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Abstract: Infectious diseases remain a common problem in low- and middle-income countries,
including in Vietnam. Tetanus is a severe infectious disease characterized by muscle spasms and
complicated by autonomic nervous system dysfunction in severe cases. Patients require careful
monitoring using electrocardiograms (ECGs) to detect deterioration and the onset of autonomic
nervous system dysfunction as early as possible. Machine learning analysis of ECG has been shown
of extra value in predicting tetanus severity, however any additional ECG signal analysis places
a high demand on time-limited hospital staff and requires specialist equipment. Therefore, we
present a novel approach to tetanus monitoring from low-cost wearable sensors combined with a
deep-learning-based automatic severity detection. This approach can automatically triage tetanus
patients and reduce the burden on hospital staff. In this study, we propose a two-dimensional (2D)
convolutional neural network with a channel-wise attention mechanism for the binary classification
of ECG signals. According to the Ablett classification of tetanus severity, we define grades 1 and 2
as mild tetanus and grades 3 and 4 as severe tetanus. The one-dimensional ECG time series signals
are transformed into 2D spectrograms. The 2D attention-based network is designed to extract the
features from the input spectrograms. Experiments demonstrate a promising performance for the
proposed method in tetanus classification with an F1 score of 0.79 ± 0.03, precision of 0.78 ± 0.08,
recall of 0.82 ± 0.05, specificity of 0.85 ± 0.08, accuracy of 0.84 ± 0.04 and AUC of 0.84 ± 0.03.

Keywords: tetanus; spectrogram; electrocardiogram; classification; convolutional neural network;
channel-wise attention

1. Introduction

Infectious diseases remain a common cause of morbidity and mortality among people
living in low- and middle-income countries [1–3]. Tetanus disease is an infection caused
by a toxin produced by the Clostridium tetani bacteria [4]. This powerful neurotoxin in-
hibits transmission at central synapses resulting in muscle stiffness and spasms and in
severe cases, cardiovascular system instability. These symptoms generally progress over
a period of 2–5 days. Approximately half of all patients progress to severe disease where
spasm control necessitates paralysis and mechanical ventilation. The most common cause
of death in settings with access to mechanical ventilation is autonomic nervous system
(ANS) dysfunction, occurring in approximately 25% of all patients. Therefore, the early
detection of those likely to have severe disease requiring mechanical ventilation or ANS
dysfunction is highly valuable as it enables timely intervention and allows appropriate
resource allocation [5,6].

Sensors 2022, 22, 6554. https://doi.org/10.3390/s22176554 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176554
https://doi.org/10.3390/s22176554
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0199-3783
https://orcid.org/0000-0003-3674-9489
https://orcid.org/0000-0002-7455-8862
https://doi.org/10.3390/s22176554
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176554?type=check_update&version=4


Sensors 2022, 22, 6554 2 of 17

The most widely used system for tetanus severity classification is the Ablett score,
ranging from 1 to 4. While grades 1 and 2 describe mild or moderate disease progressions
where a mechanical ventilation is typically not required, grades 3 and 4 represent severe
disease requiring mechanical ventilation. Grade 4 is the most severe form, in which patients
have signs of ANS dysfunction [2,7]. Similar to other infectious diseases, early and accurate
diagnosis of tetanus severity is extremely important to improve both short- and long-term
patient outcomes [8–10]. However, in the low- and middle-income countries where tetanus
most commonly occurs, facilities and equipment for treatment are often limited. Experi-
enced doctors and nurses have limited time to frequently monitor patients with tetanus.
Heart rate variability (HRV) has been shown to be valuable in ANS detection [11,12].

To improve the clinical outcomes and disease incidence of tetanus, we aim to develop
a severity warning tool. This tool will use the patient’s electrocardiogram (ECG) data to
classify disease severity, aiming to function as a screening tool and guide to clinicians.
Such a tool will predict the severity of the disease to help clinicians determine whether the
patient must undergo close monitoring and start planning for admission to an intensive
care unit (ICU). If the predicted symptoms are mild, the patient can be monitored less
frequently in a normal ward. Such a tool would be of particular value for inexperienced or
overloaded staff, prevent unnecessary ICU admissions and reduce treatment delays.

In this paper, we design scientific steps as follows: Firstly, the physiological data -
electrocardiogram (ECG) data - are collected from the low-cost wearable monitors. Secondly,
we propose a warning tool with a deep learning approach for the diagnosis of infectious
disease (e.g., tetanus) patients. The aim of this tool is to classify the tetanus severity level,
represented as the Ablett score, based on this low-cost ECG data. The contributions of this
work are as follows:

• To the best of our knowledge, this is the first attempt to exploit deep learning with
a channel-wise attention mechanism in tetanus diseases detection, which models the
channel relationship and boosts the performance of a network. Since the method is
completely data-driven, this concept could be transferable to similar infectious diseases.

