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Abstract: 

Objectives: This narrative review aims to briefly discuss the concepts of artificial 

intelligence (AI), explore its role in oral pathology and oncology, and shed light on AI’s 

potential in addressing diagnostic and prognostic challenges in the field. Additionally, 

future perspectives of AI were postulated. 

Methods: A literature search using PubMed, EMBASE, Web of Science, and Scopus for 

studies published before February 2025 related to AI usage in the assessment of oral 

diseases such as oral potentially malignant disorders and transformation to oral cancer, 

oral squamous cell carcinoma, salivary gland tumours and odontogenic tumours. 

Results: Numerous investigative efforts have been directed at AI applications for 

diagnostic, risk assessment and prognostication of oral diseases, although these are still 

relatively in their infancy, and more still needs to be done to refine these tools to make 

them overcome all the challenges that are being encountered.  

Conclusions: While AI does not seek to replace oral pathologists but supplement their 

efforts, it has an immense potential to revolutionize oral pathology practice in the years to 

come. AI applications would greatly improve diagnostic accuracy, enhance 

epidemiological surveillance of diseases, drive the profession towards more personalized 

patient care and ultimately improve patient outcomes beyond the current level. 

 

  



1. Introduction 

1.1 Diagnostic and prognostic challenges in oral pathology  

Oral lesions can manifest as lumps, ulcers or discolorations of soft tissues or as 

expansion or incidental discovery of a radiolucent lesion of hard tissues. Diagnosis of 

oral lesions is often challenging because of similar clinical presentation. The lesions 

often crucially require comprehensive clinical data and precise interpretation of 

supplementary tests such as radiographic imaging to make an accurate diagnosis.1 

Histologically, multiple lesions also share common characteristics e.g. presence of 

mucous cells and keratinization in cystic lesions, or ameloblastoma-like epithelium in 

other lesions and need careful consideration of clinical details, histological features and 

the expertise of experienced pathologists.1 

1.2 Potential of AI in pathology 

Artificial Intelligence (AI) holds great promise in histopathology, despite being presently 

envisaged as a support system for pathologists, and not as a substitute.2 Utilizing AI 

techniques, pathologists can receive support in different aspects of the diagnostic 

procedure, such as image analysis, pattern identification, and decision-making. AI 

algorithms can analyse whole slide images (WSI) and assist in the segmentation of 

different tissue components. This can help automate time-consuming tasks, such as 

identifying tumour boundaries or distinguishing between normal and abnormal tissues as 

well as benign and malignant tumours.3,4 Tissue microarrays have been used in some 

studies5 and this will be briefly discussed in section 3.1. 

Moreover, other imaging modalities, such as confocal microscopy, show significant 

potential, especially when integrated with AI for detecting oral epithelial dysplasia (OED) 

and oral squamous cell carcinoma (OSCC). A recent study demonstrated that confocal 



laser endomicroscopy combined with convolutional neural networks (CNNs) successfully 

analysed 9,168 in vivo images from 59 patients, achieving high diagnostic accuracy 

(AUC 0.90–0.96). These findings highlight the potential of AI-powered confocal 

microscopy to provide rapid and precise real-time diagnostic triage for high-risk oral 

mucosal diseases.6  

AI models have the capability to be trained in identifying particular tumour types or 

cellular abnormalities by recognizing patterns and features within histopathology images. 

By examining patient data, medical records, and imaging results, AI algorithms have the 

capacity to propose potential diagnoses or provide risk assessments or prognosis 

thereby facilitating informed treatment options.7-9  

AI is able to support quality assurance efforts by identifying potential errors or 

discrepancies in histopathology slides, thereby enhancing the precision and 

dependability of diagnoses. Additionally, AI can optimize workflow procedures, including 

slide scanning and data management, resulting in improved efficiency for 

pathologists.10,11 For AI to be incorporated into clinical histopathology, there is need for 

thorough validation and standardisation requiring extensive, meticulously curated 

datasets and collaborative efforts among pathologists, computer scientists, and 

clinicians.12 

Since most previous studies often concentrate on the use of AI in histopathology at the 

expense of key concepts in AI, the objective of this narrative review is to briefly discuss 

the latter in an explainable manner followed by exploration of the role of AI in oral 

pathology and oncology.  

