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Abstract. Cardiac ultrasound is widely used for the diagnosis and mon-
itoring of cardiovascular diseases due to its noninvasive nature, real-time
imaging capability, and low cost. However, its clinical utility is often
limited by noise sensitivity and acquisition variability, which adversely
affect automated interpretation and sequence consistency. To overcome
these limitations, this paper presents a multimodal deep learning frame-
work that combines a denoising diffusion model with a Temporal Trans-
former to generate high-quality cardiac ultrasound videos. A uniőed pre-
processing pipeline with intensity normalisation and standardisation is
employed to reduce intersample variation and enhance anatomical struc-
tures. Spatial features are őrst extracted from individual frames, followed
by temporal modelling across sequences using the Temporal Transformer.
These features guide the latent-space denoising process, optionally aug-
mented by ControlNet for structure-aware generation. The experimental
results demonstrate that the proposed method achieves robust perfor-
mance, with an FID of 43.50, an FVD of 274.52, and an inception score
of 8.62. Ablation studies further verify the critical contributions of Con-
trolNet and composite loss design, highlighting the effectiveness of the
framework in ensuring both spatial ődelity and temporal coherence.

Keywords: Cardiac Ultrasound · Diffusion Model · Temporal Transformer ·

ControlNet · Multimodal Generation.

1 Introduction

Cardiac ultrasound plays a critical role in the clinical diagnosis and research of
cardiovascular diseases due to its noninvasiveness, high resolution, and excellent
contrast. However, current cardiac ultrasound acquisition often faces signiőcant
noise interference, unstable image quality, and data format variability caused
by diverse medical equipment and imaging protocols, greatly restricting the effi-
ciency and precision of subsequent clinical analyses [1]. Furthermore, traditional
imaging techniques often lack effective control over frame-to-frame continuity
when handling temporal sequence data, leading to temporal inconsistency that
compromises the reliability of diagnostic results [2].
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In recent years, diffusion models, known for their powerful generative capa-
bilities, have gradually been applied in medical imaging reconstruction and syn-
thesis, outperforming traditional generative models such as Generative Adver-
sarial Networks (GANs) in certain tasks [38]. Simultaneously, Transformers have
become prominent in vision tasks due to their exceptional global information-
capturing abilities, progressively replacing conventional Convolutional Neural
Networks (CNNs) [22]. However, existing studies mostly concentrate on spatial
feature extraction, rarely addressing precise temporal feature modelling, espe-
cially lacking joint spatial-temporal modelling tailored to the speciőc character-
istics of medical imaging data.

To address the above issues, we őrst propose a deep learning framework
combining diffusion models and temporal transformers. Through uniőed data
preprocessing strategies with intensity normalisation and standardisation, noise
suppression and key structural information extraction are effectively enhanced.
Furthermore, a comprehensive loss function integrating the Structural Similarity
Index Measure (SSIM), Temporal Mean Squared Error (Temporal MSE), which
computes the mean squared difference between adjacent frames to reŕect tem-
poral consistency, is adopted as one of the loss components [44], and pixel-level
error (L1) is designed to signiőcantly enhance the temporal stability and image
quality of cardiac ultrasound videos generated.

The primary innovative contributions of this paper are summarised as follows:

1. A ŕexible architecture is proposed, utilising a Temporal Transformer module
to model temporal relationships in cardiac ultrasound sequences.

2. ControlNet is optionally integrated into the diffusion model, using original
cardiac ultrasound images as structural guidance conditions to signiőcantly
enhance the structural ődelity of the generated images.

3. A comprehensive loss function based on SSIM, Temporal MSE, and L1 loss
is designed to balance image quality and temporal continuity effectively.

2 Related Works

2.1 Overview of Medical Image Generation Techniques

In recent years, deep learning-based generative models have been widely applied
to medical image reconstruction, enhancement, and synthesis. Among them,
Generative Adversarial Networks (GANs) and Variational Autoen-
coders (VAEs) have emerged as two of the most prevalent frameworks. GANs
are known for generating visually realistic images, whilst VAEs offer a princi-
pled latent space for data representation. However, both methods face limitations
that hinder their broad adoption in clinical scenarios. GANs suffer from train-
ing instability and mode collapse, which often leads to the generation of limited
or repetitive patterns [17]. VAEs, on the other hand, tend to produce blurry
outputs due to the nature of their probabilistic reconstruction.

