
Academic Editors: Muhammad

Kazim and Fabrizio Messina

Received: 25 January 2025

Revised: 30 April 2025

Accepted: 6 May 2025

Published: 8 May 2025

Citation: Walani, C.C.; Doorsamy, W.

Edge vs. Cloud: Empirical Insights

into Data-Driven Condition

Monitoring. Big Data Cogn. Comput.

2025, 9, 121. https://doi.org/

10.3390/bdcc9050121

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Edge vs. Cloud: Empirical Insights into Data-Driven
Condition Monitoring
Chikumbutso Christopher Walani and Wesley Doorsamy *

School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
* Correspondence: w.d oorsamy@leeds.ac.uk

Abstract: This study evaluates edge and cloud computing paradigms in the context of data-
driven condition monitoring of rotating electrical machines. Two well-known platforms, the
Raspberry Pi and Amazon Web Services Elastic Compute Cloud, are used to compare and
contrast these two computing paradigms in terms of different metrics associated with their
application suitability. The tested induction machine fault diagnosis models are developed
using popular algorithms, namely support vector machines, k-nearest neighbours, and deci-
sion trees. The findings reveal that while the cloud platform offers superior computational
and memory resources, making it more suitable for complex machine learning tasks, it also
incurs higher costs and latency. On the other hand, the edge platform excels in real-time
processing and reduces network data burden, but its computational and memory resources
are found to be a limitation with certain tasks. The study provides both quantitative and
qualitative insights into the trade-offs involved in selecting the most suitable computing
approach for condition monitoring applications. Although the scope of the empirical study
is primarily limited to factors such as computational efficiency, scalability, and resource
utilisation, particularly in the context of specific machine learning models, this paper offers
broader discussion and future research directions of other key issues, including latency,
network variability, and energy consumption.

Keywords: condition monitoring; cloud computing; edge computing; induction machine;
machine learning

1. Introduction
Electrical machines have been integral to numerous industrial processes for decades.

Unexpected failures of these machines can often result in costly downtime, repairs, and
even safety hazards [1]. To prevent such unforeseen breakdowns, many industries have
adopted condition-based maintenance, which involves continuous monitoring of machines
to identify incipient faults and issues [2–4]. Advances in sensing, communications, and
computing have significantly transformed condition monitoring, offering a data-driven ap-
proach as opposed to traditional model-based methods. Data-driven condition monitoring
(DDCM) has thus attracted interest from across different sectors, as they offer more flexibil-
ity, among several other benefits, than conventional approaches [5–7]. With data-driven
condition monitoring of rotating electrical machines, the data processing typically involves
the use of a machine learning model which can be deployed at, or in close proximity to,
the machine via edge computing, or remotely via cloud computing. The choice of which
computing paradigm is most suitable depends on several factors related to the application.
Although there is some literature that compares these two paradigms for machine learn-
ing [8–10], there are very few studies that focus on assessing their suitability in the context

Big Data Cogn. Comput. 2025, 9, 121 https://doi.org/10.3390/bdcc9050121

https://doi.org/10.3390/bdcc9050121
https://doi.org/10.3390/bdcc9050121
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0001-9043-9882
https://doi.org/10.3390/bdcc9050121
https://www.mdpi.com/article/10.3390/bdcc9050121?type=check_update&version=1

Big Data Cogn. Comput. 2025, 9, 121 2 of 21

of DDCM. This paper addresses this gap by providing an empirical comparison of edge
and cloud platforms for condition monitoring. The presented comparisons are based on the
practical needs and challenges of modern condition monitoring in industrial settings [8].

Induction motors are widely used across industrial sectors and are crucial for many
production processes. Due to their critical role, faults in components such as bearings, rotors,
and stators can cause significant operational disruptions if not promptly addressed. Among
these faults, broken rotor bars are relatively common and particularly challenging to detect
at an early stage. This type of fault accounts for approximately 9% of induction motor
failures [11]. Advanced online diagnostic techniques may be employed to detect these faults
as early as possible to ensure reliable operation and minimise costly downtime. By analysing
sensor data, such as current and vibration signals, machine learning (ML) algorithms can
accurately predict motor health and detect these faults at an early stage. Therefore, detection
of broken rotor bars using ML serves as an ideal example of modern condition monitoring.
Given the widespread use of induction motors and the recent proliferation of DDCM, this
application provides a valuable case study for understanding how edge and cloud computing
paradigms can meet the demands of modern industrial condition monitoring.