2. Artificial Intelligence (AI)  

2.1 Tools and components of AI  



The utilization of AI technologies has undergone significant growth over the past decade, 

and it is crucial to grasp the associated terminology in order to help and rationalize 

understanding. The tools and components related to AI are defined or explained in Table 

1. 

2.2 AI algorithms  

Machine learning (ML) training can be broadly categorised into supervised and 

unsupervised learning. In unsupervised learning, the computer can uncover concealed 

patterns in input data without any prior knowledge or training. However, this requires a 

substantial amount of data for the algorithms to independently analyse and identify 

differences. Conversely, supervised learning involves training the machine to classify 

data based on previously known input and output, such as diagnostic annotations on 

histology slides. While this method requires the provision of labelled/annotated data, it 

strikes a balance between the size of the dataset and prediction accuracy, making it 

suitable for smaller datasets despite being more labour-intensive.13,14 

ML models are often referred to as "shallow learning" because they typically have a 

limited number of layers or lack depth compared to more complex models. The training 

set consists of classes of objects, and the goal is to build a model that can predict the 

class of unknown examples. Deep learning (DL) utilizes multiple layers of convolutional 

neural networks (CNNs), which consist of an input layer, an output layer, and several 

intermediary hidden layers. This architecture enables the handling of intricate decision-

making processes. DL and CNNs have an advantage of being able to automatically 

extract features directly from the data through a process called feature learning (Figure 

1). In contrast, ML requires the programmer to manually engineer the feature set, 

explicitly specifying which features to consider. Additionally, DL offers the capability of 



reinforcement learning, where the algorithm learns to react to an environment by 

maximizing a reward function.15 

2.3 Approaches and techniques  

In supervised ML, there are several commonly used approaches such as detection, 

segmentation, classification, and path extraction/tessellation. 

Detection focuses on identifying and locating objects within an image, allowing precise 

localisation. Classification involves dividing a dataset into groups based on specific 

features or characteristics, enabling the classification of new instances into the 

appropriate groups. Segmentation, on the other hand, aims to partition WSIs into 

smaller, meaningful regions of interest (ROI). This process helps extract relevant 

information and facilitates the grouping of data into distinct segments. Lastly, patch 

extraction/tessellation involves the creation of paths or interconnected patterns within the 

image, enabling the analysis of the spatial relationships between different 

elements.13,15,16 These approaches include the segmentation of normal and cancerous 

tissues or benign and malignant tumours, as well as subtyping and grading of tumours. 

Given the large size and high dimensionality of WSIs, most AI model training methods 

for WSIs do not utilize the entire images as input. Instead, they divide the images into 

regions of interest and deconstruct them into smaller image patches for training. After 

making predictions or obtaining outcomes, these patches are then reassembled. Figure 

2 illustrates the steps and workflow commonly employed in computational pathology for 

AI models, encompassing both ML and DL techniques. 

Unsupervised learning can be used to identify hidden patterns in histopathological 

images and genomic data without predefined labels, aiding in tumour subtyping, 

anomaly detection, and biomarker discovery. However, this requires a huge amount of 



data. Common approaches include clustering techniques like k-means and hierarchical 

clustering for grouping similar tissue patterns, as well as dimensionality reduction 

methods such as principal component analysis (PCA) and autoencoders to enhance 

feature extraction for diagnostic and prognostic assessments.13,16 

2.4 Training methods  

2.4.1 Machine learning methods  

Unsupervised learning makes use of diverse ML training techniques, including 

clustering, watershed, and Otsu16-18 (Table 2). Supervised learning on the contrary, 

employs various training methods such as Decision Trees, Random Forests (RF), K-

Nearest Neighbour (KNN), Support Vector Model (SVM), Bayesian classifiers, and 

Neural Networks15,19-23 (Table 2). 

2.4.2 Neural networks and deep learning methods  

Various items can be classified using either artificial neural networks (ANN) and CNN, 

the two types of neural networks.24 An ANN is a computational model that emulates the 

structure of the brain. It comprises interconnected artificial neurons that learn and predict 

by adapting connections based on training data. A CNN is a specialized ANN designed 

for analysing structured grid-like data. CNNs excel in tasks like image classification and 

object detection. A CNN has exhibited superior performance compared to ANN in 

numerous computer vision tasks, such as image classification, segmentation, and object 

detection.15,25 The training methods type and subtypes are summarised in Table 2.  

