducing the
3D integration over the three Euler angles [41] to the 1D integration over the rotation about
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the axis perpendicular to the axial symmetry axis only. This reduces the CPU time required
to perform the AMP by about two orders of magnitude and makes it comparable to that
needed to converge the HFB states. The spectroscopic electric quadrupole and magnetic
dipole moments were then determined for symmetry-restored states.

The methodology proposed for the first time in [5] and outlined in this section enables us to
perform large-scale calculations of nuclear electromagnetic moments for many elements and
long chains of isotopes, ranging from near-closed shells to open-shell configurations. The
tagging mechanism allows us to follow given microscopic structures and configurations irre-
spective of their precise excitation energies and ordering in the spectra of odd nuclei. In this
way, particular systematic agreement or disagreement patterns with data can be identified, and
improvements in theoretical modelling can be proposed, implemented, studied, and tested.

3. Results

In this work, we employ the UNEDF1 [42] parametrisation of the Skyrme functional and
focus on the time-odd mean fields generated by the spin–spin interactions of the form σ1 · σ2.
The standard Skyrme functionals, like UNEDF1, generate the time-odd mean fields via the
following terms [43, 44]: ( )C s rt t

2 2 , ( ) · ( )DC s r s rt
s
t t

2 , ( ) · ( )C s r T rt
T

t t , ( )C j rt
j
t
2 , and

( ) · [ ]( ) ´C s r j rt
j
t t , where t = 0(1) refers to the isoscalar (isovector) character of the

coupling constants, st(r) is the spin density, Tt(r) represents the vector kinetic density, and
jt(r) represents the current density. As in our previous work [5, 9], we parameterised coupling
constantsCt

s andCt
T by the standard isoscalar and isovector Landau parameters, g0 and and ¢g

0

[45], and we used the values of g0 = 0.4 and ¢ =g 1.7
0

. For the functional UNEDF1, these
values of the Landau parameters correspond to the Skyrme-functional coupling constants of

=C 30.555s
0 and =C 129.858s

1 MeV fm3. In addition, the coupling constants Ct
T , Ct

j, and
Ct
j were kept fixed at their values given by the gauge symmetry conditions [43, 44] and DCt

s

were set to zero to avoid known time-odd instabilities [46].
As in our previous work [5], in the pairing channel, we used the mixed pairing force adjusted

in [42], and we increased the strength parameters by 20% to account for replacing the original
Lipkin–Nogami (LN) method with the HFB approach. Within the LN method and the BCS
model, see, e.g. [47], the approximate particle-number projected spectral gaps are given by
⟨ ⟩ ⟨ ⟩( ) lD = D +v vq q q

2 LN 2
2, and ⟨ ⟩ ⟨ ⟩( ) lD = D +uv uvq q q

LN
2, , where q ä {p, n}, and are larger

by the LN second-order coefficient λ2,q than the corresponding BCS gaps. Although the dis-
cussion in [47] centres on pairing gaps within the BCS approximation, a similar conclusion
holds for the HFB approach used here because, within a canonical basis [39], the BCS
approximation is equivalent to the HFB approach. Since the calculated pairing gaps increase
with the pairing strengths, the LN contributions of λ2 to the spectral gaps can be compensated
by increasing the HFB pairing strengths. A 20% increase was chosen so that our calculated HFB
values of the OES (section 4.2) are, on average, compatible with experimental data.

We performed calculations using the code HFODD (v3.16p) [48, 49] while conserving
parity symmetry. The numerical values of the results determined in this study are available in
the Supplemental Material.8 The 3D Cartesian HO basis, characterised by equal HO fre-
quencies along the three Cartesian directions, ωx = ωy = ωz ≡ ω0, was employed. The
spherical single-particle basis was established by limiting the number of HO quanta in the
three Cartesian directions, nx, ny, and nz, so that nx + ny + nz� N0 = 16, where N0 represents

8 See Supplemental Material at https://doi.org/10.1088/1361-6471/ade0dd for tables of detailed results in
numerical form.
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the maximum number of spherical HO shells included. The sphericity of the HO basis did not
impede arbitrary deformations of self-consistent solutions. However, in this application, the
3D code was run in a mode that enforced the axial symmetry of the solutions.

