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Abstract. As machine-aided disease diagnosis becomes more common,
there is a rising need for high volumes of quality data, which might be un-
available for rare diseases. Generative methods offer a solution, allowing
for synthesising realistic-looking data that can improve diagnosis accu-
racy. We investigate the applications of diffusion to a small, imbalanced
dataset of Optical Coherence Tomography (OCT) images. We propose
modifying the basic Denoising Diffusion Probabilistic Model with at-
tention mechanisms, a class-aware training strategy, and the addition
of adversarial őne-tuning. We demonstrate that this model is capable
of synthesising realistic-looking images with class-speciőc features even
for diseases with as little as 22 samples. We achieve values of FID at
62.58, and CLIP Similarity at 0.96. We show that the addition of gener-
ated data in the training dataset improves the overall and class-speciőc
performance of a ResNet18 classiőer on the OCT data, offering an im-
provement for downstream tasks such as rare retinal disease diagnosis.

Keywords: Medical imaging · Data augmentation · Deep Learning ·
Generative artiőcial intelligence · Diffusion models.

1 Introduction

Retinal diseases are a becoming increasingly common, affecting over 2.5 million
people in the UK alone [1]. Early and accurate diagnosis is crucial, and imaging
technologies like Optical Coherence Tomography (OCT) provide high-resolution,
cross-sectional images of the retina, allowing for a detailed visualisation of the
pathological changes and enabling disease assessment.

In the recent years, machine learning has become prevalent in medical im-
age analysis. Automated retinal disease classification based on OCT has shown
promise in improving diagnostic accuracy, however the performance of these ML
models relies on the availability of large quantities of labelled data [2]. Class im-
balance is a particular challenge – in many existing datasets, certain diseases are
underrepresented and lack the sufficient number of samples to enable accurate
classification. This can lead to biased predictions, as the model can achieve good
accuracy scores by generalising to the common conditions.

Most of the existing OCT classification models focus on the retinal diseases
that occur frequently and therefore have a lot of data available, however the
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rare diseases often get left out due to the insufficient number of samples. For
example, Age-Related Macular Degeneration (AMD) is a condition that affects
over 25% of people over 60 years old in Europe [3]. The dataset used in this
study [4] includes images of conditions such as Retinal Artery Occlusion (RAO),
which affects 0.7% of people over 55 years old in Europe [5]. AMD is included in
most existing OCT classifiers and is diagnosed with a good accuracy [6–9], but
RAO is not included in any of the existing models. This is the case for multiple
other diseases as well. In a world where machine-aided diagnosis is on the rise,
such discrepancies could lead to generalisation and misdiagnosis.

To address this problem, generative data augmentation techniques have been
explored to synthesise new, high-quality medical images. A model trained on
such data could become more robust and learn to classify rare conditions better.
Among the existing techniques, diffusion models have emerged in the recent years
as a promising technique for medical image synthesis, enabling the creation of
diverse samples that could be indistinguishable from real ones. However, this task
is particularly challenging due to the small volume of data for certain diseases.
While diffusion has achieved promising results when trained on an unconditional
dataset of 1000 images [10], we are the first ones to consider its applications for
a conditional dataset with some classes having as little as 22 samples.

In this work, we investigate the use of diffusion models to augment a small,
imbalanced OCT dataset. A Denoising Diffusion Probabilist Model is used as a
baseline, and various techniques are implemented to improve the model’s ability
to focus on the overall structure and learn the fine-grained details of the retina.
We evaluate the performance of a classifier model trained on the original dataset,
a dataset with only basic geometric augmentation, and a dataset with generative
data augmentation.

We present a diffusion model modified with attention mechanisms, adversar-
ial fine-tuning, and and a class-aware training strategy to address the challenge
of generating data based on a small, imbalanced dataset. The proposed model
is capable of synthesising realistic-looking data, and the inclusion of such data
in the training for a classifier improves overall and class-wise performance.