2.4.3 Algorithm Performance Assessment  

Multiple performance metrics are available to assess the efficacy of algorithms, with 

some metrics specifically designed for particular applications. Threshold-based metrics, 

relying on a qualitative understanding of error, are utilized when the objective is to 



minimize the number of errors. In contrast, other metrics evaluate the model's 

performance when classifiers are employed to select the optimal instances from a 

dataset.26 In object detection tasks, such as identifying mitotic figures in  tissue,  metrics 

like precision, recall, and the F1-score to evaluate detection performance are often 

utilized.27 For segmentation tasks, where the goal is to classify each pixel into a category 

(e.g., tumour segmentation), Dice Similarity Coefficient (DSC) and Intersection over 

Union (IoU) are widely used to evaluate the overlap between predicted and ground-truth 

segmentation masks.28 Furthermore, in classification tasks, such as distinguishing 

between various tissue types , metrics like accuracy, precision, recall, F1-score, and 

Area Under the Receiver Operating Characteristic Curve (AUC-ROC) are employed for 

evaluating performance.29  A brief explanation of performance assessment tools is also 

provided in Table 1. 

2.5 Use of AI in Diagnostic Oral Pathology 

Diagnostic oral pathology can benefit from AI with algorithms being used to effectively 

organise and classify data such as patient demographics, clinical notes, and laboratory 

test results. AI can help differentiate lesional areas from normal tissue, in addition to 

being able to diagnose lesions as well as classifying them to subtypes or histological 

grades. 

2.5.1 Oral Potentially Malignant Disorders (OPMDs) 

The risk of OPMDs progressing to OSCC varies based on several factors, making its 

prediction difficult. Physicians evaluate each case individually to determine the best 

treatment approach. A biopsy followed by histological analysis remains the most reliable 

diagnostic method, particularly for detecting OED, which is characterized by abnormal 

cell morphology and structural changes in the oral epithelium.30  



In 2012, Krishnan et al. developed a texture-based method that utilized the density and 

thickness of each epithelial layer to accurately segment oral submucous fibrosis (OSF) 

tissue from normal tissue.31 Recently, some investigators used neural network 

architectures for segmentation of 1636 images of cancerous and precancerous lesions. 

They found that the models were able to classify cropped or entire images based on the 

presence or absence of lesions with satisfactory accuracy (F1-score 0.77). This 

reinforces the promising prospect of AI for lesion identification, in addition to identifying 

their associated specific pathology.32 

Accurate grading of OED is crucial for effective patient management of the lesions. 

However, this task is particularly difficult due to the significant intra- and interobserver 

disagreement among pathologists.30 This emphasizes the necessity for an automated 

system that can provide more precise and dependable grading. The findings of some 

investigators highlight the importance of utility of the irregular stratification of the 

epithelium, an architectural abnormality, as a valuable training factor for ML models in 

accurately predicting dysplasia grade.33 As is often the case, the findings are limited by 

the small sample size and the exclusion of many important architectural and cytological 

features which can be added in future models.  

2.5.2 Oral cancer 

OSCC constitutes more than 90% of head and neck cancers, and has been on the rise 

in various regions worldwide.34,35 A significant number of cases are diagnosed late 

leading to lower survival rates which has stood at approximately 50-55% for many 

years.34 Its prevalence is influenced by factors such as lifestyle choices, cultural 

practices and the availability of healthcare services.35 



The potential of AI in oral cancer lies in its ability to aid pathologists in accurate 

diagnosis, prognostication, and treatment through image analysis, pattern recognition, 

and decision support systems. An early AI study which showed a good potential for 

automated diagnosis and grading of OSCC using keratinization index was previously 

done.36 The study was then followed up by the same group three years later.3 This latter 

study incorporated a model that was able to accurately detect and segment various 

layers of the oral mucosa and subsequently employed a texture-based classification 

method to identify keratin pearls within the segmented keratin regions. The model 

demonstrated an outstanding accuracy of 96.88%.3 Both studies had the limitation of 

small sample size, absence of cross-centre validation and lack of comparison with a DL 

method. In 2019, the same investigators created a computer-aided tool designed to 

identify and outline nuclei in oral histopathology images, thus assisting in the screening 

of OSCC. The authors employed a combination of texture analysis and ML methods to 

develop an algorithm capable of automatically segmenting nuclei from histological 

images with an excellent 94.22% dice coefficient.37 This study had similar limitations to 

those that preceded it which could potentially restrict the applicability of its findings to 

different populations.  