As it turned out, almost all calculations performed for both tags (prolate and oblate) and for
all 160 odd-N and 147 odd-Z nuclei (figure 1) converged well. Isotopes for which the oblate-
tag calculations did not converge were 115Ba and 157Sm. Similarly, the prolate-tag calcula-
tions for 115I, 145I, 127Cs and 157Pm did not converge either.

Panels of figure 2 (figure 3) show the neutron number dependence of the spectroscopic
electric quadrupole moments of odd-N (odd-Z) nuclei obtained from the oblate (a) and prolate
(b) tags. Missing points indicate the non-converged calculations. Before discussing the
deformation characteristics of the studied nuclei, we draw the reader’s attention to the fact that
apart from a few points where the obtained fixed-tag results jump between prolate and oblate
shapes, they vary remarkably smoothly. This feature of the tagged calculations is helpful
because, away from the jumps, it allows us to replace all missing non-converged results with
the corresponding interpolations between the converged neighbours. Interpolated results are
indicated in the tables of the Supplemental Material (see footnote 8) and included in all
figures below.

In figure 4, for odd-N (a) and odd-Z (b) solutions, we show the energy differences between
the oblate-tag and prolate-tag results. Vanishing values of those differences indicate cases
where the prolate and oblate tags led to the unique (prolate or oblate) global minima. Results
of that kind were obtained for (i) all Sn isotopes, (ii) all Te isotopes apart from 57� N� 63,
and all odd-N elements with 77�N� 87. Similarly, they were also obtained for (i) all Sb
isotopes, (ii) all I isotopes apart from 50�N� 62 and N = 92, and (iii) all odd-Z elements
with 78�N� 86. Other odd nuclei exhibit two different minima with positive (negative)
oblate-prolate energy differences, which implies prolate (oblate) global minima.

It should be noted that this analysis is limited to axial shapes. Consequently, for small
oblate/prolate energy differences or small deformations, triaxial shapes and the generator
coordinate mixing thereof leading to shape coexistence may be relevant, which is beyond the
scope of the current study. In the following, we present results solely for the global minima

Figure 2. Spectroscopic electric quadrupole moments in the ν11/2− configurations of
odd-N nuclei as functions of the neutron number N, obtained from the oblate (a) and
prolate (b) tags.
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(unique, prolate-tag, or oblate-tag), and the tables in the Supplemental Material (see footnote
8) provide information on the type of minimum selected.

In figures 5(a) and 6(a), we present the spectroscopic quadrupole moments Q calculated at
the global minima of odd-N and odd-Z nuclei, respectively. For illustration, in figures 5(b)
and 6(b), we also present the corresponding Bohr β2 parameters, calculated from the values of
Q in an analogous way as they are routinely determined from the measured spectroscopic
quadrupole moments, that is

Figure 3. Same as in figure 2 but for the π7/2+ configurations of odd-Z nuclei.

Figure 4. Energy differences between oblate-tag and prolate-tag minima for odd-N (a)
and odd-Z (b) nuclei. The energy difference Eoblate-tag − Eprolate-tag for 145I isotope
(N = 92) was linearly interpolated using the Eprolate-tag of

143I and 147I with N= 90 and
N= 94, respectively, the latter being outside the set of isotopes defined in figure 1.
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( )
( )b

p
=

ZR

Q

C

5

3
, 1

II
II2

0
2

,20
2

where R0 is the standard parameterisation of the nuclear geometric radius in terms of the mass
number A, R0 = 1.2A1/3 fm, and CII

