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Abstract

The increasing spatial or temporal scales of metro networks generate an important research challenge in

developing fast and efficient optimization methods for handling the train timetable synchronization problem

(TTSP). This paper develops a distributed optimization algorithm for the TTSP of complex metro networks,

with the objective of minimizing both the waiting time of inbound and transferring passengers in the

whole network. We construct explicit dynamic equations of train passenger loads throughout the network

and quantify the transferring passengers at transfer stations. These equations encapsulate the dynamic

passenger transfer behavior within the metro system. To deal with the computationally expensive large-

scale MINP problem, an alternating direction method of multipliers (ADMM) based decomposition approach

is proposed to split the original TTSP into a set of single-line timetabling subproblems that can be solved

in a decentralized manner. Furthermore, a novel heuristic two-level ADMM-based approach, where the

upper level decides the connections among trains of different lines and the lower level applies standard

ADMM with fixed binary variables to optimize the timetable, is designed to deal with the nonconvexity

issue. We demonstrate its ability to conveniently obtain a high-quality solution to the network timetable

synchronization problem numerically.

Keywords: Urban metro network, Timetable sychronization, Distributed optimization, Alternating

directions method of multipliers

1. Introduction

1.1. Background and motivations

In large metro networks, reducing transfer times through carefully coordinating train arrival times at

stations would greatly improve the service quality as well as potentially enhance the operating capacity of the

metro system. The train timetable synchronization problem (TTSP) has been receiving significant attention

in the literature (Corman et al., 2014; Gkiotsalitis et al., 2023). TTSP aims to enhance the coordination

between train services from different lines by controlling train arrival and departure time, in particular, by

adjusting the headway time between trains, running time between stations, and dwell time at each station.

Together with factors such as the passenger loads along the lines, and passenger routing variable, the problem

becomes more complex (Cacchiani et al., 2014; Wu et al., 2019; Yuan et al., 2022). The ultimate goal of
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timetable coordination is to synchronize the train arrival times at interchange stations so that passengers

can transfer from line to line with minimum transfer time while no excess waiting time incurred at non-

transfer stations. To this end, this paper proposes a timetable synchronization method using mixed integer

programming optimization, in which the dynamic passenger loads, departure and arrival time evolution, and

transfer waiting time constraints are explicitly considered. Solving such a centralized optimization for the

whole network with multiple lines and trains imposes a high computational burden, and scales poorly with

the number of lines and trains. Conversely, distributed optimization techniques allow for decomposing the

original large-scale TTSP into a series of small-scale single-line subproblems, which can then be solved in

a parallel manner. Furthermore, practical applications can also benefit from the scalability and robustness

of the distributed optimization algorithm, as it is highly modularized and flexible. For these reasons, this

paper proposes an advanced distributed optimization approach to address the large-scale TTSP.

1.2. Literature review

Timetabling for a metro line entails determining the train arrival and departure times at each station to

satisfy a given service frequency that meets the travel demands (Assis and Milani, 2004; Corman et al., 2017;

Zhang et al., 2019; Jin et al., 2022). Timetabling for a metro network would need to coordinate the arrivals

and departures of trains at transfer stations to reduce passenger transfer delays. A large body of literature

addresses this problem by adopting a variety of objective functions, including minimization of transfer

waiting time, maximization of synchronization, and a combination of these different objectives. Schröder

and Solchenbach (2006) applied the quadratic semi-assignment model to improve the amount of available

transfer time together with the users’ satisfaction. Measured to the original timetables, the adjustment

leads to improvements between 0.5% and 5%. Wong et al. (2008) modeled the TTSP into a mixed integer

programming (MIP) where the headway time is a decision variable and designed an effective heuristic

method to obtain high-quality solutions. Another MIP model minimizing transfer delays by allowing extra

dwell time was proposed by (Shafahi and Khani, 2010). Wu et al. (2015) considered a similar MIP model

with the objective of minimizing the maximal transfer waiting time, aiming for preventing excess transfer

waiting time. In parallel and for better operation efficiency, numerous research has been carried out to

collaboratively optimize the train timetable with other aspects, such as delay management (Corman et al.,

2017), train speed control (Ye and Liu, 2016, 2017) and vehicle scheduling (Fonseca et al., 2018).

Besides, many researchers have considered the TTSP with multi-objective functions. For example, Kwan

and Chang (2008) maximized the total passenger satisfaction without deviating from the given timetable

too much via setting headway time, layover time, dwell time, and running time as variables. The results,

solved by a specially designed nondominated sorting genetic algorithm 2 (NSGA 2), show that the average

transfer time of all interchange stations is reduced. Moreover, the synchronization is improved with more

“just meet” and fewer “just miss”. Ceder et al. (2013) tried to keep the headways as even as possible

while minimizing the deviation from desired train passenger loads. By designing two tailored heuristics, the

load discrepancy is successfully reduced from 38% to a deviation of less than 15% with an even-headway

timetable. Niu et al. (2015) created a nonlinear timetabling model for balancing the passenger waiting time

on platforms and crowding level onboard under time-variant passenger demands. The numerical experiments

suggest the superiority of the genetic algorithm over the dynamic programming approach in the two-line

case, resulting in reduced average passenger waiting time and crowding level. Wang et al. (2015) established

an event-driven model with three objectives: energy consumption, total travel time, and last train waiting

time. The used sequential quadratic programming method obtains a non-fixed headway timetable, which

2



provides better performances than the fixed-headway timetable while consuming more computational time.

Fonseca et al. (2018) proposed a MIP model combining the train timetabling and rolling stock scheduling

problems together to optimize transfer costs and operational costs simultaneously. Numerical experiments

using a special heuristic demonstrated a reduction in the average excess transfer time of 2.8-4.5 min and an

increase in the number of ideal transfers by 175% compared to the practical timetable.

Moreover, there is a number of research contributing to the first or last train connection problem in

metro networks. Kang et al. (2015b) focused on the last train rescheduling problem, aiming for maximum

available transfer time and accessibility with minimum running and dwell time. In addition, Kang et al.

(2015a) first considered the last train timetabling problem as an NLP, and further improved it as MILP in

(Kang and Meng, 2017). Guo et al. (2016) studied a MILP model and a sub-networks connection method

to improve the transfer efficiency for the first train timetabling problem, showing reduced network transfer

waiting time in the numerical example.

