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Abstract 
The increasing burden of Aedes aegypti-borne diseases, particularly dengue, is a 
growing global concern, further exacerbated by climate change. Current control 
strategies have proven insufficient, necessitating novel approaches. Synthetic homing 
endonuclease gene (sHEG) drives represent one of the few emerging technologies 
with the potential to offer a cost-effective and equitable solution to this escalating 
public health challenge. However, despite multiple attempts, the homing efficiencies 
of Ae. aegypti sHEG systems lag behind those achieved in Anopheles mosquitoes. 
We discuss key insights from efforts to develop sHEGs in Ae. aegypti and highlight 
critical factors that may unlock further advances in this species. 
 
Introduction 
In recent years, synthetic homing endonuclease gene (sHEG) drives have gained 
considerable attention for their potential as cost-effective, species-specific tools for 
mosquito vector control1–7, potentially capable of invading populations following small 
initial introductions. In nature, HEGs function by inserting themselves into a specific 
genomic locus, functioning as an endonuclease that cleaves DNA at the same locus 
on the homologous chromosome8. This cleavage triggers DNA repair, during which 
the uncut chromosome—containing the HEG DNA sequence—serves as a repair 
template. The HEG is thereby copied to the cut and previously non-HEG-bearing 
chromosome, converting the cell from hemizygous to homozygous for the HEG. This 
process, termed homology-directed repair (HDR), is referred to as homing in the 
context of HEGs. When this conversion occurs in the germline cells of metazoans, the 
resulting gametes all carry the HEG, deviating from the 50% inheritance rate normally 
expected from a hemizygote. This mechanism could drive a beneficial genetic trait via 
this super-Mendelian inheritance pattern, enabling the alteration of wild mosquito 
populations by release of a small amount of sHEG-carrying mosquitoes8.  
 
Since the development of the first sHEG in Anopheles gambiae9—the primary malaria 

vector in sub-Saharan Africa—research has progressed to testing sHEG strains in 
laboratory settings that replicate field conditions to evaluate their efficacy in mosquito 
control10,11. Discussions around the practical implementation of the first field trials have 

also been considered12. Leading global research collaborations, such as Target 

Malaria, have developed strategies to reduce or eliminate An. gambiae populations 
[“population suppression”]4, while others, such as Transmission Zero and the 

University of California Malaria Initiative (UCMI), aim to make the population refractory 
to malaria infection13,14 without substantial change in mosquito numbers [“population 

modification”]. Inspired by these successes, researchers have sought to replicate 
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similar outcomes in other agricultural and vector pest species. Success in sHEG-
based systems is typically assessed based on two critical criteria: (a) high super-
Mendelian inheritance rates (“homing efficiency”) and (b) low fitness costs. Despite 
years of effort and numerous iterations, the inheritance biases induced in non-
Anopheles insects (e.g. Ceratitis capitata, Culex quinquefasciatus, Aedes aegypti, 
Plutella xylostella) have significantly lagged behind those in An. gambiae15–25. The 

trend was largely similar for Drosophila melanogaster, except for one study, where 
homing was close to 100%26–29. 

  
In this review, we focus on discussing the feasibility of developing a sHEG system in 
Ae. aegypti. Ae. aegypti is medically important as the key vector of dengue, 
chikungunya, yellow fever, and Zika viruses; correspondingly there is a substantial 
body of work attempting to establish sHEG drives in Ae. aegypti. This discussion is 
especially timely, as 2024 has recorded the highest global dengue case count to 
date30, with climate change projected to exacerbate the situation31. While sHEG drives 
offer a promising strategy to curb the escalating public health burden, their success 
hinges on achieving consistently high homing efficiency. Without this, their potential 
will remain an unrealised ambition. Notably, even the best-performing sHEG strains in 
Ae. aegypti19 have yet to achieve homing efficiency comparable to Anopheles, with 
additional challenges related to fitness costs. 
 