This study conducts a comparative evaluation of edge and cloud computing ap-
proaches in DDCM for electrical machines. By investigating the trade-offs between these
computing paradigms for a particular case study, the research provides insights into their
practical application. The focus is on assessing edge and cloud computing across key met-
rics such as computational efficiency, scalability, and resource utilisation, when deploying
widely used machine learning models—i.e., Support Vector Machines (SVM), Decision
Trees (DT), and K-Nearest Neighbours (KNN), in DDCM. An overview of the study focus is
depicted in Figure 1. This paper is structured as follows: Section 2 provides a background
to condition monitoring, edge computing, and cloud computing, and motivates the study
aims. Section 3 details the methodology, including the experimental setup, dataset, and
evaluation metrics. Section 4 discusses the results and analysis, focusing on comparative
performance and resource utilisation across edge and cloud environments. This section
also discusses the practical implications of the findings and offers some recommendations.
Finally, Section 5 summarises key insights and opportunities for future research.

Figure 1. High-level overview of edge and cloud computing paradigms for diagnosing faults in
induction motors.

Big Data Cogn. Comput. 2025, 9, 121 3 of 21

2. Background
2.1. Condition Monitoring of Industrial Motors

Condition monitoring (CM) has evolved significantly, transitioning from manual
inspections to advanced, data-driven approaches. Initially, industries relied on manual
inspections and reactive maintenance, which were labour-intensive, prone to errors, and
only addressed faults after significant damage had occurred [12]. The introduction of
motor current signature analysis (MCSA) marked a major milestone in industrial motor
fault detection, enabling analysis of motor current signals using techniques such as Fast
Fourier Transform (FFT) and Discrete Fourier Transform (DFT) [11,13,14]. MCSA provides
a predictive approach, allowing for earlier fault detection compared to manual methods,
particularly for detecting common issues like rotor bar damage or bearing faults in motors.
However, MCSA faces some notable limitations as it is sensitive to noise, particularly
in complex fault scenarios, and relies heavily on expert interpretation, making it less
scalable and less adaptable to modern industrial environments [15,16]. These challenges,
combined with increasing operational complexity and the rise of industrial automation,
have driven the transition towards DDCM. The growth of the Internet of Things (IoT) and
the availability of large-scale operational data have further accelerated this shift.

Machine learning (ML) has become a cornerstone of DDCM, offering flexibility, scal-
ability, and superior fault detection capabilities. Unlike traditional techniques, ML can
process vast datasets, detect intricate patterns, and adapt to various motor types and op-
erational conditions [17]. Studies have demonstrated the effectiveness of ML techniques
such as Support Vector Machines (SVMs), Decision Trees, K-Nearest Neighbours (KNN),
and Artificial Neural Networks (ANNs), achieving fault detection accuracies exceeding
95% [17–22]. These advancements position ML as an indispensable tool for predictive
maintenance strategies, enabling industries to minimise unplanned downtime and opti-
mise operational efficiency. In the context of DDCM and this study, real-time processing
refers to the immediate analysis and response, based on ML models, to data collected
from various sensors. This is essential for instant fault detection and diagnosis, continuous
online monitoring, and predictive maintenance functions.

2.2. Edge Computing

Edge computing has emerged as a key enabler of the Industrial Internet of Things
(IIoT), addressing the need for real-time data processing by bringing computational re-
sources closer to data sources. This proximity reduces latency, conserves network band-
width, and enhances data privacy, making edge computing particularly well-suited for
condition monitoring in industrial motors [23,24]. For example, edge devices like Rasp-
berry Pi have been successfully used to classify motor faults using sensor data such as
current and vibration signals [25–27]. Despite its advantages, edge computing does have
its limitations, particularly with the compute resources and scalability offered by edge
devices, which often constrain the kinds of machine learning tasks that can be accommo-
dated [28]. Researchers have explored techniques to mitigate these limitations, such as
reducing the dimension of the feature space and optimising models with techniques such as
Principal Component Analysis (PCA) and hyperparameter tuning, in order to improve the
efficiency of ML models on edge devices without sacrificing accuracy [29–31]. By adopting
such strategies, edge computing can effectively support real-time fault detection while
addressing its inherent resource constraints.