II
,20 are the Clebsch–Gordan coefficients, in our case

reading // /
/ / =C 55 9111 2 11 2,20

11 2 11 2 and // /
/ / =C 7 157 2 7 2,20

7 2 7 2 .
For the Sn and Te isotopic chains, figure 5 shows a smooth transition between oblate and

prolate shapes with the neutron numbers varying from the magic number 50 to beyond the
magic number 82. Conversely, at N = 67–69, the isotopic chains of heavier elements exhibit
abrupt transitions between oblate and prolate shapes. As explained in [5], abrupt transitions
occur because configurations that start as holes (particles) at the lower end of an open shell, at
the higher end must become particles (holes). Figure 5 also illustrates that the closer (farther)
the proton number is to the magic number 50, the abrupt transition occurs at larger (smaller)
neutron numbers. This generic behaviour arises from the interaction between the shape
polarisation of protons and neutrons. Figure 5 also shows that the same signs of the spec-
troscopic quadrupole moments are obtained when we follow the ν11/2− configurations
across the neutron N= 82 magic number, as on both sides, this configuration has a hole

Figure 5. Same as in figure 2 but for the global minima (a) and the corresponding Bohr
parameters β2 (b) calculated using equation (1).

Figure 6. Same as in figure 3 but for the global minima (a) and the corresponding Bohr
parameters β2 (b) calculated using equation (1).
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character. Analogous conclusions can be drawn for the π7/2+ configurations in odd-Z nuclei
shown in figure 6.

Figure 7 (figure 8) shows that for odd-N (odd-Z) nuclei, the calculated spectroscopic
quadrupole moments agree reasonably well with experimental data.9 It is worth noting that
the results do not depend on the time-odd mean fields and, thus, on the specific values of the
Landau parameters used here. In the case of 141Cs, the sign of Q obtained in the calculations is
opposite to that determined experimentally. As shown in figure 9, for the neutron numbers
between 78 and 84, the results obtained for global minima agree on the trend of quadrupole
moments. In addition, the spectroscopic quadrupole moment of 141Cs (N= 86) obtained from
the oblate tag matches the experimental value spectacularly well. This shows that in the Cs
isotopes, theoretical calculations predict the abrupt transition from oblate to prolate shapes
two neutron numbers too early. However, we should keep in mind that in 141Cs, the oblate-
prolate energy difference, figure 4, is as small as 64 keV. We also note that another large
deviation between theory and experiment, obtained in 153Eu, cannot be explained.

We investigated the importance of the AMP in determining the spectroscopic electric
quadrupole moments by testing the validity of the large-axial-deformation (or rigid-rotor)
approximation,10 already used in (1). It allows for estimating the spectroscopic quadrupole
moments Qest

spec from the calculated intrinsic quadrupole moments Q20
intr as,

( ) ( )= ´Q C Q . 2II
II

est
spec

,20
2

20
intr

In panels (a) and (b) of figure 10, for the ν11/2− and π7/2+ configurations in odd-N
and odd-Z nuclei, respectively, we compare the calculated spectroscopic electric

Figure 7. Comparison between the calculated electric quadrupole Q moments of the
ν11/2− configurations in odd-N nuclei and the available experimental data [6, 50–
52]. The asterisk (

*
) represents the case where the sign of the electric quadrupole

moment was not determined experimentally, and thus the calculated sign was
adopted.

9 As discussed in [35], deviations obtained in light Sn isotopes can be corrected using the pairing strength lowered
by another 20%.
10 See [39], equation (11.143).
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quadrupole moments Q with their rigid-rotor approximations (2). We observe that, when
plotted in the large scale used in the figure, the approximations seem to be perfect.
However, to visualise their precision at small deformations, in figure 11, we show the
corresponding relative percentage deviations, ( )/-Q Q Qest

spec . Here we see that for the
ν11/2− configurations in odd-N nuclei, at all deformations, the rigid-rotor approximation
is precise up to about 1%, whereas for the π7/2+ configurations in odd-Z nuclei it

Figure 8. Same as in figure 7 but for the π7/2+ configurations in odd-Z nuclei [7,
50–55].