Deciphering Homing Efficiency: Biological Constraints or Technological 
Shortcomings? 
The rapid success of sHEG systems in Anopheles may have inadvertently set 
unrealistic expectations for other species. Researchers were motivated to design 
sHEG systems in other species without apparent need for a comprehensive 
understanding of the fundamental biology underlying efficient sHEGs. As a result, 
many sHEG constructs in non-Anopheles species replicate the early Anopheles core 
designs (i.e. a germline-active Pol II promoter driving Cas9, sgRNAs targeting a 
genomic locus, and Pol III promoters for sgRNA expression) under the assumption 
that similar results could be achieved. 
 
Despite the construction of sHEGs targeting loci such as kmo, white, Carb109, and 
TIMP-P4, using multiple sgRNA and Cas9 regulatory elements, inheritance bias in Ae. 
aegypti remains moderate at best. For instance, sds3G1-Cas9 combined with 
kmosgRNAs achieved an average inheritance of 86% in males and 94% in females19. By 
contrast, the first published Cas9-based sHEG systems in An. gambiae and An. 
stephensi achieved inheritance rates of >99%32,33. This stark difference raises a critical 
question: is Anopheles biologically distinct from Ae. aegypti (and other insect species) 
in its DNA cleavage and repair mechanisms, or are researchers struggling to replicate 
specific - though unknown - technical features achieved early, and perhaps 
fortuitously, in Anopheles systems? Answering this question is crucial because the 
solution will depend on where the bottleneck lies—biology, technology, or both. 
 
The prevailing approach to optimising homing efficiency involves inducing DNA 
cleavage during a hypothetical gametogenic "window" where homing is more likely to 
occur than end-joining. We refer to this window as CHIROS (Cell stages where 
Homing Is the preferred Repair Outcome of Site cleavage), drawing inspiration from 
Kairos, the Greek god of critical moments (Figure 1). Timing of DNA cleavage is 
thought to be the primary bottleneck in most sHEG systems34–38. Cleavage that occurs 
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too early—prior to meiosis I, when homologous chromosomes are physically too far 
apart—may prevent homing. Conversely, cleavage that occurs post-meiosis I, when 
homologous chromosomes are no longer present in the same haploid cell, presumably 
renders homing impossible. Current strategies to exploit this window include using Pol 
II regulatory elements to restrict Cas9 expression to early gametogenesis and 
employing Pol III regulatory elements to express sgRNAs. Pol III regulatory elements 
were primarily derived from U6 and 7SK small nuclear RNA, which are assumed to be 
constitutively expressed due to their central roles in mRNA splicing and elongation39,40. 
The following is a summary of insights gained from Ae. aegypti sHEG construct 
designs regarding the factors that influence homing efficiency (Figure 2). 

Figure 1. Illustration of the elusive CHIROS (Cell stages where Homing Is the 
preferred Repair Outcome of Site cleavage). It is hypothesised that homing/HDR is 
the preferred repair outcome when DNA cleavage occurs during CHIROS, whereas 
NHEJ is favoured when cleavage takes place in other cells or developmental stages. 
*Despite the hypothesis that there is a gametogenic window optimal for homing, 
CHIROS does not necessarily have to be confined to gametogenesis. A number of 
studies have suggested homing can occur in the embryo, a process termed ‘shadow 
drive’41–43. 
 