In another study, Rahman et al., employed microscopic images to categorize histological 

slides of normal and OSCC tissues. They utilized a grey-level co-occurrence matrix 

(GLCM) to analyse the texture features of the images, while feature extraction was 

carried out using histogram techniques. The classification was performed using a Linear 

SVM (Table 2), which achieved a remarkable accuracy of 100% and yielded satisfactory 

outcomes.38 The training cohorts include cropped images of haematoxylin and eosin 

(H&E) slides, a limitation which may introduce bias and affect the representativeness of 

the training data.  



Another study deployed four deep networks for comparison of OSCC segmentation 

using annotated data from The Cancer Genome Atlas (TCGA) dataset. Assessment of 

the performance of the networks showed that U-Net, when enhanced with ResNet50 as 

an encoder outperformed the original U-Net.39 Amin and co-investigators presented an 

automated classification model aimed at distinguishing between normal and malignant 

areas using a dataset comprising 290 normal images and 934 OSCC images. The study 

employed VGG16, InceptionV3, and ResNet50 as separate models, and subsequently 

combined them into a concatenated model. Notably, the concatenated model 

demonstrated superior performance compared to the individual models, yielding the best 

results in the classification task with AUC = 0.997.40 This study is limited by suboptimal 

image quality as the cohorts were sourced from a publicly accessible dataset composed 

of camera-captured images rather than WSI. In addition, there was an imbalanced 

training cohort and a small test dataset, which may not adequately represent the full 

distribution observed in the training data. 

Recently, Panigrahi et al., conducted a study where they employed capsule networks 

(CapsNets) to classify OSCC and differentiate between cancerous and non-cancerous 

histology images. The study revealed that CapsNets, which are capable of processing 

spatial data, exhibited superior performance (accuracy 97.35% versus 96.77%) 

compared to CNNs when applied to the same datasets, showcasing their enhanced 

classification abilities.41 The proposed model demonstrates efficiency in detecting 

multistage OSCC and has the potential to assist in routine clinical screening. However, 

further validation is required using larger multicentre datasets to confirm these findings.  

2.5.3 Salivary Gland Tumours 

Salivary gland tumours (SGT) are a heterogeneous group of neoplasms with 

morphological diversity and overlapping features. SGT can be diagnostically challenging 



due to a large number of entities and markedly similar features but different clinical 

behaviour. One study looking at different SGT subtypes and grades based on the 

analysis of H&E stained, digitised WSIs showed that the ML classifiers results achieved 

excellent performance with F1 score of 0.90, 0.92 and 0.87, for benign vs malignant, 

malignant subtyping and grading, respectively.42 However, to validate these findings, it is 

essential to conduct further testing on larger cohorts across multiple centres.  

2.5.4 Prospect of AI in Diagnosis of Odontogenic Cysts and Tumours 

The use of AI in the diagnosis of odontogenic cysts and tumours is quite promising and 

has the potential to greatly assist in accurately identifying and classifying these lesions 

which are often encountered by oral pathologists in their routine clinical practice. AI can 

be used for analysing radiographic images, such as panoramic radiographs and cone 

beam computed tomography (CBCT) to detect and identify specific patterns, shapes, 

and densities associated with different pathologies, enabling more accurate diagnosis. 

Additionally, AI algorithms can be trained on large datasets of annotated histopathology 

images to recognise and classify different types, and assist in detecting specific cellular 

and architectural patterns associated with different pathologies. Moreover, AI can aid in 

quantitative analysis of relevant features and measurements. To date, only one study 

has utilized AI tools to aid in distinguishing between ameloblastoma and ameloblastic 

carcinoma which often pose a diagnostic challenge in routine histopathological practice 

due to their similarities and the limitations associated with incisional biopsies. The study 

utilized DL models using 30 digitized images and compared three models (ResNet50, 

DenseNet, and VGG16) to assess the probability of an image being classified 

ameloblastoma or ameloblastic carcinoma. The best performance was by ResNet50 with 

F1- score of 0.77.43 The limitations of the study include an imbalanced training cohort 

and a small test dataset.  



