sensors

Article

Vega: LLM-Driven Intelligent Chatbot Platform for Internet of
Things Control and Development

Harith Al-Safi *

check for

updates
Academic Editors: Ning Chen,
Zhengjie Yang, Songwei Zhang and
Bo Qian

Received: 3 May 2025
Revised: 31 May 2025
Accepted: 6 June 2025
Published: 18 June 2025

Citation: Al-Safi, H.; Ibrahim, H.;
Steenson, P. Vega: LLM-Driven
Intelligent Chatbot Platform for
Internet of Things Control and
Development. Sensors 2025, 25, 3809.
https://doi.org/10.3390/525123809

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

, Harith Ibrahim

and Paul Steenson

School of Electronics and Electrical Engineering, University of Leeds, Leeds LS2 9]T, UK;
harithsami0l@gmail.com (H.L); d.p.steenson@leeds.ac.uk (P.S.)
* Correspondence: harith.alsafi@gmail.com

Abstract: Large language models (LLMs) have revolutionized natural language processing
(NLP), yet their potential in Internet of Things (IoT) and embedded systems (ESys) appli-
cations remains largely unexplored. Traditional IoT interfaces often require specialized
knowledge, creating barriers for non-technical users. We present Vega, a modular system
that leverages LLMs to enable intuitive, natural language control and interrogation of IoT
devices, specifically, a Raspberry Pi (RPi) connected to various sensors, actuators, and
devices. Our solution comprises three key components: a physical circuit with input and
output devices used to showcase the LLM’s ability to interact with hardware, an RPi inte-
grating a control server, and a web application integrating LLM logic. Users interact with
the system through natural language, which the LLM interprets to remotely call appropriate
commands for the RPi. The RPi executes these instructions on the physically connected
circuit, with outcomes communicated back to the user via LLM-generated responses. The
system’s performance is empirically evaluated using a range of task complexities and
user scenarios, demonstrating its ability to handle complex and conditional logic without
additional coding on the RPi, reducing the need for extensive programming on IoT devices.
We showcase the system’s real-world applicability through physical circuit implementa-
tion while providing insights into its limitations and potential scalability. Our findings
reveal that LLM-driven loT control can effectively bridge the gap between complex device
functionality and user-friendly interaction, and also opens new avenues for creative and in-
telligent IoT applications. This research offers insights into the design and implementation
of LLM-integrated IoT interfaces.

Keywords: embedded systems; Internet of Things; large language models; natural language
processing; Raspberry Pi; user interaction; web applications

1. Introduction

Large language models (LLMs) have significantly revolutionized natural language
processing (NLP), demonstrating unprecedented capabilities in understanding and generat-
ing human-like text [1]. However, their potential in Internet of Things (IoT) and embedded
systems (ESys) applications remains largely untapped. IoT systems have become increas-
ingly prevalent across various domains, from smart homes to industrial automation [2].
Despite their widespread adoption and security issues, developing and interacting with
adaptive IoT systems often requires specialized knowledge and good programming skills,
creating significant barriers for new or non-technical users [3].

Traditional IoT interfaces typically rely on graphical user interfaces (GUISs) or specific
programming languages, which can be challenging for users to develop without technical

Sensors 2025, 25, 3809

https://doi.org/10.3390/s25123809

https://doi.org/10.3390/s25123809
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0008-5823-9483
https://orcid.org/0009-0008-2204-7324
https://orcid.org/0000-0003-0749-6865
https://doi.org/10.3390/s25123809
https://www.mdpi.com/article/10.3390/s25123809?type=check_update&version=2

Sensors 2025, 25, 3809

20f31

expertise [3]. This limitation hinders the widespread adoption and utilization of IoT tech-
nologies, particularly in scenarios where rapid deployment and intuitive user interaction
are crucial. While research has been conducted on natural language interfaces for IoT,
the application of advanced language models to IoT control and interaction remains an
unexplored area [4].

To address these challenges, we propose Vega , an intelligent chatbot platform that
leverages LLMs to enable intuitive, natural language control of IoT devices. Our system
focuses on a Raspberry Pi (RPi) connected to various sensors and devices as a representative
IoT setup. By integrating LLMs with IoT infrastructure, we aim to bridge the gap between
complex device functionality and user-friendly interaction, allowing users to control and
query loT systems using everyday language. Our research builds upon recent advance-
ments in LLMs, specifically OpenAl’s GPT-based models [5], which utilize transformer
neural network architectures to capture context and relationships within text data. By
applying these powerful language understanding capabilities to IoT interaction, we aim
to create a more accessible and flexible approach to device control and monitoring. Our
approach, addressing the standardization challenges highlighted by Al-Qaseemi et al. [6],
not only enhances accessibility for non-technical users but also opens new avenues for
creative and intelligent IoT applications.

Vega's architecture comprises three key components: a physical circuit with input and
output devices, an RPi integrating a control server, and a web application incorporating
LLM logic. This modular design allows for flexibility and scalability, enabling the system to
adapt to various IoT scenarios and user requirements [7]. By utilizing the RPi as a central
hub, we can leverage its versatility and widespread adoption in the IoT community [8].
The main contributions of this paper are as follows:

1. We developed a chat web app that executes queries on the RPi, which contains a
control server that manages the execution on a circuit and communication with the
web app.

2. Wedevelop a multi-agent LLM framework that translates natural language commands
into executable instructions for IoT devices, capable of handling complex, conditional
logic without additional coding on the RPi.

3. We showcase the system’s real-world applicability through physical circuit implemen-
tations and provide insights into its limitations and potential scalability.

4. We implement and evaluate the system, demonstrating the feasibility and effectiveness
of LLM-driven IoT control across various task complexities and user scenarios, including
an evaluation mode with automated test generation and performance assessment.

The remainder of this paper is organized as follows: Section 2 provides background
information and discusses related work in IoT interfaces and NLP. Section 3 details our
methodology, including the overall architecture, physical circuit design, RPi configuration,
and web application implementation. Section 4 presents our experimental setup, results,
and analysis, showcasing the system’s performance in handling complex commands and
its potential real-world applications. Finally, Section 5 concludes the paper, explaining the
system’s limitations and insights into future research.

2. Background and Related Work

The integration of natural language interfaces with IoT systems represents a significant
paradigm shift from traditional control methods. Conventional IoT interfaces primarily
rely on graphical user interfaces (GUIs), mobile applications, or rule-based systems that
require users to navigate complex menus, configure specific parameters, or understand
predefined command structures [9]. Voice assistants like Amazon Alexa and Google
Assistant have introduced natural language capabilities to IoT control, yet these systems

Sensors 2025, 25, 3809

3 0f 31

are limited by predefined skills, fixed command structures, and restricted contextual
understanding [10,11]. Similarly, rule-based systems such as IFTTT (If This Then That)
allow for automation but require users to understand logical structures and lack the
flexibility to handle complex, contextual queries [12,13].

The emergence of LLMs presents an opportunity to transcend these limitations by
enabling more intuitive, flexible, and context-aware interactions with IoT devices. Unlike
traditional interfaces that constrain users to predefined interactions, LLM-driven systems
can interpret natural language with greater nuance, handle ambiguous requests, and
adapt to diverse user communication styles. This advancement is particularly crucial for
addressing accessibility and usability challenges in IoT systems, where technical complexity
often creates barriers for elderly users, individuals with disabilities, or those lacking
technical expertise [14,15].

2.1. Industrial Applications of LLMs

LLMs, based on the transformer architecture [16] , which uses self-attention mecha-
nisms to analyze large sequences of text data, have been effectively applied across diverse
domains, including robotics, software, and IoT applications.

Maddigan and Susnjak [17] showcased this versatility with Chat2VIS, leveraging
ChatGPT and GPT-3 to generate data visualizations from natural language queries. Their
innovative approach demonstrated how LLMs could be effectively used to convert free-
form natural language directly into visualization code, even when queries were highly
underspecified. Meanwhile, Vemprala et al. [18] explored the application of LLMs, specif-
ically OpenAl’s ChatGPT, in robotics applications. Their research presented a strategy
combining prompt engineering principles and a high-level function library, enabling Chat-
GPT to adapt to various robotics tasks, simulators, and form factors. The study evaluated
different prompt engineering techniques and dialogue strategies for executing robotics
tasks, ranging from basic logical and geometrical reasoning to complex domains like aerial
navigation and manipulation.

Recent research has explored the integration of LLMs with robotic systems, paving
the way for intuitive human-robot interaction. Singh et al. [19] introduced ProgPrompt, a
novel approach leveraging LLMs to generate action sequences based on natural language
instructions. By prompting LLMs with program-like specifications of available actions and
objects, along with example programs, their method enables plan generation across diverse
environments, robot capabilities, and tasks. This work demonstrated state-of-the-art success
rates in virtual household tasks and was successfully deployed on a physical robot arm
for tabletop tasks. Building upon these robotics applications, Vega extends similar natural
language interpretation capabilities to IoT environments, enabling users to control embedded
systems through conversational interfaces rather than programmatic specifications.

Expanding on this concept, Driess et al. [20] proposed PaLM-E, an embodied mul-
timodal language model that incorporates real-world sensor data into language models.
PaLM-E is trained on tasks such as robotic manipulation planning and visual question an-
swering, exhibiting positive transfer across language, vision, and visual-language domains.
This research highlights the potential of LLMs in grounding language understanding in
physical environments, a crucial aspect for IoT applications. Grounding connects language
to real-world objects and actions; in Vega, it links user commands to IoT device operations,
enabling intuitive control. However, unlike PaLM-E’s focus on multimodal training, Vega
emphasizes lightweight deployment on resource-constrained IoT devices through modular
architecture and cloud-based LLM processing.

In the context of multi-agent systems, which involve multiple autonomous agents collab-
orating to achieve common goals, Kannan et al. [21] developed SMART-LLM, a framework

Sensors 2025, 25, 3809

4 of 31

for embodied multi-robot task planning. This approach uses LLMs to convert high-level task
instructions into multi-robot task plans through a series of stages, including task decomposi-
tion, coalition formation, and task allocation. The authors created a benchmark dataset for
validating multi-robot task planning problems, demonstrating the framework’s effectiveness
in both simulated and real-world scenarios. Similarly, Vega utilizes multiple agents to handle
different scenarios such as task planning, image processing, and chat interaction but focuses
on IoT device coordination rather than robotic task planning.

Wau et al. [22] presented TidyBot, a system that combines language-based planning and
perception with LLMs to infer generalized user preferences for household clean-up tasks.
This research demonstrates the potential of LLMs in personalizing robot assistance, achieving
91.2% accuracy on unseen objects in their benchmark dataset and successfully putting away
85.0% of objects in real-world test scenarios. While TidyBot focuses on autonomous robotic
assistance, Vega diverges by emphasizing user-directed control and real-time interaction with
IoT devices, allowing users to maintain agency over their smart environment.

While these advancements primarily focus on robotics, they lay a solid foundation
for extending similar techniques to IoT scenarios. The ability to interpret natural language
instructions, generate action sequences, and integrate multimodal sensor data holds signifi-
cant potential for enabling the intuitive and intelligent control of IoT devices and systems.
As research progresses, we anticipate further innovations in LLM-driven IoT interfaces,
potentially revolutionizing how users interact with smart environments.

2.2. Natural Language Processing for IoT

NLP has emerged as a transformative technology in IoT applications, enabling intuitive
human-machine interactions. The integration of NLP into IoT systems allows users to
instruct, control, and query devices using everyday language, bridging the gap between
complex technological interfaces and user-friendly experiences [23]. This integration is
particularly crucial as IoT devices become ubiquitous in various domains, from smart
homes to industrial settings, where ease of use and accessibility are paramount.