However, most of the research attempted to either maximize the train connectivity or minimize the

waiting time for transferring between train services with the assumption of constant transferring passengers

(Wong et al., 2008; Wu et al., 2015; Guo et al., 2020). In reality, transfer passengers vary dynamically with

headway adjustments and demand fluctuations, creating interdependencies between timetable decisions and

passenger flowsa challenge rarely addressed in prior work. For instance, Blanco et al. (2020) proposed an in-

tegrated MILP model for line planning and timetabling with time-dependent demand and explicitly modeled

interchange passengers, their approach relies on piecewise linear approximations of passenger flows. Nguyen

et al. (2021) modeled the dynamic transferring passengers relying on if-condition rules to capture transfer

connectivity (e.g., “if a feeder train arrives within a time window, passengers can transfer”), bypassing ex-

plicit analytical coupling between passenger loads and timetable variables. Yin et al. (2023) discretized the

time horizon and linearized nonlinear flow dynamics with auxiliary variables, focusing on time-period-based

aggregation of passenger demand. In contrast, our model directly embeds continuous-time passenger dy-

namics into the optimization, rigorously enforcing transfer connectivity through binary variables to compute

exact waiting times.

Besides, the existing works about train scheduling/rescheduling problems in large-scale metro networks

are usually conducted in a centralized fashion (Corman et al., 2012; Kang et al., 2016). To reduce com-

putation complexity, distributed optimization methods are developed to split the large-scale problem into

sets of low-dimensional subproblems, which can be solved by a local processor (Boyd et al., 2011). The

distributed optimization methods have been widely adopted for different transportation problems, including

railway network design problem (Bärmann et al., 2017), vehicle speed or trajectory optimization in road

networks (Tajalli and Hajbabaie, 2018; Mirheli et al., 2019), signal timing optimization for urban networks

(Al Islam and Hajbabaie, 2017; Le et al., 2017), vehicle routing problem in corridor networks (Zhou et al.,

2018), real-time vehicle dispatching problem in bus transit network (Zhao et al., 2003), and train speed

control problems (Li et al., 2020). In contrast, the distributed optimization methods for large-scale train

timetabling problems in metro networks have not been fully studied in the literature.

Motivated by these discussions, this paper proposes a distributed optimization algorithm, based on the

alternating direction method of multipliers (ADMM), to adjust the timetable of individual lines for better

train synchronization at transfer stations, while also controlling the waiting time of non-transferring pas-

sengers. ADMM takes advantage of both the decomposability of dual ascent and the convergent method of

multipliers (Boyd et al., 2011; Wang and Ong, 2017). By constructing the augmented Lagrangian formula-

tion, two primal variables are updated in an alternating manner (termed as alternating direction), where the
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dual variable is updated using the augmented Lagrangian parameter. In this study, the original optimization

problem is non-convex due to the binary variables. Then the convergence can not be guaranteed if applying

the standard ADMM directly. To provide a feasible suboptimal solution, we design a novel two-level ap-

proach that alternatively fixes the binary variables and the other variables and solves these subproblems in

an iterative way. This two-level approach is able to improve the solution quality and provide a sub-optimal

solution. Specifically, we list the main contributions of this study as follows:

(1) This paper constructs a network-wide train timetable synchronization model, which explicitly couples

continuous-time passenger load dynamics with timetable variables through state equations, capturing exact

transfer connectivity via binary variables, and avoiding heuristic rules (Nguyen et al., 2021) or demand

periodization (Yin et al., 2023). The objective function is therefore more comprehensive since it takes both

the waiting time for inbound and transferring passengers into consideration, promoting extra gains in the

operation efficiency of metro systems. In the formulation, the systematic constraints on headway time and

dwell time, passenger load dynamic, and transfer waiting time are established. The formulated model turns

out to be a MINP model.

(2) The proposed complex MINP model of the TTSP has a relatively high computational burden even

in a relatively small network, making it intractable to be directly solved by existing solvers for a large-

scale network. By introducing global common variables and a consensus constraint, the original problem is

rewritten as a global consensus problem (Boyd et al., 2011), which enables decentralized computation using

standard ADMM. Due to the fundamental nonconvexity issue of the solution space, a two-level ADMM-

based method is further proposed to acquire suboptimal solutions. In the upper level, a timetabling problem

is handled by the standard ADMM with fixed binary variables (or linearly relaxed binary variables in the

initialization step); while in the lower level, the binary variables that determine the train connections are

solved by taking the fixed timetable from the upper level as input. This iterative and heuristic two-level

method is numerically validated to be efficient. In contrast to centralized optimization approaches, this

decomposition method can be conducted in parallel so as to achieve the effective reduction of computing

time.

The rest of this paper is organized as follows. Section 2 presents the characteristics of train traffic in

metro networks and formulates the timetable synchronization model. In Section 3, we develop a two-level

ADMM-based approach to solve it. In Section 4, we validate the proposed model and method through

several numerical experiments. Finally, Section 5 gives the summary of this paper.

2. Problem formulation

In this study, a TTSP in metro networks is investigated by considering the passenger load dynamic and

transfer waiting time. To depict this problem, a train traffic model incorporates the safety and operational

constraints to reflect the dynamics in headway time and passenger loads. Then the constraints for passenger

transfer waiting time are constructed using a series of binary variables. Subsequently, in order to conveniently

formulate a metro timetable synchronization optimization model and develop effective algorithms, some

assumptions are given in the following:

Assumption 1. The transfer time em
′

m (k) which represents the walking time from Line m′ to Line m

at station k, is a known constant for all passengers.

Assumption 2. For simplicity, overtaking and crossing operations are not considered and all trains

depart from the initial stations following the first-in-first-out rule. Each station can only accommodate one

train at any time.

4



Assumption 3. In order to streamline the computation of transfer waiting times, we make the assump-

tion that passengers always board the earliest arriving train.

Assumption 4. The number of alighting passengers is calculated as a proportion of onboard passengers,

and the transferring passengers are a proportion of the alighting passengers. The proportion coefficients can

vary with different train i at different station m, as well as time periods.

In Assumption 1, the transfer time em
′

m (k) stands for the walking time used by a passenger moving

from the track of the feeder line m′ to the track of the connecting line m, and their values can be estimated

according to real-world statistical data (Nguyen et al., 2021). This assumption aligns with scenarios where

passenger inflows are controlled or relatively low (e.g., off-peak hours (Guo et al., 2017; Yin et al., 2017) or

last-train operations (Guo et al., 2020)), minimizing variability in walking speeds due to regulated platform

densities. While station-specific walking times could enhance realism (e.g., layout-dependent speeds in Guo

et al. (2021); Zhou et al. (2023); simulation-based calibration in Schmaranzer et al. (2020)), such approaches

introduce complexity and often rely on heuristic or meta-heuristic methods (e.g., genetic algorithms, ALNS).

