UNIVERSITY OF LEEDS

This is a repository copy of Insights into the oxidation regime of diesel soot during realistic DPF regeneration.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/228765/</u>

Version: Accepted Version

Article:

Fu, Z., Fan, C. orcid.org/0000-0001-5684-2547, Liu, Y. orcid.org/0000-0002-9367-3532 et al. (5 more authors) (2026) Insights into the oxidation regime of diesel soot during realistic DPF regeneration. Fuel, 403. 136086. ISSN 0016-2361

https://doi.org/10.1016/j.fuel.2025.136086

This is an author produced version of an article published in Fuel, made available under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Insights into the oxidation regime of diesel soot during realistic DPF
2	regeneration
3	Zheng Fu ^{a,b} , Chenyang Fan ^{a*} , Ye Liu ^{c**} , Ze Guan ^a , Mingliang Wei ^a , Bin Xu ^a , Tansu
4	Shang ^b , Weiwei Shang ^a
5	^a Henan Provincial International Joint Laboratory of Energy Conservation and Pollutant Control of
6	Energy Power Equipment, College of Vehicle and Traffic Engineering, Henan University of Science
7	and Technology, Luoyang 471003, China
8	^b State Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang 471003, China
9	^c Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK
10	
11	
12	
13	*Corresponding author 1. Chenyang Fan
14	E-mail address: <u>fanchenyang@haust.edu.cn</u> ; fanchenyang@tju.edu.cn
15	Postal address: Vehicle & Transportation Engineering Institute, Henan University of Science and
16	Technology, Luoyang 471003, China
17	
18	**Corresponding author 2. Ye Liu
19	E-mail address: Y.Liu8@leeds.ac.uk
20	Postal address: Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK

21 Abstract

22	Optimal DPF regeneration methodologies need detailed knowledge of soot
23	oxidation regime under realistic engine conditions. This work experimentally explored
24	the soot oxidation regime during DPF regeneration at inlet temperatures of 300°C and
25	350°C. A high-resolution transmission electron microscope (HRTEM) and a Raman
26	spectroscopy were used to observe the structure evolution and explain the oxidation
27	regime transformation during regeneration. Results showed that at the DPF-inlet
28	temperature of 300°C, partial soot particles possessed localized hollow interiors with
29	thicker boundaries at the later stage of its oxidation process, indicating the occurrence
30	of internal burning. However, at the DPF-inlet temperature of 350°C, soot particles
31	exhibit no voids and became more ordered over the whole soot oxidation process, which
32	agree well with the behavior induced by surface oxidation. At the early regeneration
33	stage under at 300 °C DPF inlet temperature, soot oxidation led to the extension of
34	micropores, increasing the accessibility of oxygen penetration to particle core. Reversely,
35	the oxidation at higher temperature of 350°C and the late oxidation stage of 300 °C
36	consumed the micropores and shrank the primary particle size, accompanying with the

37	oxidation-induced graphitization. Oxidation-induced disordering was interesting
38	observed at the early stage of 300 °C regeneration, with the ever shorter fringe, larger
39	tortuosity and separation distance, and rising peak area ratio of D1 to G band. Evolutions
40	of structure and defect sites revealed the inclination of internal burning at lower DPF
41	regeneration temperatures, and the prevalence of surface oxidation during the overall
42	process of higher temperatures.
43	Key words: Soot oxidation; DPF regeneration; Soot structure; HRTEM; Raman

44 spectroscopy

1. INTRODUCTION

46	Diesel Particulate Filters (DPF) are becoming mandatory for many Heavy-Duty
47	Vehicles (HDV) and Non-Road Mobile Machinery (NRMM) applications to meet the
48	latest major emission regulations[1, 2]. Herein, Channel structured honeycomb based
49	particulate filters were widely used for filtration of PM from diesel engine emissions
50	by trapping particulate matter in their porous walls as exhaust flows through alternate
51	plugged channels, offering high filtration efficiency with manageable backpressure [3,
52	4]. During the filtration of DPF, the consecutive accumulation of PM on the porous filter
53	walls and inner pore surfaces induces increased pressure drop, resulting in deterioration
54	of the fuel economy and PM emissions if the filters are not cleaned regularly [5-8].
55	Thus, to ensure the filtration efficiency of DPF, it is essential to conduct regular DPF
56	regeneration by oxidizing the deposited PM that mainly consists of soot particles [9-
57	11].
58	Motivated by the optimizing of DPF regeneration strategies, the oxidation
59	characteristics of diesel soot under realistic engine and DPF conditions have been
60	investigated in numerous studies [12, 13]. For the non-catalyzed regeneration process,