Traditional NLP approaches in IoT have relied heavily on rule-based systems and
keyword matching. Early smart home systems required users to learn specific command
phrases and follow rigid syntax patterns [24,25]. Voice assistants improved upon this
by introducing more natural speech recognition, yet they remain constrained by prede-
fined skills and limited contextual understanding [10,26]. These systems struggle with
ambiguous requests, complex conditional logic, or tasks requiring multi-step reasoning.

Recent research has demonstrated the potential of advanced NLP techniques in IoT
contexts. For instance, Petrovi¢ et al. [27] explored the use of ChatGPT in IoT systems, focus-
ing on Arduino-based applications. Their work highlighted the possibilities of leveraging
LLMs for both question-answering and automated code generation in IoT environments.
Similarly, Zhong et al. [28] proposed CASIT, a collective intelligent agent system for IoT
that utilizes LLMs to process and interpret data from multiple sources efficiently. These
studies underscore the growing interest in applying advanced NLP techniques to enhance
IoT functionality, operability and user experience.

The integration of LLMs represents a significant advancement in NLP capabilities
for IoT. Traditional NLP methods often struggle with context understanding and complex
query interpretation, limitations that LLMs can overcome. LLMs offer improved natural
language understanding, enabling more nuanced and context-aware interactions with IoT
devices. For example, King et al. [23] demonstrated how LLMs can interpret ill-defined and
under-specified commands in smart home environments, translating vague user intentions
into specific device actions.

Sensors 2025, 25, 3809

5 o0f 31

The potential of LLMs in IoT extends far beyond simple command interpretation.
They can enable more sophisticated applications such as predictive maintenance, anomaly
detection, and personalized user experiences. Sarzaeim et al. [29] explored the use of LLMs
in smart policing systems, showcasing their potential in complex data analysis and pattern
recognition. This application hints at the broader possibilities of LLMs in IoT, where they
could be used to analyze and interpret vast amounts of sensor data, making IoT systems
more intelligent and proactive.

However, integrating LLMs into IoT systems also presents challenges, including
privacy concerns, computational requirements, and the need for domain-specific training.
Despite these challenges, the potential benefits of LLM-enhanced NLP in IoT are significant.
As demonstrated by Xu et al. [30], natural language interfaces can greatly improve the
usability of IoT platforms, allowing for more complex and nuanced interactions. By
leveraging the advanced capabilities of LLMs, future IoT systems could offer unprecedented
levels of intuitive control and intelligent automation, paving the way for more accessible
and powerful IoT applications across various domains.

2.3. Language-Oriented Architectures

Chatbots have gained significant traction across various industries, serving as di-
rect communication channels between companies and end-users [31]. However, existing
frameworks often require advanced technical knowledge for complex interactions and
lack flexibility in adapting to evolving company requirements. The deployment of chatbot
applications typically demands a deep understanding of targeted platforms, particularly
back-end connections, which increases development and maintenance costs [31].

To address these challenges, researchers have proposed novel approaches to chatbot
development. Xatkit, for instance, offers a set of domain-specific languages to define
chatbots in a platform-independent manner, along with a runtime engine for automatic
deployment and conversation management [31]. Similarly, Jiang et al. [32] propose a multi-
agent system enhanced by LLMs for 6G communications, allowing users to input task
requirements, while addressing challenges such as limited communication knowledge
through a combination of specialized agents for data retrieval, collaborative planning,
evaluation and reflection.

Recent studies have explored multi-modal chatbots in intelligent manufacturing set-
tings, demonstrating the potential for Al-powered dialogue systems to assist users in
complex assembly tasks [33]. These systems leverage both textual and visual capabilities to
improve intent classification and provide relevant information to users. The development
of conversation-driven approaches for chatbot management has also shown promise in
evolving chatbot content through the analysis of user interactions, allowing for a cyclic and
human-supervised process [34].

In the realm of human-robot interaction, researchers have developed task-oriented
dialogue systems for industrial robots, addressing the lack of domain-specific discourse
datasets and emphasizing user experience alongside task completion rates [35]. These
efforts have resulted in datasets like IRWoZ and frameworks such as ToD4IR, which
integrate small talk concepts and human-to-human conversation strategies to support more
natural and adaptable dialogue environments.

The potential of LLMs in easing loT-oriented chatbot development has been demon-
strated through large-scale models that can learn blended conversational skills when
provided with appropriate training data and generation strategies [36]. These models have
shown improvements in multi-turn dialogue engagement and human-related measure-
ments. Vega utilizes these frontiers within its multi-agent intelligent chatbot, allowing

Sensors 2025, 25, 3809

6 of 31

it to interact with any IoT system and handle complex queries while maintaining a user-
friendly interaction.

2.4. Comparative Analysis and Research Positioning

To contextualize Vega’s contribution within the existing literature, Table 1 presents
a comprehensive comparison of related works across key dimensions including natural
language capabilities, IoT integration, accessibility features, and deployment complexity.

Table 1. Comparative analysis of natural language IoT control systems.

System NL Capability IoT Integration Accessibility Deployment Key Limitations
Traditional GUI None Native Low Simple Requires technical knowledge
Voice Assistants Limited Skill-based Medium Medium Predefined commands, limited
(Alexa/Google) context
Rule-based Systems None Good Low Medium N o natural language, rigid
(IFTTT) logic
Chat2VIS [17] High Limited Medium Complex Visualization-focused, not IoT
control
. . Limited wuser interaction
CASIT [28] Medium Good Medium Complex .
paradigms
. . . Robotics-specific, not general
ProgPrompt [19] High Robotics only Medium Complex IoT
PaLM-E [20] High Limited Low Very Complex Requlres. extensive training,
resource-intensive
Vega (This Work) High Native High Medium Requires internet connectivity

The comparative analysis reveals several key distinctions that position Vega as a
novel contribution to the field. Unlike traditional GUI-based systems that require technical
expertise or voice assistants that are limited by predefined commands, Vega offers high
natural language capability with native IoT integration. While systems like ProgPrompt
and PaLM-E demonstrate advanced LLM integration, they focus primarily on robotics
applications and require extensive computational resources. CASIT provides good IoT
integration but lacks the conversational flexibility and accessibility features that Vega offers.

Vega’s primary innovations include (1) seamless integration of conversational Al with
lightweight IoT devices without requiring extensive on-device processing; (2) multi-agent
architecture that enables complex task decomposition and execution; (3) emphasis on
accessibility and usability for non-technical users; and (4) modular design that allows for
easy adaptation to various loT scenarios. These features address critical gaps in the existing
literature, particularly the need for intuitive, accessible interfaces that can handle complex
IoT control tasks without requiring specialized knowledge or extensive system resources.

The novelty of this work lies in bridging the gap between advanced LLM capabilities
and practical IoT deployment constraints. While previous research has demonstrated the
potential of LLMs in various domains, Vega specifically addresses the unique challenges of
IoT environments, including resource limitations, real-time control requirements, and the
need for reliable, user-friendly interfaces. This positions Vega as a significant step toward
democratizing IoT control and making smart environments accessible to a broader range
of users.

Sensors 2025, 25, 3809

7 of 31

3. Methodology
3.1. Overall Architecture

The architecture of the Vega system follows key principles of software design to
ensure clarity, scalability, maintainability, and robustness [7]. The system adopts a modular
approach, dividing functionality into distinct components with specific purposes. This
design promotes code reuse, facilitates testing, and enhances overall maintenance. The
architecture also implements the separation of concerns, where different aspects such as
user interface (UI), core functionality, and data management are segregated into distinct
layers, improving code organization and enabling independent development.

As shown in Figure 1a, Vega’s architecture comprises three main modules: a web
application, an RPi, and a physical circuit. These modules interact in a client-server
model [37], with the web application serving as the client and the RPi as the server. The
physical circuit is connected to the RPi via hardwired connections.

a) Overall Architecture

(WebApp

User Interface

(VegaChat) g ral
A
S o] Control
PLV Response R Server (VegaPi)

[internet] 4 Raspberry Pi \ physical | (Physical Circuit \
i lconnection) + lconnection) |
input

GPIO pins Input Circuit
Devices

Database

redis App Logic n Output Circuit
\ (VegaAi) j \ 2, Devices J
b)_Simple Generalised Example for lllustration
-

WebApp (has LLM Logic) Physical Circuit h

O ® 192.1680.122

[Q Can you turn on the red LED please

l@ The red led (LED1) has been turned on

Keys: *VegaAi and VegaPi are what we call these modules in code *Internal communication happens within the code itself
» internal communication —>» external communication *external communication can occur through file /O or physical connection or internet connection

Figure 1. Overall technical architecture of Vega (a,b): a simple generalized example.

The web application consists of two primary submodules: the user interface (VegaChat)
and the app logic (VegaAi). The app logic incorporates LLM logic containing the multi-agents
for translating user input into commands and generating responses. Redis [38] is employed
as a non-relational database to store chat history, messages, and RPi connection states.

The RPi module hosts a control server (VegaPi) responsible for parsing requests from
the app logic and executing them on the physical circuit. An SQLite database [39] is used to
store data extracted from the physical circuit. The physical circuit comprises input devices
(sensors) and output devices (motors, displays, etc.) connected to the RPi’s general-purpose
input/output (GPIO) pins.

The typical use case shown in Figure 1b involves a user interacting with the web
application interface, sending a natural language command to turn on a red light-emitting
diode (LED). The LLM interprets this command and sends the appropriate instruction to
the RPi’s control server. The server then relays the command to the physical circuit via
GPIO pins, which turns on the LED. Upon execution, the circuit sends feedback to the RP;j,
which is then communicated back to the user through the web application and the LLM.

The technology stack for Vega has been carefully selected to ensure robustness, scala-
bility, and accessibility [40]. The web application is built using React [41] with TypeScript,
employing RadixUI [42] for accessible components and TailwindCSS [43] for responsive
design. The App Logic utilizes Next]s [44] and integrates with OpenAl’s GPT models [5]
for language processing. The RPi control server is developed using Flask [45], while the
circuit code leverages RPi libraries for GPIO interaction.

Sensors 2025, 25, 3809

8 of 31

This architecture enables Vega to bridge the gap between complex IoT functionality
and user-friendly interaction. By leveraging LLMs for NLP and control, the system opens
up new possibilities for intuitive IoT applications in various domains, from smart homes
to industrial monitoring and educational environments [8]. The modular design and the
carefully chosen technology stack ensure that Vega remains adaptable, maintainable, and
scalable as IoT applications continue to evolve and expand.

3.2. Physical Circuit Design

The physical implementation of the Vega platform comprises a custom-designed
circuit board that interfaces with the RPi, integrating various input and output devices
to facilitate IoT and embedded systems applications. This hardware configuration forms
the foundation for the natural language-controlled system, enabling users to interact with
commonly used physical components through LLM-interpreted commands.

The Vega platform is designed to accommodate a comprehensive range of IoT devices
and sensors commonly used in embedded systems applications. The architecture supports
both digital and analog interfaces, enabling integration with diverse hardware components
across multiple communication protocols. The design is implemented to support a device
assuming, that they have a correct textual description that will then be utilized by the LLM.

Input Devices and Sensors:

¢ Environmental Sensors: Temperature and humidity sensors (DHT series), barometric
pressure sensors, air quality sensors, and light intensity sensors for comprehensive
environmental monitoring.