To address these issues, Flow-based and Score-based models have been
proposed as alternatives. These methods offer advantages in terms of generation
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stability and likelihood estimation, enabling better modelling of complex medical
data distributions [18]. Nevertheless, their adoption remains limited due to high
computational demands and difficulty in scaling to high-resolution 3D medical
data.

Recent work in multi-modal medical generation has also seen progress in
report generation tasks. For example, a multinodal method for chest radiology
report synthesis [35] leverages visual-textual alignment to generate semantically
rich őndings. While our framework focuses purely on visual generation, the con-
cept of incorporating semantic priors into medical generative models remains a
promising direction.

2.2 Diffusion Models and Their Applications in Medical Imaging

In recent years, Transformer architectures have garnered signiőcant atten-
tion in the őeld of medical imaging, particularly in tasks that require modelling
long-range dependencies and temporal dynamics. Unlike convolutional
neural networks (CNNs), which are primarily effective at extracting local fea-
tures, Transformers leverage self-attention mechanisms to capture global con-
textual relationships, making them especially suitable for modelling complex
temporal interactions.

An increasing number of studies have explored the use of Transformers for
dynamic medical imaging, such as cardiac ultrasound, cine MRI, and func-
tional brain imaging, where data is represented as temporal sequences. For
instance, some works introduce temporal attention mechanisms or stack
frame-wise features across the time axis to learn organ motion patterns more
effectively, leading to improved recognition of cardiac cycles and physiological
rhythms [25] [28] [22].

However, most existing Transformer-based models are still designed with
a spatial modelling focus, and temporal continuityÐwhich is critical in
medical image sequencesÐhas not been adequately addressed. In particular, for
generative tasks involving dynamic image synthesis, current approaches often fail
to maintain inter-frame structural consistency and motion coherence,
resulting in artefacts such as ŕickering, anatomical distortion, or loss of periodic
motion. Therefore, designing Transformer modules that can jointly capture
spatial structures and temporal evolution has become a critical challenge
in the domain of dynamic medical image generation [23] [24].

Recent studies have also explored counterfactual video generation as a means
to model alternative outcomes or plausible trajectories. For instance, D‘ARTAGNAN
[41] proposes a generative architecture that conditions video synthesis on hypo-
thetical interventions, demonstrating promising results in generating temporally
coherent counterfactual sequences. While our method does not explicitly model
causality, future extensions could integrate such mechanisms for interpretability
in clinical contexts.



4 W. Wang et al.

3 Method

3.1 Model Architecture and Feature Extraction

We propose HeartDiffusionModel,a modular deep generative framework tailored
for cardiac ultrasound sequence generation. The model integrates transformer-
based temporal encoding [25], diffusion-based generation in latent space [37], and
a structure-aware ControlNet module [27]. The overall design aims to ensure both
spatial ődelity and temporal coherence, two essential factors for clinical-
quality video synthesis.

Fig. 1: Our model is structured as a modular architecture consisting of Control-
Net, a Temporal Transformer, and a Diffusion model.

Temporal Feature Encoding Given an input sequence of frames xi ∈ R
1×H×W ,

a U-Net encoder is employed to extract spatial features f
unet
i for each frame.

These features are then stacked along the temporal dimension to form a tempo-
ral feature sequence:

F
unet = [funet1 , funet2 , . . . , funetT ] ∈ R

T×C×H′
×W ′

(1)

To capture long-range temporal dependencies, we adopt a Temporal Trans-
former [28], which operates along the time axis. With positional encoding and
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multi-head self-attention, the temporally enriched features are deőned as:

F
temp = TemporalTransformer(Fcnn +Epos) (2)

where Epos denotes the learnable positional encoding. This module models
long-range motion patterns in the cardiac cycle and improves rhythm consistency
in the generated sequences.