Assumption 2 is widely used in literature (Wang et al., 2015, 2017), and holds for most of the urban metro

networks. Assumption 3 requires that the train loading capacity always satisfies the passenger demands

at each station, which may not be the case all the time. Nevertheless, many metro systems adopt inflow

restrictions (e.g., fare gate controls, queue management) to prevent platform overcrowding (Li et al., 2017;

Yuan et al., 2022). These measures ensure that passenger demand does not exceed train capacity, aligning

with the assumption. Our model treats the passenger arrival rate as the regulated inflow rate entering

platforms, thus this assumption holds valid, especially during off-peak hours when passenger demand is

naturally lower. The same assumption is also adopted in Guo et al. (2017); Yin et al. (2017). Note that we

can relax Assumption 3 and extend this work to peak-hour scenarios using explicit congestion modeling

(e.g., onboard crowding penalties or passenger inflow control). However, this extension requires additional

constraints and objectives (e.g., minimizing passenger queueing times outside stations), which we defer to

future investigation. Our current focus on off-peak hours allows us to rigorously address the core challenge

of network-wide timetable synchronization without overcomplicating the model. For Assumption 4, one

can estimate the proportionality factors using the statistical data of passenger demand (Li et al., 2017).

In large metro networks, TTSP aims to coordinate train arrivals at transfer stations to minimize pas-

senger waiting times while respecting operational constraints (e.g., headway limits, dwell times). The

problem becomes increasingly complex due to three factors: a) transferring passengers dynamically depend

on headway adjustments, creating interdependencies between lines; b) binary variables representing train

connections introduce nonconvexity complexity; c) centralized optimization methods do not scale efficiently

with networks.

To address these challenges, we propose a distributed optimization framework that decomposes the

network-wide problem into single-line subproblems. This approach explicitly models passenger load dynam-

ics and leverages ADMM to iteratively coordinate solutions across lines while ensuring consensus at transfer

stations.

2.1. Mathematical Formulations

2.1.1. The train traffic dynamics with single line constraints

For each line m ∈ M, the evolution of train departure time from station k and arrival time at station

k + 1 should satisfy

TAm
i (k + 1) = TDm

i (k) + rmi (k), (1)
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Figure 1: Illustration of passenger load dynamic of train i at station k.

where TAm
i (k) denotes the arrival time of train i at station k on Line m, TDm

i (k) is the departure time of

train i from station k on Line m, and rmi (k) is the running time of train i from station k−1 to k on Line m.

Due to the requirements of operation safety and service level, the headway (departure time intervals of

successive trains) is bounded at each station by Hm
min and Hm

max. Similarly, the dwell time is bounded by

Sm
min and Sm

max. Thus, for each m ∈ M, k = 1, 2, . . . ,Km, and i = 1, 2, . . . , Nm,

Hm
min ≤ TDm

i+1(k)− TDm
i (k) ≤ Hm

max,

Sm
min ≤ TDm

i (k)− TAm
i (k) ≤ Sm

max.
(2)

Equations (1) and (2) demonstrate that the headway time and dwell time change along with stations and

trains, and TAm
i (k) and TDm

i (k) are decision variables. Particularly, for i = 1, the headway is set as the

difference of station k’s opening time, um, and train 1’s departure time, i.e., TDm
1 (1)− um. For simplicity,

the headway of train 1 at each station is all equal to TDm
1 (1) − um. Besides, there are bound constraints

for opening time of initial stations in each line, which are given as follows:

umin
m ≤ um ≤ umax

m , um ∈ N
+, m ∈ M. (3)

Note that the above constraints can be considered local constraints since they correspond to the timetable

of each individual line. When applying a distributed optimization method, these constraints can be naturally

decomposed into individual subproblems.

2.1.2. The passenger load dynamics with coupled constraints

The number of onboard passengers needs to be introduced as a state variable to explicitly describe the

number of transferring passengers. Figure 1 depicts the dynamic load of train i at station k, including the

inbound, outbound, and transferring passengers. The station-to-station dynamic passenger load of train i

at station k on Line m is given by

pmi (k) = pmi (k − 1) + pemi (k)− psmi (k), (4)

where pmi (k) is the onboard passengers of train i when departing from station k on Line m, pemi (k) and

psmi (k) are the numbers of passengers entering and exiting train i at station k on Line m. Specifically, if
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station k is a non-transfer station, pemi (k) is simply the number of inbound passengers from the entrance of

station k; otherwise, pemi (k) consists of arriving passengers coming from entrance and transfer passengers

coming from other lines. Moreover, bmi (k) is the passenger arrival rate on Line m at station k during train

i − 1’ and i′ departures. Then the number of entering passengers from the entrance of station k, which

is proportional to the headway time, can be written as (TDm
i (k) − TDm

i−1(k)) · b
m
i (k). Thus pemi (k) is

formulated as

pemi (k) = (TDm
i (k)− TDm

i−1(k)) · b
m
i (k) +

∑

m′ ̸=m

m′∈M

Nm′
∑

i′=1

α̂m′i′

mi (k)cm
′i′

mi (k), (5)

where α̂m′i′

mi (k) is a binary variable indicating whether train i′ on Linem′ and train i on Linem are connected.

We will explain this variable in detail in the next subsection. cm
′i′

mi (k) is the number of passengers transferring

from train i′ on Line m′ to train i on Line m at station k. In equation (5), the first part represents the

inbound passengers from outside the metro system and the second part is the transferring passengers from

other lines. In addition, the number of exiting passengers is proportional to onboard passengers:

psmi (k) = γm
i (k)pmi (k − 1), (6)

where γm
i (k) is the proportion factor of passenger load. Similarly, transferring passengers cm

′i′

mi (k) is pro-

portional to the exiting passengers from train i′ at station k, that is,

cm
′i′

mi (k) = βm′i′

mi (k′)psm
′

i′ (k′). (7)

The given parameters bi(k), γ
m
i (k) and βm

i can be estimated according to historical statistics.

Hence, by combining (4)-(7), we can rewrite the passenger load dynamic (4) as

pmi (k) =pmi (k − 1) + (TDm
i (k)− TDm

i−1(k)) · b
m
i (k)− γm

i (k)pmi (k − 1)

+
∑

m′ ̸=m

m′∈M

Nm′
∑

i′=1

α̂m′i′

mi (k)βm′i′

mi (k)γm′

i′ (k)pm
′

i′ (k − 1). (8)

Specifically, pmi (0) = 0.

Equations (1), (2) and (8) reflect the dynamics in headway and passenger load. Equation (8) implies

that the passenger load results from the passenger arrival rates and train headway of connected lines, and

together they form a nonlinear coupled system. The proposed model contributes to extending the model

in Wong et al. (2008) with dynamic transferring passengers instead of known constant values. In addition,

constraint (7) is a local constraint since it only contains variables corresponding to individual lines, while

constraint (8) is a coupled constraint due to the existence of variables from different lines, i.e., pmi and pm
′

i′ .

2.1.3. Transfer waiting time with coupling constraints

Wong et al. (2008) defined the transfer waiting time as the minimum possible transfer time, which is

illustrated in Figure 2. In essence, only the successful transfer waiting time is counted and the others are

set to zero.