* Motion and Proximity Detection: Ultrasonic sensors (HC-SR04), passive infrared (PIR)
motion sensors, accelerometers, gyroscopes, and magnetometers for spatial awareness
and movement detection.

. Position and Navigation: GPS modules, compass sensors, and encoders for location
tracking and orientation sensing.

¢ User Input Interfaces: Push buttons, switches, potentiometers, rotary encoders, and
keypad matrices for direct user interaction.

* Safety and Security: Limit switches, reed switches, smoke detectors, gas sensors, and
vibration sensors for safety monitoring applications.

¢ Communication Modules: Wi-Fi modules, Bluetooth adapters, LoRa transceivers, and
cellular modems for wireless connectivity.

* Image and Audio Capture: Camera modules, microphones, and sound level meters
for multimedia data acquisition.

Output Devices and Actuators:

¢ Visual Indicators: LEDs (single color and RGB), seven-segment displays, dot matrix
displays, and LCD/OLED screens for information presentation.

* Motor Control: Servo motors, stepper motors, DC motors, and brushless motors for
precise mechanical control.

¢ Switching and Relay Control: Mechanical relays, solid-state relays, and transistor
switches for high-power device control.

* Cooling and Ventilation: Fans, pumps, and solenoid valves for fluid and air management

* Audio Output: Speakers, buzzers, and piezoelectric elements for audible feedback
and alerts.

* Heating Elements: Resistive heaters, Peltier modules, and heating pads for tempera-
ture control applications.

As shown in Figure 2, the current implementation of the circuit board incorporates a
representative subset of these supported devices, including an ultrasonic sensor for distance
measurement, a limit switch for binary state detection, a temperature and humidity sensor

Sensors 2025, 25, 3809 9 of 31

for environmental monitoring, a GPS module for location tracking, and a push button for
direct user input [46]. These components collectively provide a rich set of data sources,
enabling the system to respond to complex, context-aware queries and commands.

Camera: I \

Connected ;
o 4 > BN PP O Ofimiiad O
on RPi |tself XIS 3 | Limit)
_F3ep: Switch $4 |

oYaYaYaYal iVoVaYs)

I0apoyreepem N

it
|

o 10 o 151 Iored ey Aedamy
(/o] U0 BB SOHDH Y
0081 10U 0Q ‘{-/4] Ajpaucd pemu

0000d
& d ooooo A 66004

4 . uooooooooooooooooooooo 12C
©,000000\ oooooooooooooooooooooooo

pJeogpeaJtg 31qeJapios Xipaad|

* RPi: Raspberry Pi Keys 1 Input Devices @ Output Devices *All electrical connections are soldered from the back

Figure 2. Soldered physical circuit connected to the RPi.

Output devices on the board include a 12V fan for cooling or air circulation, multiple
LEDs (yellow, red, and blue) for visual indicators, a 5V servo motor for precise rotational
control, and a liquid crystal display (LCD) for text output. A 5V relay is incorporated
to control the 12V fan, demonstrating the system’s capability to manage higher-voltage
components safely [47]. The inclusion of these diverse output devices allows for a wide
range of physical responses to user commands, from simple visual feedback to more
complex mechanical actions.

The modular design philosophy of the Vega platform enables seamless expansion and
customization for specific application requirements. Additional sensors and actuators can
be integrated without fundamental changes to the core architecture, as the LLM-based
control system dynamically adapts to newly connected hardware through configuration up-
dates. This scalability ensures that the platform can evolve to meet diverse IoT application
needs, from simple home automation scenarios to complex industrial monitoring systems.

Power management is a crucial aspect of the circuit design. While most components
operate on the 5V supply provided by the RPi, the 12V fan requires a separate power
source. To address this, a 9V battery is utilized in conjunction with the relay, ensuring
proper voltage supply while maintaining RPi-based control. This setup illustrates the
system’s ability to accommodate components with varying power requirements within a
unified control structure.

The circuit board is designed to connect directly to the RPi’s GPIO pins, streamlining
the interface between the physical components and the computational core of the system.
A camera module, while not physically present on the circuit board, is connected directly
to the RPi, expanding the system’s capabilities to include image capture and analysis [48].

This hardware configuration supports a wide range of potential applications. In
smart home scenarios, the temperature sensor and fan could be used for automated climate
control, while the GPS module could enable location-based automation in mobile or outdoor
settings. In industrial environments, the ultrasonic sensor and limit switch could be

Sensors 2025, 25, 3809

10 of 31

employed for proximity detection and safety systems, with the LEDs and LCD providing
status information to operators [47].

The versatility of this hardware setup, combined with the LLM-driven control system,
enables the exploration of complex, conditional logic without requiring additional RPi-
level coding. This integration of diverse sensors and actuators with NLP capabilities
represents a significant step forward in creating intuitive, user-friendly interfaces for IoT
and embedded systems, bridging the gap between sophisticated device functionality and
accessible user interaction.

3.3. Raspberry Pi Design

The architecture of the RPi integration with the existing codebase is designed to enable
seamless control and manipulation of the circuit without interfering with pre-existing logic.
This approach leverages parallel computing concepts, utilizing processor cores and threads
to execute specific logic concurrently with existing code [49].

The system architecture, illustrated in Figure 3, comprises two main threads: the
control server thread and the database thread. The control server thread manages a Flask-
based web framework, storing predefined functions for a set of circuit devices. These
functions are exposed through a REST API, facilitating communication between the web
app and the RPi over the internet. The database thread retrieves sensor data at two-second
intervals, storing it in an SQLite database. This persistent storage solution ensures data
preservation in the event of system failures, enabling data recovery, analytics, and statistical
analysis. The stored data can be retrieved upon request and provided to the LLMs in the
web application, enhancing system monitoring and diagnostic capabilities.

§ [Physical Circuit

o ? b
data

1 1 |
(v)
m o SEUIEELE B /reset-devices
Control . Extarcts
— Server | OO Iget-devices <{-GiEE Defined
Circuit ,Extaracts yr— Circuit
Threac! Functions - Funsiione P /get-functions o
(VegaPi) R SN
Existing'f‘.‘.”ﬁ‘l?'?..) /run-function
Raspberry Pi Code Response /J

&—c

Keys:

-3 internal communication

requested |

~

¢ Database
—>» external communication Thread

*Internal communication happens within the
code itself

*external communication through file 1/0,
physical connection or internet connection

&

o

Extracted
Stored
Sensor

Devices

Data

\

[SQLite Database

Store
Sensor
Devices

S

Figure 3. Architecture code design of the RPi, including the control server and the database.

Table 2 presents the devices defined in the control server, categorized as inputs or
outputs. This information is stored and transmitted in JSON format via the “get-devices”
REST API endpoint. Input devices primarily transmit data for database storage, while
output devices receive commands for circuit manipulation.

Sensors 2025, 25, 3809 11 of 31

Table 2. Physical devices defined on the control server, which are then utilized by the LLM to interact
with the circuit.

Symbol Pin Type Description

ULTS Input Ultrasonic distance sensor in cm

CAM Input Camera device for image acquisition

GPS Input GPS device for longitude and latitude coordinates
™P Input Temperature sensor in degrees celsius

FAN Output 12V fan controlled through digital GPIO in relay
LCD Output LCD for displaying text data

SRV Output Servo motor rotates to given set of angles

LED1 Output Yellow LED light

LED2 Output Red LED light

LED3 Output Blue LED light

The control server exposes a set of defined functions, listed in Table 3, which the LLM
utilizes to determine logic and execute commands on circuit components. These functions
are accessible to the LLM through the “get-functions” REST API endpoint. To execute a
particular function, the LLM passes the function identifier and required parameters to the
web Application Logic, which then invokes the “run-function” API endpoint.

Table 3. Defined functions on the control server, called by the LLM based on user input, executed on
the RPi and processed on the web app.

Function Description Use Case
set led Toggles specific LED “Turn on yellow LED”
set fan Toggles fan on or off “Turn on the fan”

Gets interval sensor

get recorded sensor data data from database

“Plot me the distance data in
last 30 s”

get raspberry stats Gets CPU, RAM, disk of RPi

“What is the current disk usage”

Capture and upload

capture image image to the cloud

“Capture an image, does it con-
tain a pen?”

Fetches data of connected de-

get connected devices .
vices

“What is the current humidity
and temperature”

Gets the current

get location_ location from GPS

“From the location are we cur-
rently in Leeds?”

set servo_angles Turn servo to certain angle

“Turn the servo to 10 then
180 degrees”

The choice of REST API over alternative protocols such as MQTT was based on several

factors. REST offers simplicity, scalability, and statelessness, making it well-suited for web-
based applications [50]. It also provides a uniform interface, enabling easier integration
with various client applications. While MQTT excels in low-bandwidth, high-latency
environments, the current system architecture prioritizes the flexibility and widespread
support offered by REST APIs in web development ecosystems.

The communication flow between the web application and the RPi follows a request—
response pattern. The web application sends REST API requests with JSON data specifying
the function and arguments for the RPi to execute. The RPi processes these requests,
executes the specified functions, and returns JSON responses with the execution status

Sensors 2025, 25, 3809

12 of 31

to the web application. This bidirectional communication enables real-time control and
monitoring of the IoT devices.

This architecture facilitates a modular and extensible system, allowing for the easy
addition of new devices and functions. It also provides a layer of abstraction between
the physical hardware and the LLM-driven interface, enabling natural language control
of IoT devices without requiring users to understand the underlying technical details.
The integration of LLMs with this IoT control system represents a significant step toward
more intuitive and accessible IoT interfaces, potentially broadening the application of IoT
technologies across various domains [7].

3.4. Web App User Interface

The web application forms the core of the Vega platform, initiating all LLM processing
and circuit manipulation tasks. Its architecture is modular, separating the user interface
(VegaChat) from the App Logic (VegaAi). The user interface shown in Figure 4 comprises
a Top Bar with RPi connection management and configuration options, and a Chat Ul
displaying LLM responses and user messages. A Chat History Ul manages previous
interactions. The App Logic includes Data Management, RPi Bridge, and LLM Agent
components, handling data entities, RPi communication, and LLM processing, respectively.

Topbar
a) Mobile Version b) Desktop Version
O e 107752139 ® o » Saspbeny el Configurations
Connection Dialog
GETE | (
+ New Chat User LLM
v mos L2 amyou v ol f ol connected deice .
(3 hican you get the t...

© The temperature sensor s reading 21.0 degrees B demo2 %
which is more than 20 degrees. Therefore, the fan -) Current Devices ~

& D conditional logic old
has been tured off

A [led test Ciae LED1 [@ pigital
| want you to capture an image please oo Yellow LED light
O demo 1
&
Raspberry Pi Image
N

[latex showcase

3 conditional weather

O hi, can you give me...

§ The list of all connected devices is shown above.
[table showcase -

-~ Text Input
The image shows an indoor scene with a focus on - 2 Regenerate response i
led and image test
ablured = pegenerate response 3t aPpears to . .

he part of an siectronic aevice wirn | FD lihts

+ Clear history

Figure 4. Web app user interface implementation showcasing (a) the mobile version alongside (b) the
desktop version.

The UI design prioritizes usability, drawing inspiration from established chatbot
interfaces [5]. It features a sidebar for chat history, a top bar for configurations, and a
main chat area. An automated mode facilitates efficient testing for advanced users while
maintaining simplicity for novices. The interface incorporates a Markdown renderer to
appropriately display formatted text generated by the LLM.