Latent Diffusion and Feature Projection The output features are projected
to match the latent space of the diffusion backbone:

F
proj = Wproj · Ftemp + bproj (3)

A denoising diffusion probabilistic model (DDPM) [37] operates in latent
space. Given the initial latent code z0, Gaussian noise is gradually added to
generate corrupted latents zt:

zt =
√
αt · z0 +

√
1− αt · ϵ, ϵ ∼ N (0, I) (4)

The denoising network predicts the noise component:

ϵ̂ = UNet(zt, t, F
proj , Rdown, Rmid) (5)

Structure Guidance via ControlNet To enhance anatomical consistency,
we integrate a ControlNet module [27] that runs parallel to the UNet backbone.
Given the conditional input x and projected features, ControlNet produces resid-
ual conditions:

{Rdown,Rmid} = ControlNet(zt, t, F
proj , x) (6)

These residuals are injected into the UNet’s corresponding blocks to guide
structural generation, particularly effective for preserving cardiac anatomical
features. The module is switchable for ablation studies.

3.2 Loss Function Design

To jointly optimise for spatial detail and temporal smoothness, we deőne a com-
posite loss function [29] [30] [31]:

Ltotal = α · LSSIM + β · LTemporal + γ · LL1 (7)

Structural Similarity Loss (SSIM): This loss promotes high-level structural sim-
ilarity between the predicted and ground truth frames:

LSSIM =
1

B · T
B
∑

b=1

T
∑

t=1

[

1− SSIM(Xb,t, X̂b,t)

2

]

(8)
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Temporal Consistency Loss: To enforce smooth motion between frames:

LTemporal =
1

B · (T − 1)

B
∑

b=1

T−1
∑

t=1

MSE(X̂b,t, X̂b,t+1) (9)

Pixel-wise L1 Loss: To maintain pixel-level ődelity:

LL1 =
1

B · T · C ·H ·W
∑

b,t,c,h,w

∣

∣

∣
Xb,t,c,h,w − X̂b,t,c,h,w

∣

∣

∣
(10)

However, most existing studies primarily focus on spatial aspects of medical
images, with limited attention to temporal modellingÐa crucial factor in
dynamic imaging modalities such as cardiac ultrasound or cine MRI. Moreover,
whilst diffusion models offer strong performance in static image generation, their
adaptation to temporal consistency and sequence-level coherence remains
an open research challenge.

4 Experiments

4.1 Data Acquisition

We conducted our experiments on the publicly available EchoNet-Dynamic dataset
provided by Stanford University [40]. The EchoNet-Dynamic dataset consists of
10,030 echocardiographic videos collected from patients undergoing echocardio-
graphy examinations. Each video captures cardiac cycles and includes important
cardiac function metrics such as ejection fraction (EF), which are crucial to as-
sessing cardiac functionality. To evaluate the performance of the proposed model,
we randomly selected 1,500 frames from the EchoNet-Dynamic dataset. These
frames were split into training, validation, and testing sets(8:1:1). This dataset
has also been extended in EchoNet-Synthetic [33], which demonstrates the value
of privacy-preserving video generation for secure and ethical sharing of medical
imaging data.

4.2 Setup

Training: The experiments were conducted using four H20-NVLink GPUs, each
equipped with 20 cores and 96GB memory. During training, distributed data par-
allelism was employed to efficiently utilise computational resources and reduce
training time. To investigate the contribution of each key component in our pro-
posed architecture, we conducted comprehensive ablation studies by selectively
removing individual modules, including the Temporal Transformer, ControlNet,
MISS loss, and Temporal loss.
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Table 1: Conőgurations of model variants for ablation studies
Model Conőguration Temporal Transformer ControlNet MISS Loss Temporal Loss

Ours (full components) ✓ ✓ ✓ ✓

w/o Temporal Transformer × ✓ ✓ ✓

w/o ControlNet ✓ × ✓ ✓

w/o MISS Loss ✓ ✓ × ✓

w/o Temporal Loss ✓ ✓ ✓ ×

Note: Each ablation variant (denoted as łw/ož, short for łwithoutž) removes
one core component from the baseline model to evaluate its unique contribu-
tion to spatial ődelity and temporal coherence in the generated ultrasound
sequences.