2.3. Cloud Computing

Cloud computing offers unparalleled computational resources and storage capabilities,
making it a powerful platform for performing machine learning tasks. For example, modern

Big Data Cogn. Comput. 2025, 9, 121 4 of 21

cloud platforms offered by Amazon and Google can provide scalability, advanced data
analytics tools, and resource sharing, enabling the training and deployment of complex ML
models [32–34]. These features are particularly advantageous for handling large datasets
and performing computationally intensive tasks, such as training deep learning models
or executing large-scale simulations. However, cloud computing also presents challenges,
including higher operational costs, potential latency issues, and data security concerns.
Although these drawbacks limit its effectiveness in applications requiring immediate
responses, cloud platforms remain indispensable for off-site processing and large-scale
analytics [34].

2.4. Comparative Analysis and Research Gap

In general, a comparison of edge and cloud computing is required to reveal their
distinct advantages and trade-offs in the context of their application. Edge computing is
known to excel in real-time processing, reducing latency and conserving network band-
width, making it ideal for immediate fault detection and low-latency applications [9,10].
Conversely, cloud computing is better suited for resource-intensive tasks, such as training
ML models and managing large-scale data processing, leveraging its superior compu-
tational and storage resources [35]. However, as DDCM becomes more prominent in
industrial applications, it is not obvious which of these would be an optimal solution to
balance efficiency, scalability, and costs. Despite extensive research into edge and cloud
computing individually, a notable gap exists in the literature concerning their comparative
evaluation in condition monitoring, specifically for industrial motors. Few studies have
explored how different DDCM models perform across these paradigms. This research
seeks to address this gap, providing practical insights to guide the selection of comput-
ing paradigms for fault detection and predictive maintenance in industrial environments.
Table 1 provides a summary of related studies in chronological order, highlighting the
methods used, their key strengths, and limitations to emphasise the motivation and novelty
of this work.

Table 1. Summary of related work on ML-based edge and/or cloud computing for monitoring.

Study Focus/Aim Strengths Limitations

Ferrari et al., 2019 [9]

Comparison of cloud vs.
edge for time-series

forecasting using
lightweight ML models

Demonstrated lower latency
with edge; useful for
time-critical systems

Limited analysis on
scalability; resource

constraints not explored
in depth

Paul et al., 2020 [8]
Edge-based deep learning

for image-based
fault detection

Effective in reducing data
transmission; high accuracy

in edge models

Focused on vision-based
data; limited analysis on

scalability and cost

Verma et al., 2021 [10]
Hybrid framework for

anomaly detection in IoT
environments

Achieved good trade-off
between latency and
computational load

Generalised IoT
environment; lacks

evaluation for condition
monitoring-specific context

Jagati et al., 2023 [32] Cloud-centric monitoring
using AWS tools

Enabled scalable and
complex model training

High cost and network
reliance; lacking real-time

response capability

Presented study (2025)

Empirical comparison using
ML models on AWS EC2 vs.

Raspberry Pi for
fault diagnosis

Evaluation across
performance, cost, data

burden, and scalability in
DDCM context

Limited to lightweight ML
models; energy

consumption not evaluated

Big Data Cogn. Comput. 2025, 9, 121 5 of 21

3. Methodology
3.1. Experimental Setup
3.1.1. Hardware Configuration

This study uses the t3.2xlarge configuration of AWS EC2 as the cloud computing
platform. This particular t3 series instance was selected due to its balanced memory and
processing capabilities in contrast to other configurations [36]. The chosen configuration
includes 8 virtual CPUs and 32GB of RAM, which was deemed adequate for handling
intensive machine learning tasks. The popular Raspberry Pi (3B) device is used as the edge
computing platform. The choice of platforms for the study was based on the fact that they
are widely used and commonly available, and not on any preemptive comparisons of their
capabilities or suitability for DDCM applications. As this is an initial study unique to the
application area of DDCM, an exploratory approach is taken, intended to serve as a broader
basis from which more in-depth, focused comparisons can be articulated.

3.1.2. Dataset

The dataset used in this study is based on data collected for an investigation on a
squirrel-cage induction motor, specifically targeting the detection and diagnosis of broken
rotor bars [37]. This dataset is selected for this study as MCSA is a typical example of an
online application in DDCM. Measurements comprise stator phase currents and voltages
sampled at 50 kHz and vibration measurements sampled at 7 kHz. During the original
experiment, these signals were measured over an 18-s duration and repeated 10 times,
resulting in a total of 1,001,000 samples per feature for each experiment. Different faults, or
numbers of broken rotor bars, were collected under different mechanical loads. Figure 2
shows the experimental setup used in [37].