61	soot particles were oxidized (combusted) at the typical low (<800°C) temperature
62	conditions [14, 15]. In this case, the soot reactivity, defined as the soot tendency to be
63	oxidized at high rate, acts as the primary factor in the rate of filter regeneration. Soot
64	with higher reactivity may lead to faster filter regeneration and slower (or even no)
65	accumulation in the filter. Soot reactivity depends on the surface chemistry and the
66	internal nanostructure [16]. For example, Zheng et al. [17] stated that the ammonia
67	addition into the ethylene diffusion flames led to lower oxidative activity of soot
68	particles, which was assigned to the longer fringes and higher graphitization degrees
69	(defined as the C sp ² /sp ³ hybridization ratio on soot surfaces). Wei et al. [18] found a
70	higher soot reactivity for the methanol-diesel bi-fuels with higher methanol content,
71	corresponding to the lower aggregate compactness, smaller primary particle size and
72	more active aliphatic C-H groups in comparison with the soot from pure diesel fuel. Guo
73	et al. [19] found that biodiesel-generated soot was more reactive with more mass loss at
74	lower temperature range and requires lower temperatures to reach the critical point for
75	DPF regeneration in comparison with the particles from diesel fuels. Their chemical
76	structure studies showed that the fuel blended with oxygenated biofuels generated more

77	active sites and less sp^2 bonds relative to the diesel fuel. The correlation of the oxidation
78	process and soot chemical structure gave insight that soot structure was the underlying
79	reason determining the soot oxidation.
80	The above-mentioned studies support that the disordered structure may provide
81	more number and accessibility of potential reactive edge site of carbon layers within the
82	soot particles. Additionally, further insight into the correlation between soot oxidation
83	and structure demonstrates that the soot structure may also determine the oxygen
84	diffusion, both external, to reach the soot surface, and internal, inside the carbon layers.
85	As stated in the study of Song et al. [20], diesel soot derived from neat biodiesel (B100)
86	underwent a unique oxidation process during the isothermal process of 500°C in air:
87	from initial to 40% oxidation degree, the oxidation behavior induced removal of the
88	amorphous aliphatic carbon-rich sections on the soot surfaces, coinciding with the
89	reduction in the diameter of primary particles, which was considered as the surface
90	burning dominance period; from 40% to 70% oxidation degree, the individual primary
91	particles transformed to a typical structure with hollow inside and long-and-straight
92	outer graphene layers. This structure was assigned to the occurrence of two factors (i.e.,

93	the initial oxygen groups to remove the outermost ordered shell of the particle and the
94	accompanying micropore development for inner core removal). This process was a
95	typical internal burning stage and possessed the fastest rate of oxidation in the whole
96	oxidation process. After the internal burning, the increase in layer mobility led to layer
97	rearrangement and coalescence where the wavy layers become much flatter and longer.
98	The transformation of oxidation mode was also found by Seong et al. [21] during the
99	isothermal oxidation of soot from GDI engine and the substituted Printex-U (PU), with
100	8% O_2 conditions in the TGA tests. They reported that about 50~70% and almost all
101	the primary particles were internally burned for the 67% oxidized soots and 90%
102	oxidized soots, respectively. In contrast, no voids were observed at the early stage of
103	soot oxidation (33% burnoff).
104	Previous studies reveal the high affinity of soot structure with the soot oxidation
105	regime that exerts significant influence on the oxidation rates, at the low-temperature
106	conditions of TGA tests in representative of the DPF regeneration process. However, the
107	previous studies focused on the oxidation of soot samples taken from engine exhaust.
108	The soot oxidation under real DPF regeneration process has not been well investigated.

109	As suggested in the studies of [20, 22], the internal burning of soot particles can result
110	in an increase in surface area of the particles as combustion proceeds. However, the
111	surface oxidation of soot particles shrinks the particle size and can only consume the
112	carbon atoms on the periphery of particles. Therefore, at the given oxidation conditions,
113	the occurrence of internal burning corresponds to a higher reaction rate than that for the
114	surface burning. In this case, the determination of soot oxidation regime is conducive to
115	establishing a more accurate prediction model for the soot oxidation rate and DPF
116	regeneration behavior. Furthermore, the different soot oxidation regimes can also result
117	in distinct emission characteristics, structural features and chemistry of soot particles.
118	For instance, the soot breakup caused by internal oxidation can lead to an increase in the
119	number of small-sized particles, thus affecting the number and size distribution of
120	particles [3]. In addition, different oxidation regimes may exert distinct impacts on the
121	surface structure and chemical properties of soot that are important factors influencing
122	the further oxidation of soot. Therefore, studying the soot oxidation regimes can more
123	accurately reveal the oxidation mechanism of soot. In this case, the current work was
124	conducted to examine the soot nanostructures, their effects on oxidation regime during