To correctly depict the waiting time of passengers who transfer from train i′ on Line m′ to train i on

Line m at station k, binary variables αm′i′

mi (k) are defined in the following constraints for all (m, m′, k) ∈ T :

C(αm′i′

mi (k)− 1) ≤ TDm
i (k)− TAm′

i′ (k)− em
′

m (k) ≤ C · αm′i′

mi (k), (9)
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where C is a large enough positive number. TAm′

i′ (k)+em
′

m (k) represents the earliest arrival time of passengers

from train i′ of Line m′ at the track of train i on Line m. Therefore αm′i′

mi (k) = 1 means train i′ on Line

m′ arrives at station k early enough for passengers to catch train i on Line m; conversely, αm′i′

mi (k) = 0. We

then define binary variable α̂m′i′

mi (k) as

α̂m′i′

mi (k) = αm′i′

mi (k)− αm′i′

m,i−1(k). (10)

Here α̂m′i′

mi (k) represents the actual connection of trains from connected lines. Specifically, if train i′ in Line

m′ is not able to connect with train i − 1 but train i in Line m, it can be derived that αm′i′

m,i−1(k) = 0,

αm′i′

mi (k) = 1 and αm′i′

m,i+1(k) = 1. Then according to constraint (10), we can get that α̂m′i′

mi (k) = 1 and

α̂m′i′

m,i+1(k) = 0. In other words, only the first feasible connection is considered in this study, which is

consistent with the definition of transfer waiting time.

Consequently, the transfer waiting time can be computed in the following equation:

wm′i′

mi (k) = [TDm
i (k)− TAm′

i′ (k)− em
′

m (k)] · α̂m′i′

mi (k). (11)

According to above constraints (10) and (11), when

{

TDm
j (k)− TAm′

i′ (k)− em
′

m (k) ≤ 0, j = 1, . . . , i− 1,

TDm
j (k)− TAm′

i′ (k)− em
′

m (k) ≥ 0, j = i, i+ 1, . . . , Nm,

we have
{

αm′i′

mj (k) = 0, j = 1, . . . , i− 1,

αm′i′

mj (k) = 1, j = i, i+ 1, . . . , Nm,
then

{

α̂m′i′

mj (k) = 0, j ̸= i,

α̂m′i′

mj (k) = 1, j = i.

In this way, from train i′ to train i, transfer waiting time wm′i′

mi (k) = TDm
i (k)− TAm′

i′ (k)− em
′

m (k) ≥ 0,

and wm′i′

mj (k), j ̸= i are counted as 0. Different from the inequality constraints in Wong et al. (2008); Wu

et al. (2015), equality (11) can accurately calculate the transfer waiting time shown in Figure 2.

When the departure and arrival times are considered dynamic variables, the connections for trains at

interchange stations are unknown at the time when trains are dispatched from the initial stations. As

such, the passenger transference and loads cannot be predetermined, either. Constraints (9)-(11) effectively

identify the correct train connections of each train. Combined with constraint (8), the proposed model can
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accurately represent the transfer waiting times and passenger load dynamic for non-periodic timetables in

a metro network.

There are bounds constraints for transfer waiting time in accordance with service quality, which can be

written as:

0 ≤ wm′i′

mi (k) ≤ wm′,m
max . (12)

In this part, similar to constraints (1)-(3), (7), the presented constraints (10) and (12) are local con-

straints. Constraints (9) and (12) are coupled constraints, which make the formulated model inseparable.

Consensus would be a valid technique for turning the coupled constraints, which do not split due to coupled

variables, into separable local constraints, which split easily (Boyd et al., 2011). Corresponding details will

be introduced in Section 3.

2.2. Objective Functions

Though enhancing transfer synchronization among different lines is important, it should not be the only

objective, as the waiting time of inbound passengers is also an important service performance measure. In

this paper, we aim to minimize the total passenger waiting time, i.e., the linear weighted combination of

the waiting time for both transferring and inbound passengers of the whole network. The specific objective

function is:

J = min
TD,TA,u

∑

(m,m′,k)∈T

Nm′
∑

i′=1

Nm
∑

i=1

θ1c
m′i′

mi (k)wm′i′

mi (k) +
M
∑

m=1

Nm
∑

i=1

Km
∑

k=1

θ2(TD
m
i (k)− TDm

i−1(k))
2 · bmi (k). (13)

The first part denotes the transfer waiting time. In the second part, bmi (k)(TDm
i (k)−TDm

i−1(k)) represents

the number of arrived passengers during the time interval [TDm
i−1(k), TD

m
i (k)]. Then the waiting time

of inbound passengers during the time interval equals the number of arrived passengers bmi (k)(TDm
i (k) −

TDm
i−1(k)) times the average waiting time for each passenger 1

2 (TD
m
i (k) − TDm

i−1(k)) during this time

interval, i.e., (TDm
i (k)−TDm

i−1(k))
2 · b

m
i (k)
2 . The denominator is omitted as it can be accommodated by the

weight coefficient θ2. Note that minimizing the first term tends to enhance the connection among different

lines, which may lead to a large headway for some lines. Then the second term can control the passengers

waiting time to some extent. Since these two terms are the same unit, we do not normalize them but only

adopt the linear weighted method. By using pre-specified weights θ1 and θ2, the combination of these two

terms effectively achieves the desired balance between transfer waiting times and station waiting times as

sought by the metro network managers.

2.3. Optimization Model

The objective function (13), together with headway dynamic equations (1), passenger load dynamic

equations (8), transfer waiting time constraints (9)-(11) and bound constraints (2), (3), (12), formulate the
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timetable synchronization optimization problem as follows, which is referred as TSO afterward.

J = min
TD,TA,u

∑

(m,m′,k)∈T

Nm′
∑

i′=1

Nm
∑

i=1

θ1c
m′i′

mi (k)wm′i′

mi (k) +

M
∑

m=1

Nm
∑

i=1

Km
∑

k=1

θ2(TD
m
i (k)− TDm

i−1(k))
2 · bmi (k)

s.t.































































































































TAm
i (k + 1) = TDm

i (k) + rmi (k)

Hm
min ≤ TDm

i+1(k)− TDm
i (k) ≤ Hm

max

Sm
min ≤ TDm

i (k)− TAm
i (k) ≤ Sm

max

cm
′i′

mi (k) = βm′

i′ (k′)γm′

i′ (k′)pm
′

i′ (k′ − 1)

pmi (k) = pmi (k − 1) + (TDm
i (k)− TDm

i−1(k)) · b
m
i (k)− γm

i (k)pmi (k − 1)

+
∑

m′ ̸=m

m′∈M

Nm′
∑

i′=1

α̂m′i′

mi (k)cm
′i′

mi (k)

C(αm′i′

mi (k)− 1) ≤ TDm
i (k)− TAm′

i′ (k)− em
′

m (k) ≤ C · αm′i′

mi (k)

α̂m′i′

mi (k) = αm′i′

mi (k)− αm′i′

m,i−1(k)

wm′i′

mi (k) = [TDm
i (k)− TAm′

i′ (k)− em
′

m (k)] · α̂m′i′

mi (k)

0 ≤ wm′i′

mi (k) ≤ wm′,m
max ,

umin
m ≤ um ≤ umax

m , k = 1, 2, . . . ,Km, i = 1, 2, . . . , Nm.