• We demonstrate the effectiveness of the proposed method on the low-cost ECG data.
We show that our novel method outperforms the sequential techniques. The sequential
techniques, including the time-dependent versions of the attention-based network,
do not work on low-cost ECG data because the noise of the low quality data disturbs
time series analysis.

• We explore the robustness of the proposed method for the minimal window length of
the log-spectrogram.

The paper is structured as follows: Section 2 introduces related work in the diagnosis
of tetanus diseases in low- and middle-income countries and deep learning approaches
in imaging fields related to our work. Section 3 describes the proposed approach for
the tetanus diseases classification. Section 4 provides the details of the tetanus dataset,
implementation details, a comparison of baseline methods and the evaluations of the
classification results with several performance metrics. Section 5 presents and discusses the
experimental results. Finally, Section 6 provides the conclusion of our work.

2. Related Work

The early diagnosis of lethal infectious diseases plays an important role in patient
treatment. Heart rate is controlled by the ANS and heart rate variability (HRV), i.e., the
beat-to-beat changes in RR intervals, is linked to changes in ANS activity [11,12]. In
tetanus, disease severity is associated with ANS activity, and changes in conventional HRV
parameters measured from ECG have been shown to correlate with disease severity. To
evaluate autonomic nervous system disturbance (ANSD), the HRV-based methods need an
extra preprocessing step and then require features such as RR intervals and QRS complex
extraction [6,13,14]. Lin et al. [15] use HRV as an index to detect the disease progression
which is caused by enterovirus infection. However, it is still a challenge to robustly extract
RR intervals.
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Recently, machine learning approaches have been used to diagnose and classify sever-
ity of infectious diseases. Traditional machine learning approaches require the feature
engineering process for manually selecting and transforming features from the dataset.
Tadesse et al. [16] applied support vector machines (SVM) to automatically detect the ANS
dysfunction level for hand, foot and mouth disease (HFMD) and tetanus. They also demon-
strated SVM outperforms HRV on infectious diseases detection. Tadesse et al. [17] use
spectrograms of ECG and PPG with transfer learning to classify severity of two infectious
diseases, tetanus and HFMD, and prove deep learning methods outperform traditional
machine learning methods (e.g., SVM). Kiyasseh et al. [18] suggest generating pathological
photoplethysmogram (PPG) signals to boost diagnosis performance (e.g., tetanus and
HFMD). The previous works from [16–18] study a small dataset of tetanus; consequently,
their results are limited.

One prominent advantage of convolutional neural networks (CNNs) is their capability
to implicitly learn to extract relevant features. The one-dimensional (1D) CNNs have been
widely used in signal processing applications, such as biomedical data classification and
early diagnosis [19,20]. In order to use the 2D CNN, the common approach transforms
the 1D signal to a 2D representation by time–frequency analysis, such as spectrogram,
log spectrogram, mel spectrogram and scalogram [17,21–24], and the 2D representation
obtained is considered an image. The spectrogram provides a visual presentation of
dynamic information which can be composed of low-level features such as lines and
edges [17]. Based on the recent literature work, we know the 2D CNN performs well in
image classification. Using 2D spectrograms, an image-based ECG signal classification
structure achieves a better performance than the 1D CNN [25].

Computer vision and image analysis have been revolutionized by the attention mech-
anism [26]. The benefits of the attention mechanism range are across different topics,
from image classification [27,28] to action recognition [29,30], for improving representation
power of networks. There are two families of attention mechanisms in deep learning, soft
attention and hard attention. In soft attention, the features of the image are multiplied with
a mask of values between zero and one. In hard attention, the deep learning model focuses
on the input information from a small portion of the whole image, with a mask of values of
zero or one. In general, attention is implemented by a combination with a gating function,
such as a sigmoid or softmax. Attention can also be implemented via combinating with
sequential techniques, such as long short-term memory (LSTM) [31]. So far, the attention
mechanism has not been implemented in infectious diseases for improving diagnostic
accuracy. Therefore, it is a novel application of the attention mechanism to an ECG dataset
acquired from patients with infectious diseases. In previous studies, spectrograms of
tetanus with transfer learning [17] do not consider which part of the feature maps is more
important. Our work will use soft self-attention to weight the channel-wise responses in the
convolutional layers for modelling inter-dependencies among the channel-wise features.