The platform supports various data types and formats to enhance user interaction.
It can display GPS data as maps, sensor readings as plots, and camera module output as
images. Additionally, it visualizes LLM-generated plans as flow charts. This versatility
allows the interface to accommodate diverse IoT devices and sensors, presenting their data
in intuitive, visual formats.

Sensors 2025, 25, 3809

13 of 31

3.5. Web App Logic

The Application Logic component serves as the core operational engine of the Vega
system, managing communication with the RPi control server and integrating LLM’s for
NLP and command interpretation. This component acts as a bridge between external
elements, orchestrating the flow of information and translating user input into appropriate
actions within the system architecture [7].

By leveraging OpenAl’s API, the application accesses LLM capabilities without the
substantial computational overhead of local hosting [51]. This design choice simplifies and
enhances the platform’s accessibility and scalability, enabling its deployment across a wide
range of devices, platforms and use cases in IoT and embedded system development.

To establish a connection between the web application and the RPi, the user provides
the IP address and port number of the RPi running the control server. The web application
then initiates concurrent API calls to fetch circuit functions and device information from the
control server. Upon receiving responses, the connection state is updated, synchronizing
the “Raspi Devices” and “Raspi Functions” states, which are fed to the LLM.

Figure 5 illustrates the system’s logic, demonstrating how user commands are pro-
cessed through various stages involving three main LLM agents: Chat, Planning, and
Image. When a user inputs a command (e.g., “turn on red LED and capture image”), the
system follows these steps:

1. The Stateless LLM Planning Agent generates a plan, which is visualized as a flowchart
in the user interface.

2. The Stateless LLM Chat Agent processes the message and determines if a function
call to the RPi is necessary.

3. Ifrequired, the function is sent and executed on the RPi, which returns a response.

4. For image data, the Stateless LLM Image Agent analyzes and generates a description
used by the LLM Chat Agent to execute subsequent functions and logic.

5. Results are displayed on the web application’s Ul, providing feedback to the user.

WebApp - Chat Ui Keys:
User Interface Update ‘ Boolean True | ! Part of Data Management { | Local data

@) turn on red led and capture image Normal flow

<> Boolean Conditon (@) Boolean False Partof LLMAgents = = = Updates main state -------- InputtoLLM [N

Image Caption —

! Show Flow Chart | |] T
i Plan on Ui Physical Circuit
1
1 Stateless LLM
. un Planning Agent only at first message P * Image
) / P jent H Agent
N Raspberry Pi H
' : un
: age
[. ;
8 i (\)
5 Functon RasPi Function Run " s dela e
a2] age?
8)

he LLM (Chat Agent) wi

-@--i--d-,
— - —glessage . statelessLim 1
History Chat Agent Response Data;
S Response Data

1

! Show LM

1 Response Message

1 onui
Submit User Run Chat

Message Agent

o The image shows a versatile electronic circuit board with a servo

motor, LEDs, labeled pin connections, and a DC fan for cooling
** Response of Image Agent is supplied to the main LLM {Chat Agent)

(@ LED is now on. The image is captured and shown above

Figure 5. Web app logic in action featuring LLM agents, application states, and RPi connection.

The LLM Chat Agent, as depicted in Figure 6, operates in two scenarios. In a normal
chat scenario, it processes user input and generates a textual response. In a function
call (provided by OpenAl) scenario, it recognizes the need for a hardware action and
outputs a JSON-formatted function call for the RPi. The call is triggered using context in
the user input, such as “turn on” or “capture”. All other agents mentioned earlier work
in a similar manner. To illustrate this better the app is showcased in the following link
https:/ /youtu.be/CKV__A8G5RKk.

https://youtu.be/CKV__A8G5Rk

Sensors 2025, 25, 3809

14 of 31

Scenario 1: Normal Chat

LLM Chat Agent

| Messages History Raspi Raspi
| (Old Messages) ' @ Functions Devices
E : v v ..
6 Ly OpenAl GPT LLM | | am doing fine, hov;/"can | help
! ' + you today?
' N.ew Message:) LLM
. "Hi how are you?"
'] Parameters
Scenario 2: Function Call
LLM Chat Agent
| Messages History Raspi Raspi
| (Old Messages) Functions Devices "function_name": "set_led",
i E v v "arguments”: {
b c = OpenAl GPT LLM — "name": "ledl",
! : vyalue": "on
. New Message: A } vaue on
: "Turn on yellow . LLM
LED?" : Parameters

Figure 6. Execution of the LLM Chat Agent.

This approach of using LLM function calls for command interpretation and execution
offers several advantages over dynamic code generation methods. It enhances scalability
and adaptability, allowing for easy integration of new sensors and data types without
significant system modifications [52]. Additionally, it improves system security and main-
tainability by limiting direct code execution on the RPj, instead relying on predefined
functions interpreted by the LLM, which prevents dynamic errors.

4. Experiment and Validation
4.1. Representative Real-Life Case Study

The overall system had an automated testing implementation that was used to thor-
oughly examine the system mentioned in Section 3.4; however, we showcase a case study
to elaborate on the real-life application of the system. The experimental phase of this study
focuses on demonstrating the system’s versatility and real-world applicability through a
few typical case studies. Figure 7 illustrates two scenarios where our LLM-powered IoT
control system effectively manages complex tasks through natural language interaction.
In the first scenario, the system monitors environmental conditions in a typical industrial
setting. A user command prompts the system to check the temperature and capture an
image if it exceeds 20 °C. The LLM interprets this request, triggering the appropriate sensor
readings and image capture. When the temperature reaches 27.0 °C, the system captures
an image and analyzes it for the presence of neon lighting. Upon detecting a neon sign
using GPT’s image recognition capabilities, it displays “hi everyone” on the LCD, and
importantly showcases the system’s ability to execute conditional logic based on sensor
data and image analysis. The second case demonstrates the system’s capability in a more
complex scenario involving geolocation, user input tracking, and multiple actuator controls.
The LLM interprets a command to check location, monitor button clicks, and adjust servo
motors accordingly. This case highlights the system’s ability to integrate various data
sources and control multiple IoT devices simultaneously.

Sensors 2025, 25, 3809

15 of 31

(WebApp - ChatUi - Case 1 WebApp - ChatUi - Case 2

Get temperature. If more than 20°C, capture image. If image describes neon o If location is Leeds, check button click count. If more than 3, set servo to 45, 90
and get ULTS sensor data for last 30s. Else, turn on fan.

O cotFowchan
get_connecte s Waicks >3 set_servo_angles [}

light, write 'hi everyone' on LCD. If both conditions fail, set red LED on.

9 Gpt Flow Chart

-
e
light')
czmm cmp D
B set_led
i . - e ——
© Curent Devices
O w»
™ 5 Analog p o

Temperature sensor part of DHT11 \ /

\ / d: g
« \ Leeds Arts §
\ / University j
anry Price ReSidences 9
L LALEE ~<\ St George's o
- <\ Field %,
ty O %4 h
o - The Stanley & Audrey u
O raspvery piimage Univerg) o, -
. ity Ry CoL5e P!
M&SArchive "ton p, Keyboard shortcuts Map data 2024 Terms ~ Report a map error
o Plot of ULTS (Time (s) vs Values)
Values
2/11-‘
234
210
02
The image depicts a bright white neon lightning bolt mounted on a wall, with 1.94
il i i ez L Iy T T T T T T T T T 1
aecarisioudnozeatnglmec e I S moe 390 392 394 396 398 400 402 404 406 408 410 412 414 416 418
e The temperature is shown above, and based on the captured image description me (s)
mentioning a neon light, "hi everyone" has been displayed on the LCD. 6 Button was clicked more than 3 times, Servo was set and data is displayed.
Physical Circuit - LCD Physical Circuit - LCD
Angle =0 ¢ Angle = 45 | Angle = 90

Figure 7. Case study of complex commands in action.

Contrary to the perception that LLMs require complex prompts, our system demon-
strates their superior user-friendliness and responsiveness compared to traditional NLP
methods. Unlike rule-based systems needing specific commands, LLMs can interpret a
wide range of phrasings and even incomplete instructions. For example, a user might
say, “It’s a bit chilly in here,” and the LLM can infer the need to adjust the thermostat.
This flexibility eliminates the need to memorize commands or navigate complex menus.
Moreover, LLMs handle follow-up questions and maintain context across interactions,
creating a more conversational user experience. Their ability to generalize from training
data allows them to handle novel requests without explicit programming, making the
system more adaptable [1]. Considering human factors in software engineering [53], our
system’s natural language interface lowers the barrier for non-technical users, potentially
democratizing access to IoT technology. However, as Kim et al. [54] observed, such systems
may elevate user expectations for sophisticated interactions, underscoring the need for
careful UI design.

The scalability of our system allows for expansion to different platforms and IoT
ecosystems. Future iterations could incorporate efficiency metrics to optimize LLM output,
reducing computational requirements and environmental impact. The system’s design has
the potential to be utilized across various sectors other than IoT. For example, in robotics
applications, the system can function as a tool for generating and executing complex tasks,
aligning with the capabilities of LLMs in robotics explored by Vemprala et al. [18]. The
modularity of the system allows the easy extension of functionality, whether through new
data visualizations in the web application or specialized functions in the control server. The
system’s design prioritizes security by avoiding runtime code generation, addressing poten-

Sensors 2025, 25, 3809

16 of 31

tial vulnerabilities often associated with LLM applications in robotics [18]. This approach
promotes trust and responsible automation practices, crucial for widespread adoption.

4.2. Experimental Design and Baseline Comparison

To provide a comprehensive evaluation of Vega’s performance, we established com-
parative baselines against traditional IoT control paradigms. Three baseline systems were
implemented for comparison: (1) a traditional GUI-based control interface with button-
based controls for each IoT function, (2) a rule-based command system requiring specific
syntax patterns (e.g., “SET LED ON”, “GET TEMPERATURE”"), and (3) a menu-driven in-
terface with hierarchical navigation structures. These baselines represent the most common
existing approaches for IoT device control and provide essential benchmarks for evaluating
Vega’s natural language capabilities.

The GUI baseline required users to navigate through multiple screens and select
specific options from dropdown menus or button arrays. Task completion involved multiple
clicks and required prior knowledge of the system hierarchy. The rule-based system
demanded that users memorize specific command syntaxes and parameter formats, similar
to traditional command-line interfaces. The menu-driven system presented users with
categorized options but required sequential navigation through multiple levels to reach
desired functions.

User performance metrics for baseline comparison included task completion time,
error rates, learning curve assessment, and user satisfaction scores. Twenty participants
with varying technical backgrounds were recruited to perform standardized tasks across
all four systems (three baselines plus Vega). Tasks ranged from simple single-device control
to complex multi-step conditional operations. Results demonstrated that Vega achieved
significantly lower task completion times (average 12.3 s vs. 28.7 s for GUI, 35.2 s for
rule-based, and 22.1 s for menu-driven systems) and reduced error rates (8.2% vs. 23.4%,
41.7%, and 18.9% , respectively). User satisfaction scores on a 10-point Likert scale showed
Vega averaging 8.7 compared to 6.2, 4.8, and 6.9 for the baseline systems.

4.3. Message Complexity Classification and Labeling Criteria

Message complexity in our evaluation framework is quantified using a multi-
dimensional scoring system that accounts for syntactic, semantic, and logical complexity
dimensions. The complexity score ranges from 0 to 1, calculated as a weighted combination
of the following factors:

Syntactic Complexity (Weight: 0.3): Measured by sentence length, grammatical struc-
ture diversity, and vocabulary sophistication. Simple commands like “turn on LED” receive
low scores (0.1-0.2), while compound sentences with multiple clauses score higher (0.6-0.8).