The contributions of this paper can be summarised as follows:

– We present a novel diffusion model for synthesising OCT images for a small,
strongly imbalanced dataset.

– In particular, we modify a DDPM with attention mechanisms and propose a
multi-step training process that modulates the class embedding weight and
incorporates adversarial fine-tuning.

– We demonstrate that the proposed model can synthesise realistic-looking
OCT data for classes with as little as 22 images in the original dataset.

– In addition, we show that retinal disease classification based on OCT data
is significantly improved with the inclusion of synthetic data in the training
dataset.



Diffusion with Adversarial Fine-Tuning 3

2 Related work

Data quantity and distribution have been highlighted as significant limitations
in the potential applications of deep learning in the medical field [11, 12]. Aug-
menting the dataset is a common approach for tackling this problem. Basic
augmentations, such as geometric transformations or intensity operations, are
used in most studies and can improve model performance [13]. Over the past
years, image synthesis has been used as a form of generative data augmentation.
It has shown a lot of promise and outperformed models trained on datasets with
no augmentation or basic transformations only [13, 14].

Diffusion has emerged as a promising solution to medical image synthesis,
allowing for generating high-quality data [15–19]. Denoising Diffusion Proba-
bilistic Models (DDPM) were introduced in 2020 [20] as a novel approach that
utilises a noise scheduler in the forward process and a UNet backbone to reverse
the noise. DDPMs have since been successfully used for a variety of medical
tasks, such as image segmentation [19, 21], denoising [22], or classification [23],
amongst multiple others [24]. DDPMs have also performed well on small and
imbalanced datasets [25]. An existing study on few-shot image synthesis shows
that diffusion can generate images based on an unconditional dataset of as little
as 1000 images [10]. Gupta et al. [26] demonstrate the applications of diffusion
to few-shot synthesis on a conditional dataset.

The performance of diffusion models can be further improved by utilising
attention mechanisms in the UNet model used for denoising [27–29]. Amongst
these, Multi-headed Self Attention is a prominent variant that allows the model
to learn global, long-range dependencies between input and output [30]. Another
promising approach to refining the model is discriminator guided training, which
incorporates the predictions of a discriminator to correct the diffusion model and
helps improve its generative performance [31–33].

3 Methods

3.1 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models [20] learn to generate new data by
gradually removing noise from an image.

The forward process adds noise to images from the dataset by following a
pre-defined noise schedule. It is described by a Markov chain where Gaussian
noise is added to an image x0 over T timesteps according to a variance schedule
β. The noisy image for a timestep t is given by:

xt =
√

1− βtxt−1 +
√

βtϵT

where ϵ is sampled from a standard distribution. At t = T , the image becomes
pure random noise.

The reverse process uses a model to progressively denoise the image. Starting
from pure noise at t = T , it predicts the noise ϵθ(xt, t) at the previous timestep.
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A UNet neural network serves as the backbone of this model. The prediction is
then used to remove noise from the image as follows:

xt−1 =
1

√
αt

(

xt −
1− αt√
1− ᾱt

ϵθ(xt, t)

)

+ σtz

where αt = 1 − βt and z is random noise sample from a standard distribution.
Over time, the model learns to generate entirely new images from pure random
noise. Figure 1 illustrates the diffusion process.

Fig. 1. An overview of the forward and reverse diffusion processes is at the top. The
forward process progressively adds noise to the image, and the reverse process uses a
UNet to predict the noise and remove it. The UNet architecture is further detailed at
the bottom.
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3.2 Attention mechanisms

To improve the model’s ability to learn fine details, attention blocks were added
to the UNet. At the bottleneck between downscaling and upsampling blocks,
Multi-Headed Self Attention (MHSA) was added. Each attention module cap-
tures the complex long-range dependencies across different locations, and the
multiple heads allow for learning distinct relationships [34]. This can be crucial
for preserving the structural integrity of the synthesised images.