(14)

With the nonlinear constraints (8) and (11), and the nonlinear objective function, the above TSO model

is essentially a large MINP, whose complexity is dependent upon the number of lines (i.e., M), trains (i.e.,

Nm), and stations (i.e., Km). When considering a practical and large network, the formulation can easily

become a large-scale MINP with an intractable computational burden.

By extending the NP-hard MIP problem proposed by Wong et al. (2008), the formulated TSO problem

in this paper is more complicated and therefore also belongs to the NP-hard class problems. Traditional

centralized optimization methods usually encounter high computational complexity and require a large

computation time to solve such problems. In contrast, a distributed optimization algorithm can effectively

reduce the computational burden as the overall optimization is decomposed into a series of subproblems with

low dimensionality. Hence, this study constructs a distributed optimization method utilizing the ADMM

framework to decompose the original optimization problem. The coupled variables are determined as arrival

and departure time at transfer stations, number of transfer passengers and transfer waiting time, which are

all continuous variables.

3. Distributed optimization method design

Decomposition methods are widely adopted as efficient solutions to deal with problems in large-scale

networks. solutions can be obtained by addressing a series of subproblems sequentially or concurrently by

exchanging information during the iterations. For instance, Li et al. (2018) used a dual decomposition tech-

nique to implement the optimal control for the large-scale train regulation problem. Kulkarni et al. (2018)

decomposed the multiple depots vehicle scheduling problem for each trip using Dantzig-Wolfe decomposition.

Mohebifard and Hajbabaie (2019) optimized the network-wide traffic signal based on the Benders decompo-

sition technique. Tong et al. (2019) handled the dynamic traffic assignment problem in a complex subway

network with an ADMM-based solution approach. In recent years, ADMM based decomposition approach
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has become popular as it can converge under relaxed conditions and make the problem decomposable, then

each subproblem can be solved individually. ADMM not only has the fast convergence characteristic of the

augmented Lagrangian method but also improves theoretical and practical convergence properties (Boyd

et al., 2011). In this study, we adopt the ADMM-based decomposition method to handle the interconnect-

ing constraints among different lines. Note that the original optimization problem is non-convex due to the

existence of binary variables α and α̂. Then the convergence can not be guaranteed by directly applying

the standard ADMM. To provide a feasible suboptimal solution, a novel two-level ADMM-based algorithm

is designed to address this problem. The upper level determines the connections among trains of different

lines, i.e., α and α̂, subsequently, the lower level applies standard ADMM with fixed α and α̂ to optimize

the timetable.

In this section, the TSO is decomposed into a series of single-line timetabling subproblems thanks to the

introduction of a global common variable. Then, the original TSO is solved iteratively via standard ADMM.

The standard ADMM procedure for addressing the proposed timetable synchronization problem is first

introduced in Section 3.1. Finally, the two-level ADMM-based approach is provided in Section 3.2.

3.1. Distributed timetable synchronization optimization based on standard ADMM

We first introduce some related concepts to facilitate the implementation of ADMM. The set T is defined

to identify whether line m and m′ are connected by a transfer station k, if so, we have (m,m′, k) ∈ T . Then

line m and m′ are called neighbors when (m,m′, k) ∈ T . Thus, the set of neighbors of line m, which have

direct interactions with line m, is defined as Nm = {m′|(m,m′, k) ∈ T}. Taking the simple three-line

network shown in Figure 3(a) for illustration, line 2 is the neighbor of line 1 in the network.

Let coupled variables denote the variables that relate to a transfer station, and coupled constraints denote

constraints involving coupled variables from different lines. In optimization model (14), constraints (1), (2),

(7), (10) and (12) are local constraints as they are only related to the local timetable of each line. While

constraints (8), (9) and (11) are coupled and not naturally separable constraints, owing to coupled variables

from the neighbor lines at transfer stations such as arrival and departure time, transfer waiting time and

transfer passengers. For instance, in subsystem L1, coupled variables TA2
i (a), TD

2
i (a), w

2,i′

1,i (a) and c
2,i′

1,i (a)

of L2 are involved in coupled constraints (8), (9) and (11).

To make optimization model (14) separable, in the proposed algorithm, we add a copy of coupled

variables from neighbor subsystem m′ into subsystem m. For instance, TA2(a) and TD2(a) in L2 are

duplicated in neighbor subsystem L1 as TA2
L1
(a) and TD2

L1(a), as shown in Figure 3(b). In this way,

constraints (8), (9) and (11) can relate to local coupled variables instead of coupled variables from neighbor

subsystems. The consistency between the copy and original coupled variables is guaranteed by consensus

constraints that make the copied and original variables equal to the global common variables, for example,

TD1(a) = z1, TD1
L2
(a) = z1. This network can then be decomposed into three subsystems L1, L2 and L3,

linked by the consensus constraints and global common vectors z1, z2 and z3 as shown in Figure 3(b).

Moreover, the TSO problem can be reformulated in the form of a global consensus problem, which is

presented as the following proposition.

Proposition 3.1. The TSO problem can be reformulated in the form of a global consensus problem:

min
Xm∈Cm

J =

M
∑

m=1

Φm(Xm) (15)

s.t. X̃m = Emz, i = 1, 2, . . . , Nm, (16)
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Figure 3: (a) Map of a three-line metro network; (b) Illustration for the decomposition and consensus optimization.

where the vector Xm is the variables for all the trains in line m, which consists of local vector X̄m and

coupled vector X̃m.

Proof. Let the vector Xm be the variables for all the trains in line m, which consists of local vector X̄m and

coupled vector X̃m, i.e., Xm = [X̄m, X̃m]. Specifically, vector X̄m includes station opening time, number of

passengers onboard, arrival and departure time at non-transfer stations and connection indicator variables in

subsystem m. Coupled vector X̃m contains transfer waiting time, number of transfer passengers, arrival and

departure time at transfer stations in subsystem m, and duplicated counterparts from neighbor subsystem

m′. For example, as shown in Figure 3(b), X̃L1 for subsystem L1 contains {TA1(a), TD1(a), c1,2, w1,2}

originally from subsystem L1 and duplicates {TA2
L1
(a), TD2

L1(a), c
2,1
L1 , w

2,1
L1 } from subsystem L2.