3. Method

The proposed framework includes the following steps:

• Data Preprocessing: ECG noise removal;
• Spectrogram analysis of single-lead ECG signal: Generated 2D log-spectrograms as inputs

of the proposed method;
• Feature extraction with CNN: Feed the log-spectrograms into convolutional layers to

extract features;
• Attention Mechanism: Model the inter-dependencies among the channel features of the

convolutional layers.

The proposed method is named 2D-CNN + Channel-wise Attention. To understand
how the proposed method makes a decision and what the network sees in each layer in the
method, we explore the visual explanation algorithm-gradient-weighted class activation
mapping (Grad-CAM) [32]-in the proposed method. Figure 1 shows the overview of the
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proposed method and the visual explanations of features in the last layers of 6 convolutional
blocks of the method.

Figure 1. Overview of the proposed method and the visual explanations of features for the label
0-mild tetanus in the last layers of 6 convolutional blocks of the method. The 60-s window length
log-spectrogram of raw ECG data is the input of the proposed method called 2D-CNN + Channel-wise
Attention. The output of the proposed method is the label prediction, label 0 (mild tetanus) and label
1 (severe tetanus).

3.1. Data Preprocessing

There are mainly two types of noise that influence the ECG signal. Firstly, patient
muscle movement causes low band frequency noises [33]. Secondly, the electrical source
which operates the ECG monitor leads to high band frequency noise [33]. Given low-cost
ECG signal, we use a one-lead ECG from an ECG signal and perform preprocessing to clean
the data and remove the background noise from the input ECG signal using a Butterworth
filter. We set a cutoff point of 0.05 Hz for the high-pass filter and 100 Hz for the low-pass
filter. The implementation is performed utilizing the SciPy package [34].

3.2. Logarithmic Spectrogram Generation

A 1D ECG is not able to use 2D CNNs. If the ECG is represented in 2D, such as an
image, we can use the successful approaches in image classification to deal with the signal.
Hence, we transform the preprocessed ECG into spectrograms. The spectrogram is a 2D
time–frequency representation based on the consecutive Fourier transform. The logarithmic
spectrogram is a log-scaled spectrogram based on the consecutive Fourier transform, and it
pays more attention to lower frequencies. Next, we normalise the spectrograms by their
maximum value and scale the value in the range 0 to 255 and logarithmic scale of the
normalised spectrograms (see Equation (1)).

Ṽ = log
(

V
max(V)

∗ 255
)

(1)

Figure 2 shows examples of spectrograms and normalised logarithmic spectrograms
of ECG with mild and severe symptoms. The visible image patterns in spectrograms are
hard to see. By using a log scale, the low frequencies are easier to see as log-spectrograms.
Hence, the use of log-spectrogram image patterns enhances understanding of 2D CNNs.



Sensors 2022, 22, 6554 5 of 17

Figure 2. Examples of ECG waveforms collected from tetanus patients, spectrograms and normalised
log-spectrograms generated for each tetanus classification: scores 1 and 2 refer to mild symptoms
and scores 3 and 4 refer to severe symptoms.

3.3. Attention-Based Network
3.3.1. Convolutional Layers

The convolutional layers explore the spatial information in each 2D spectrogram
(intra-slice information). The architecture of each block was inspired by Zihlmann et al. [22]
and consists of the convolutional blocks of the 2D convolutional layers (3× 3 kernel size),
ELU and 2D batch normalization. The second, fourth and sixth convolutional blocks
are followed by a 2D max pooling layer (2× 2 window), respectively (See Figure 1). A
logarithmic spectrogram is input to the convolutional layers.

3.3.2. Channel-Wise Attention

Changing the weight of the different channels in the feature maps, the proposed
model can emphasise the most important features and suppress less useful features. Hence,
the channel-wise attention mechanism can explore the relationships of features among
different channels and add weights as soft attention for each channel. Inspired by the
squeeze-and-excitation networks [28], we add the channel-wise attention at the end of each
convolutional block. The illustration in Figure 3 shows the structure of the channel-wise
attention mechanism.

Figure 3. Illustration of the channel-wise attention mechanism structure. The channel-wise attention
is added at the end of each convolutional block, which models the interdependencies among the
channel features of the convolutional layers.

Let U = [u1, u2, ..., un], where ui ∈ RW×H denotes the feature map on the i-th channel,
n is the number of channels, and the W and H are width and height of ui. For the squeeze
operation, we aim to squeeze global spatial information into a channel feature. We apply
a 2D adaptive average pooling to obtain a single value for each channel feature (see
Equation (2)). The channel features m can be represented as M = [m1, m2, ..., mn], where
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mi ∈ Rn denotes the i-th channel features, and mi is the average of the vector ui. The
channel features can be calculated by

mi =
1

W × H

W

∑
p=1

H

∑
q=1

ui(p, q). (2)

Next, we perform an excitation operation on the single value for obtaining the channel
weights that represent channel-wise dependencies. The excitation operation uses a gating
function with a sigmoid activation, which can be represented as

si = σ(W2φ(W1mi)), (3)

where σ and φ refer to the sigmoid and ReLU function, respectively. W1 and W2 represent
the learnable parameter matrices.