Figure 2. Experimental setup for data collected [37].

For this study, averages were taken across the ten trials to enhance the reliability of the
findings. The research primarily focused on the 3-phase current measurements, essentially
following the proven spectrum-based MCSA approach for fault diagnosis [38,39].

3.1.3. Software Environment

Data processing and feature engineering were completed using MATLAB R2023b, as it
provides a comprehensive set of tools for processing machine signals. Python 3.11 was used
for data manipulation and developing the machine learning-based fault diagnosis models.

Big Data Cogn. Comput. 2025, 9, 121 6 of 21

3.2. Modelling
3.2.1. Machine Learning Models for Condition Monitoring

The models were trained separately on both the edge (Raspberry Pi) and cloud (AWS
EC2) platforms to evaluate the impact of computational constraints on training efficiency.
The results compare both inference times and training times, as well as CPU/memory
usage and scalability for both platforms. Training on the edge device was included to
assess its feasibility in resource-constrained environments, while training in the cloud was
evaluated to understand its advantages in handling larger datasets and more complex
models. Support Vector Machines (SVM), K-Nearest Neighbours (KNN), and Decision
Trees (DT) were selected as these are not only popular techniques in condition monitoring,
but were also deemed suitable for the purposes of comparative evaluations carried out
in this work. Again, this work limits its scope to these models, which are considered to
be relatively lightweight when compared to deep learning models. As an initial study
intended to fill this gap, an exploratory approach is taken to provide breadth to the scope
of the research, and hence, multiple popular learning algorithms are selected as a basis and
a framework upon which future research can be built.

The selected algorithms were used in this study for developing the fault diagnosis
models due to their proven effectiveness in fault classification tasks, with several studies
reporting accuracies exceeding 95% in similar applications [17–21]. Additionally, these
algorithms are computationally efficient making them more suitable for application using
edge devices like the Raspberry Pi. More resource-intensive models, such as those based on
neural networks like Long Short-Term Memory (LSTM), that have demonstrated better per-
formance in condition monitoring [40], were excluded from this study as the variations in
computational demands of different model architectures and implementations, particularly
on edge devices, require a dedicated separate study [41].

• SVM is suited to handling high-dimensional feature spaces, and it is effective in
characterising non-linear relationships using kernel functions. This algorithm is
selected here as it has been demonstrated to effectively separate condition monitoring
features extracted through Power Spectral Density (PSD) analysis, enabling accurate
classification of rotor bar faults [18].

• KNN classifies data instances based on their proximity in the feature space. Its non-
parametric nature allows it to adapt well to varying fault patterns, making it suitable
for condition monitoring with minimal computational overhead [42,43]. Bayesian
optimisation was applied to tune the optimal value of K, improving the classifica-
tion performance.

• The DT algorithm is a popular choice owing to its interpretability and low com-
putational cost. Its hierarchical structure allows for efficient classification of rotor
conditions by following decision paths based on feature thresholds [44].

3.2.2. Data Preprocessing and Feature Engineering

The data were first imported into MATLAB, where the power spectrum density
function was used to estimate the PSD of the current signals. In this study, the entire 18-s
recordings of the phase-current signals were used. Although still following an MCSA
approach, this study uses the PSD instead of the FFT, which has been shown to be more
susceptible to false positives [45]. Figure 3 shows the stator current PSD under different
conditions. The PSD of these signals reveal distinct characteristics in the frequency domain
where harmonics exhibit patterned variations under different conditions, which are learnt
by models in order to classify healthy and broken rotor bar fault conditions.

Big Data Cogn. Comput. 2025, 9, 121 7 of 21

Figure 3. PSD of current signals for healthy and fault conditions.

The harmonics of interest for each of the signals between 60 Hz to 500 Hz were
extracted from the PSD estimates, producing a total of 8 features. Table 2 presents a sample
of instances extracted from the PSDs to demonstrate how some of the key features, or
harmonics, vary under different conditions.

Table 2. Example of instances showing variation in some key features, or harmonics, from PSD
analysis for different healthy and fault conditions.