Figure 9. Evolution of the quadrupole moments Q with neutron numbers N obtained in
Cs isotopes for oblate (up triangles) and prolate (down triangles) tags. Open and full
circles represent the global minima and experimental data, respectively.

J. Phys. G: Nucl. Part. Phys. 52 (2025) 065104 H Wibowo et al

11



deteriorates at small deformations to about 35%. Figure 11 may serve as a guide for
employing the rigid-rotor approximation rather than conducting the exact AMP in weakly
deformed nuclei.

In figures 12 and 13, which correspond to the ν11/2− and π7/2+ configurations in odd-N
and odd-Z nuclei, respectively, we compare the calculated spectroscopic magnetic dipole
moments μ with experimental data. For the spin-aligned configuration, ν11/2−, the agree-
ment with the data is reasonably good (see footnote 9); however, the experimental trend is not
reproduced in the Te isotopes. In contrast, the values and trends observed for the spin-anti-
aligned configuration, π7/2+, do not align well with the data. It should be noted that in [7],
the Sb experimental results were reproduced by adjusting the values of three effective g-
factors in both shell-model and ab initio calculations. However, the physical rationale behind
using these specific values remains unclear.

Figure 10. Calculated spectroscopic quadrupole moments Q compared with estimates
(2) for the ν11/2− configurations in odd-N nuclei (a) and π7/2+ configurations in odd-
Z (b) nuclei.

Figure 11. Same as in figure 10 but for the relative electric quadrupole moments,
see text.
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As shown in figures 14 and 15, which compare the spectroscopic and intrinsic values of
the calculated magnetic dipole moments, the restoration of rotational symmetry (AMP) is
notable, with trends—particularly for ν11/2—and values altered accordingly.

Figure 12. Comparison between the calculated spectroscopic magnetic dipole moments
μ of the ν11/2− configurations in odd-N nuclei with experimental data [6, 50, 56, 57].
The uncertainties of the theoretical values were obtained by recalculating the theoretical
results for the Landau parameters ¢ =g 1.3

0
and 2.1, which correspond to the

uncertainty of ( )¢ =g 1.7 4
0

estimated in [9]. The asterisks (
*
) represent the cases where

the signs of the magnetic dipole moments were not determined experimentally, and the
calculated signs were adopted.

Figure 13. Same as in figure 12 but for the π7/2+ configurations in odd-Z nuclei [7].
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4. Precision of calculations

4.1. Harmonic oscillator basis

The calculations presented in this work were obtained using a spherical HO basis up to
N0 = 16 shells, where the value of the ‘physical’ frequency ÿω0 = f × 41 MeVA−1/3 was
established by setting f= 1.2 [58]. To examine how the spectroscopic moments differ when
altering the properties of the spherical HO basis, we selected 167Gd, one of the most deformed
nuclei in the region studied in this work. Therefore, it is reasonable to anticipate a similar
range of deviations for the other nuclei investigated.

The choice of the number of shells to include in the calculations depends on the conv-
ergence of results. Once a sufficient number of basis states are considered, increasing the
basis size only slightly impacts the system’s properties. However, with a larger basis comes a
more significant computational burden, making it essential to find the optimal set of states to
balance precision and workload. To illustrate this analysis, in figure 16, we plotted the energy

Figure 14. Calculated intrinsic magnetic dipole moments compared with the
spectroscopic ones for the ν11/2− configurations in odd-N nuclei.

Figure 15. Same as in figure 14 but for the π7/2+ configurations in odd-Z nuclei.
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of the oblate-tag minimum of the 11/2− state for the 167Gd nucleus as a function of different
numbers of shells and HO frequencies. We can see that using a basis larger than N0 = 14 has
a minor effect on reducing the oblate minimum energy. For instance, in this example, the
variation between N0 = 16 and N0 = 18 is 272 keV. Even more interestingly, at larger values
of N0, the results are nearly insensitive to the choice of ÿω0, see [58].