By introducing a vector of global common variables z = (X̃m∪X̃m′ ,m ̸= m′ ∈ M), each of these coupled

vector X̃m are a selection of the components of z, i.e., X̃m = Emz, where Em is an incidence matrix that

maps the coupled and global variables, then the coupled variables in different subsystems are linked. Thus

the TSO problem can be reformulated in the form of a global consensus problem (15).

For the distributed TSO problem, the objective (13) of the whole network is represented by the summation

of objectives of individual subsystems as (15). The constraints set Cm contains constraints (1)-(12) for line m

and its neighbors Nm. Constraint (16) guarantees the consensus among different subsystems that duplicated

variables are equal to the originals. So far, (15) and (16) present a separable consensus optimization

formulation that can be solved via ADMM.
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Let z̄m = Emz, the augmented Lagrangian function for problem (15) is

Lρ(Xm, z,λ) =

M
∑

m=1

[

Φm(Xm) + λm(X̃m − z̄m)T +
ρ

2
∥X̃m − z̄m∥22

]

=
M
∑

m=1

Lρ,m(Xk+1
m , zk,λk), (17)

where λ are Lagrangian multipliers and ρ is the augmented Lagrangian parameter. Obviously, function (17)

can be naturally separated into M independent single line train timetabling problem. Then the standard

ADMM procedure is given in Algorithm 3.1.

Algorithm 3.1 ADMM-based algorithm for TSO of metro networks.

Step 1. Initialize the vector z, Lagrangian multipliers λ and the augmented Lagrangian parameter ρ. Set

k = 1.

Step 2. Reformulate subproblem (18) of each line using the method in Section 3.2 and solve them with the

given global variable z̄km and multipliers λk.

Xk+1
m = arg min

Xm∈Cm

Φm(Xm) + λk
m(X̃m − z̄km)T +

ρ

2
∥X̃m − z̄km∥22

= arg min
Xm∈Cm

Φm(Xm) + λk
mX̃T

m +
ρ

2
∥X̃m − z̄km∥22 (18)

Step 3. Solve the z-update step (19) by collecting all the information from each line.

z
k+1 = argmin

z
Lρ(X

k+1
m , z, λk)

= argmin
z

M
∑

m=1

[

Φm(Xk+1
m ) + λk+1

m (X̃k+1
m − z̄m)T +

ρ

2
∥X̃k+1

m − z̄m∥22

]

= argmin
z

M
∑

m=1

[

− λk+1
m z̄Tm +

ρ

2
∥X̃k+1

m − z̄m∥22

]

(19)

Step 4. Termination check. The iteration stops and releases the final solution if:

1)

[

∑M
m=1(X̃

k
m − Emz

k)2
]

1
2

≤ ϵ, where ϵ is a small positive scalar.

2) the algorithm has reached the maximum iterative number Kmax.

Otherwise, go to Step 5.

Step 5. Update Lagrangian multipliers λ by the following equation, set k = k + 1 and go to Step 2.

λk+1
m = λk

m + ρ(X̃k+1
m − z̄k+1

m ) (20)

In the above ADMM algorithm, Step 2 (i.e., xm−updates) and Step 5 (i.e., λm−updates) are conducted

independently for each line m, m = 1, 2, . . . ,M . As z is a global variable, which is known as the central

collector, Step 3 (i.e., z−update) is carried out centrally. In this way, the proposed timetable synchronization

problem can be distributed across multiple processors. The timetable optimization problem for each line is

solved by each processor, and the coupled variables of each line are updated iteratively to global common

values, which is the solution to the origin problem. A flowchart is drawn in Figure 4 to illustrate the

procedure of the ADMM-based method.
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Figure 4: The illustration for the procedure of Algorithm 3.1.

3.2. ADMM based two-level approach

Due to the existence of binary variables, the original optimization model is nonconvex and may not

converge using the standard ADMM approach. We design a novel two-level approach, which alternatively

fixes the binary variables and the other variables, and solves these subproblems in an iterative way. The

upper level first relaxes the binary variables α and α̂ as continuous values, then solves the linear relaxed

problem and the timetable-fixed problem, and passes the solved binary values to the lower level. The lower

level solves the binary-fixed problem and passes the solved values of timetable variables to the upper level.

In accordance to the described structure of the two-level approach, Algorithm 3.2 gives a summary of the

procedure as follows.

Algorithm 3.2 Two-level ADMM approach for timetable synchronization optimization of metro networks.

Step 1. Initialization. Set ω = 1, relax the binary variables α and α̂ into [0,1]. Use Algorithm 3.1 to solve

the linear relaxed problem, and output timetable variables TD
ω, TA

ω and u
ω.

Step 2. Fix the timetable of each lines with given TD
ω, TA

ω and u
ω. Then solve each subproblem where

α and α̂ are binary variables, and obtain α
ω and α̂

ω by Gurobi solver.

Step 3. Fix the transfer indicators αω and α̂
ω. Then use Algorithm 3.1 to solve the bilinear programming

problem (18) and get updated timetable variables TD
ω+1, TA

ω+1 and u
ω+1.

Step 4. Termination check. If αω and α̂
ω are the same as αω−1 and α̂

ω−1, then output the final solution,

otherwise, set ω = ω + 1, and repeat Step 2 -Step 4.

Figure 5 demonstrates the flowchart of the developed two-level approach. Given the fixed binary variables

α and α̂, TSO constitutes a bilinear programming program solved using the standard ADMM algorithm in

a decentralized fashion within finite iterations. Also, given the fixed timetable, binary variables α and α̂
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Figure 5: The flowchart of Algorithm 3.2.

are effectively solved by a solver. Therefore, the TSO problem is split into a set of single-line optimization

problems which can be handled by the proposed two-level approach in parallel. In addition, under this

two-level ADMM approach, the objective value decreases with iterations and finally reduces to a suboptimal

solution to the network TSO.

It is worth noting that the convergence of the decomposition method is not guaranteed when dealing

with complex systems and thus an exact solution should not be expected. Boyd et al. (2011) provided

the theoretical proof of the convergence of the two-block ADMM under three assumptions: a) the original

problem is convex; b) the unaugmented Lagrangian problem has a saddle point; c) All the subproblems

have solutions. The TSO problem in this research is formulated as a multi-block minimization model with

a bilinear objective function, the optimality and convergence of the ADMM-based Algorithm 3.1 are not

guaranteed, let alone that the optimal solution at each update step is not reached due to the bilinear term

in the objective function. Nevertheless, even if Algorithm 3.1 does not fully converge due to nonconvexity,

its primal variables TD,TA,u remain feasible for local line constraints (1)-(3), (7), (10), and (12) at each

iteration, as enforced by subproblems (18). If terminated before achieving full consensus, these timetable

variables can be used after recomputing dependent states (α, α̂, w, c) via constraints (8)-(11). This ensures

solution feasibility for individual lines despite potential consensus gaps. In addition, we will empirically

showcase the proposed algorithm’s effectiveness via the numerical experiments in Section 4. Moreover,

this kind of two-level approach can be extended to other large-scale transportation problems with MIP

formulations.