125	real DPF regeneration period, and finally efficacy on the DPF regeneration behavior.
126	Soot samples were derived from the DPF channels under various times during the
127	regeneration period. After that, the development of micro-pores, morphology,
128	nanostructure, size of primary particles, and size and defects in the basal plane of
129	individual graphene layers within the soot particles were further analyzed by
130	Transmission Electron Microscope (TEM) and Raman spectroscopy, respectively, to
131	better understand oxidation regime during real DPF regeneration process.
132	2. EXPERIMENTAL
133	2.1 Sample preparation
133 134	2.1 Sample preparation Soot samples used in this study were collected from a noncatalyzed cordierite DPF
133 134 135	2.1 Sample preparation Soot samples used in this study were collected from a noncatalyzed cordierite DPF connected to the exhaust pipe of a 4.33L, turbo-charged, 4-cylinder non-road machinery
 133 134 135 136 	2.1 Sample preparation Soot samples used in this study were collected from a noncatalyzed cordierite DPF connected to the exhaust pipe of a 4.33L, turbo-charged, 4-cylinder non-road machinery diesel engine. Before DPF regeneration, the engine was operated at 1500 rpm, 123Nm
 133 134 135 136 137 	2.1 Sample preparation Soot samples used in this study were collected from a noncatalyzed cordierite DPF connected to the exhaust pipe of a 4.33L, turbo-charged, 4-cylinder non-road machinery diesel engine. Before DPF regeneration, the engine was operated at 1500 rpm, 123Nm for soot loading. After that, the engine was switched to the high-temperature exhaust
 133 134 135 136 137 138 	2.1 Sample preparation Soot samples used in this study were collected from a noncatalyzed cordierite DPF connected to the exhaust pipe of a 4.33L, turbo-charged, 4-cylinder non-road machinery diesel engine. Before DPF regeneration, the engine was operated at 1500 rpm, 123Nm for soot loading. After that, the engine was switched to the high-temperature exhaust conditions of 2200 rpm with 175 Nm (54.84% of the maximum load) and 251 Nm (78.66%
 133 134 135 136 137 138 139 	2.1 Sample preparation Soot samples used in this study were collected from a noncatalyzed cordierite DPF connected to the exhaust pipe of a 4.33L, turbo-charged, 4-cylinder non-road machinery diesel engine. Before DPF regeneration, the engine was operated at 1500 rpm, 123Nm for soot loading. After that, the engine was switched to the high-temperature exhaust conditions of 2200 rpm with 175 Nm (54.84% of the maximum load) and 251 Nm (78.66% of the maximum load) to initiate the DPF regeneration and to achieve the inlet DPF

148 Fig. 1 Composition of exhaust gas at the DPF inlet under the DPF regeneration
149 condition

154	minimize the effects of soluble fractions on TEM tests. For Raman analyses, the particle
155	samples were collected to Teflon filters (R2PJ047, Pall) with the assistance of a vacuum
156	pump at 0.12 L/min gas flow rate. The duration time for particle sampling was adjusted
157	depending on the sample amount. After sampling, the filters were further acoustically
158	treated in ethanol to separate the soot from filters and remove the soluble fractions. After
159	arefaction, the resulting soot samples without soluble impurities were sealed in drying
160	cans for further analysis.
161	2.2 Sample characterization
162	A high-resolution transmission electron microscope (HRTEM, Talos F200x, FEI)
163	was applied to assess the morphological and nano-structural information of soot
164	particles. The procedures of digitization and lattice fringe analysis of the TEM images
165	are available in the literatures of [24-26]. Because of the heterogeneous nature of diesel
166	combustion and the concurrent of soot formation and oxidation processes, the soot
167	particles sampled from DPF tunnels may contain a mixture of young and mature soot at
168	various stages of growth and oxidation. Especially for the HRTEM analysis, the
169	HRTEM images may show different structure of the soot samples despite of the same

170	condition. Fortunately, abundant HRTEM images of these soot samples can be analyzed
171	at each condition to provide the statistical structural information of these soot particles
172	(i.e. the typical properties of the majority of soot particles). In the present work, more
173	than 100 particles were randomly selected from different aggregates in the HRTEM
174	images for each soot sample to eliminate subjective influences and minimize the test
175	uncertainty. With the random statistical method, the test uncertainty of the parameters
176	derived from HRTEM images is no more than 5%.
177	According to NLDFT (Non Local Density Functional Theory) approach, the
178	micropores on soot surfaces are supposed to be located between the BSU (commonly
179	described as stacks composed of 2~4 parallel planar graphene sheets) and even between
180	the parallel aromatic sheets constitutive of a BSU. The average micropore width in the
181	range of up to 2 mm was directly deduced from pore size distribution (PSD) derived by
182	the NLDFT revisited by Pré et al. [27]. Combined with the 2-disk finite pore model [28],
183	the ratio of the disk diameter over the distance separating the parallel walls was imposed
184	to be 6, and finally used to calculate the surface area of micropores. In addition, when
185	calculating the surface area of the particle, only the surface of the spherical primary

186	particles was assumed to be accessible for oxidation reactions. Therefore, the surface
187	area of particle equals to that for the sphere with the diameter of primary particle size
188	derived from TEM analysis.
189	Size and defects in the basal plane of individual graphene layers within the soot
190	particles (graphitization degree) of soot particle was determined by a Raman scattering
191	spectrometer (DXR, Thermo Scientific). The excitation laser was a He-Ne ion laser with
192	a wavelength of 532 nm and source power of 20 mW. The laser was focused onto the
193	sample using a microscope objective lens (50×). During each measurement, the Raman
194	spectra were recorded at approximately 10 positions to reduce the measure uncertainty
195	arouse from the sample inhomogeneity to $<5\%$, with an acquisition time of 60 s and a
196	hardware accumulation of 3 times to reduce noise in the spectra.
197	3. Results & discussion
198	In this study, investigations on soot property and soot oxidation regimes are
199	conducted at the DPF inlet temperatures of 300 °C and 350 °C. One may argue that the
200	soot oxidation by oxygen can only be initiated at the temperature higher than 500 °C.
201	According to the findings of Meng et al. [29], prior to the regeneration stage, DPF