3. Prognostication and Predictive Potential of AI 

3.1 AI in Prognostication of Oral Dysplasia and Cancer  

Conventional statistical methods, like the survival analysis, Kaplan-Meier curves, and 

Cox regression, have been utilized to predict the survival of cancer patients. However, 

these methods, based on subjective categories or features, are often insufficient in 

handling the complexities associated with such conditions. The implementation of an AI-

based predictive system becomes necessary to achieve more promising and accurate 

results.44  

A prognostic model has been proposed for predicting malignant transformation in tissue 

sections of OED. The study included a total of 137 cases, out of which 50 cases 

exhibited malignant transformation, with an average time to transformation of 6.51 years 

(±5.35 SD). The model achieved an AUROC of 0.78 for predicting the occurrence of 

malignant transformation in OED using a stratified five-fold cross-validation approach. 

The analysis of hotspot areas revealed several significant prognostic factors for 

malignant transformation, including the count of peri-epithelial lymphocytes (p < 0.05), 

the count of nuclei in the epithelial layer (p < 0.05), and the count of nuclei in the basal 

layer (p < 0.05). These features were associated with a high risk of malignant 

transformation in the analysis.45 

In another investigation, a CNN-based oral mucosa risk stratification model (OMRS) was 

utilized to categorize a group of non-dysplastic oral mucosa samples (n=31) and a 

collection of OSCC (n=31) H&E-stained slides. The results indicated that low-risk 

patients had a 5-year OSCC development probability of 21.3%, while high-risk patients 

had a probability of 52.5%. This demonstrates the efficacy of the OMRS model in 

identifying oral leukoplakia (OL) patients at a heightened risk of developing OSCC, thus 



potentially contributing to improved early diagnosis and prevention strategies for 

OSCC.46 The study's limitations include a small cohort and a prognostic analysis limited 

to patients with OL without concurrent OSCC. It would be advisable to broaden the study 

to include other subsets of OPMD and explore patients both with and without concurrent 

OSCC to obtain a more comprehensive understanding of the utility of the model. 

Lu et al. developed a classifier utilizing image analysis techniques to assess nuclear 

shape, size, and texture diversity in cell clusters from 2 mm OSCC microarray tumour 

sections images. The findings indicate that the quantitative histomorphometric features 

of local nuclear architecture have the potential to serve as independent predictors of 

patient survival.5 However, this study has several issues as its limitations. The image 

analysis was restricted to tissue microarrays, which only represent a small fraction of the 

complete tumour. Furthermore, the sample size in the study was relatively small, and 

certain well-established histological prognostic features, such as depth of invasion and 

nodal extracapsular extension, were not considered. 

In 2019, Shaban et al. introduced an automated method that utilizes DL-based tissue 

segmentation to quantify the abundance of tumour-infiltrating lymphocytes (TILs) in 

histological images of OSCC. The digital TILs score was calculated to investigate its 

potential as a prognostic marker. The proposed approach achieved an accuracy of 

96.31%. Notably, the automatically generated TILs score exhibited superior predictive 

value compared to the manually determined TILs score.9 In a subsequent investigation, 

researchers employed a DL-driven automated approach to examine the predictive 

importance of tumour-associated stroma infiltrating lymphocytes (TASILs) in OSCC. The 

results indicated that the TASIL-score demonstrated superior discrimination between 

low-risk and high-risk patients in terms of both disease-specific and disease-free survival 

when compared to the conventional manual scoring of TILs by pathologists.47 



Overall, the available research evidence on successful deployment of AI in oral cancer is 

insufficient. This is primarily attributable to the utilization of small, single-centre datasets 

and a notable risk of bias that may have led to an overestimation of the accuracy rate of 

the models.13 To validate the effectiveness of the classifiers on WSI, and control for all 

established clinical and pathological features, a larger, statistically-powered, patient 

cohort, should be analysed.5 

 