Health Instance 60 Hz 120 Hz 180 Hz

healthy 7 1.483471 0.010803 0.011020
healthy 10 2.703580 0.019458 0.005308
healthy 11 2.724468 0.019831 0.005443

broken_bar_1 7 1.585917 0.011808 0.012588
broken_bar_1 10 2.838809 0.020390 0.008129
broken_bar_1 11 2.819858 0.020250 0.008034
broken_bar_2 7 1.431021 0.010651 0.011763
broken_bar_2 10 2.712764 0.019249 0.010197
broken_bar_2 11 2.692282 0.019351 0.011599
broken_bar_3 7 1.438370 0.010723 0.013016
broken_bar_3 10 2.865887 0.020938 0.015434
broken_bar_3 11 2.850097 0.020939 0.014791
broken_bar_4 7 1.629478 0.012014 0.016912
broken_bar_4 10 2.961412 0.021510 0.019296
broken_bar_4 11 2.942672 0.021436 0.017215

1. PCA was used to reduce the feature space from 8 to 2 dimensions, yielding a vari-
ance retention of 99.99%, which ensures minimal loss of information. The primary
motivation for using PCA was to evaluate the impact of dimensionality reduction
on both training efficiency and data transmission, particularly in edge computing
environments. PCA has been widely recognised for reducing data transmission in
IoT and Industry 4.0 applications, enhancing security by avoiding raw data transmis-
sion, and improving energy efficiency [46,47]. These benefits align with the needs
of real-time, resource-constrained condition monitoring systems. Although PCA
effectively reduces the complexity of the input data and improves training efficiency,

Big Data Cogn. Comput. 2025, 9, 121 8 of 21

the results indicate increased CPU and memory usage during inference. This is due
to the computational cost of applying the transformation matrix to incoming data
before classification, a known challenge in embedded machine learning implemen-
tations [46,48]. While previous studies suggested PCA could improve performance
for DDCM applications [49,50], these results highlight a trade-off where PCA reduces
training time and data transmission load, but this may come at the cost of latency
in inference.

2. The evaluation metrics used in this study were the F1-score, training and inference
times, resource utilisation (CPU and memory), and costs. With regards to resource
utilisation, CPU usage is normalised across platforms to afford comparison between
CPUs with different number of cores. Data burden and scalability were also evaluated
by varying the size of the test data. The metrics were also evaluated with and without
dimensionality reduction to estimate the impacts between platforms.

3. Experimental tests were conducted by firstly dividing the dataset, where 60% of
the set was used for model development and testing, and 40% of the set was set
aside for scalability testing. An 80:20 split was used for training and testing of the
models. Scalability tests used data at different increments—i.e., 10%, 25%, 50%, and
100%. Models were developed using SVM, DT, and KNN, tuned using Bayesian
optimisation, and tested on both edge and cloud platforms.

4. Results and Analysis
4.1. Tables of Results

Tables 3–6 summarise the various metrics recorded with and without dimensionality
reduction and model optimisation.

Table 3. Performance summary without PCA and model optimisation.

Metric Edge (Raspberry Pi) Cloud (AWS EC2)

DT
F1-Score 1.00 1.00
Training Time (s) 0.0347 0.0015
Inference Time (s) 0.0014 0.0008
Train CPU Usage (%) 3.73 0.52
Train Memory (MB) 43.20 11.50

SVM
F1-Score 0.38 0.38
Training Time (s) 0.0124 0.0040
Inference Time (s) 0.0023 0.0004
Train CPU Usage (%) 3.79 0.93
Train Memory (MB) 43.96 11.62

KNN
F1-Score 0.75 0.75
Training Time (s) 0.0069 0.0009
Inference Time (s) 0.0196 0.0011
Train CPU Usage (%) 4.30 0.10
Train Memory (MB) 42.67 11.60

Big Data Cogn. Comput. 2025, 9, 121 9 of 21

Table 4. Performance summary with PCA and model optimisation.

Metric Edge (Raspberry Pi) Cloud (AWS EC2)

DT
F1-Score 0.96 0.96
Training Time (s) 0.0067 0.0012
Inference Time (s) 0.0013 0.0006
Train CPU Usage (%) 8.07 0.41
Train Memory (MB) 71.61 13.30

SVM
F1-Score 0.93 0.93
Training Time (s) 0.0094 0.0004
Inference Time (s) 0.0031 0.0011
Train CPU Usage (%) 8.96 0.17
Train Memory (MB) 75.70 13.30

KNN
F1-Score 0.95 0.95
Training Time (s) 0.0043 0.0011
Inference Time (s) 0.0207 0.0023
Train CPU Usage (%) 7.22 0.28
Train Memory (MB) 76.60 13.40

Table 5. Comparison of inference time and accuracy at varying sample sizes.