202 underwent a temperature rise stage where the temperature within DPF substrate 203 increased from ~200°C (at the DPF inlet) to the upper detection limit (1200°C) of the 204 used K-type thermocouple. In fact, on their particulate loading system, most of the 205 regeneration period occurred at the temperature of 475°C to 575°C which is sufficient 206 to ignite the soot particles. In their work, the oxidant for soot oxidation reactions was 207 air offered by an air compressor. However, due to the presence of NO₂ in the realistic 208 exhaust gas, some soot particles can be ignited at 250~450°C [30] during the realistic 209 active regeneration. As an example, the results of Toumasatos et al. [31] revealed that 210 the exhaust temperature measured in front of the DPF inlet was in range of about 211 180~300 °C during the DPF regeneration period of the typical real drive emission (RDE) 212 compliant tests on a commercially available Euro 6d-temp diesel-powered vehicle. That is, studies on the soot property at the DPF inlet temperature of 300°C and 350°C is 213 214 rational to understand the soot oxidation regime during the DPF regeneration of the 215 modern diesel-powered vehicles.

216 *3.1 Soot structure*

Figures 2 and 3 display the nanostructure of soot particles along with DPF

218	regeneration at the DPF inlet temperatures of 300 °C and 350 °C, respectively. Under
219	the lower temperature (300 °C), soot particles show localized hollow interiors with
220	thicker boundaries at the later stage of its oxidation process. Correspondingly, at higher
221	DPF inlet temperatures (350 °C), soot particles evolve to a more ordered structure at
222	either the exterior or the internal sections along with the regeneration process and exhibit
223	no voids within the primary particles.
224	The oxidation-induced graphitization during regeneration may be the primary
225	factor for the increasing ordered structure: during oxidation, the C atoms on the
226	perimeter are gradually consumed with concurrent densification and size reduction,
227	which is called as surface oxidation regime. Regarding to the generation of voids in the
228	interior, there are some controversies: (1) as stated by Hurt et al. [32], the internal
229	oxidation, which can induce internal voids, might take place at the early stage of
230	oxidation, according to the higher total surface area than the external surface area of the
231	primary particles. Moreover, the internal oxidation was considered as the prerequisite
232	for homogeneous reaction-induced densification; (2) Song et al. [20] proposed that the

internal burning occurred at the medium stage of oxidation, arising from the penetrationof micropores to the particle core and consumption of more reactive internal carbon,

235 finally leading to the hollow-inside structure.

236 As discussed in the study of Ghiassi et al. [22], soot burning by O_2 depends upon 237 the rate of oxygen diffusion versus surface reaction at the temperature of interest. Gilot 238 et al. [33] and Marcucilli et al. [34] showed that the increase in the surface area induced 239 by the oxygen penetration was greater at 600 °C than at 800 °C. This observation is 240 consistent with significant oxygen penetration at low temperature due to slower 241 consumption by reaction [14]. In addition, the soot surface gradually deactivates along 242 the oxidation process due to the oxidation-induced graphitization and consumption of 243 the active sites. The deactivation leads to a lower reaction rate and allows longer time 244 for oxygen diffusion from particle periphery to the core, and increases the occurrence 245 potential of internal burning. As the method proposed by Ghiassi et al. [22], the time 246 scale for oxygen diffusion is positively correlated with the tortuosity (τ) that is defined 247 as the ratio of the distance of oxygen travels through the slits between crystallites to the 248 radius of primary particles. At the latter regeneration stage, the surface oxidation also 249 leads to shrinking of the primary particle size, and then shortens the pathway of oxygen 250 penetration. Consequently, the internal oxidation is prone to occur at the low-251 temperature and in the middle and late stages.

In summary, the regime of soot oxidation may be transformed along with the oxidation process, accompanying by the mobility of soot structures in terms of micropore development, lamella size and tortuosity, and size of primary particles. In consequence, these factors are further investigated in the following sections.

Fig. 2 Evolution of nanostructure of soot particles with oxidation time during 10~40 min at the

256

temperature of 300 °C

Fig. 3 Changes of nanostructure of soot particles with oxidation time during 10~30 min at the
 temperature of 350 °C

262 *3.2 Development of primary particle size and micropore*

263 The size (diameter) of primary particles (d_p) is derived from the TEM images 264 demonstrated in Figs. 4 and 5. As can be seen, the agglomerated particles present chain 265 and cluster-like structures and consist of hundreds of primary particles of different sizes. 266 To get a statistically relevant number of measurements, several freely chosen single 267 particle agglomerates were taken into account for the d_p measurement.