The output of the excitation operation - channel weights - are element-wise multiplied
on the output features of each convolutional block. The final output of the channel-wise
attention block can be represented as

x̃i = ui
⊗

mi, (4)

where
⊗

is the channel-wise multiplication between the feature map ui and the weight
vector mi.

3.3.3. Loss Function

The binary cross-entropy (BCE) loss function [35] is used in the proposed method,
which is defined as

LBCE = − 1
N

N

∑
i=1

(yi · logŷi + (1− yi) · log(1− ŷi), (5)

where yi is the ith target label, ŷ is the prediction of the ith label, and N is the batch
size. We combine a sigmoid layer and a BCELoss in one single class. This combined loss
function is more numerically stable than using a plain sigmoid followed by a BCELoss; by
combining the operations into one layer, we take advantage of the log-sum-exp trick for
numerical stability.

After the attention layer of the last convolutional block, we choose 3 fully connected
layers that output our 2 labels. The output of the fully connected layer is fed as inputs to
the sigmoid layer, and the output of the sigmoid layer is turned into the probability of the
tetanus mild and severe classes.

4. Experiments
4.1. ECG Acquisition for Tetanus Patients

To acquire ECG data from tetanus patients, we use the low-cost wearable monitor
ePatch [36] (see Figure 4). The ePatch (ePatch. https://www.myheartmonitor.com/device/
epatch/ (accessed on 21 August 2022)) sensor includes all the electronic components: a
rechargeable battery, a signal processing component, a data storage component and wireless
data transmission equipment [37]. The doctor attaches the lightweight cardiac monitor
firmly to the patient’s chest. The ePatch will automatically record the ECG once the system
is installed. Figure 2 shows examples of ECG waveforms collected from tetanus patients.

The study data collection has been approved by the relevant ethical committees. This
dataset has been published previously [38] and is collected from 110 patients at the Hospital
for Tropical Diseases, Ho Chi Minh City, Vietnam. The ECG waveforms from the tetanus
patients are collected with a sampling rate of 256 Hz. The first 24 h ECG data is recorded
on day 1 when a patient is admitted to the infectious disease department. The second 24 h
ECG data is recorded on day 5 of hospitalization.

https://www.myheartmonitor.com/device/epatch/
https://www.myheartmonitor.com/device/epatch/
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Figure 4. Wearable monitor for ECG data acquisition; ePatch (left) and example of ePatch placement
on the chest (right).

The dataset used in this study consists of 178 ECG example files from 110 patients on
days 1 and 5. We use trimmed ECG data [38] which removes most of the noise from the
ECG recording. Then we split our data into the training/validation/test datasets with a
141/19/18 ratio.

The ePatch can collect two-lead ECG signals. We extract the one-lead ECG signal for
our experiments. We perform spectrogram analysis of this single-lead ECG signal. We
transform the ECG signal to a 2D image, extract features from a 2D CNN and then model
inter-dependencies among the channel-wise features. Our deep learning model will classify
the ECG signal into two categories; label 0 represents mild tetanus (Ablett grade 1 and 2),
and label 1 represents severe tetanus (Ablett grade 3 and 4).

4.2. Implementation Details
4.2.1. Data Preprocessing

The time series ECG waveform is divided into a sequence of ECG samples without
overlapped windows. We set the duration of the window length as 60 s. We choose 30 60-s
ECG samples from each ECG example file. There are 4230 (141× 30) ECG log-spectrograms
in the training set, including 2370 samples of the mild disease and 1860 samples of the severe
disease; 540 (19 × 30) ECG log-spectrograms in the validation set, including 270 samples of
the mild disease and 270 samples of the severe disease; 570 (18 × 30) ECG log-spectrograms
in the test set, including 360 samples of the mild disease and 210 samples of the severe
disease.

Spectrograms are computed by scipy.signal.spectrogram in SciPy [34]. We choose the
Tukey window width to be 25% of a window’s length overlap. We set the nperseg-length
of each segment as 64, and the noverlap numbers of points to overlap between segments
as 32. There are 15,360 = 256 Hz × 60 s sampling points in a window of length which are
used to compute a spectrogram; these are based on 60 s at the sampling rate of 256 Hz of
the ECG data. We then perform normalization and logarithmic scale on the spectrogram
(see Figure 2). The spectrogram is saved as a PNG format image with the default ‘viridis’
colormap. Finally, the rectangular picture of the spectrogram (479× 33 pixels of the log-
spectrograms on every 60 s ECG) is ready for the proposed deep learning approach.