Cas9 regulatory elements: Of the 13 regulatory elements tested, six (bgcn, Ewald, 
nos, sds3, shu, and zpg) were selected because their homologues in other insect 
species were previously shown to be specifically expressed during early 
gametogenesis19,21,23. The remaining seven elements (4nitro, beta-tub85D, exu, 
nup50, PUb, trunk, and ubiq) were chosen for their high expression levels, either 
constitutively or during later stages of gametogenesis22–24. Among these, only bgcn, 
nos, sds3, shu, zpg, exu, and nup50 produced statistically significant inheritance bias. 
Interestingly, while nos and zpg have achieved inheritance bias rates exceeding 95% 
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in An. gambiae4,5, the achieved rates at the Carb109 locus in Ae. aegypti were below 
75%23. It is worth noting that many of these promoters were originally characterised in 
Drosophila melanogaster, whose gametogenic timeline may differ significantly from 
that of Ae. aegypti44. Moreover, very limited information is available regarding germline 
expression patterns of sHEG transgenes, and none on the precise timing of DNA 
cleavage events. Another noteworthy observation was the high variability in 
inheritance bias induced by sds3-Cas9 and shu-Cas9 inserted at different genomic 
locations, ranging from levels not significantly different from Mendelian inheritance 
(50%) to as high as 94%19. Taken together, these findings suggest two key points: (a) 
positional effects likely play a significant role in influencing the precision of expression 
timing and/or levels and (b) the necessary Cas9 expression patterns/levels for optimal 
homing may not yet have been successfully recapitulated in Ae. aegypti - clearly not 
for most lines, but, given that relatively few insertions have been assessed, it may be 
that even the ‘best’ observed are still some way from the best achievable simply from 
inserting in an optimal genomic location. 
 
sgRNA regulatory elements: A total of five Pol III regulatory elements (U6a-d and 
7SK) have been tested, either as singleplex or multiplex constructs. Li et al.22 
conducted a particularly thorough study systematically comparing different U6 
regulatory elements integrated into the same locus. They found that the wU6b-GDe 

sgRNA strain induced the highest inheritance bias (71%) and exhibited high somatic 
cutting efficiency (>90%) when combined with exu-Cas9. Interestingly, while U6d was 
shown to induce sgRNA expression from an injected plasmid and facilitated HDR-
based transgenesis, the wU6d-GDe sgRNA strain achieved only 53% inheritance bias 
and 0% somatic cutting in combination with exu-Cas9. Another intriguing observation 
arose when sds3G1-Cas9, which achieved up to 94% inheritance bias with kmosgRNAs, 
was combined with wU6b-GDe sgRNA strain. The latter, which achieved up to 81% 
inheritance with nup50-Cas9, resulted in only a maximum of 67% average inheritance 
when paired with sds3G1-Cas920. These findings suggest that different Pol III 
promoters likely drive distinct expression patterns and/or levels – there is not 
necessarily a match between timing of sgRNA expression and that of Cas9 –
challenging the conventional assumption that sgRNAs expressed under Pol III 
promoters are constitutive and highly expressed. 
 
Germline DNA cleavage rates: Another potentialexplanation for the low homing 
efficiency is that Ae. aegypti might have intrinsically low germline cutting rates. 
However, this has been ruled out in studies using bgcn-Cas9 and sds3G1-Cas9 in 
combination with kmosgRNAs, where germline cut rates were determined to be between 
90–100%19,21. The observation that not all cleavage events resulted in homing strongly 
suggests that the timing of DNA cutting, or choice of repair pathway, is the limiting 
factor, rather than the overall abundance or cutting efficiency of Cas9 and/or sgRNAs. 
 
Homology arm sequence heterology: Homing depends on the ability of the cut 
chromosome to recognise the sHEG-carrying donor chromosome as the HDR 
template, meaning sequence similarity between the homology arms of the cut and 
donor chromosomes may influence homing efficiency. Interestingly, all but one 
construct targeting the C109 locus23 exhibited varying degrees of sequence heterology 
between the cut and donor chromosomes (Figure 2). Constructs with perfect homology 
arms for these loci were not tested, it remains unclear whether such designs would 
improve inheritance bias. In a non-homing context, sequence heterology has been 
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shown to negatively affect HDR in Ae. aegypti45, but results in other insect species in 
a homing context are contradictory46–48. 