269 Fig. 4 TEM images for soot particles at various regeneration time under the DPF inlet temperature

Fig. 5 TEM images for soot particles at various regeneration time under the DPF inlet temperature
 of 350 °C

281	350 °C regeneration process, for the soots collected at 10 minutes, 20 minutes, and 30
282	minutes, 50% of the primary particles were smaller than 14.5 nm, 15.5 nm, and 12.5 nm
283	respectively. The mean size of primary particles is also calculated by integrating the d_p
284	distribution and shown in Figs. 5 and 6. Under 300 °C DPF inlet temperature, the mean
285	d_p shows an increase from 18.01 nm to 19.91 nm as the regeneration undergoes from 10
286	min to 20 min; after 20 min, the mean d_p exhibits a general reduction and achieves 16.67
287	nm at 40 min. At the early stage, the shrinking of spherical particles is mild due to the
288	lower rate of surface oxidation, whereas the increase of soot size induced by continuous
289	surface growth is prevalent, finally resulting in the increase in d_p . At the later oxidation
290	stage, the occurrence of internal burning (as depicted in the HRTEM images,) may
291	increase the potential of particle breakup, forming more smaller particles. moreover, the
292	concurrently surface oxidation may also consume the carbon atoms on the periphery and
293	reduce the size of primary particles. Correspondingly, during the regeneration period of
294	10 min to 30 min, the mean d_p shows a decrease from 17.71 nm to 13.79 nm with
295	proceeding oxidation under 350 °C DPF inlet temperature. As depicted by the HRTEM
296	images, the surface oxidation at 350 °C condition can be responsible for the general

297 reduction of mean d_p .

310	distribution for each soot sample. The distribution is further integrated to obtain the
311	mean size of pores. Under 300°C DPF inlet temperature, the mean pore size shows a
312	slight decrease at the early stage of 10~20min, and significant increase as the
313	regeneration evolves to the latter stages (30~40min). In contrast, the mean pore size
314	possesses a general reduction along with the regeneration process under 350 $^\circ$ C DPF
315	inlet temperature. Pore radii of 2.5 nm and larger are taken to represent unfilled space
316	between the primary particles within an aggregate. For the soot oxidation by O_2 , the O_2
317	molecules are easy to penetrate into the space between the units of aggregates and reach
318	the surface of primary particles, due to the larger porosity of soot aggregates [35].
319	Therefore, the oxidation reactions for soot particles is on the scale of primary particle
320	size, and can be reduced to oxidation of spherule units[36]. That is, the pores with $0.5 \sim 1$
321	nm radii representing the actual micropores in the spherical of primary particles are
322	related to the oxidation regime of soot particles rather than the larger pores between the
323	spherules. Therefore, pores smaller than 1nm in radii are assessed to explain the
324	oxidation regime.

Fig. 8 Distributions of pore size on soot surfaces at various regeneration time under the DPF inlet
 temperature of 300 °C

Fig. 9 Distributions of pore size on soot surfaces at various regeneration time under the DPF inlet
 temperature of 350 °C

338 regeneration process. However, a significant increase of A_{pore}/A_{sphere} are observed at the 339 medium stage of 20~30 min. Apart with the surface area accessible on the defects of the 340 units itself, pores can provide additional areas for the oxidation reactions. During the 341 oxidation-induced graphitization, the progressive growth of lamella planes within 342 primary particles reduces the porosity. Moreover, the decrease of A_{pore}/A_{sphere} suggests 343 the prevalence of shrinking in pore to that for the primary particle. The increasing 344 A_{pore}/A_{sphere} at the medium stage of DPF regeneration may be attributed to the pore 345 development and rapid consumption of carbon atoms at the exterior region.


```
349 3.3 Development of lattice fringe
```

346

350 HRTEM images are further studied to examine the nanostructure of primary

351 particles in terms of fringe length (L_a), fringe tortuosity (T_f) and separation distance (D_s).

353	under the DPF inlet temperature of 300 and 350 °C, respectively. Across the regeneration
354	at 350 °C inlet temperature, there is a progressive graphitization in structure for the soot
355	samples, as manifested by the reduction of the primary particles with shorter length,
356	higher tortuosity and larger separation (corresponding to a less oxidation degree and
357	higher activity). The oxidation-induced graphitization has been widely reported in
358	previous works of [38] and [39], and attributed to the external surface oxidation (via the
359	so-called shrinking core mode). However, different evolution trend of soot structure
360	during oxidation was found in [40] (via HRTEM) and [41] (via X-ray diffractometer).
361	In [40], n-butanol/n-dodecane mixed soot underwent a progressive decrease in structure
362	across the oxidation series, with the ever shorter lamella and increasing curvature in the
363	lamella. They believed that the soot structure reduction arose from the hybrid of external
364	surface oxidation (via the so-called shrinking core mode) and internal burning (i.e.
365	preferential core burnout). Chang et al [41] observed that the size of microcrystal basal
366	plane and interlayer spacing for coal soot and Printex significantly decreased during
367	oxidation, indicating a unexpected disordering process during oxidation. They approved
368	the statement of De Falco et al. [42] who also observed the disordering of lattice after

369 carbon atoms removal, and the amorphous component was more easily consumed,

370 inducing a sort of graphitization.