4.2.2. Training

The model is trained over 100 epochs using the Adam optimizer with a learning rate
0.001 and a batch size of 32. The mean squared error (MSE) is chosen as the evaluation met-
ric. We choose torch.nn.BCEWithLogitsLoss for the loss function. The proposed network
was implemented using Python 3.7 with Pytorch. Experiments are run with computational
hardware NVidia GeForce GTX 1080 Ti GPU 10 GB and NVidia GeForce RTX 3060 12 GB.
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4.3. Baseline Methods

Because the attention mechanism can be implemented by combining it with either
the gating function or sequential techniques, we aim to compare these two attention
combination style networks. In our work, we compare the proposed 2D-CNN + Channel-
wise Attention method with six different methods. Figure 5 shows six 2D deep learning
methods: 2D-CNN, 2D-CNN + Channel-wise Attention + ConvLSTM, 2D-CNN + Channel-
wise Attention + LSTM, 2D-CNN + LSTM, 2D-CNN + ConvLSTM and 2D-CNN + Dual
Attention. Here Channel-wise Attention and Dual Attention belong to the gating function;
ConvLSTM and LSTM belong to sequential techniques.

To investigate how the attention mechanism works in the proposed method, we
compare the methods with and without attention layers. We also compare the 2D-CNN
with the 1D-CNN for testing the image-based ECG signal classification method.

Figure 5. The architecture of deep learning methods which are used to compare with the proposed
method. The methods from left to right, top: 2D-CNN; 2D-CNN + Channel-wise Attention +
ConvLSTM; 2D-CNN + Channel-wise Attention + LSTM; bottom: 2D-CNN + LSTM; 2D-CNN +
ConvLSTM; 2D-CNN + Dual Attention.
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4.4. Evaluation Metrics

In the binary classification, the terms true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) are used to calculate accuracy, precision, specificity,
recall and F1-score [17].

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Speci f icity =
TN

TN + FP

Recall =
TP

TP + FN

F1 = 2 ∗ precision ∗ recall
precision + recall

We run each model five times and calculate the mean and the standard deviation of
the performance metrics on the test dataset.

5. Results and Discussion

In this section, we evaluate the proposed method and show how it works. Then,
we compare it to the vanilla 2D-CNN as a benchmark. We also present results on the
longitudinal data, which are all essentially time-dependent versions of the previously used
ones. Moreover, we analyse the method’s parameters regarding more efficient computation.
In addition, we compare the proposed method to the traditional machine learning method
of random forest. In our experiments, we run each model five times with the same split
training/validation/test datasets. We perform the splitting of the dataset into training,
validation and test based on unique ECG samples. After splitting, we apply windowing on
ECG time series to split each signal into 60 s time series. Therefore, we made sure that ECG
samples in each split of the dataset are unique.

5.1. Attention Layers

We have investigated different attention mechanisms including spatial attention and
channel-wise attention. Due to GPU memory capacity limitations, the self-attention model
cannot be tested in our experiments. However, we are able to compare the dual attention
model (position attention and channel attention modules) [39] to the proposed 2D-CNN +
channel-wise attention model. According to the experimental results in Table 1, we found
that the channel-wise attention outperforms the dual attention mechanism. Figure 6 shows
the examples of Grad-CAM visual explanations of the features for label 0 - mild tetanus - in
all different layers of the baseline 2D-CNN method and the proposed 2D-CNN + Channel-
wise Attention method. The different important locations of features are visualised by
colours. The red colours emphasise the most important parts where the model focuses on
different layers for classification. Compared to the last layer in block six, there are more red
areas in the proposed method, meaning that this area influences the final decision for label
0 - mild tetanus.
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Table 1. Quantitative comparison on the proposed 2D-CNN + Channel-wise Attention method and
the baseline methods. The results are presented as mean ± standard deviation. The best performance
is indicated in bold.