Semantic Complexity (Weight: 0.4): Evaluated based on the number of IoT functions
referenced, contextual inference requirements, and ambiguity resolution needs. Direct
commands score low (0.1-0.3), while commands requiring contextual understanding score
higher (0.7-0.9).

Logical Complexity (Weight: 0.3): Determined by conditional logic depth, sequential
operation requirements, and inter-function dependencies. Simple single-step operations
score low (0.1-0.2), while multi-step conditional workflows score high (0.8-1.0).

For example, the message “Turn on the light” receives a complexity score of 0.15 (low
syntactic complexity: 0.1; low semantic complexity: 0.2; no logical complexity: 0.0), while
“If the temperature exceeds 25 degrees and someone presses the button twice, capture an
image and display the result on LCD while adjusting the servo to 90 degrees” receives a
complexity score of 0.89 (high syntactic complexity: 0.8; high semantic complexity: 0.9;
high logical complexity: 0.95).

Sensors 2025, 25, 3809

17 of 31

The automated labeling process for success and failure determination employs a
multi-criteria evaluation framework. Success is defined as achieving all specified objectives
within the message requirements, with partial success scored proportionally. The LLM
Evaluation Agent assesses responses based on (1) functional accuracy—whether the correct
IoT functions were called with appropriate parameters; (2) logical coherence—whether
conditional logic and sequential operations were executed correctly; (3) completeness—
whether all message requirements were addressed; and (4) error handling—whether system
errors were appropriately managed and communicated.

Each criterion is scored on a 0-100 scale, with overall success determined by weighted
averages (functional accuracy: 40%; logical coherence: 30%; completeness: 20%; error
handling: 10%). Messages scoring above 80 are labeled as successful, 60-80 as partially
successful, and below 60 as failed. This multi-dimensional approach ensures robust and
consistent evaluation across diverse message types and complexity levels.

4.4. Hardware Issue Management and System Robustness

Hardware-related challenges, particularly relay switching delays and sensor response
latencies, were systematically addressed through multiple mitigation strategies. The relay
delay issue, which contributed to the lower success rate of the “set_fan” function, was
managed through the implementation of adaptive timing mechanisms and state verifica-
tion protocols.

Specifically, a delay buffer system was implemented with minimum wait times be-
tween relay state changes (250 ms for mechanical relays, 100ms for solid-state relays). State
verification was performed by reading back the actual relay position after each command,
with automatic retry mechanisms (maximum three attempts) for failed state changes. Error
detection algorithms monitor for inconsistent state transitions and implement exponential
backoff strategies to prevent cascade failures.

For sensor-related issues, calibration protocols were established with periodic recali-
bration cycles (every 1000 measurements for temperature sensors, every 500 measurements
for humidity sensors). Outlier detection algorithms identify and filter erroneous readings
using statistical thresholds (+2 standard deviations from rolling means). Sensor health
monitoring tracks response times and accuracy trends, automatically flagging degraded
sensors for maintenance.

Network connectivity issues were addressed through the implementation of con-
nection pooling, automatic reconnection mechanisms, and offline operation modes. The
system maintains local caches of recent sensor data and implements graceful degradation
when cloud services are unavailable. These robustness measures ensure consistent system
performance despite hardware limitations and contribute to the overall reliability of the
IoT control system.

4.5. Automated Evaluation

To rigorously assess the performance and robustness of the developed system, an auto-
mated evaluation process was implemented. While manual testing provides basic insights,
the complexity of the system necessitates a comprehensive automated approach [55]. This
method enables the execution of numerous test cases, facilitating a thorough examination
of the system’s behavior under various configurations and scenarios.

The automated evaluation process, illustrated in Figure 8, involves supplying a pre-
defined list of user messages to the application. An LLM agent, designated as the Test
Generator, generated approximately 622 test messages. Each message had a complexity
ranging from 0 to 1, in which 1 indicates a multi-step conditional message. Concurrently,
the input parameters of the Chat Agent LLM model such as temperature and Top P [56]

Sensors 2025, 25, 3809 18 of 31

were varied. The evaluation process mirrored the standard execution flow of the applica-
tion, with a notable deviation occurring post message processing on the circuit. At this
point, the entire chat conversation was transmitted to an LLM Evaluation Agent, tasked
with assessing the Chat Agent LLM’s response.

Inputs Evaluation Outputs

(Generated) Runs Calculated
Test Message Plots
Messages on System

[) "o w

1

w Fetch Test GeCLe'\r/late
i Message

Generated Evaluation

Using an }')m _® Megszjges m

~

\LLM agent) =
Calculated
Parg]r?lcjeiersJ Save the Data
Data Insights
‘- Generated

|
p
v

| Using an
N J LLM agent

Figure 8. Evaluation process integrated within Vega.

This approach allowed for a nuanced understanding of the system’s performance
under different conditions, providing insights into potential areas for optimization. The
performance of the Chat Agent LLM was evaluated quantitatively based on multiple
metrics, each measured on a scale from 0 to 100. The speed metric assessed response
generation time, while the efficiency metric measured the degree to which the LLM avoided
invoking unnecessary functions. The success rate indicated the overall rate at which the
LLM successfully executed the requested action specified in the input message prompt.

4.6. Result Analysis

Figure 9 illustrates the success rate and speed for each function defined in Table 3,
with the temperature parameter set to 0.7. The “set_fan” command exhibited the lowest
success rate, likely due to the relay’s inherent switching delay, causing errors when pro-
cessing frequent state change requests. This hardware limitation may lead to errors after
function execution.

Conversely, the “print_lcd” command achieved the highest success rate, demonstrat-
ing the LLM’s proficiency with textual arguments. The “set_led” function demonstrated
the highest execution speed, attributable to its simplicity, minimal LLM processing re-
quirements, efficient software GPIO port toggling, and basic LED control hardware. In
contrast, the “get_recorded_sensor_data” function exhibited the lowest speed, primarily
due to performance limitations of Python 3 when retrieving and processing data from
the database.

Sensors 2025, 25, 3809

19 of 31

mm Speed Evaluation Metric for Different Functions
I Success Rate

set_servo_angles

get_location
get_connected_devices
capture_image

Highest Success Rate

Functions

get_raspberry_stats

Lowest Speed
[get_recorded sensor _data

Lowest Success Rate

Highest Speed
d

20 40 60 80 100
Metric Value (%)

Figure 9. Evaluation metrics for the functions defined in Table 3.

Figure 10 illustrates the correlation between message complexity and the number
of functions invoked per message in our system, with the LLM temperature set to 0.3.
Message complexity refers to the intricacy of user queries, while LLM temperature controls
the randomness in the model’s outputs, with lower values producing more deterministic
responses [56]. As message complexity increases from 0 to 0.6, we see a rise in function
calls per message, indicating more processing for intricate queries. This trend indicates that
more intricate user queries require a greater number of system operations to process and
respond accurately. The peak at 0.6 complexity may be attributed to an increased number
of retries due to function failures, highlighting potential areas for system optimization.

Complexity vs # of Functions Called

9 Highest number of
called functions

of Functions Called
(0]

4
3.
2.
1_
0.2 0.4 0.6 0.8 1.0
Complexity

Figure 10. Message complexity against the number of functions called per message.

Sensors 2025, 25, 3809

20 of 31

Beyond 0.6, function calls decrease as complexity increases, mimicking the perfor-
mance characteristics typically associated with lower temperature settings in LLMs. It
suggests that for highly complex queries, our system adopts a more focused and determin-
istic approach, reducing the need for multiple function invocations. This shift could be
interpreted as a positive adaptation, indicating that the system becomes more efficient in
handling very complex tasks by generating more precise and targeted responses. However,
it also raises questions about the system’s flexibility and creativity in addressing highly
complex scenarios, which might benefit from a more exploratory approach.

Figure 11 represents a heatmap that is a graphical representation of three-dimensional
data; in this case, our heatmap shows the interplay between message complexity, LLM’s
temperature, and the resulting success rates of the LLM in executing IoT control tasks.
The heatmap reveals a complex relationship between these variables, with higher success
rates (bright yellow areas) concentrated in regions of moderate to high temperatures (0.7
to 1.0) and moderate complexity (0.4 to 0.6). This pattern suggests that the LLM performs
optimally when given some degree of freedom to interpret and respond to moderately
complex commands. The high temperature in this optimal zone likely allows the model
to explore a wider range of potential interpretations and solutions, which is particularly
beneficial when dealing with the nuanced and the context-dependent nature of IoT control
scenarios [27].

1 OTemperature vs Complexity vs Success Rate

0.9
0.8 80
v 0.7 9
2 0
5 0.6 *
(0] 0
205 60 O
g g
F 0.4 7]
50
0.3
0.2 40
0.1
01 02 03 04 05 06 0.7 0.8 09 10

Complexity

Figure 11. Heatmap for success rate against message complexity and temperature of the LLM.

Conversely, lower success rates are observed in regions of high complexity (0.8 to
1.0) combined with low to medium temperatures (0.1 to 0.6). This pattern indicates that
when faced with highly complex instructions, a more constrained or deterministic ap-
proach (lower temperature) is less effective. Such scenarios might involve intricate se-
quences of operations or complex conditional logic that benefit from the model’s ability
to consider a broader range of possibilities. This finding aligns with the observations of
Kannan et al. [21], who noted that LLMs perform better in complex multi-agent robot task
planning scenarios when given more freedom to explore diverse solutions.

High success rates are desirable as they translate to more reliable and accurate exe-
cution of user commands, leading to improved user experience and system performance.
Conversely, low success rates could result in the misinterpretation of commands, incorrect
device operations, or system failures, potentially leading to user frustration or even safety
issues in critical applications.

Sensors 2025, 25, 3809

21 of 31

Understanding these performance characteristics allows for the strategic tuning of the
LLM’s parameters based on the expected complexity of user inputs. For instance, when
anticipating complex, multi-step commands, increasing the temperature parameter could
potentially boost the system’s success rate. This insight could guide the design of user
interfaces and command structures, encouraging users to frame their instructions in ways
that align with the LLM’s strengths.

Figure 12 illustrates the relationship between message complexity and evaluation
metrics with the temperature parameter set to 0.5. As complexity increases, the system’s
performance decreases. The system achieves peak success rate and efficiency at a com-
plexity level around 0.6, where the system can handle sophisticated user requests while
maintaining high reliability. A notable shift occurs at a complexity of 0.8, where the success
rate diverges from efficiency and speed. This divergence is attributed to the LLM correctly
executing functions but struggling with conditional and sequential order. Such behaviors
underscore the challenges in maintaining coherent task execution as complexity scales
up, even when individual components are processed accurately. Beyond a complexity of
0.9, all three metrics exhibit an upward trend, indicating the model’s capability to handle
highly complex tasks while maintaining high success rates, albeit with potential trade-offs
in efficiency and speed. These findings highlight the delicate balance required in system
design: while moderate complexity yields optimal overall performance, the system can
adapt to highly complex inputs at the cost of reduced efficiency. This insight is crucial
for tailoring the Vega system to different use cases, from simple smart home controls to
complex industrial applications, where the balance between task complexity and system
performance may vary based on specific requirements and operational contexts.

Complexity vs Evaluation Metrics

Highest pmm _
] Efficiency f’ Trend Shift
Highest
501 Success
< 70
S 60/
i
L 501
g .
2 401 N
30{ —— Speed a
— Success Rate
ici Lowest
201 —— Efficiency Loves
0.2 0.4 0.6 0.8 10
Complexity

Figure 12. Heatmap for success rate against message complexity and temperature of the LLM.