Figure 17 presents the electric quadrupole moments Q (top panels) and magnetic dipole
moments μ (bottom panels) determined at the oblate-tag minimum (left panels) and prolate-
tag minimum (right panels) for different values of N0 and ÿω0. We notice that the results
obtained at N0� 14 fluctuate significantly before stabilising. Specifically, at N0 = 16, the
standard deviations are in the range of ΔQ ; 0.03–0.05 b and Δμ ; 0.002–0.003 μN. To
conclude, if we consider those deviations as typical uncertainties related to the basis trun-
cation, the related error bars in all figures presented in this study would be invisible. For
instance, the size of the symbols representing values of Q (μ) in figure 7 (figure 12) is 0.1 b
(0.1 μN), which is significantly larger than the numerical uncertainty estimated here.

4.2. Pairing strength

Throughout this work, we observed a reasonable agreement with experimental data for the
electric quadrupole moments Q. However, the calculated spectroscopic magnetic dipole
moments μ of the π7/2+ configuration poorly reproduce the data. Since the magnetic dipole
moments strongly depend on both the single-particle properties and the polarisation of the
paired core, in this section, we critically evaluate the adjustment of the pairing strengths in the
studied nuclei.

To assess the quality of the proton and neutron pairing strengths, we determined the proton
and neutron odd–even mass staggering (OES), the difference in binding energy between a
given odd nucleus and the average of its even–even neighbours. To do this, we calculated the
ground-state energies of all even–even neighbours using the same pairing strengths as those
employed in odd nuclei. It is worth noting that the OES values obtained in this manner are not
identical to those typically calculated to evaluate the ground-state pairing energies. Indeed, by
utilising the binding energies of specific configurations, regardless of their positions in the
spectra of odd nuclei, we assess the combined effects of the pairing strengths and isomer

Figure 16. Ground state energies of the oblate-tag minima in the 11/2− state of 167Gd
as functions of the HO basis frequency ÿω0.
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excitation energies. In contrast, the standard ground-state values mix the effects of the pairing
strengths and configuration changes.

We analysed the pairing strengths using the global or unique minima in odd nuclei, as
detailed in section 3, which may be either prolate or oblate. To enhance the reliability of our
analysis, we consistently selected (i) identical shapes for the two even–even neighbours and
(ii) either the same or opposite shapes for the odd nuclei and their even–even neighbours. The
experimental data were obtained by subtracting the isomer excitation energies of the odd
nuclei11 from their corresponding ground-state binding energies [59]. Our results are depicted
in figure 18, where panels (a)–(h) ((i)–(x)) correspond to the neutron (proton) OES. The
symbols in the legend represent the shapes of the odd nuclei as related to those of the even–
even neighbours.

Our results for the neutron OES show good agreement with data, particularly for the Sn
isotopes. We replicate the jumps in the OES around N= 82, associated with the shell closure,
although, at Z > 50, the jumps in the experimental values are less pronounced. As we
examine heavier isotopic chains, our calculations do not fully align with the behaviour
observed in the experiment. However, concerning the overall magnitude of the OES, the
disagreement between theoretical and experimental values does not seem systematic. For the
proton OES, our results demonstrate better agreement with the data.

Adjusting the pairing strengths would imply shifting the theoretical lines toward higher or
lower values, which would not address the inconsistencies with the OES experimental values.

Figure 17. Spectroscopic electric quadrupole moments Q (upper panels) and magnetic
dipole moments μ (lower panels) for the oblate (left panels) and prolate (right panels)
minima of 167Gd using a spherical HO basis with different numbers of shells, N0, and
HO frequencies, ω0.