60 s Window Length Log-Spectrogram without Downsampling

Method F1 Score Precision Recall Specificity Accuracy AUC

2D-CNN 0.61 ± 0.14 0.68 ± 0.07 0.57 ± 0.19 0.85 ± 0.02 0.75 ± 0.07 0.72 ± 0.09
2D-CNN + Dual Attention 0.65 ± 0.19 0.71 ± 0.17 0.61 ± 0.21 0.86 ± 0.09 0.76 ± 0.11 0.74 ± 0.13
2D-CNN + Channel-wise Attention 0.79 ± 0.03 0.78 ± 0.08 0.82 ± 0.05 0.85 ± 0.08 0.84 ± 0.04 0.84 ± 0.03
2D-CNN + LSTM 0.61 ± 0.15 0.71 ± 0.16 0.59 ± 0.20 0.83 ± 0.17 0.74 ± 0.10 0.71 ± 0.10
2D-CNN + ConvLSTM 0.52 ± 0.32 0.77 ± 0.23 0.46 ± 0.33 0.95 ± 0.04 0.77 ± 0.11 0.71 ± 0.15
2D-CNN + Channel-wise Attention + ConvLSTM 0.38 ± 0.17 0.67 ± 0.10 0.29 ± 0.16 0.92 ± 0.06 0.68 ± 0.05 0.60 ± 0.06
2D-CNN + Channel-wise Attention + LSTM 0.59 ± 0.32 0.70 ± 0.34 0.56 ± 0.34 0.92 ± 0.92 0.79 ± 0.12 0.74 ± 0.16

No Time Series Images

Method F1 Score Precision Recall Specificity Accuracy AUC

1D-CNN 0.65 ± 0.14 0.61 ± 0.05 0.77 ± 0.25 0.70 ± 0.13 0.73 ± 0.05 0.74 ± 0.08

Figure 6. Examples of visual explanations of the features in all different layers of the baseline
2D-CNN method and the proposed 2D-CNN + Channel-wise Attention method. The 60-s window
length log-spectrogram of raw ECG data is the input of these two methods. The green rectangle
highlights the huge visual difference between the adjacent layers in the proposed method.

5.2. Sequential Techniques

The different longitudinal models are all essentially time-dependent versions of the
previously used ones: 2D-CNN and 2D-CNN + Channel-wise Attention.

5.2.1. Recurrent Neural Network Layers

As shown in Table 1, the 2D-CNN + Channel-wise Attention performs better than the
2D-CNN + Channel-wise Attention + LSTM, and the 2D-CNN performs slightly better than
the 2D-CNN + LSTM. The low-cost ECG signal quality is too low to perform longitudinal
data analysis with recurrent neural networks. There is a great deal of background noise in
the ECG data. Although we performed preprocessing to filter out the noise, the cleaned
ECG data still contains noise, which influences the results of the recurrent neural network.
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5.2.2. Convolutional LSTMs Model

Inspired by Lu et al. [40], we use a single layer convolutional LSTM (ConvLSTM) [41]
to explore the temporal relationships among the three log-spectrograms. As shown in
Figure 5, the 2D-CNN + ConvLSTM and 2D-CNN + Channel-wise Attention + ConvLSTM
methods are explored in our experiment. The output of the convolutional layers will be the
input of the ConvLSTM layer. We set T = 3, 60 s for a 20-s window duration. The ConvL-
STM makes decisions on the features of three log-spectrogram samples. Table 1 shows that
the ConvLSTM models do not perform well in 1-lead ECG data, suggesting that the ECG
signal quality in resource-limited settings is too low for temporal information analysis.

5.3. 1D Convolutional Model

The 1D-CNN has the same architecture as the 2D-CNN (shown in Figure 5). However,
the 1D-CNN model uses 1D convolution instead of 2D convolution at its convolutional
layers. As shown in Table 1, the performance of the 1D-CNN is slightly lower than the 2D-
CNN using a 60-s window length log-spectrogram without downsampling. Compared to
the 2D-CNN + Channel-wise Attention, the 1D-CNN has lower performance metrics. The
results show that the image-base method works better, and the channel-wise information
boosts the performance of diagnosing tetanus.

5.4. Downsample Spectrogram

Due to the computational limits of the GPUs, we aim to develop a deep learning
pipeline with low computational cost. Therefore, we perform experiments on downsampled
spectrograms using scipy.signal.decimate. We downsample spectrograms four times in
the horizontal axis and the vertical axis, respectively. As shown in Table 2, spectrograms
without downsampling produce better F1 scores, specificities and accuracies than those
with downsampling for 60 s window length spectrograms. Because the downsampled
spectrograms are too small, the convolutional LSTM methods - 2D-CNN + ConvLSTM
and 2D-CNN + Channel-wise Attention + ConvLSTM - fail. Hence, we suggest using
spectrograms without downsampling as inputs in the proposed model .

Table 2. Quantitative comparison on the proposed 2D-CNN + Channel-wise Attention method and
the baseline method using downsampled log-spectrogram. The results are presented as mean ±
standard deviation. The best performance is indicated in bold.