4. Large language models (LLMs) and Pathology  

LLMs are powerful AI tools that learn to understand and generate human-like text after 

being trained on massive amounts of text data. Examples of LMMs include Open AI GPT 

series used in Chat GPT and Microsoft Copilot, Gemini by Google, LLaMA by Meta, 

Granite series by IBM, and most recently DeepSeek. The effectiveness of AI in handling 

pathology queries depends on the complexity of the question and the scope of the AI 

model's training data. While a chatbot might excel at answering basic questions about 

medical sciences, complex questions that require deep medical knowledge, nuanced 

pathology interpretation, critical thinking, complex reasoning and subtle judgement might 

still be best handled by human experts. 48 Currently, AI is driving advancements in the 

integration of visual and textual analysis of pathology data. It can seamlessly connect 

specific areas of interest within a pathology image (such as a tumour) to their associated 

descriptions in the accompanying pathology report.49 

For example, chatbot generative pre-trained transformer (ChatGPT) offers potential 

benefits in research, education, and patient communication. However, significant 

challenges regarding integration into clinical practice abound. These include limitations 

in handling complex pathological details, the lack of real-time interaction and visual data 



analysis, concerns about how the model makes decisions, data privacy, the need for 

constant updates, and seamless integration into existing workflows. Few studies have 

explored the reliability of ChatGPT as a tool for pathologists in their routine work.50 While 

tools such as ChatGPT hold promise for aiding pathologists with scientific data in routine 

diagnosis, limitations like its training data, data availability, and the 'hallucination' effect 

(generation of false or misleading information or conclusions) must be addressed.51 

Recently, retrieval-augmented Generation (RAG) has been integrated into 

histopathology to enhance diagnostic accuracy and efficiency. RAG combines content-

based image retrieval (CBIR) with generative models, enabling pathologists to retrieve 

visually similar histopathological images from extensive databases. This approach 

assists in identifying disease patterns by comparing query images with archived cases, 

thereby supporting diagnosis, treatment planning, and education.52 

Chatbots, such as ChatGPT can serve as an adjunctive tool in diagnosing oral diseases 

by assisting in symptom analysis, patient education, and clinical decision support. While 

AI technologies enhance early detection of oral pathologies like OSCC and leukoplakia, 

their effectiveness depends on accurate training data and clinician oversight. However, 

ethical concerns such as misdiagnosis risk, data privacy, and regulatory compliance 

necessitate that AI chatbots be used as supplementary tools rather than standalone 

diagnostic systems.48 

CPath has progressed with task-specific predictive models and self-supervised vision 

encoders, yet there has been limited research on multimodal AI assistants designed 

specifically for pathology. For instance, PathChat, a vision-language AI assistant, was 

created by integrating a foundational vision encoder with a pretrained large language 

model and fine-tuning it on over 456,000 visual language instructions. PathChat 



surpassed other multimodal AI assistants, including GPT4V, in diagnostic accuracy and 

responses preferred by pathologists, indicating its potential use in pathology education, 

research, and clinical decision-making.53 Future versions of generative AI tools with 

extensive pretraining could further expand their utility in CPath applications.54 

5. AI opportunities and challenges in diagnostic sciences  

5.1 Opportunities  

AI has the potential to reduce workload, enhance clinical practice and improve patient 

care by minimizing medical errors and bias.55 It can also increase operational efficiency 

by reducing turnaround time, automating repetitive tasks, and mitigating errors that may 

arise from manual labour.  In the field of pathology, AI algorithms that utilize handcrafted 

features, such as nuclear size, have demonstrated the ability to achieve high levels of 

accuracy in identifying various conditions with significantly less effort. Additionally, AI 

software solutions have the capacity to handle laborious tasks like mitosis counting and 

streamline intricate processes like triaging urgent cases.56 Studies have shown that 

ML/DL technologies have achieved impressive levels of accuracy in tasks such as 

identifying, segmenting, classifying, and grading different types of cancer, while also 

providing valuable prognostic information. Moreover, certain complex cases require 

additional molecular testing to confirm diagnoses or determine specific genetic 

mutations. This process typically involves extra tissue sectioning, additional laboratory 

procedures, and increased time and costs. CPath also holds promise in predicting 

molecular changes on H&E-stained WSI, enabling rapid diagnoses and ultimately 

enhancing patient care.56 

5.2 Challenges  



Despite significant advancements made in the past decade, the widespread integration 

of AI into routine pathology practice is still a distant goal. The challenges of achieving 

this goal are related to issues inherent in the pathologists themselves, the resources 

needed, the quality and the variability of the data available, ethical concerns and the 

consequence of possible misdiagnosis by AI. 