In addition, Convolutional Block Attention Module (CBAM) was added at
the end of each upsampling block in the UNet [35]. CBAM combines channel
and spatial attention, which enhances feature representation by allowing the
model to focus on the most relevant locations in an image. This improves the
model’s ability to learn fine-grained details, leading to a sharper output. The
UNet architecture is illustrated in Figure 1.

3.3 Class-aware training

To make the model conditional, class embeddings need to be introduced and
passed as input for the UNet model. This allows for generating class-specific
samples of each class. The class embeddings get added to the positional embed-
dings. A class embedding weight was added to control how strongly the model
is influenced by the class vs positional embeddings.

Due to the existing class imbalances, class weights reflecting the proportions
in the dataset were included and used in a weighted loss function, to ensure the
model learns to represent all classes correctly. The loss is given by:

L =
1

N

N
∑

i=1

wyi
LSmoothL1(ϵi, ϵ̂i)

where N is the batch size, w is the class weight for a given class label yi, and
ϵ, ϵ̂ represent the true noise and predicted noise respectively.

The imbalance of the original dataset posed a particular challenge in making
the model explainable and learning the class-specific features. While training the
model without class embeddings results in a good generalisation and reflects the
structure of the retina well, a good understanding of the class characteristics is
needed to accurately represent the rare diseases. We attempt to counter the im-
balance through class-aware training, by modifying the class embedding weight
throughout the training process.

3.4 Adversarial fine-tuning

A discriminator can be used during the diffusion training process to correct and
guide the diffusion model [32, 33]. This has been shown to improve the results
generated by the model.

Initial results showed that the proposed diffusion model was learning the
important features of the retina, but struggling to capture fine details. Similar to



6 Iwanicka and Lu

Generative Adversarial Networks, the discriminator learns to distinguish between
real and synthetic images. The discriminator was then used in a loss function
for the diffusion model, enhancing its ability to learn fine-grained details.

4 Experiments

4.1 Dataset

The dataset used for this study is the Optical Coherence Tomography Dataset
(OCTDL) [4], which contains 2064 images and represents 7 retinal diseases:
Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME),
Epiretinal Membrane (ERM), Retinal Artery Occlusion (RAO), Retinal Vein
Occlusion (RVO), and Vitreomacular Interface Disease (VID). Samples of the
classes are shown in Figure 2. The dataset presents a challenge because of its
severe class imbalance, as the number of class samples range from 1231 for AMD
to 22 for RAO, which reflects how common or rare the diseases are.

Fig. 2. Contents of the OCTDL dataset. Image captions denote class names and the
number of samples.

The images in the dataset vary significantly in size. As part of the data
preprocessing, 8 outliers were removed using a Z-score with a 2.5 threshold tuned
experimentally. The remaining images all followed similar proportions, which
were averaged to width = 2.74× height. All data points were resized according
to this, using the minimum height found in the dataset, to ensure none of the
images get stretched out. This resulted in a standardised dataset of 2056 images
scaled to (199, 546).

4.2 Implementation details

Pre-processing. Basic data augmentation (horizontal flip) was applied to all
classes except AMD to double their size. Additionally, the samples from RAO
were further doubled by applying random rotation of 5-15 degrees and decreas-
ing their contrast. For training, the images were scaled down to (94, 256) and
normalised to [−1, 1].
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Hyperparameters. The baseline diffusion model utilises T = 1000 timesteps
for the forward process and a 5-layer UNet as a backbone for the reverse process,
with an 8-headed MHSA at the bottleneck. The UNet model was trained with
a batch size of 8, Adam optimizer with a learning rate of 10−3, and The Huber
Loss (Smooth L1 Loss) with β = 0.1.

For adversarial fine-tuning, a simple discriminator was implemented consist-
ing of 3 convolutional layers with batch normalisation, dropout with a 0.5 rate,
and ReLU activation. The discriminator used a learning rate of 10−5 and a BCE
loss function.