Fig. 12 Fringe length (La), tortuosity (Tf) and separation distance (Ds) for soot from 350°C DPF

inlet temperature

3.4 Defects on soot surfaces

402	between the different D bands and the G band intensities and the ratio between their
403	areas [47, 48]. In this work, to quantify the concentration of the defects, the peak area
404	of D1, D3 and D4 is normalized to the G band and termed as A_{D1}/A_G , A_{D3}/A_G and A_{D4}/A_G , A_{D4}/A_G , A_{D3}/A_G and A_{D4}/A_G .
405	respectively. As shown in Fig. 14, under 300 °C DPF inlet temperature, soot oxidation
406	during the early DPF regeneration (10~20min) leads to an appreciable increase in
407	$A_{\rm D1}/A_{\rm G}$ and slight decrease in $A_{\rm D4}/A_{\rm G},$ indicating the rises in the edge sites and
408	preferential consumption of the carbon with active amorphous structure. The rising
409	A_{D1}/A_G is coinciding with the afore-mentioned oxidation-induced structure disordering
410	supported by HRTEM tests during 10~20 min regeneration period under 300 °C DPF
411	inlet temperature. That is, with oxidation, the breakup of the initial graphene segments
412	gives rise to a greater number of fringes with shorter lengths and an increased amount
413	of carbon atoms positioned at the edge sites [38]. This could be related to the soot
414	oxidation reactivity, since as the edge sites increase, the accessibility for oxygen attack
415	and oxidation reactions is expected to increase. As aforementioned, the occurrence of
416	internal burning depends upon the possibility of oxygen penetration into the particle
417	core before it is consumed by the surface oxidations. The increase in soot reactivity in

433 Fig. 14 A_{D1}/A_G, A_{D3}/A_G and A_{D4}/A_G ratios for soot from 300°C and 350°C DPF inlet temperature

434 **4.** Conclusions

432

The oxidation regime of soot particles was investigated by studying the structure 435 436 development during the realistic DPF regeneration process. DPF regeneration was 437 conducted under two typical DPF inlet temperature of 300 and 350°C. From structural 438 analysis, soot particles showed localized hollow interiors with thicker boundaries at the later stage of its oxidation process for 300°C DPF inlet temperature, representing the 439 440 occurrence of internal oxidation. Reversely, soot particles derived at the higher 441 temperature of 350°C exhibit no voids and became more ordered during regeneration, 442 which agree well with the behavior induced by surface oxidation. The oxidation during DPF regeneration at 300 °C inlet temperature led to growth of micropores and primary 443

444	particle size at the early regeneration stage. However, the oxidation at higher
445	temperature of 350°C and the late oxidation stage of 300 °C consumed the micropores
446	and shrank the primary particle size, accompanying with the oxidation-induced
447	graphitization. However, results from HRTEM and Raman spectroscopy evidenced that
448	oxidation-induced disordering was interesting observed at the early stage of 300 $^{\circ}$ C
449	regeneration. Structure evolutions revealed the inclination of internal burning at lower
450	DPF regeneration temperatures, and the prevalence of surface oxidation during the
451	overall process of higher temperatures. Internal burning of soot has a tendency to
452	substantially enhance the specific surface area available for soot oxidation.
453	Consequently, augmenting the proportion of particles with the potential for internal
454	combustion presents a viable approach to expedite DPF regeneration in the later stages.
455	Nevertheless, internal combustion can also induce particle fragmentation, leading to an
456	increase in particle counts. Given that modern emission regulations impose constraints
457	on both particle mass and number simultaneously, the influence of the soot oxidation
458	regime on DPF regeneration warrants further in-depth investigation.

5. CRediT authorship contribution statement

460	Zheng Fu: Conceptualization, Investigation, Data visualization, Writing-original
461	draft. Chenyang Fan: Investigation, Methodology, Funding acquisition, Project
462	administration, Writing-review & editing. Ye Liu: Investigation, Methodology, Data
463	visualization. Ze Guan: Investigation, Data visualization. Mingliang Wei: Investigation,
464	Data visualization. Bin Xu: Project administration, Investigation. Tansu Shang: Data
465	visualization, Validation. Weiwei Shang: Data Curation, Data visualization.

466 6. Acknowledgments

467 This research is sponsored by National Natural Science Foundation of China (No.

468 52006054), and International scientific and technological cooperation project in Henan