4. Numerical examples

4.1. Network and parameter settings

We first use the example network illustrated in Figure 3(a) to showcase the effectiveness of the proposed

model and distributed optimization algorithm for the TSO problem. This network can be seen as a part

of the Beijing metro system, and the related parameters are chosen based on practical operational data.

There are 3 lines, 4 transfer directions, and 14 stations, including 2 transfer stations and 12 non-transfer
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Figure 6: Impact of ρ on (a) the objective value and (b) the convergence rate for the linear relaxed timetable synchronization

problem.

stations. The considered planning horizon is in a morning off-peak hour between 09:00 and 10:00. Three

scenarios (S1, S2 and S3) are considered, wherein 15, 21 and 30 (5, 7 and 10 trains for each line) trains are

dispatched, respectively. The station-to-station running time is given by the practical operation data. The

dwell time is bounded in the interval [10, 60] (unit: s) (Chu et al., 2015). The headway time for lines 1-3

are bounded in intervals [240, 390], [180, 300], [210, 360] (unit: s), respectively. The passenger demand data

was recorded on a workday in 2014 from Beijing metro line 1, line 5 and line 6. The transfer walking time

em
′

m is estimated as 30s.

Weight coefficients θ1 = 10−2 and θ2 = 10−6 are adopted in objective function (13) to control the

magnitude of the two terms. We generated randomly a set of 100 feasible timetables and computed transfer

waiting time and inbound waiting time for each solution. For the small network experiments, the average

magnitudes were 102 and 106, respectively. The same process is repeated to determine the weight coefficients

used for the large network experiments. Note that alternative weights could be used depending on operator

preferences (e.g., prioritizing transfers). For the parameters associated with ADMM, the initial values of λ

are 0, and the maximum iteration number is 100. All the subproblems are implemented in MATLAB, solved

by Gurobi on a desktop computer (3.5 GHz processor speed and 8-GB memory size) with the platform

of Windows 10. Note that the proposed abstract mathematical model does not consider the operation

constraints practically caused by signal equipment and line conditions limitations, and the parameters and

factors adopted may therefore deviate from the real data, and the optimized results are not easily comparable

with the practical solutions either. Thus, we showcase the efficacy of the developed approach by comparing

it with the best solutions found by solvers in Section 4.2 and simulations in Section 4.3, respectively.

4.2. Computational results

Proper selection of the penalty parameter ρ is crucial to the performance of the ADMM algorithm. As

pointed out by Boyd et al. (2011), larger ρ would reduce violations of primal feasibility while smaller ρ would

reduce the dual residual, which may lead to a larger primal residual. In this section, we set ρ as different

values from 0.5 ∗ 10−4 to 10 ∗ 10−4 to test the algorithm performance with ϵ of 10−2 under scenarios S3. As

shown in Figure 6, larger values of ρ require relatively fewer iterations to satisfy the stopping criteria, but

at the expense of enlarging the gap of the optimized objective value to the optimum. Taking into account

the balance between computational efficiency and solution quality comprehensively, ρ = 1∗10−4 is chosen in
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Figure 7: Primal residual evolution of the distributed ADMM algorithm.

this experiment. Figure 7 plots the convergence evolution of the distributed ADMM algorithm for the linear

relaxed timetable synchronization problem, where the primal residual is reduced to predefined convergence

tolerance 10−2 after 91 iterations, indicating that the timetable optimized by the three lines coincided. In a

similar way, the lower-level subproblem of the two-level approach also has good convergence that the primal

residual reaches 10−2 in 100 iterations.

We further measure the performance of the proposed method by comparing the solutions obtained by the

two-level ADMM-based approach and the Gurobi solver, respectively. Table 1 lists the results of the Gurobi

solver and the two-level approach, in terms of objective values, CPU time and gaps, for all three scenarios.

In the column of CPU time, we report the total CPU time and the time to find the optimal solution in the

parenthesis. Note that, in Table 1, the gap for the Gurobi solver represents the relative gap between the best

solution and the best lower bound found by the solver when solving the original MINP formulation, and the

gap for the two-level ADMM approach represents the gap between the obtained solution and the same lower

bound provided by the solver. It can be found that, though the Gurobi solver can find the optimal solution

to the complex optimization problem with a simple network, the CPU time exhibits exponential growth

as the number of trains increases, despite the optimality-proof overhead. The two-level ADMM finds only

sub-optimal solutions for all three scenarios, due to the fact that each sub-problems cannot be efficiently

solved to the optimum. Nevertheless, the gaps (< 1.5%) to the optimal solutions are acceptable, and there

is a significant advantage in CPU times for scenarios with a larger number of trains. It could be expected

that this optimization problem would be intractable for general solvers in a large-scale network, which can

be well handled by the distributed ADMM algorithm.
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Table 1: Performance comparison of Gurobi and two-level ADMM approach

Scenarios Method Objectives T1 T2 CPU time (s) Gap

S1 (15 trains) Gurobi 1.58 3.45 1.54 ·106 420 (360) 0

Two-Level ADMM 1.60 4.06 1.56 ·106 102 1.17%

S2 (21 trains) Gurobi 2.10 3.45 2.06 ·106 5730 (3500) 0

Two-Level ADMM 2.13 6.22 2.06 ·106 276 1.33%

S3 (30 trains) Gurobi 2.88 3.45 2.84 ·106 41020 (4100) 0

Two-Level ADMM 2.91 6.40 2.84 ·106 337 1.11%

Next, we test the influence of the initialization of vector z under scenario S3. Two kinds of initialization

are conducted in this experiment: 1) initialize vector z by running Step 2 and Step 3 with ρ = 0, as stated

in Algorithm 3.1; 2) initialize z as a zero vector, i.e., z = 0. As expected, both initialization methods

result in the same objective value, but a different number of iterations and computational time, and the later

method converges faster in this experiment. This implies that the initialization of vector z will affect the

solution process but not the quality of the proposed algorithm. We defer the investigation on the appropriate

initialization method to future research.

Specifically for scenario S3, it is noteworthy that all the 20 train services on Line 2 and Line 3 are

successfully connected to train services on Line 1 and Line 2 at station a and b, respectively. For Line 1,

only the passengers on the first 9 train services can transfer to Line 2. Additionally, all the transfer waiting

time is 0 except that the transfer waiting time from train service 1 on Line 1 to train service 1 on Line 2 is

8 seconds.