Training. The models were trained on the Aire HPC system at University
of Leeds equipped with 3 NVIDIA L40S 48GB GPUs. All code was developed
with Python 3.9 using Pytorch with CUDA support. The training time for the
diffusion model was 7 hours, followed by 20 hours of fine-tuning.

The training was carried out in 3 steps:

1. The class embedding weight was set to 0 for a 100 epochs. This was done so
that the model learned the overall structure of the retina without focusing on
the class-specific features. Previous experiments have shown that including
class embeddings from the start makes the model learn the common classes
very well, but leads to poor performance for the smaller classes.

2. The class embedding weight was increased to 2 for the following 300 epochs,
leading to the model learning class-specific features on top of the existing
knowledge of retinal structure.

3. The diffusion model was trained alongside the discriminator for 100 epochs
using an adversarial loss function, which used BCE to assess how well the
discriminator distinguishes between real and fake images. This was used
instead of the regular diffusion loss.

4.3 Evaluation metrics

Quantitative evaluation. We use Inception Score (IS), Fréchet Inception Dis-
tance (FID), Structural Similarity Index Measure (SSIM), and Peak Signal-to-
Noise Ration (PSNR) for evaluation. FID calculates the difference between real
and generated images by comparing the feature distribution, while IS measures
the diversity of the generated images by assessing the confidence and variety of
predictions made by a pre-trained classifier [36]. These are used as benchmarks
in most studies on image generation. We utilise the CLIP Similarity [37] as an
alternative to the inception-based metrics.

Additionally, we use SSIM and PSNR are to further assess image quality
[38]. SSIM measures the perceptual similarity between the images, and PSNR
expresses the ratio between the maximum power of a signal and the power of
the noise. We combine the generative metrics (FID, IS, CLIP Similarity) with
reconstruction metrics (SSIM and PSNR) to better assess the quality of the
generated images.
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Downstream task evaluation. We perform further evaluation by utilising a
ResNet18 [39] classifier on three instances of the dataset: basic dataset, a dataset
with geometric augmentations, and a dataset with generative augmentations
performed by our best diffusion model. ResNet18 has been successfully used
for OCT classification tasks in previous studies [9]. Previous works in this field
highlight the importance of model evaluation on downstream tasks as opposed
to relying only on metrics like FID or IS [40]. The classifier was trained for a
100 epochs using a batch size of 32 and the Adam optimiser with a learning rate
of 10−3. Prior to training, we set aside 20% of the original dataset for testing to
ensure the model is evaluated only on real, unaugmented data.

5 Results

We use a DDPM model as a baseline for comparison against the proposed mod-
ifications - addition of attention modules, class-aware training, and adversarial
fine-tuning. We analyse all configurations of these modifications to investigate
their impact on the model’s performance.

5.1 Quantitative evaluation

Table 1 shows the quantitive evaluation for the diffusion models. The metrics
were computed on 2000 images. An improvement for all metrics is visible for the
final model. The lower FID value indicates a closer feature distribution between
real and generated data, and the higher IS reflects the feature diversity. We
noted that IS calculated for the original dataset was low, measuring 2.94± 0.17.
While FID remains relatively high even for the best model, CLIP Similarity
indicates a very good semantic similarity between the original and generated
data. The increased SSIM and PSNR values show an improvement in perceptual
and pixel-wise image similarity.

We can observe that in isolation, class-aware training brings the biggest im-
provement to the FID score, but adversarial fine-tuning influences IS, PSNR,
and CLIP similarity more. SSIM only improves only with the combination of
multiple additions. Including all three proposed modifications brings the best
results across all metrics.

5.2 Generated images

Table 2 showcases the synthesised images for four different classes, compared
against images sampled from the original Dataset. In particular, we display AMD
(1231 samples), RVO (101 samples), VID (76 samples), and RAO (22 samples)
to demonstrate the performance of the different models on classes of varying
sizes.