11 From ENSDF database as of 18 september 2023. Version available at http://www.nndc.bnl.gov/ensarchivals/.
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Therefore, we conclude that the pairing strengths utilised in this work are reasonably cali-
brated, and there is no compelling reason to alter them. Although the OES analysis does not
clarify the inconsistencies in our results for the magnetic dipole moments μ, it eliminates the

Figure 18. Calculated neutron (panels (a)–(h)) and proton (panels (i)–(x)) odd–even
mass staggering (OES) corresponding to the energies of the blocked ν11/2− and π7/
2+ configurations, respectively, compared with the available experimental data (see
footnote 11).
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pairing strengths as a potential factor. Additionally, this maintains the generality of DFT
calculations without necessitating parameter adjustments for specific regions of the nuclear
chart, which is one of the commendable features of this work.

4.3. Particle-number projection

In figure 19, we display the percentage deviations between the spectroscopic (AMP) magnetic
dipole moments μ and electric quadrupole moments Q calculated with and without PNP. The
PNP results were obtained using 9 Gauss-Tchebyshev integration nodes [41, 48] for both
proton and neutron gauge angles. Tests were conducted for the ν11/2− configurations in odd-
N isotopes of gadolinium, yielding results that differ by only about 1% from those obtained
without the PNP. This finding supports the sole use of AMP when determining electro-
magnetic moments. Given that the PNP increases the computational time by around two
orders of magnitude (9× 9), this fact greatly enhances the feasibility of this work’s large-
scale nuclear DFT calculations.

5. Conclusions and outlook

In this work, we presented the nuclear DFT description of electric quadrupole and magnetic
dipole moments in odd open-shell nuclei, spanning the elements from tin to gadolinium. By
aligning the angular momenta along the axial symmetry axis, incorporating the signature and
time-reversal breaking as well as time-odd mean fields, and restoring rotational symmetry, we
have proven these to be critical elements of the description.

By tagging the quasiparticle states with the single-particle wave functions determined in
100Sn, we were able to trace two specific paired configurations of ν11/2− in odd-N and
π7/2+ in odd-Z nuclei. We achieved reasonable agreement for both configurations between
the calculated electric quadrupole moments and experimental data. Furthermore, for the
parallel coupling of spin and orbital angular momenta in the ν11/2− configurations, the
calculated magnetic dipole moments also align well with data, particularly in the Sn and Xe

Figure 19. Relative differences (in %) between the electric quadrupole (X ≡ Q) and
magnetic dipole (X ≡ μ) moments calculated with and without the PNP. The plot
shows the results obtained for the ν11/2− configurations in odd-N isotopes of
gadolinium.
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isotopes. In contrast, neither the values nor the trends in the experimental data could be
reproduced for the antiparallel coupling in the π7/2+ configurations. We also examined the
precision of the results against the truncation of the HO basis, strengths of the pairing
interactions, and restoration of particle-number symmetry, concluding that none of these
factors had a meaningful impact on the results. In comparison to restoring the particle-number
symmetry and angular momentum symmetry for triaxial shapes, the methodology employed
here reduced computational costs by four orders of magnitude and enabled efficient large-
scale calculations.

A substantial disagreement exists between the calculated and experimental magnetic dipole
moments of the ν7/2+ configurations, necessitating further investigation. On the one hand,
attributing this disagreement to adjusted effective g-factors does not further scientific under-
standing. On the other hand, potential physical explanations for the disagreement identified here
must be weighed against the agreement observed for the π11/2− configurations. At this stage,
we can argue that three promising avenues for further research exist. Firstly, one could aim to
incorporate more sophisticated time-odd mean fields beyond those provided by the simple
isovector spin–spin terms employed here. Secondly, in the region of the studied nuclei, the
effects of triaxiality and collectivity may be significant. Thirdly, as suggested long ago (see, e.g.
[60, 61]) and recently demonstrated in [62], the one-body magnetic dipole operator utilised in
this study may require supplementation with terms generated by two-body meson-exchange
currents. Work in these directions is the focus of our current research.
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