The pathologists are often limited in their interaction with AI researchers or face time 

constraints that hinder their ability to learn new technologies despite their interest in 

adopting it.57 Generally, there may be lack of familiarity with AI technology among 

pathologists due to insufficient training.58 DL models involve intricate decision-making 

and would require enhancing their interpretability and addressing any associated 

ambiguity to the pathologist. Additionally, information needs to be offered to the 

pathologists about the characteristics of the algorithm to make the model more 

understandable and transparent.59  

The progress of AI technology in relation to pathology requires high-performance 

computing resources, good bandwidth, efficient and modern laboratory management 

information, flexibility and storage in server or cloud configurations and excellent 

cybersecurity. These are often lacking in many histopathology laboratories due to the 

associated financial implications.56,59 

The quality of the data underlying an AI algorithm is extremely important. In general, 

these algorithms require large amounts of data to be annotated by pathologists which 

can be monotonous and present additional challenges in cases of low-resolution images 

or unclear images and ambiguous features.56,58 DL algorithms, in particular, are data-

dependent and require large amounts of data to automatically recognise important 

features unlike traditional image analysis methods that rely on manual selection of 

features.59 Most DL methods in pathology focus on analysing small image patches rather 



than the entire WSI thereby limiting its prediction capacity due to restricted view and lack 

of contextual information about the surrounding structure.56 Data variability is also an 

important issue as the best AI CPath solution will be to create an optimal algorithm from 

a wide range of sources to effectively manage variations between different datasets.59 

For instance, variations in stain colour can occur due to several factors, including 

variances in slide thickness, tissue thickness, fixation methods, tissue processing 

schedules, differences in staining techniques, and variations between laboratories. 

Therefore, it is necessary to implement consistent pre-imaging procedures such as 

colour normalisation, manual or automated image quality control, and the utilization of 

larger training sets.59 

Ethical issues also need to be addressed to ensure safety, accuracy and effectiveness of 

AI models. The release of public data may give rise to ethical concerns regarding privacy 

violations, which can lead to the implementation of restrictive governance policies.59 

Specific regulatory approvals and permissions need to be in place before algorithms can 

be utilized in clinical practice, aiming to promote the use of secure and reliable models. 

However, in the field of CPath, there is a limited number of accessible datasets due to 

confidentiality, copyright, and financial considerations.58 Also, there would be a need to 

avoid creating disparities in health outcomes by eliminating using AI solutions that 

disproportionately exclude or include individuals based on factors such as 

socioeconomic status or location.60  

The question of when AI makes a misdiagnosis should also be addressed. Such errors 

that can impact patients should be mitigated by overall supervision of quality and 

effectiveness from the human clinician.60 

6. Conclusion 



The influence of AI has grown significantly in the last decade, and encompasses all 

aspects of healthcare. For oral pathology, the growth spurt especially covers diagnosis 

and prognosis of oral lesions. While it will not replace but complement the pathologist, it 

is envisaged that AI utilization will facilitate excellent diagnosis, better and more efficient 

workload and generally enhance all aspects of oral pathology practice. However, the 

limitations associated with current evidence in support of the utility of AI for these 

purposes need to be addressed. 
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Figure legends 

Figure 1: Deep learning models’ framework, including input, output and hidden neural 

network layers. (Modified from Alsanie, Ibrahim (2023) Using Artificial Intelligence for 

Analysis of Histological and Morphological Diversity in Salivary Gland Tumours. White 

Rose eTheses Online). 

 

Figure 2: Overview of the workflow of ML/DL models in computational pathology. 

(Modified from Alsanie, Ibrahim (2023) Using Artificial Intelligence for Analysis of 

Histological and Morphological Diversity in Salivary Gland Tumours. White Rose 

eTheses Online). 