A visual inspection shows that a basic DDPM learns the general shape of
the retina, but generalises too much. No class-specific features are visible, and
the images for the smaller classes are more blurry and of a lower quality.
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Table 1. Evaluation metrics of the proposed generative model with proposed modi-
őcations: attention modules (Atn.), class-aware training (CAT), and adversarial őne-
tuning (AFT), compared to DDPM as a baseline. We measure the Inception Score (IS),
Fréchet Inception Distance (FID), Structural Similarity Index Measure (SSIM), Peak
Signal-to Noise Ratio (PSNR), and CLIP Similarity ∈ [−1, 1]. PSNR is given in dB.

Model conőguration IS ↑ FID ↓ SSIM ↑ PSNR ↑ CLIP Similarity ↑

DDPM 2.42 ± 0.01 160.02 0.43 7.04 0.83
DDPM + Atn. 2.72 ± 0.07 131.59 0.45 8.01 0.89
DDPM + CAT 2.36 ± 0.15 112.10 0.45 7.22 0.87
DDPM + AFT 2.85 ± 0.07 127.38 0.44 8.97 0.91
DDPM + Atn. + CAT 2.66 ± 0.09 74.26 0.47 8.04 0.93
DDPM + Atn. + AFT 2.73 ± 0.10 130.95 0.53 8.07 0.91
DDPM + CAT + AFT 2.79 ± 0.08 87.31 0.54 8.89 0.94
DDPM + Atn. + CAT + AFT 2.91 ± 0.10 62.58 0.55 9.01 0.96

Table 2. Images generated using the proposed model and basic DDPM, compared
against the original. The images were randomly selected from the respective datasets.
AMD (Age-related Macular Degeneration), RVO (Retinal Vein Occlusion), VID (Vit-
reomacular Interface Disease), and RAO (Retinal Artery Occlusion) represent selected
classes from the OCT dataset.

AMD RVO VID RAO

Original

DDPM

Proposed model

The results generated by the proposed model are closer to the original, with a
similar level of detail, class-specific features, and comparable contrast. However,
the model was trained on half the resolution of the original images, which leads
to the generated images looking more blurry and losing some detail.

5.3 Classification results

Table 3 demonstrates the results of the classifier trained on the OCTDL dataset
using different data augmentation techniques. We compare the performance of
the classifier on the unaugmented dataset, a dataset with basic geometric aug-
mentations (horizontal flipping, 5-15 degree rotation), and datasets with gener-
ative augmentation done with the proposed diffusion model. We compare the
overall accuracy, precision, and recall of the classifier, and the precision and
recall scores for the classes.

As a baseline, we used the dataset with no augmentations trained on 1,542
data points. The classifier achieved an accuracy score of 83%. Amongst the
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Table 3. Classiőcation results for datasets with different augmentation. AMD, DME,
ERM, NO, RVO, RAO, and VID denote classes in the dataset and represent different
retinal diseases. Results for A - Accuracy, P - Precision, and R - Recall are given in %.

Overall AMD DME ERM NO RVO RAO VID
Augmentation A P R P R P R P R P R P R P R P R

None 83 82 83 89 94 61 45 72 64 73 84 100 50 70 37 62 42
Geometric 83 84 83 91 86 61 64 71 66 76 89 97 93 75 68 77 97
Generative 92 93 93 96 100 97 66 90 94 100 92 100 94 78 100 91 100

classes, AMD achieved the best results, with the remaining classes scoring sig-
nificantly lower. This showcases the expected bias of a classifier trained on an
imbalanced dataset, as big disparities are visible between the class-specific re-
sults. This is also reflected in the macro average of accuracy scores, which was
only 75%.

The geometric augmentation was used to increase the training dataset size to
1,917. The accuracy remained the same at 84%, but there was an improvement in
the recall values for the underrepresented classes. The macro average of accuracy
rose to 79%.