469 Province (No. 232102521019)

471	References
472	1. Tan, Pq., et al., Characteristics of ash formed by different lubricant additives and
473	its effect on DPF performance. Fuel, 2024. 358: p. 130287.
474	2. Cavallo, D.M., et al., <i>Experimental study on the effect of loading and regeneration</i>
475	for an optimized management of the DPF. Results in Engineering, 2023. 18: p. 101048.
476	3. Huang, J., et al., A Review of the Application of Soot Catalysts: Focus on the Soot
477	Oxidation-Induced Fragmentation Process. Energy & Fuels, 2024. 38(21): p. 20057-20083.
478	4. Gao, J., et al., The effect of deposit morphology on soot oxidation in non-catalytic
479	and catalytic processes. Journal of the Energy Institute, 2024. 116.
480	5. Ovaska, T., et al., Effect of late diesel injection on close-coupled SCR + ASC during
481	DPF regeneration period. Fuel, 2025. 381: p. 133406.
482	6. Li, X., et al., Study on regenerative exothermic process in ash containing DPF
483	structure based on lattice Boltzmann method. Case Studies in Thermal Engineering, 2024. 55:
484	p. 104105.
485	7. Tan, P., et al., Pressure drop model of DPF considering ash factor at different
486	<i>capture stages</i> . Energy, 2023. 283 : p. 128439.
487	8. Huang, J., et al., Insight into the penalty of exhaust emissions and fuel consumption
488	by DPF regeneration of a diesel passenger car. Chemosphere, 2022. 309: p. 136629.
489	9. Shi, Y., et al., <i>Effect of temperature control conditions on DPF regeneration by</i>
490	nonthermal plasma. Chemosphere, 2022. 302: p. 134787.
491	10. Yamamoto, K., H. Kato, and D. Suzuki, <i>Pressure Response during Filtration and</i>
492	Oxidation in Diesel Particulate Filter. Emission Control Science and Technology, 2019. 5(1):
493	p. 24-30.
494	11. Luo, Y., et al., Study on the Evolution of Physicochemical Properties of Carbon
495	Black at Different Regeneration Stages of Diesel Particulate Filters Regenerated by Non-
496	Thermal Plasma. Processes, 2024. 12(6).
49/	12. Huang, J., et al., Investigation of the physicochemical properties of soot subjected
498	to non-catalytic and CeO2-catalytic aging under sequential aerobic and anaerobic exhaust-
499 500	like conditions simulating the transition from engine operation to cessation. Fuel, 2024.
500	362 (000): p. 16.
502	13. Meng, Z., et al., Comparison of the use of real alesel soot and soot surrogate in the
502	performance analysis of alesel particulate filters. Journal of Cleaner Production, 2024.
505	442(000): p. 17.
505	14. Stanmore, B.K., J.F. Brinac, and F. Gnot, <i>The Oxidation of Soli. a review of</i>
505	experiments, mechanisms and models. Caroon, 2001. 39(2247-2208). p. 2247-2208.
507	narticulate filter regeneration at room temperature Corbon Letters 2024 34(3): p 1075 1080
508	particulate filter regeneration at room temperature. Caroon Letters, 2024. $34(5)$, p. 1075-1089.
500	10. Cliu, 11.Q., et al., Effects of utuang cyclonexane, $< i < n < i > n < i > n$, entane, entanoi, una 25-dimethylfuran to fuel on soot formation in laminar coflow $< i > n < /i > hontana/iso_octana$
510	diffusion flama. Combustion and Flame. 2021. 225 : p. 120-135
511	17 Theng L L Hu and S H Chung Effect of ammonia addition on nanostructure of
512	soot in laminar coflow diffusion flames of ethylene diluted with nitrogen. Proceedings of the
513	Combustion Institute 2024 40 (1): p 105392
514	18 Wei I et al Impact of methanol alternative fuel on oxidation reactivity of soot
515	emissions from a modern CL engine Fuel 2020 268
516	19. Guo, Y., et al., The correlation between diesel soot chemical structure and reactivity
517	Carbon, 2020, 161 : n. 736-749.
518	20. Song, J., et al., Examination of the oxidation behavior of biodiesel soot
519	Combustion and Flame, 2006. $146(4)$: p. 589-604.
520	21. Seong, H. and S. Choi, Oxidation-derived maturing process of soot. dependent on
521	O2–NO2 mixtures and temperatures. Carbon, 2015. 93: p. 1068-1076.
522	22. Ghiassi, H., et al., Soot oxidation-induced fragmentation: Part 1: The relationship
523	between soot nanostructure and oxidation-induced fragmentation. Combustion and Flame.
524	2015. 000 : p. 1-9.
525	23. Fan, C., et al., An assessment of soot chemical property from a modern diesel engine
526	fueled with dimethyl carbonate-diesel blends. Fuel, 2022. 309: p. 122220.