 

Table legends 

Table 1: Components of AI relevant to oral pathology. 

 

Table 2: Training methods in machine learning and deep learning. 

  



Table 1: Components of AI relevant to oral pathology  

Term  

 

Definition  

Artificial 

intelligence 

(AI) 

Intelligence achieved by machines in performing tasks traditionally 

carried out by humans, such as visual perception, translation, 

image interpretation, speech recognition and decision-making. 61 

 

Machine 

learning (ML) 

The utilization of algorithms that identify patterns in data without 

explicit instructions.13,61 

 

Deep learning 

(DL) 

A branch of machine learning (ML) that focuses on algorithms 

acquiring knowledge from input data through examples.13 

 

Neural network A structured collection of algorithms that emulates the neural 

network system of the human brain. It uses layers of 

interconnected nodes to learn patterns and make predictions.13,23 

 

Black box 

 

Deep learning systems process inputs and produce outputs, but 

the intermediate computations are hard for humans to interpret.61 

 



Algorithm A computational procedure that provides a systematic approach to 

solving a specific class of problems. It enables calculations, data 

processing, and automated reasoning.61  

 

Precision (p) The ratio of correctly identified positive results to the total positive 

results predicted by the classifier.13 

Recall (r) The proportion of correctly identified positive results out of all 

relevant samples.13 

F1 score  The statistical analysis of binary classification involves evaluating 

the accuracy of a test by calculating an overall score that takes into 

account the weighted average of precision (p) and recall (r).13 

 

The Dice 

Similarity 

Coefficient 

(DSC) 

A statistical measure used to assess the similarity between two 

sets, often applied in image segmentation tasks.15 

Intersection 

over Union 

(IoU)  

A metric used to measure the overlap between two sets, commonly 

used in the segmentation of images.15 

Area Under the 

Receiver 

Operating 

Characteristic 

A metric used for classification models, especially in binary 

classification. It measures the model's ability to distinguish between 

classes by plotting the True Positive Rate (TPR) against the False 

Positive Rate (FPR) at various threshold settings. AUC ranges from 



Curve (AUC-

ROC) 

0 to 1, where 1.0 signifies a perfectly accurate classifier, while 0.0 

represents a totally misclassified model.15 

Data 

augmentation 

A technique employed during model training where images 

undergo slight modifications. The objective is to emphasize the 

learning of essential segmentation features by the model, rather 

than relying on image-specific attributes.58 

 

Transfer 

learning 

A machine learning technique where an algorithm acquires 

knowledge from performing one task and leverages that knowledge 

when learning a different yet related task.56,58 

 

 

  



Table 2: Training methods in machine learning and deep learning  

Training 

methods  

 

 

Training methods types  

 

 

 

Machine 

learning 

 

 

 

Unsupervised 

learning 

Clustering: A technique that groups similar data points 

based on features like intensity, colour, or texture.16 

Watershed: A region-based algorithm treating an image as 

a topographic surface, where ridges act as boundaries.17 

Otsu: A thresholding technique that finds the optimal 

threshold by minimizing intra-class variance in a 

histogram.18 

Supervised 

learning 

Decision Trees: A flowchart-like model that splits data 

based on feature conditions to make decisions.15,21 

Random Forests (RF): An ensemble of multiple decision 

trees that improves accuracy and reduces overfitting.20 

K-Nearest Neighbour (KNN): A non-parametric method 

that classifies data based on the majority vote of its closest 

neighbours.15 

Support Vector Model (SVM): A model that finds the 

optimal hyperplane to separate data into different classes.19 



Bayesian classifiers: Probabilistic models that use Bayes' 

theorem to predict class membership based on prior 

probabilities.22 

Neural Networks: Defined earlier in Table 1. 

 

Deep 

learning  

 

Artificial neural networks (ANNs): A multi-layered networks of neurons that 

learns patterns from data.25 

Convolutional neural networks (CNNs): A model that use convolutional 

layers for image and spatial data processing.25 

 

Recurrent Neural Networks (RNNs): A neural network for sequential data 

that retains past information for context.15 

Generative Adversarial Networks (GANs): A model with two competing 

networks that generate realistic synthetic data.25 

 