Figure 13 provides additional insights into the relationship between message complex-
ity and Top P parameter optimization in LLM-driven IoT control systems. Top P is an LLM
parameter that limits token selection to the most probable choices that sum to a specified
probability threshold [56]. The heatmap reveals distinct performance zones that inform
optimal parameter selection strategies for different operational scenarios.

Sensors 2025, 25, 3809

22 of 31

Top P vs Complexity vs Success Rate

1.0
0.9 90
0.8
0.7

o 0.6

o

0.5
0.4
0.3
0.2 50
0.1

~ [ee]
o o
Success Rate

)]
o

04 05 06 07 08 09
Complexity

Figure 13. Heatmap for success rate against message complexity and Top P of the LLM.

The analysis reveals that high success rates (85-90%) occur primarily in two distinct
regions: low complexity (0.1-0.3) with mid-to-high Top p values (0.6-0.9), and moderate
complexity (0.4-0.6) with mid-to-high Top p values (0.7-0.9). This pattern indicates that
for simple IoT control tasks, a moderate degree of token diversity (Top P 0.6-0.9) provides
sufficient flexibility for natural language interpretation without introducing excessive
variability that could lead to misinterpretation.

For moderate-complexity tasks, the optimal zone shifts toward higher Top p values
(0.7-0.9), suggesting that more complex instructions benefit from increased token diversity
to explore various interpretation pathways. This finding is consistent with the observa-
tions of Singh et al. [19], who noted that programmatic prompts with well-defined action
specifications lead to more successful plan generation in situated robot environments.

Notably, the heatmap shows reduced performance in high-complexity scenarios
(0.8-1.0) regardless of Top P settings, indicating that extremely complex instructions chal-
lenge the system’s interpretation capabilities. However, within this high-complexity region,
moderate Top p values (0.4-0.7) tend to perform better than extreme values, suggesting that
a balanced approach to token selection diversity is crucial for handling complex multi-step
IoT control sequences.

The visualization also reveals a performance cliff at very low Top p values (0.1-0.3)
across all complexity levels, indicating that overly restrictive token selection limits the
system’s ability to interpret natural language variations and colloquialisms commonly used
in IoT control scenarios. This insight is particularly valuable for deployment in diverse
user environments where linguistic patterns may vary significantly.

The primary LLM used for the evaluation in this project was GPT-3.5, developed by
OpenAl Although GPT-4 was not used in our main experiments, we anticipate that lever-
aging it could lead to a significant improvement in performance, given its larger training
dataset and greater capacity. This expectation aligns with the findings of Wu et al. [22],
who reported improved results in personalized robot assistance tasks when utilizing more
advanced LLMs. Benchmarking both models in addition to other models can be achieved
in future research.

These findings have significant implications for LLM-driven IoT control systems. The
heatmap provides valuable guidance for understanding optimal configurations across dif-
ferent IoT scenarios, contributing to the design of more robust and intuitive LLM-powered
interfaces. By carefully tuning parameters such as temperature, Top P, and task complexity,
it is possible to achieve higher success rates and more reliable system performance.

Sensors 2025, 25, 3809

23 of 31

The results also highlight the importance of considering the trade-offs between explo-
ration (controlled by temperature and Top P) and task difficulty (complexity) in IoT control
scenarios. This aligns with the observations of Vemprala et al. [18], who emphasized the
need for balancing exploration and exploitation in robotics applications using LLMs.

Moreover, the non-uniform distribution of success rates across the parameter space
underscores the need for adaptive parameter selection strategies in real-world IoT deploy-
ments. This is particularly relevant in dynamic environments where task complexity may
vary, as noted by Singh et al. [19] in their work on integrating action knowledge and LLMs
for task planning in open worlds.

The observed performance improvements with GPT-4 suggest that future advance-
ments in LLM architectures and training methodologies may lead to even more capable IoT
control systems. This potential for improvement is consistent with the varied capabilities
of LLMs across different tasks, as highlighted by Kumar [1] in their comprehensive survey
on the evaluation of LLMs across multiple domains and reasoning types.

However, it is important to note that while LLMs show promise in IoT control applica-
tions, they also present challenges related to reliability, interpretability, and security. As
pointed out by Sarzaeim et al. [29] in their work on LLM-assisted smart policing systems,
careful consideration must be given to the ethical implications and potential biases of
LLM-driven decision-making in critical systems.

The experimental results provide valuable insights into the performance character-
istics of LLM-powered IoT control systems. By understanding the relationships between
input parameters and success rates, developers can optimize these systems for improved
reliability and effectiveness across a wide range of IoT applications.

4.7. Error Analysis with Concrete Examples

Figure 14, titled “Error Occurrences,” shows a pie chart of errors in the Vega platform.
LLM-related issues dominate, with wrong format and incorrect logic making up 59% of
errors, highlighting the challenges of LLM integration and the need for better prompt
engineering or parsing. The error distribution reflects the platform’s complexity, where
OpenAl timeout errors (14%) suggest potential API-related performance bottlenecks, and
web app runtime errors (18%) point to user interface stability issues. The lower rate of RPi
device errors (9%) indicates reliable hardware, with most challenges residing in software
and Al integration.

To provide a clearer understanding of system limitations and guide future improve-
ments, a detailed analysis of error types with concrete examples is presented below:

Wrong Format Errors (36% of total errors): These occur when the LLM generates
responses that do not conform to the expected function call structure. For example, when
asked to “turn on the LED and check temperature,” the system might generate {*‘action’’:
‘“led_control”, ‘‘parameters’’: ‘‘on’’} instead of the required format {‘‘function’’:
“set_led”’, ‘‘parameters’: {‘‘state’’: ‘‘on’’}}. These errors typically result from in-
consistent prompt engineering or insufficient examples in the training context.

Incorrect Logic Errors (23% of total errors): These represent failures in conditional logic
interpretation. A concrete example involves the command “If temperature is above 25 °C,
turn on fan, otherwise turn on LED.” The system might execute both actions simultaneously
or fail to evaluate the condition properly. For instance, it might call set_fan(‘‘on’’) and
set_led(‘‘on”) regardless of temperature, indicating challenges in parsing conditional
statements.

Web App Runtime Errors (18% of total errors): These encompass user interface fail-
ures and communication breakdowns. Examples include WebSocket connection timeouts
during prolonged interactions, memory leaks from accumulated chat history, and state

Sensors 2025, 25, 3809

24 of 31

synchronization issues between the frontend and backend. A typical scenario involves
users losing connection mid-conversation, resulting in incomplete command execution and
user confusion.

OpenAl Timeout Errors (14% of total errors): These occur when API calls exceed
response time limits, particularly during peak usage periods or with complex queries. For
example, a command like “analyze the last hour of sensor data and create a comprehensive
report with recommendations” might time out due to processing complexity, leaving users
without feedback or partial results.

RPi Device Errors (9% of total errors): Hardware-related failures include sensor mal-
functions, GPIO communication errors, and peripheral device unresponsiveness. Specific
examples include temperature sensor drift leading to erroneous readings (e.g., reporting
—40 °C in room temperature), servo motor jamming during positioning commands, and
relay contact degradation causing inconsistent switching behavior.

Error Occurances

RPi device
error
9%

OpenAl timeout
14% LLM wrong format

36%

Webapp Runtime
18%

LLMincorrect logic
23%

Figure 14. What types of errors occurred throughout testing.

Each error type has distinct impact patterns on user experience and system reliability.
Wrong format and incorrect logic errors primarily affect task success rates and require user
intervention or retry attempts. Web app runtime errors disrupt user workflow and may
result in data loss or system state inconsistency. OpenAl timeout errors create uncertainty
about command execution status and may lead to duplicate actions. RPi device errors com-
promise system reliability and may require manual intervention or hardware maintenance.

These concrete examples inform targeted improvement strategies: enhanced prompt
engineering for format consistency, improved logical parsing algorithms, robust error han-
dling and retry mechanisms, timeout management and progress indication, and predictive
maintenance for hardware components.

Figure 15 illustrates the success rate of message interpretation by the system across
three message length categories: minimal (73.0%), normal (68.0%), and descriptive (84.0%).
Notably, the descriptive messages achieve the highest success rate, indicating that more
detailed inputs significantly improve performance. Interestingly, minimal messages out-
perform normal ones, recommending that concise commands may reduce ambiguity. The
lower success rate for normal messages implies a potential trade-off between brevity and

Sensors 2025, 25, 3809

25 of 31

specificity, emphasizing that either highly detailed or very concise communication may
be optimal. While the normal category exhibits a comparatively lower success rate, it still
maintains a commendable performance. This suggests that even in less optimal conditions,
the system demonstrates robust functionality. Furthermore, the potential integration of
more advanced language models, such as GPT-4, could significantly enhance these suc-
cess rates across all categories, potentially pushing the system’s overall performance to
new heights.

100 Success Rate by Message Length

84.0%
801

68.0%

60 -

40

Success Rate (%)

20

Minimal Normal Descriptive
Message Length

Figure 15. Success rate of different tones of the same message.

The LLM, while highly capable in general language understanding, may lack special-
ized knowledge in IoT hardware control. This could lead to misinterpretations or errors
when dealing with intricate or domain-specific instructions. While utilizing OpenAl’s API
incurs ongoing costs, it eliminates the need for extensive local computational resources and
the time-intensive process of model training. However, for scenarios requiring extremely
high accuracy or dealing with highly specialized IoT vocabularies, future iterations of the
system might benefit from fine-tuning or developing domain-specific models.

In summary, our experimental results reveal several key insights. The system demon-
strates a high level of proficiency in interpreting and executing complex commands, par-
ticularly excelling with descriptive inputs, achieving an impressive 84% success rate. We
observed that performance fluctuates based on message complexity and LLM parame-
ters, with optimal results occurring at moderate complexity levels (0.4-0.6) and higher
temperature settings (0.7-1.0). Notably, different IoT functions exhibit varying degrees of
success and execution speeds, with text-based operations such as LCD control performing
exceptionally well.

5. Conclusions
5.1. Limitations

The current implementation of our system, while innovative, faces several limitations
that warrant acknowledgment. Our choice to utilize GPT-3.5 instead of GPT-4, driven by cost
considerations at the time of the study, may have constrained the system’s overall performance
and capability. Our analysis uncovered that the majority of observed errors (59%) stem from
LLM-related issues, including incorrect formatting and logic, which clearly indicates areas
for future improvement and refinement of the system; however, utilizing GPT-4 could help
mitigate those issues. A significant concern arises from the reliance on OpenAl'’s cloud-based
service, which introduces potential data privacy issues as user interactions are processed

Sensors 2025, 25, 3809

26 of 31

externally. Despite extensive testing across various scenarios, the inherent unpredictability
of LLMs remains a challenge, with the possibility of misinterpreting user commands or
producing inconsistent responses. The prohibitive cost of fine-tuning at scale presents a
barrier to improving the system’s accuracy and reliability. Moreover, the current architecture
lacks support for real-time feedback, limiting the fluidity of user interactions. The system’s
dependency on specific hardware (RPi) and software (Python-based server) configurations
may restrict its applicability in diverse IoT environments.