60 s Window Length Log-Spectrogram with Downsampling

Method F1 Score Precision Recall Specificity Accuracy AUC

2D-CNN 0.58 ± 0.16 0.68 ± 0.05 0.53 ± 0.19 0.85 ± 0.06 0.74 ± 0.05 0.69 ± 0.07
2D-CNN + Dual Attention 0.54 ± 0.08 0.57 ± 0.17 0.57 ± 0.21 0.69 ± 0.23 0.65 ± 0.09 0.63 ± 0.06
2D-CNN + Channel-wise Attention 0.60 ± 0.10 0.82 ± 0.10 0.51 ± 0.16 0.92 ± 0.08 0.77 ± 0.30 0.71 ± 0.05
2D-CNN + LSTM 0.52 ± 0.12 0.67 ± 0.03 0.43 ± 0.14 0.88 ± 0.03 0.71 ± 0.04 0.66 ± 0.06
2D-CNN + Channel-wise Attention + LSTM 0.63 ± 0.13 0.75 ± 0.05 0.56 ± 0.19 0.89 ± 0.04 0.77 ± 0.05 0.73 ± 0.08

5.5. Misclassification

In the training phase, we run each method five times, which gives five trained models
in each method. Next, we obtain five different confusion matrices using the test dataset.
Here we average confusion matrix numbers over the five different runs. The confusion
matrices in Figure 7 show a holistic view of how well each method in our experiments
performs and what kind of misclassification they make between the mild and severe levels.
As shown in Figure 7a, the true successful detection of the severe tetanus diagnosis increases
from 122 to 171 after employing channel-wise attention layers. It also increases to 129 after
employing dual attention layers. Figure 7c shows the 1D-CNN better predicts severe
tetanus than mild tetanus, with 162 correct severe tetanus diagnoses out of 210 samples and
253 correct severe mild diagnoses out of 360 samples. Compared to the same method from
Figure 7a,b, the correct mild and severe tetanus diagnosis numbers are higher in (a) than
(b). This demonstrates the 60 s window length log-spectrograms without downsampling as
inputs work better than the downsampled log-spectrograms.
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Figure 7. Confusion matrices of the tetanus severity level diagnosis using different deep learning
methods: (a) tetanus confusion matrices for the methods using 60 s window length log-spectrograms
without downsampling as inputs; (b) tetanus confusion matrices for the methods using 60 s window
length log-spectrograms with downsampling as inputs; (c) tetanus confusion matrices for the 1D-
CNN method (no time series images as inputs).

5.6. Window Length of Spectrogram

In order to evaluate the robustness of the proposed method (spectrograms without
downsampling), we perform experiments on the window duration of the ECG and check
the minimal window length of the spectrogram that can still diagnose tetanus. We have
investigated the 60 s, 50 s, 40 s, 30 s, 20 s, 10 s and 5 s window lengths of raw ECG data
for spectrogram generation. For the experiments, the size of the training/validation/test
dataset does not change. As shown in Table 3, the 10 s and 5 s window lengths of the raw
ECG data are too short to generate a useful spectrogram for deep learning approaches.
Comparisons with the 60 s window length show that the 50 s, 40 s, 30 s and 20 s window
length spectrograms can still maintain an accurate tetanus diagnosis.

Table 3. Quantitative comparison on window length of log-spectrograms as the inputs of the proposed
2D-CNN + Channel-wise Attention method. The results are presented as mean ± standard deviation.
The best performance is indicated in bold.

The Proposed Method (Spectrograms without Downsampling)

Window Duration F1 Score Precision Recall Specificity Accuracy AUC

50 s 0.81 ± 0.05 0.81 ± 0.06 0.82 ± 0.04 0.88 ± 0.04 0.86 ± 0.04 0.85 ± 0.04
40 s 0.80 ± 0.04 0.84 ± 0.08 0.77 ± 0.07 0.91 ± 0.05 0.86 ± 0.03 0.84 ± 0.03
30 s 0.74 ± 0.05 0.79 ± 0.07 0.79 ± 0.07 0.87 ± 0.06 0.84 ± 0.04 0.83 ± 0.04
20 s 0.79 ± 0.05 0.80 ± 0.08 0.78 ± 0.07 0.88 ± 0.07 0.84 ± 0.04 0.83 ± 0.04
10 s 0.55 ± 0.33 0.74 ± 0.16 0.45 ± 0.38 0.90 ± 0.06 0.77 ± 0.12 0.72 ± 0.17
5 s 0.43 ± 0.32 0.98 ± 0.02 0.34 ± 0.29 0.99 ± 0.01 0.75 ± 0.10 0.67 ± 0.14