4.3 Comparative Study Design

Ablation Study Design Five model variants were created by removing key
modules from the full architecture to isolate the effects of each component. Ta-
ble 1 details these variants:

All conőgurations were trained under the same conditions and assessed using
the same metrics to ensure reproducible comparisons. Each variant was trained
for 200 epochs with early stopping based on validation performance, keeping
learning rate (1e−5), batch size, and optimiser settings consistent across exper-
iments.

Comparison with Representative Models We further validated our ap-
proach by comparing it against another widely known video generation models:

ś TATS (Temporally-Aware Token Synthesis) [36]: A Transformer-driven
video generation technique that synthesises frame tokens in an autoregres-
sive manner whilst modelling temporal features explicitly. Its progressive
generation process is comparable to ours in its ability to recover structured
video content from noise.

We implemented these baselines following their official speciőcations, adapt-
ing only the minimum domain-speciőc elements for cardiac ultrasound data.
All models were trained under identical computational constraints for impartial
evaluation.

4.4 Evaluation Metrics

To quantitatively assess the quality and ődelity of our generated videos, we
employ three well-established metrics that evaluate both perceptual quality and
statistical similarity:

ś FID (Fréchet Inception Distance) [12]:

FID = ∥µr − µg∥2 +Tr
(

Σr +Σg − 2 (ΣrΣg)
1/2

)

, (11)

where µr, µg and Σr, Σg represent the mean and covariance matrices of real
and generated image feature distributions, respectively. FID measures the
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distributional similarity between real and generated images through feature
representations extracted from InceptionV3 network.

ś FVD (Fréchet Video Distance) [13]: An extension of FID to the video
domain that captures temporal dynamics by utilising features from a pre-
trained 3D convolutional network. FVD is deőned analogously to FID but
operates on spatio-temporal features:

FVD = ∥µv
r − µv

g∥2 +Tr
(

Σv
r +Σv

g − 2
(

Σv
rΣ

v
g

)1/2
)

, (12)

where the superscript v indicates features extracted from video sequences.
ś IS (Inception Score) [16]:

IS = exp (Ex [DKL(p(y|x)∥p(y))]) , (13)

where p(y|x) represents the conditional class distribution for a generated
sample x as predicted by the Inception model, and p(y) is the marginal class
distribution. IS jointly quantises quality and diversity by measuring how
distinctive and recognisable the generated samples are.

For all metrics, we calculate the scores across multiple samples to ensure ro-
bust evaluation. Lower FID and FVD values indicate better quality and temporal
consistency, with values closer to zero representing perfect alignment with the
real data distribution. Conversely, higher IS values signify improved quality and
diversity. Through this complementary set of metrics, we comprehensively eval-
uate both the spatial ődelity and temporal coherence of our generated cardiac
ultrasound sequences.

5 Results

5.1 Quantitative Results

Table 2: Quantitative comparison of the proposed method, its ablation variants,
and TATS on ultrasound video generation.

Model Conőguration FID ↓ FVD ↓ IS ↑

TATS 41.40 174.30 7.06

w/o Temporal Transformer 41.30 ś 5.32

w/o ControlNet 72.26 310.72 5.29

w/o MISS Loss 53.32 297.20 6.62

w/o Temporal Loss 48.10 291.74 7.78

Ours (Full Model) 43.50 274.52 8.62

As shown in Table 2, we conduct a comprehensive comparison between the pro-
posed full model, its ablation variants, and the TATS baseline. While TATS
achieves the best FID (41.40) and FVD (174.30), indicating strong image-level
ődelity and temporal coherence, it lags behind in perceptual quality, with an IS
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score of 7.06. In contrast, our full model achieves the highest IS (8.62), suggest-
ing superior perceptual sharpness and diversity, while maintaining competitive
FID (43.50) and FVD (274.52), which reŕects a good balance between spatial
quality and temporal consistency.

Among the ablation variants, removing the ControlNet module leads to the
most signiőcant performance degradation, with FID and FVD increasing to 72.26
and 310.72 respectively, and IS dropping to 5.29. This underscores the impor-
tance of ControlNet in preserving spatial structures during generation. The MISS
loss also plays a key role, as its removal causes FID to rise to 53.32 and FVD to
297.20, indicating a loss of őne-grained anatomical consistency.