Figure 2. Overview of published Ae. aegypti sHEG constructs. 
Autonomous (both Cas9 and sgRNA within a single construct) and split (Cas9 and 
sgRNA expressed in separate constructs) designs used to generate Ae. aegypti sHEG 
strains are illustrated. Key abbreviations: pB ITR = piggyBac inverted terminal repeat; 
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LHA = left homology arm; RHA = right homology arm; UTR = untranslated region. 
Accession IDs for U6 and 7SK genes are as follows: U6a (AAEL017702), U6b 
(AAEL017774), U6c (AAEL017763), U6d (AAEL017905), and 7SK (AAEL018514). 
Highest achieved average inheritance rates from each study are indicated by ‘+’ = 50-
69%, ‘++’ = 70-89%, ‘+++’ = 90-100%. The O+5bp scaffold was a slightly modified 
version initially used by Li et al.22 to increase sgRNA expression by removing cryptic 
termination sequences.  
*Note: Only the exu-Cas9 strain was tested in combination with all four wU6a-d-GDe 

sgRNA-expressing strains. All other Cas9 strains were assessed only with wU6b-GDe. 
Additionally, a 276-bp unintended insertion was reported between the 3′ end of the 3′ 
UTR and RHA in the wU6d-GDe strain22. 
**Target site naming convention: When a sgRNA target site resides within an exon, it 
is named using the gene name followed by the nucleotide position of the expected cut 
relative to the start of the exon (e.g., kmo-447). 
 
At this stage, it seems reasonable to conclude that researchers have approached the 
optimisation of sHEG constructs in Aedes aegypti with well-reasoned strategies 
without any evident flaws in the core designs. While the gradual, albeit enigmatic, 
improvements in homing efficiency over time suggest there is room for further 
optimisation, likely through refining the technology, it remains possible that Ae. aegypti 
possesses biological constraints that limit homing efficiency. However, the precise 
steps required to fully optimise the technology remain uncertain. Notably, recent 
unexpectedly low drive inheritance in some instances in Anopheles, despite employing 
similar designs, hint that early successes in Anopheles may have been partially 
fortuitous49–51. In contrast, efforts in other species appear to have started from a less 
advantageous position and continue to grapple with significant technological 
obstacles. 
 
sHEG Drives in Ae. aegypti: A Persisting Pursuit Amid Alternatives 
Given the current uncertainty regarding the next steps for improvement, one might 
question whether pursuing sHEGs in Ae. aegypti remains worthwhile, especially in 
light of alternative genetic biocontrol technologies. Established approaches, such as 
SIT52, IIT53,54, fs-RIDL55, and the Wolbachia replacement strategy56 have shown 
promising suppressive effects and/or efficacy in reducing dengue incidence. However, 
these methods come with their own limitations. Many require repeated mosquito 
releases, resulting in high deployment costs, or are sensitive to high 
temperatures57,58—both of which pose significant challenges for low- and middle-
income countries that are disproportionately affected by Ae. aegypti-borne diseases 
and are located in some of the hottest regions in the world31. To address these 
challenges, gene drive systems must be developed alongside existing strategies to 
ensure the availability of affordable and equitable solutions when they are needed. 
However, it is important to note that sHEG drives are not the only gene drive systems 
under consideration.  
 
For population suppression, the Y-linked X-shredder strategy represents a compelling 
alternative to synthetic sHEGs. This approach biases the inheritance of the Y 
chromosome by shredding the X chromosome in the male germline prior to sperm 
maturation, ultimately leading to male-biased populations and population 
collapse8,59,60. While promising, this strategy presents technical challenges, as it 
requires the expression of Cas9 and sgRNAs from the Y chromosome during 
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spermatogenesis—a stage where the Y chromosome is often silenced61. In culicine 
mosquitoes, where sex determination is controlled by a heterologous male-
determining locus on an autosome rather than heteromorphic sex chromosomes, this 
obstacle may be less pronounced. However, unlike in XY systems, identifying female-
specific locus sequences for targeted shredding poses an additional challenge. At this 
stage, the feasibility of a Y-linked X-shredder in Ae. aegypti remains speculative. 
 