Figure 8 shows the examples of Grad-CAM visual explanations of the features for
mild tetanus in the different layers in the proposed method. The log-spectrograms without
downsampling are the inputs of the proposed method. From the visual explanations of
features, we can see that the channel-wise attention layer emphasises some parts of the
feature image compared to the previous layer in the convolutional block, particularly in
the green rectangle area of Figure 8.
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Figure 8. Examples of visual explanations of the features in the last layer of each convolutional block
and each attention layer of the proposed method. The log-spectrograms without downsampling are
the inputs of the proposed method. These log-spectrograms are generated from the 50 s, 40 s, 30 s,
20 s, 10 s and 5 s window lengths of raw ECG data. The green rectangle highlights the huge visual
difference between the adjacent layers.

5.7. Traditional Machine Learning

We compare the proposed 2D-CNN + Channel-wise Attention with the traditional
machine learning method random forest [42,43]. The details of extracted features are
shown in Table 4, including eight HRV time domain features. There are several open-source
toolboxes that compute HRV based on raw ECG signal [44–47]. In our work, we detect
r peaks of ECG using the open-source packages py-ecg-detectors 1.3.2 [48] and extract
features using the open-source packages hrv-analysis 1.0.4 [47].

Table 4. List of extracted heart rate variability (HRV) features in traditional machine learning

Parameters

HRV time domain features

mean_nni mean of RR-intervals
sdnn standard deviation of RR-intervals

sdsd standard deviation of differences between
adjacent RR-intervals

rmssd
square root of the mean of the sum of the
squares of differences between adjacent
NN-intervals

mean_hr mean Heart Rate
max_hr max heart rate
min_hr min heart rate
std_hr standard deviation of heart rate

The comparisons are shown in Table 5. The F1 score is higher for random forest
with HRV time domain features compared to the proposed 2D-CNN + Channel-wise
Attention. The F1 score is the harmonic mean of precision and recall. Precision evaluates
how precisely a method predicts severe tetanus (TP). Recall measures the percentage of the
correctly predicted severe tetanus (TP) that a method detects. Random forest with HRV
time domain features yields a better prediction of severe tetanus.
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Table 5. Quantitative comparison of the proposed method (2D-CNN + Channel-wise Attention) and
the baseline methods (traditional machine learning), using the original 60 s window length ECG as
input. The results are presented as mean ± standard deviation. The best performance is indicated
in bold.

60 s Window Length Log-Spectrogram

Method F1 Score Precision Recall Specificity Accuracy AUC

2D-CNN + Channel-wise Attention 0.79 ± 0.03 0.78 ± 0.08 0.82 ± 0.05 0.85 ± 0.08 0.84 ± 0.04 0.84 ± 0.03

No Time Series Images

Method F1 Score Precision Recall Specificity Accuracy AUC

Random Forest (HRV time domain features) 0.81 ± 0.00 0.77 ± 0.00 0.85 ± 0.01 0.85 ± 0.00 0.85 ± 0.00 0.80 ± 0.00

6. Conclusions

We proposed a deep learning method, 2D-CNN with a Channel-wise Attention mech-
anism, to classify the severity of tetanus using wearable monitors in a resource-limited
setting. We cleaned the background noise, and we were able to classify tetanus symptoms
as mild or severe tetanus. Despite this, there are limitations to this method. Firstly, the
ECG data from the wearable monitors have a much lower signal-to-noise ratio. This makes
reducing the large amount of noise from the wearable monitors ECG data a significant
challenge. However, the low-cost ECG data are affordable in low- and middle-income
countries, and we are able to reliably use this low-quality data. Secondly, due to the small
dataset used, to make a classification of tetanus severity requires ECG data recorded on
day 1 and day 5. In the future, we will extend the dataset in order to predict the severity of
tetanus on day 5 using the ECG data from only day 1.

We investigate the window length of the spectrogram and investigate the range of
window lengths that can maintain an accurate tetanus diagnosis. In our experiments, a 50 s
window has a relatively higher value of performance metrics than other window lengths.
We will explore time series imaging further in future work, which will aim to find the
optimal range of time windows.

In future work, we will consider sequence learning via transformers. A combination
of CNN and transformer networks are used to extract both local features and global
dependencies [49–51]. Moreover, we will also apply knowledge distillation techniques
to this combination network for further improving the accuracy of tetanus diagnoses.
The rationale for using the knowledge distillation is the low processing and sensor costs.
Knowledge distillation extracts the knowledge from the large complex teacher model and
passes it on to the small simple student model [52,53]. This distilled procedure will not
require the training of a large number of tetanus data.
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