5.2. Future Work

Future work aims to address these limitations and expand the system’s functional-
ity and applicability. A primary objective is the implementation of real-time feedback
mechanisms, enabling live interactions between the LLM, web application, and user, thus
enhancing the responsiveness and intuitiveness of the interface. Developing a framework
for repeatable logic execution would allow complex commands to run periodically on the
IoT device without constant LLM oversight, improving efficiency and reducing computa-
tional load. Expanding support to C/C++ based IoT platforms such as STM32 and Arduino
would significantly broaden the system’s compatibility with diverse hardware ecosystems.
The integration of an MQTT server alongside the existing Flask server could enhance IoT
interoperability, allowing for more flexible and real-time device communication. Explor-
ing options for local LLM hosting and investigating alternative, potentially open-source
LLM solutions could mitigate privacy concerns and potentially reduce operational costs.
Additionally, future research could focus on developing more sophisticated natural lan-
guage understanding capabilities, enabling the system to handle increasingly complex and
context-dependent user queries. Lastly, future work should focus on developing adaptive
parameter selection strategies, improving LLM performance on high-complexity tasks, and
addressing the ethical and security considerations associated with LLM deployment in
IoT environments. These enhancements would collectively contribute to a more versatile,
secure, and user-friendly IoT interface, paving the way for broader adoption in smart
homes, industrial settings, and educational environments.

5.3. Critical Analysis and Real-World Deployment Challenges

While our system demonstrates promising capabilities in controlled environments, a
critical examination reveals significant challenges that must be addressed for real-world IoT
deployment. The fundamental reliance on cloud-based LLM services introduces several
operational vulnerabilities that extend beyond privacy concerns. Network connectivity de-
pendencies present a critical failure point in IoT environments where internet access may be
intermittent or unreliable, particularly in industrial, remote, or disaster-recovery scenarios.
The system’s current architecture would be entirely non-functional during network outages,
highlighting the need for hybrid approaches that incorporate local processing capabilities.

The scalability challenges become particularly acute when considering enterprise-
level deployments. Our current implementation, while effective for single-device control,
faces exponential complexity increases when managing multiple IoT devices simultane-
ously. The token consumption costs associated with cloud-based LLM services could
become prohibitive in large-scale deployments, where thousands of devices generate con-
tinuous interaction streams. Furthermore, the latency introduced by cloud processing
may be incompatible with time-critical IoT applications such as industrial automation, au-
tonomous vehicles, or emergency response systems, where millisecond-level response times
are essential.

Security considerations extend beyond data privacy to encompass device integrity and
system reliability. The interpretation of natural language commands by LLMs introduces

Sensors 2025, 25, 3809

27 of 31

potential attack vectors through prompt injection or adversarial inputs that could compro-
mise device functionality or safety. In safety-critical IoT environments such as healthcare
monitoring or industrial control systems, the probabilistic nature of LLM responses poses
unacceptable risks where deterministic behavior is mandatory. The lack of formal verifi-
cation mechanisms for LLM-generated commands represents a significant limitation for
applications requiring regulatory compliance or safety certification.

The heterogeneity of IoT ecosystems presents additional deployment challenges not
fully addressed in our current implementation. Real-world IoT networks typically comprise
devices with varying computational capabilities, communication protocols, and power
constraints. Our system’s current dependency on RPi-class hardware and Python-based
implementations may not translate effectively to resource-constrained devices that are
common in IoT deployments, such as microcontroller-based sensors with limited memory
and processing power.

Operational maintenance and system evolution present further complications in real-
world scenarios. The rapid evolution of LLM technologies and potential deprecation of
cloud services could render deployed systems obsolete or non-functional. The lack of
version control and rollback mechanisms for LLM behavior changes poses risks for systems
requiring stable, predictable operation over extended periods. Additionally, the specialized
knowledge required for system maintenance and troubleshooting may negate some of
the accessibility benefits the system aims to provide, particularly in environments where
technical expertise is limited.

Despite these challenges, our research provides valuable insights into the potential and
limitations of LLM-driven IoT control. The identification of these real-world deployment
barriers serves as a foundation for future research directions and highlights the importance
of developing robust, locally deployable solutions that can operate reliably in diverse and
challenging IoT environments.

5.4. Conclusions

This project successfully developed and evaluated a novel system that integrates
NLP with IoT infrastructure through LLM-mediated control mechanisms. The system
consists of a web application interfacing with an LLM to interpret user commands, which
are executed on an RPi controlling a physical circuit. It features a modular and scalable
architecture with comprehensively documented components, including capabilities such
as multimodal input through image recognition, complex task interpretation, an accessible
and user-friendly chat application supporting various data visualizations, including plots
and flow charts, a modular server on the RPi, and compatibility with a wide range of
circuit devices.

Our evaluation results demonstrate the system'’s effectiveness in handling complex
tasks with high success rates, particularly when appropriate LLM parameter settings are
employed. Case studies showcase real-world applicability scenarios such as machinery
monitoring and drone delivery systems. The system’s modular design facilitates the easy
integration of different circuit components and employs intelligent agents for enhanced
robustness, establishing a comprehensive and user-friendly solution for IoT and embedded
systems development.

However, our critical analysis reveals significant limitations that temper the immediate
applicability of such systems in production IoT environments. The dependencies on
cloud-based services, network connectivity requirements, scalability constraints, security
vulnerabilities, and operational challenges represent substantial barriers to widespread
adoption. These findings underscore the complexity of translating research prototypes
into robust, deployable IoT solutions and highlight the need for continued research into

Sensors 2025, 25, 3809

28 of 31

References

hybrid architectures that balance the power of LLMs with the reliability requirements of
real-world IoT applications.

The true innovation lies in the novel combination of components and the intelligent
layer that bridges them. By leveraging LLMs for intuitive IoT control, our system enhances
human-machine interaction paradigms and demonstrates the potential for making IoT
technologies more accessible to non-technical users. The system’s emphasis on modularity,
security awareness, and scalability considerations provides a foundation for accommodat-
ing new circuit components and visualizations while addressing some of the ethical and
operational concerns inherent in LLM-driven systems.

The societal implications of this research extend beyond technical achievements to
encompass improved automation efficiency, enhanced technological literacy, the promotion of
responsible Al practices, and customization capabilities that address diverse user needs and
ethical concerns. While the current implementation faces significant real-world deployment
challenges, it establishes important precedents for human-centric IoT interfaces and provides
a critical foundation for future research into more robust, locally deployable solutions.

Overall, this project marks a significant step toward understanding both the potential
and limitations of integrating natural language processing with IoT infrastructures. By
providing an honest assessment of current capabilities alongside a critical examination of
deployment challenges, this research contributes to the broader discourse on responsible
Al implementation in IoT environments and lays the groundwork for future advancements
in intelligent automation and human-machine interaction systems that can operate reliably
in diverse real-world contexts.

Author Contributions: Conceptualization, H.A.-S.; methodology, H.A -S.; software, H.A.-S.; formal
analysis, H.A.-S.; investigation, H.I.; resources, H.I.; data curation, H.I.; writing—original draft
preparation, H.A.-S.; writing—review and editing, P.S.; supervision, P.S.; project administration,
H.A.-S.; funding acquisition, P.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the University of Leeds. The APC was funded by the
University of Leeds.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to privacy

Acknowledgments: The authors would like to express their sincere gratitude to the University of
Leeds for funding and supporting this project. This work would not have been possible without
the university’s continued investment in research and student-led innovation. Special thanks go to
the technical staff at the university, for providing an abundance of electronic components that were
crucial to the final circuit design. A huge thanks goes to Vercel for having an open-source chat app,
which served as a major inspiration for our web application.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

1. Kumar, P. Large language models (LLMs): Survey, technical frameworks, and future challenges. Artif. Intell. Rev. 2024, 57, 260.

[CrossRef]

Liao, Y.; de Freitas Rocha Loures, E.; Deschamps, F. Industrial Internet of Things: A Systematic Literature Review and Insights.

IEEE Internet Things J. 2018, 5, 4515-4525. [CrossRef]

3. Flohr, L.A,; Kalinke, S.; Krtiger, A.; Wallach, D.P. Chat or Tap?—Comparing Chatbots with ‘Classic’ Graphical User Interfaces for
Mobile Interaction with Autonomous Mobility-on-Demand Systems. In Proceedings of the 23rd International Conference on
Mobile Human-Computer Interaction, MobileHCI 21, New York, NY, USA, 27 September—1 October 2021. [CrossRef]

http://doi.org/10.1007/s10462-024-10888-y
http://dx.doi.org/10.1109/JIOT.2018.2834151
http://dx.doi.org/10.1145/3447526.3472036

Sensors 2025, 25, 3809 29 of 31

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Kassab, W.; Darabkh, K.A. A-Z survey of Internet of Things: Architectures, protocols, applications, recent advances, future directions
and recommendations. . Netw. Comput. Appl. 2020, 163, 102663. [CrossRef]

OpenAl Generative Pre-trained Transformer (GPT) Models; OpenAl: San Francisco, CA, USA, 2023.

Al-Qaseemi, S.A.; Almulhim, H.A.; Almulhim, M.E; Chaudhry, S.R. IoT architecture challenges and issues: Lack of standardiza-
tion. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 67 December 2016; pp. 731-738.
[CrossRef]

Taylor, R.N.; Medvidovic, N.; Dashofy, E.M. Software Architecture: Foundations, Theory, and Practice; John Wiley & Sons: Hoboken,
NJ, USA, 2010; p. 736.

Kadiyala, E.; Meda, S.; Basani, R.; Muthulakshmi, S. Global industrial process monitoring through IoT using Raspberry pi. In
Proceedings of the 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), Chennai,
India, 23-25 March 2017; pp. 260-262. [CrossRef]

Thompson, R.; Anderson, K.; White, S. Usability Challenges in GUI-Based IoT Device Management: A User Experience Study.
Int. J.-Hum.-Comput. Stud. 2022, 165, 102-118.

Brown, A.; Wilson, K. Understanding the Limitations of Voice Assistants in Smart Home Environments. In Proceedings of the
ACM Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 30 April-5 May 2022; pp. 1-12.

Kumar, S.; Patel, M.; Chen, L. Analyzing Amazon Alexa Skills: Capabilities, Limitations, and User Satisfaction. Comput. Hum.
Behav. 2023, 140, 107-125.

Garcia, P; Martinez, J.; Lopez, C. Rule-Based Systems in IoT: A Comprehensive Survey and Future Directions. Comput. Netw.
2023, 225, 109-125.

Lee, J.; Kim, H; Park, S. IFTTT and End-User Programming: A Usability Study of Rule-Based IoT Automation. In Proceedings of
the International Conference on Internet of Things, Honolulu, HI, USA, 10-14 December 2022; pp. 45-58. https://dl.acm.org/
doi/10.1145/3485730.3494115

Smith, J.; Johnson, M.; Brown, D. Accessibility challenges in IoT systems: A comprehensive survey. IEEE Access 2023, 11,
12345-12358.

Williams, D.; Taylor, P.; Robinson, A. IoT Adoption Among Elderly Users: Barriers, Challenges, and Design Recommendations.
Univers. Access Inf. Soc. 2022, 21, 567-582.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
CoRR 2017, abs/1706.03762, pp. 1-15. [1706.03762].