4.3. Experiment for a large scale network

We apply the developed modeling framework to the real case of the Beijing metro system. Figure 8

illustrates the core portion of the Beijing metro system, including 12 lines, 28 transfer stations, 53 transfer

directions, and 73 normal stations. The timetable period considered in this experiment starts at 09:00 and

ends at 10:00 in the morning off-peak hour, during which 120 trains (10 trains on each line) are operated.

The minimum headway times are 150s for lines 4, 14-16 and 180s for the others. The maximum headway

time of all the lines is 360s. In addition, the passenger demand data was recorded on a workday in 2014.

In this experiment, we also consider one direction of each line represented by the arrows in Figure 8. The

transfer walking time between any two connected lines is 30s. The opening time of each line um is restricted

from 0 to 600s. The weight coefficients set as θ1 = 10−4 and θ2 = 10−6, respectively. The other parameters

are the same as those in Section 4.1.

The Gurobi solver fails to find any feasible solution to this large-scale problem due to the quadratic

(and bilinear) terms in the objective function, thus the sub-optimal solution obtained by the proposed two-

level ADMM approach is compared to the best solution found by a Monte Carlo method, containing 104

samples. In addition to the objective values, we introduce another metric, average transfer time, which

represents the ratio of the sum of the transfer waiting time to the total successful transfer passengers, i.e.,

TAvg =
∑

(m,m′,k)∈T

∑N
m′

i′=1

∑Nm
i=1 cm

′i′

mi (k)wm′i′

mi (k)
∑

(m,m′,k)∈T

∑N
m′

i′=1

∑Nm
i=1 cm

′i′

mi
(k)α̂m′i′

mi
(k)

.

The results of the Monte Carlo solution and the optimized solution are summarized in Table 2, including

two objective values, average transfer time, and the number of connections. Results in Table 2 suggest that

18



Line 9

Line 1

Line 6

Line 4

Line 5

DongSi

NanLuoGuLane

DongDan

NationalLibrary

BaiShiQiaoNan PingAnLi

XiDanMilitaryMuseum

Operation directionNormal station

Transfer station

Line 8

Line 7

Line 2

FuXingMen

CheGongZhuang

XiZhiMen

GuLouAvenue YongHeTemple

ChaoYangMen

JianGuoMen

XuanWuMen

CaiShiKou

ChongWenMen

CiQiKou

Line 14 East

JinTaiLu

DaWangLu

JiuLongShan

Line 16

Line 15
Olympic Park DatunRoad WangJingXiYuan

Line 14 West QiliZhuang

Figure 8: Map of Beijing metro network.

compared to the best solution of the Monte Carlo method, the optimized solution has a 30.3% lower total

transfer waiting time and 52.0% lower total passenger waiting time, with an overall 33.6% lower objective

value. A reduction in average transfer waiting time is observed (from 202.21s to 181.79s, or 10.1%), while

the connected train services are reduced by 17. In addition, there is a negative correlation between the

average transfer waiting time and the number of transfer passengers. In other words, the average transfer

waiting time of one station is shorter when there are more transferring passengers. For example, the average

number of transfer passengers from Line 1 to Line 5 at DongDan station is about 10, while there are about

31 passengers transferring from Line 6 to Line 5 at DongSi station. TAvg at DongDan is about 118s while

at DongSi it is only about 33s. This indicates that this model can realize relatively balanced differentiation

for the timetable synchronization problem to some extent. Moreover, the transfer waiting time of the four

stations crossed by Line 1, Line 2 and Line 6, including 8 directions, is illustrated in Figure 9, in which

the solution of Monte Carlo method is colored in orange, while the one of the two-level ADMM approach

is colored in blue, and the unsuccessful transfers are represented by gray bars. It can be found that the

transfer waiting time for most of the transfer directions is apparently reduced.

Table 2: Optimized results comparison

Objectives Monte Carlo Optimized Gap

Transfer waiting time 2.44 ·106 1.70 ·106 30.3%

Passenger waiting time 4.15 ·107 1.99 ·107 52.0%

Average transfer time 202.21 181.79 10.1%

Connections 444 427 -3.8%
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Figure 9: Illustration of the transfer waiting time between two connected lines.
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We further validated robustness by conducting three additional tests where 60 (around 60% of all stations)

randomly selected stations had their passenger arrival rates adjusted within ±20%. It was found that ADMM

reduced transfer waiting time, passenger waiting time and average transfer time compared to Monte Carlo

across all experiments, similar to the instance given above. These results suggest ADMMs advantages are

not instance-specific.

5. Conclusions

In this paper, we studied the TSO problem in a complex metro network, which aims to decrease the

combined waiting time for both transferring and inbound passengers in the whole network. By considering

the dynamic load of passengers and introducing the definition of transfer waiting time, a nonlinear optimiza-

tion model was formulated. In particular, we introduced coupled variables and global common variables

based on the consensus technique to handle the inseparability of the coupled constraints. To cope with

the nonconvexity issue, a two-level ADMM-based approach was particularly developed to split the network

problem into a set of subproblems corresponding to the number of operating lines. This method can han-

dle the complexity of the coupled original problem quickly in a parallel manner, which effectively reduces

the computational burden. In addition, the proposed two-level ADMM approach provides a new way for

addressing the large-scale transportation problem which is formulated as MIP.

A series of numerical experiments using the Beijing metro system was implemented to show the efficacy

of the developed model and method. Results implied that the choices of parameter ρ would have an influence

on the convergence rate and solution quality. Specifically, a large ρ will lead to a worse solution but might

converge faster, and the value of ρ is determined by trial and error. Though the optimality of the proposed

two-level ADMM algorithm is not guaranteed, the numerical results showcased the efficacy of the developed

approach empirically, that it is able to obtain sufficiently good solutions (with gaps to the optimum smaller

than 1.5%) at a relatively faster speed for the small network. Besides, the results of the large-scale numerical

experiment demonstrated that the ADMM-based algorithm is also able to effectively solve the optimization

problem to an acceptable quality, with smaller transfer waiting time, passenger waiting time, and average

transfer waiting time compared to the Monte Carlo method. Notably, there is a negative correlation between

the average transfer waiting time and the number of transfer passengers.

There are several possible avenues for future work. In the current work, the mathematical evaluation

of the solution quality is absent. It is worth investigating methods to provide a (lower) bound to the

optimum for general cases. Second, we propose to integrate dynamic transfer walking times as functions of

passenger volume and station layout, calibrated via pedestrian simulation tools. Additionally, data-driven

dwell time models could explicitly link boarding/alighting rates to dwell time adjustments, further bridging

macroscopic coordination and microscopic passenger dynamics. This will complicate the TSO problem due

to the increased complexity in the objective function and coupling constraints, which could be investigated

in our future work.
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