 
For population modification, toxin-antidote systems such as Cleave and Rescue 
(ClvR)62,63 and Toxin Antidote Recessive Embryos (TARE)64 offer alternative gene 
drive approaches. In these systems, Cas9+sgRNA targeting an essential gene acts 
as a toxin, while a cleavage-resistant rescue construct serves as the antidote. Unlike 
sHEGs, these systems do not increase the inheritance of a favourable genetic trait by 
replicating it. Instead, they rely on inducing a significant fitness cost in individuals that 
do not carry the antidote. ClvR and TARE have been successfully implemented in D. 
melanogaster and Arabidopsis thaliana65, but the design of these systems makes 
them difficult to adapt for population suppression, in addition to spreading more slowly 
than homing-based systems. While not impossible, as demonstrated by Champer et 
al.66, such systems tend to be either less robust or technically challenging to construct. 
 
One notable advantage of both the Y-linked X-shredder and ClvR/TARE systems over 
sHEGs is that they depend only on cutting, rather than cutting and homing, during 
germline development. Given that very high cleavage rates have already been 
demonstrated in Ae. aegypti, this aspect should not pose a significant obstacle. 
Nonetheless, sHEGs continue to hold significant promise as a genetic biocontrol tool 
due to their inherent flexibility - once optimised, they could be readily adapted for both 
population suppression and modification - and more rapid spread. This adaptability 
offers stakeholders, particularly communities where the technology is deployed, the 
ability to choose either strategy based on their needs. Furthermore, efforts to refine 
sHEG technology have the potential to provide valuable insights into germline HDR 
mechanisms, thereby deepening our understanding of fundamental biological 
processes. 
 
 
CHIROS: The Key to Systematic Advancements in sHEG Development 
The likelihood of sHEGs succeeding in non-Anopheles species such as Ae. aegypti 
depends on whether rational design can be systematically applied to optimise sHEGs 
for this species. The persistent inability to identify the factors that drive successful or 
poor homing efficiency has significantly impeded progress, making advancements 
slow and frustrating. This leaves researchers navigating a trial-and-error process 
without a clear understanding of what changes might lead to meaningful 
improvements. Without addressing these uncertainties, further efforts to optimise 
homing efficiency will likely remain unfocused and ineffective. 
 
To move forward, the field may need to break free from the cycle of iteratively "fixing" 
constructs, focusing more on first understanding the underlying problem(s). A first 
priority should be to determine whether CHIROS exists. Fortunately, a sufficient 
number of drive strains have already been developed, enabling researchers to revisit 
these established strains and conduct targeted experiments to address this question. 
Spatial detection of Cas9 mRNA, Cas9 protein, and sgRNA in gonadal tissue could 
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help infer the presence of CHIROS, particularly if co-localisation of Cas9 and sgRNA 
correlates with specific germline stages and higher or lower homing efficiency. A meta-
analysis of all published sHEG systems could further identify factors most strongly 
associated with homing success. In parallel, the development of reporter assays67 
capable of detecting homing events in the gonads would be valuable, as these tools 
could offer direct insights into the timing and cellular context of homing. 
 
If CHIROS can be identified and characterised, the path to rational improvement 
becomes clearer. Synthetic biology tools that enable precise temporal and spatial 
expression of Cas proteins and sgRNAs would help overcome current technological 
limitations in non-Anopheles species68. Notably, the recent publication of a high-
resolution single-nucleus transcriptomic atlas69 for Ae. aegypti provides an 
unprecedented opportunity to mine for new germline regulatory elements that could 
facilitate expression within CHIROS. Conversely, if CHIROS does not exist, alternative 
strategies should be considered. One possible direction is the use of Cas9 fusion 
proteins engineered to enhance homology-directed repair—an approach that may 
improve homing efficiency regardless of CHIROS's existence70. Through these 
fundamental and technological advancements, the field may finally unlock the full 
potential of sHEG drives in Ae. aegypti, realising their promise as a powerful and 
equitable tool for vector control and public health. 
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