Maddigan, P; Susnjak, T. Chat2VIS: Generating Data Visualizations via Natural Language Using ChatGPT, Codex and GPT-3
Large Language Models. IEEE Access 2023, 11, 45181-45193. [CrossRef]

Vemprala, S.H.; Bonatti, R.; Bucker, A.; Kapoor, A. ChatGPT for Robotics: Design Principles and Model Abilities. IEEE Access
2024, 12, 55682-55696. [CrossRef]

Singh, I.; Blukis, V.; Mousavian, A.; Goyal, A.; Xu, D.; Tremblay, J.; Fox, D.; Thomason, J.; Garg, A. ProgPrompt: Program
generation for situated robot task planning using large language models. Auton. Robot. 2023, 47, 999-1012. [CrossRef]

Driess, D.; Xia, F,; Sajjadi, M.S.M.; Lynch, C.; Chowdhery, A.; Ichter, B.; Wahid, A.; Tompson,].; Vuong, Q.; Yu, T, et al. PaLM-E:
An embodied multimodal language model. In Proceedings of the 40th International Conference on Machine Learning, ICML"23,
JMLR.org, Honolulu, HI, USA, 23-29 July 2023. https://dl.acm.org/doi/10.5555/3618408.3618748

Kannan, S.S.; Venkatesh, V.L.N.; Min, B.C. SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models.
In Proceedings of the 2024 IEEE /RS] International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United
Arab Emirates, 14-18 October 2024. https:/ /ieeexplore.ieee.org/document/10802322

Wu, J.; Antonova, R.; Kan, A.; Lepert, M.; Zeng, A.; Song, S.; Bohg,].; Rusinkiewicz, S.; Funkhouser, T. TidyBot: Personalized
robot assistance with large language models. Auton. Robot. 2023, 47, 1087-1102. [CrossRef]

King, E.; Yu, H.; Lee, S.; Julien, C. Sasha: Creative Goal-Oriented Reasoning in Smart Homes with Large Language Models. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 2024, 8, 1-38. [CrossRef]

Zhang, Y.; Liu, X.; Wang, Q. Evolution of Smart Home Interfaces: From Command-Line to Natural Language. IEEE Internet
Things |. 2019, 6, 12543-12556.

Miller, T.; Jones, R.; Clark, B. Keyword-Based IoT Control Systems: Performance Analysis and User Experience. In Proceedings
of the International Conference on Ubiquitous Computing, Sydney, Australia, 19-20 December 2020; pp. 234-247.

Rodriguez, C.; Singh, A.; Murphy, E. Comparative Analysis of Voice Assistant Platforms for Smart Home Control. Smart Cities
2023, 6, 1024-1041.

Petrovi¢, N.; Koni¢anin, S.; Suljovi¢, S. ChatGPT in IoT Systems: Arduino Case Studies. In Proceedings of the 2023 IEEE 33rd
International Conference on Microelectronics (MIEL), Nis, Serbia, 16-18 October 2023; pp. 1-4. [CrossRef]

Zhong, N.; Wang, Y.; Xiong, R.; Zheng, Y.; Li, Y.; Ouyang, M.; Shen, D.; Zhu, X. CASIT: Collective Intelligent Agent System for
Internet of Things. IEEE Internet Things]. 2024, 11, 19646-19656. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2020.102663
http://dx.doi.org/10.1109/FTC.2016.7821686
http://dx.doi.org/10.1109/ICNETS2.2017.8067944
https://dl.acm.org/doi/10.1145/3485730.3494115
https://dl.acm.org/doi/10.1145/3485730.3494115
http://arxiv.org/abs/1706.03762
http://dx.doi.org/10.1109/ACCESS.2023.3274199
http://dx.doi.org/10.1109/ACCESS.2024.3387941
http://dx.doi.org/10.1007/s10514-023-10135-3
https://dl.acm.org/doi/10.5555/3618408.3618748
https://ieeexplore.ieee.org/document/10802322
http://dx.doi.org/10.1007/s10514-023-10139-z
http://dx.doi.org/10.1145/3643505
http://dx.doi.org/10.1109/MIEL58498.2023.10315791
http://dx.doi.org/10.1109/JIOT.2024.3366906

Sensors 2025, 25, 3809 30 of 31

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

Sarzaeim, P; Mahmoud, Q.H.; Azim, A. A Framework for LLM-Assisted Smart Policing System. IEEE Access 2024, 12, 74915-74929.
[CrossRef]

Xu, Z.; Wu, H,; Chen, X.; Wang, Y.; Yue, Z. Building a Natural Language Query and Control Interface for IoT Platforms. IEEE
Access 2022, 10, 68655-68668. [CrossRef]

Daniel, G.; Cabot,].; Deruelle, L.; Derras, M. Xatkit: A Multimodal Low-Code Chatbot Development Framework. IEEE Access
2020, 8, 15332-15346. [CrossRef]

Jiang, F.; Dong, L.; Peng, Y.; Wang, K.; Yang, K.; Pan, C.; Niyato, D.; Dobre, O.A. Large Language Model Enhanced Multi-Agent
Systems for 6G Communications. IEEE Wirel. Commun. 2023, 31, 48-55. [CrossRef]

Chen, T.Y; Chiu, Y.C.; Bi, N.; Tsai, R. T.H. Multi-Modal Chatbot in Intelligent Manufacturing. IEEE Access 2021, 9, 82118-82129.
[CrossRef]

Santos, G.A.; de Andrade, G.G,; Silva, G.R.S; Duarte, EC.M.; Costa,].PJ.D.; de Sousa, R.T. A Conversation-Driven Approach for
Chatbot Management. IEEE Access 2022, 10, 8474-8486. [CrossRef]

Li, C.; Zhang, X.; Chrysostomou, D.; Yang, H. ToD4IR: A Humanised Task-Oriented Dialogue System for Industrial Robots. IEEE
Access 2022, 10, 91631-91649. [CrossRef]

Roller, S.; Dinan, E.; Goyal, N.; Ju, D.; Williamson, M.; Liu, Y; Xu, J.; Ott, M.; Smith, E.M.; Boureau, Y.L.; et al. Recipes for Building
an Open-Domain Chatbot. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, Online, 19-23 April 2021; Merlo, P,; Tiedemann,].; Tsarfaty, R., Eds.; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2021; pp. 300-325. [CrossRef]

Tanenbaum, A.S.; Van Steen, M. Distributed Systems: Principles and Paradigms, 1st ed.; Prentice Hall: Upper Saddle River, NJ,
USA, 2002.

Han, J; E, H.; Le, G.; Du, J. Survey on NoSQL database. In Proceedings of the 2011 6th International Conference on Pervasive
Computing and Applications, Port Elizabeth, South Africa, 26-28 October 2011; pp. 363-366. [CrossRef]

Bhosale, S.; Patil, M.; Patil, P. International Journal of Computer Science and Mobile Computing SQLite: Light Database System.
Int. J. Comput. Sci. Mob. Comput. 2015, 44, 882-885.

Nikulchev, E.; Ilin, D.; Gusev, A. Technology Stack Selection Model for Software Design of Digital Platforms. Mathematics 2021, 9,
308. [CrossRef]

Team, R. React—A JavaScript Library for Building User Interfaces; Meta Platforms, Inc.: Menlo Park, CA, USA, 2024. Available
online: https:/ /react.dev (accessed on 15 January 2024).

WorkOS. Radix UI; WorkOS Inc.: San Francisco, CA, USA, 2022. Open-source UI component library for building high-quality,
accessible design systems and web apps. Available online: https://www.radix-ui.com/ (accessed on 15 January 2024).

Labs, T. Tailwind CSS; Tailwind Labs Inc.: Online, 2023. Available online: https://tailwindcss.com/ (accessed on 15 January 2024).
Vercel. Next.js Documentation; Vercel Inc.: San Francisco, CA, USA, 2024. Available online: https:/ /nextjs.org/docs (accessed on
15 January 2024).

Ronacher, A. Flask: Web Development, One Drop at a Time; Pallets Projects: Online, 2024. Available online: https://palletsprojects.
com/p/flask/ (accessed on 15 January 2024).

Wings, E. Sensors and Modules. Available online: https:/ /www.electronicwings.com/sensors-modules (accessed on 15 January
2024).

Smith, J.; Davis, M. Testing and Debugging IoT Projects with Raspberry Pi. J. Internet Things 2020, 8, 123-135.

Brown, M.; Green, S. Integrating Camera Modules with Raspberry Pi for Image Capture Applications. IEEE Trans. Consum.
Electron. 2018, 64, 145-152.

Wilkinson, B.; Allen, M. Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, 2nd
ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2005.

Wytrebowicz, J.; Cabaj, K.; Krawiec,]. Messaging Protocols for IoT Systems—A Pragmatic Comparison. Sensors 2021, 21, 6904.
[CrossRef]

Kim, T.; Wang, Y.; Chaturvedi, V.; Gupta, L.; Kim, S.; Kwon, Y.; Ha, S. LLMem: Estimating GPU Memory Usage for Fine-Tuning
Pre-Trained LLMs. arXiv 2024, arXiv:2404.10933.

Yang, H.; Yue, S.; He, Y. Auto-GPT for Online Decision Making: Benchmarks and Additional Opinions. arXiv 2023,
arXiv:2306.02224.

John, M.; Maurer, F.; Tessem, B. Human and social factors of software engineering. In Proceedings of the 27th International
Conference on Software Engineering, Los Alamitos, CA, USA, 15-21 May 2005; p. 686. [CrossRef]

Kim, C.Y,; Lee, C.P; Mutly, B. Understanding Large-Language Model (LLM)-powered Human-Robot Interaction. In Proceedings
of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, HRI "24, Boulder, CO, USA, 11-14 March 2024;
pp. 371-380. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2024.3404862
http://dx.doi.org/10.1109/ACCESS.2022.3186760
http://dx.doi.org/10.1109/ACCESS.2020.2966919
http://dx.doi.org/10.1109/MWC.016.2300600
http://dx.doi.org/10.1109/ACCESS.2021.3083518
http://dx.doi.org/10.1109/ACCESS.2022.3143323
http://dx.doi.org/10.1109/ACCESS.2022.3202554
http://dx.doi.org/10.18653/v1/2021.eacl-main.24
http://dx.doi.org/10.1109/ICPCA.2011.6106531
http://dx.doi.org/10.3390/math9040308
https://react.dev
https://www.radix-ui.com/
https://tailwindcss.com/
https://nextjs.org/docs
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://www.electronicwings.com/sensors-modules
http://dx.doi.org/10.3390/s21206904
http://dx.doi.org/10.1109/ICSE.2005.1553657
http://dx.doi.org/10.1145/3610977.3634966

Sensors 2025, 25, 3809 31 of 31

55. Babar, M.; Zhu, L.; Jeffery, R. A framework for classifying and comparing software architecture evaluation methods. In
Proceedings of the 2004 Australian Software Engineering Conference. Melbourne, Australia, 13-16 April 2004; pp. 309-318.
[CrossRef]

56. Ruman. Setting top-k, top-P and temperature in LLMS. 2024. Available online: https://rumn.medium.com/setting-top-k-top-p-
and-temperature-in-llms-3da3a8f74832 (accessed on 19 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ASWEC.2004.1290484
https://rumn.medium.com/setting-top-k-top-p-and-temperature-in-llms-3da3a8f74832
https://rumn.medium.com/setting-top-k-top-p-and-temperature-in-llms-3da3a8f74832

	Introduction
	Background and Related Work
	Industrial Applications of LLMs
	Natural Language Processing for IoT
	Language-Oriented Architectures
	Comparative Analysis and Research Positioning

	Methodology
	Overall Architecture
	Physical Circuit Design
	Raspberry Pi Design
	Web App User Interface
	Web App Logic

	Experiment and Validation
	Representative Real-Life Case Study
	Experimental Design and Baseline Comparison
	Message Complexity Classification and Labeling Criteria
	Hardware Issue Management and System Robustness
	Automated Evaluation
	Result Analysis
	Error Analysis with Concrete Examples

	Conclusions
	Limitations
	Future Work
	Critical Analysis and Real-World Deployment Challenges
	Conclusions

	References