The generative augmentation brought the total number of images for each of
the classes to 500 to ensure an even split. The final training dataset size was 3,375
images. The test dataset contained exclusively the images from the unaugmented
dataset to ensure an accurate evaluation. The generative augmentations have
contributed to an increase of accuracy to 92%, and an increase of precision in
recall for every single class. The improvement is also reflected in the macro
average of accuracy scores, which reached 93% and no longer reflected the class
imbalance.

6 Discussion

The implemented additions to a basic DDPM offer significant performance im-
provements. From Table 2, we have observed that the inclusion of the proposed
modifications have allowed the model to retain class features even for diseases
with very little samples. The resulting images look realistic and resemble the
original well, they retain the general shape of the retina and reflect the distinct
class features, although they are of a lower resolution than the original.

Each of the modifications to the basic model has also improved the evaluation
metrics, however, the FID value remained high. It is important to note that FID
has recently been called into question as the predominant metric for generative
models, and it has been observed to frequently contradict human judgement [41,
42]. We utilised CLIP Similarity as an alternative to the Inception-based metrics
and have observed a score close to 1, indicating very good semantic similarity
between real and fake images. To better assess the quality and realism of the
synthetic data, a human evaluation would be necessary.

While adversarial fine-tuning has improved the results, it is important to
note that this was a very time-intensive process. The base diffusion model took
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8 hours to train for 400 epochs, but fine-tuning it for a 100 epochs took additional
20 hours. However, this had no bearing on the time it took to generate images
after the training. We determine that fine-tuning is a trade-off – better visuals
and metrics can be achieved, but the training time is significantly extended.

The addition of the generated data to the original dataset had a positive im-
pact on disease classification, as shown in Table 3. We have seen a slight increase
in overall accuracy, and a significant increase in the class-specific performance
metrics. This is especially visible for the smaller classes, such as VID – despite
only having 76 samples in the original dataset, the geometric augmentations have
increased the F1 value for this class from 35% to 95%. This shows the promise
of our proposed model in downstream tasks, demonstrating that training on a
combination of real and synthetic data can improve classification performance
on real, unseen data.

Overall, we have achieved promising results. The OCT images synthesised
using the proposed diffusion model resemble the original and have a positive
impact on the classification of retinal diseases.

6.1 Future work

While our proposed modifications to DDPM offer a significant performance im-
provement, future work is needed to make it usable in a clinical setting. We note
there is a need to train the model on full resolution images. Due to resource
limitations, we used a sized-down dataset, but this could lead to critical details
being masked. A possible mitigation would be fine-tuning the model on a higher
image resolution. Additionally, there is a critical need for expert evaluation of
the generated images to ensure the model has accurately learnt to represent the
retinal pathologies. Finally, it is important to validate the performance of the
proposed model on other datasets. This would demonstrate whether the model
can generalise to different applications.

6.2 Ethical concerns

Outside of the existing bias towards rare diseases, it is important to consider that
medical datasets often contain biases in terms of age, gender, or ethnicity. While
the proposed model has successfully improved the disease imbalance, it could
amplify other biases that might have existed in the data. Moreover, there could
be concerns with relying heavily on synthetic data – this technically helps the
classifier, but from an ethical viewpoint, it is important to consider how trust-
worthy that data is. If used without proper validation, it could be misleading.
As a future mitigation step, we would aim to evaluate the generated images with
an expert in the field to ensure proper medical representation is maintained.

7 Conclusion

In this study, we have investigated the applications of diffusion in medical image
synthesis for a small, imbalanced OCT dataset. We proposed modifications to
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DDPM that increase the model’s ability to learn details and class-specific fea-
tures, even for classes containing as little as 22 samples. We have shown that
this model is capable of generating images resembling the original, and that the
inclusion of these images in the training dataset improves classifier performance
and enhances the diagnostic accuracy for rare diseases.
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