527	24. Toth, P., et al., A novel framework for the quantitative analysis of high resolution
528	transmission electron micrographs of soot I. Improved measurement of interlayer spacing.
529	Combustion and Flame, 2013. 160(5): p. 909-919.
530	25. Toth, P., et al., <i>Quantitative differentiation of poorly ordered soot nanostructures:</i>
531	A semi-empirical approach. Fuel. 2012. 99: p. 1-8.
532	26. Toth. P., Nanostructure quantification of turbostratic carbon by HRTEM image
533	analysis: State of the art, biases, sensitivity and best practices. Carbon, 2021, 178 : p. 688-707.
534	27 Pré P et al A new approach to characterize the nanostructure of activated
535	carbons from mathematical morphology applied to high resolution transmission electron
536	microscom images Carbon 2013 52: p 239-258
537	28 Jagiello I and LP Olivier A Simple Two-Dimensional NIDET Model of Gas
538	Adsorption in Finite Carbon Pores Application to Pore Structure Analysis Journal of Physical
530	Chemistry C 2016 112 (45): p. 10282 10285
540	20 Mong 7 at al. Study of age and particulate amission characteristics during the
541	29. Meng, Z., et al., study of gas and particulate emission characteristics during the
542	Jast regeneration period of DPF. Fuel, 2022. 31 7: p. 125555.
542 542	30. Soltani, S., R. Andersson, and B. Andersson, <i>The effect of exhaust gas composition</i>
545	on the kinetics of soot oxidation and diesel particulate filter regeneration. Fuel, 2018. 220: p.
544	453-463.
545	31. Toumasatos, Z., et al., The role of the driving dynamics beyond RDE limits and
546	DPF regeneration events on pollutant emissions of a Euro 6d-temp passenger vehicle. Journal
547	of Aerosol Science, 2022. 161 : p. 105947.
548	32. LONGWELL, R.H.H.A.F.S.a.J.P., <i>Gasification-Induced Densification of Carbons:</i>
549	From Soot to Form Coke. COMBUSTION AND FLAME 1993. 95: p. 430-432.
550	33. Gilot, P., et al., Determination of kinetic data for soot oxidation. Modeling of
551	competition between oxygen diffusion and reaction during thermogravimetric analysis.
552	Combustion and Flame, 1993. 95 (1): p. 87-100.
553	34. Marcuccilli, F., et al., <i>Experimental and theoretical study of diesel soot reactivity</i> .
554	Symposium (International) on Combustion, 1994. 25(1): p. 619-626.
555	35. Song, J., CH. Jeon, and A.L. Boehman, Impacts of Oxygen Diffusion on the
556	Combustion Rate of In-Bed Soot Particles. Energy & Fuels, 2010. 24(4): p. 2418-2428.
557	36. Zhdanov, V.P., PA. Carlsson, and B. Kasemo, Kinetics of oxidation of nm-sized
558	soot spherules. Chemical Physics Letters, 2008. 454(4-6): p. 341-344.
559	37. Neoh, K.G., J.B. Howard, and A.F. Sarofim, Effect of oxidation on the physical
560	structure of soot, in Symposium (International) on Combustion. 1985. p. 951-957.
561	38. Vander Wal, R.L. and A.J. Tomasek. Soot oxidation: dependence upon initial
562	nanostructure. Combustion and Flame. 2003. 134 (1-2): p. 1-9.
563	39. Knauer, M., et al., Changes in Structure and Reactivity of Soot during Oxidation
564	and Gasification by Oxygen Studied by Micro-Raman Spectroscopy and Temperature
565	Programmed Oxidation Aerosol Science and Technology 2009 43(1): n 1-8
566	40 Jaramillo I C et al Soot oridation kinetics under pressurized conditions
567	Combustion and Flame 2014 $161(11)$: n 2951-2965
568	41 Chang O et al. The structural evolution and fragmentation of coal-derived soot
569	and carbon black during high-temperature air oridation Combustion and Flame 2020 216 :
570	n 111-125
571	47 De Falco G et al The evolution of soot narticles in premixed and diffusion flames
572	by thermonhoratic narticle densitemetry. Proceedings of the Combustion Institute 2017 36 (1):
573	by the mophoretic parallel densitometry. The country of the combustion institute, 2017 . $50(1)$.
574	43 Kelesidis G & P Crenaldi and S F Proteinis Ovidation dynamics of sort or
575	TJ. Korosiuis, U.A., I. Creparui, and S.D. Haisinis, UMUMION dynamics of sool of carbon black accounting for its core shall structure and nove network. Carbon 2024 210.
576	11876A
570	110/07. A Depart D at al Nanagorala characterization of simple and this hand time
570	44. Fatelli, F., et al., <i>Nunoscale characterization of aircraft soot: A nigh-resolution</i>
570	iransmission electron microscopy, Kaman spectroscopy, A-ray photoelectron and near-edge X-
590	ray absorption spectroscopy stuay. Carbon, 2010. 101: p. 86-100.
JOU 501	45. Fanalagedara, L., et al., Structure and Oxidation Activity Correlations for Carbon
Jð1 592	Blacks and Diesel Soot. Energy & Fuels, 2012. 26: p. 6/5/-6/64.
382	40. Lapuerta, M., et al., <i>Effect of fuel on the soot nanostructure and consequences on</i>

46. Lapuerta, M., et al., *Effect of fuel on the soot nanostructure and consequences on*

loading and regeneration of diesel particulate filters. Combustion and Flame, 2012. 159(2): p.
584 844-853.
585 47. Rohani, B. and C. Bae, *Effect of exhaust gas recirculation (EGR) and multiple*

47. Rohani, B. and C. Bae, *Effect of exhaust gas recirculation (EGR) and multiple injections on diesel soot nano-structure and reactivity.* Applied Thermal Engineering, 2017. **116**: p. 160-169.

48. Lapuerta, M., J. Rodríguez–Fernández, and J. Sánchez-Valdepeñas, *Soot reactivity analysis and implications on diesel filter regeneration*. Progress in Energy and Combustion Science, 2020. **78**: p. 100833.

59149.Ivleva, N.P., et al., Raman Microspectroscopic Analysis of Changes in the Chemical592593Structure and Reactivity of Soot in a Diesel Exhaust Aftertreatment Model System.593Environmental Science & Technology, 2007. 41(10): p. 3702-3707.