Interestingly, removing the Temporal Loss results in the highest IS score
(7.78), yet degrades FVD to 291.74, suggesting a trade-off where improved per-
ceptual clarity comes at the cost of motion coherence. The variant without the
Temporal Transformer yields the lowest FID (41.30), outperforming TATS in
this metric. However, it lacks FVD evaluation due to unstable video generation,
indicating compromised temporal modeling despite strong spatial accuracy.

Overall, our full model delivers a robust and well-rounded performance, ef-
fectively integrating spatial ődelity, perceptual realism, and temporal coherence,
validating the superiority of our proposed architecture for high-quality cardiac
ultrasound video synthesis.

5.2 Representative Examples

W/O ControlNet

W/O Temporal

W/O MISS

Fig. 2: Qualitative comparison of őve internal frames for ablation model variants.
Frames are sampled at every 12-frame interval from the generated videos.

5.3 Discussion

The experimental őndings underscore the effectiveness of our proposed model
in generating high-quality cardiac ultrasound sequences that preserve both spa-
tial ődelity and temporal consistency. Compared to the TATS baseline [36], our
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TATS

Ours

Original

Fig. 3: Qualitative comparison of őve consecutive frames generated by TATS and
our proposed model, alongside the corresponding ground truth (Original). The
frames are uniformly sampled every 12 frames from each video sequence.

model achieves a higher Inception Score, indicating enhanced perceptual realism
and diversity, while maintaining competitive FID and FVD metrics. This per-
formance highlights the advantage of combining diffusion-based generation [37,
38] with dedicated temporal modeling.

Ablation experiments further validate the signiőcance of individual modules.
The removal of ControlNet leads to severe degradation across all metrics, con-
őrming its role in preserving anatomical structure. Likewise, the MISS Loss con-
tributes to multi-scale structural consistency, and its absence results in decreased
spatial ődelity. Interestingly, eliminating the Temporal Loss yields sharper indi-
vidual frames (higher IS), but leads to unstable motion patterns, emphasizing
the trade-off between perceptual quality and temporal coherence.

Despite its demonstrated robustness, the proposed model exhibits limita-
tions in accurately capturing őne-grained cardiac motion and managing noisy
real-world ultrasound inputs. In future work, we will will explore more advanced
spatio-temporal architectures, including the incorporation of recurrent units such
as LSTM [39] or GRU, to better model long-term temporal dependencies. More-
over, adaptive attention mechanisms and context-aware diffusion control strate-
gies may further enhance generation ődelity in clinically complex scenarios. In
addition, we plan to extend our evaluation across multiple datasetsÐsuch as the
CAMUS [42] and EchoNet-LVH datasets [43]Ðto improve the generalizability
and reliability of the results under diverse imaging protocols and patient popu-
lations. As a potential clinical application, we also intend to incorporate ejection
fraction (EF) estimation as a downstream task, enabling quantitative assessment
of cardiac function from the generated ultrasound sequences.

6 Conclusion

In this work, we present a novel multimodal framework for cardiac ultrasound
video generation by integrating diffusion models [37, 38] with temporal trans-
formers. The architecture leverages ControlNet for spatial conditioning, MISS
Loss for structural consistency, and a Temporal Loss for maintaining motion
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coherence. A uniőed preprocessing pipeline also ensures normalization across
highly variable ultrasound inputs.

Quantitative experiments on the EchoNet-Dynamic dataset [40] and quali-
tative comparisons with the TATS model [36] demonstrate that our approach
generates perceptually realistic and temporally smooth sequences. Ablation re-
sults conőrm that each component contributes meaningfully to the overall per-
formance, particularly in balancing visual quality and anatomical correctness.

In the future, we aim to explore LSTM-based temporal modeling [39] and
spatio-temporal attention mechanisms to further improve long-range motion
continuity and őne detail reconstruction. These improvements could enhance
the utility of generative models in clinical simulation, diagnostic support, and
privacy-preserving data augmentation.
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