Model Sample Size (%) Edge Inference
Time (s)

Edge Accuracy
(%)

Cloud Inference
Time (s)

Cloud Accuracy
(%)

DT

10% 0.0020 100.00 0.0000 100.00
25% 0.0010 88.89 0.0000 88.89
50% 0.0010 94.44 0.0000 94.44
75% 0.0011 96.30 0.0000 96.30

100% 0.0012 97.26 0.0000 97.26

SVM

10% 0.0023 100.00 0.0000 100.00
25% 0.0020 100.00 0.0000 100.00
50% 0.0028 100.00 0.0000 100.00
75% 0.0037 100.00 0.0000 100.00

100% 0.0043 98.63 0.0000 98.63

KNN

10% 0.0265 100.00 0.0000 100.00
25% 0.0125 100.00 0.0081 100.00
50% 0.0214 97.22 0.0000 97.22
75% 0.0243 98.15 0.0086 98.15

100% 0.0315 97.26 0.0000 97.26

4.2. Discussion of Results
4.2.1. F1-Score

The results presented in Table 4 demonstrate that the F1 score remained consistent
across both the edge (Raspberry Pi) and cloud (AWS EC2) platforms for all the machine
learning models tested. This consistency indicates that the choice of deployment platform
has no impact on the accuracy of the models. It should be highlighted that model accuracies
are 100% in some cases. This is related to overfitting and the scalability testing, which is
discussed later in Section 4.2.4. Regardless of which platform the model is deployed on, the
predictive performance remains unchanged. This finding suggests that when selecting a
deployment platform for machine learning-based condition monitoring systems, accuracy

Big Data Cogn. Comput. 2025, 9, 121 10 of 21

is not a determining factor. Instead, the decision should focus on other performance metrics
such as computational speed, scalability, and resource efficiency.

Table 6. Analysis of data burden results.

Data Type Samples (18 s) Samples (24 h) Size per Sam-
ple/Segment Total Size (24 h)

Impact on
Network

Bandwidth

Original Data 1,001,000 4,318,320,000 8 Bytes 34.55 GB

Extremely high,
impractical for

real-time
cloud upload.

Feature
Engineered Data 245 52,920

15,680
Bytes/segment 830.78 MB

Very low,
feasible for
real-time

transmission.

4.2.2. Training and Inference Times

A significant difference between the platforms was observed in the training and
inference times, as illustrated in Figures 4 and 5. The results revealed that the cloud
platform consistently outperformed the edge platform in both metrics across all models.
Specifically, the cloud achieved approximately 844% faster training times and 1013% faster
inference times, on average, when compared to the edge. These performance gains can be
attributed to the cloud’s superior computational resources and scalability, which allow for
faster data processing and model training. Although edge training times are significantly
reduced by more than 50% on average with the use of PCA, they are still not comparable to
that of times achieved using the cloud.

These findings have important implications for industrial condition monitoring ap-
plications. Systems that demand real-time fault detection and continuous model updates
would benefit significantly from cloud deployment due to its faster processing capabilities.
In contrast, the edge platform may still be suitable for applications where low-latency
responses and offline operation are critical. However, for scenarios requiring scalable,
high-performance computing, the cloud platform offers a clear advantage. Further analysis
reveals that the DT model exhibited the longest training time among the models, while
the KNN model had the longest inference time. Despite these model-specific differences,
the cloud platform consistently outperformed the edge platform across all tested scenarios.
This performance gap highlights the cloud’s advantage in handling complex models and
workloads that require frequent retraining or rapid data processing.

4.2.3. CPU and Memory Usage

The findings of this study reveal that the edge platform consistently exhibited higher
CPU and memory usage compared to the cloud platform across all tested models, as
illustrated in Figures 6 and 7. Specifically, the edge platform consumed more than three
times the CPU and memory resources than the cloud. This significant disparity highlights
the superior resource efficiency of the cloud platform, enabling it to handle complex
computational tasks and data-intensive operations without overloading system resources.

The data further show that while the cloud platform maintained exceptionally low
CPU usage during both training and inference phases—reporting usage as low as 0.3% in
Python-based metrics—the AWS CloudWatch dashboard reflected a slightly higher average
CPU utilisation of approximately 4%, as depicted in Figure 8. This discrepancy can be
attributed to the background processes of the cloud platform, including the management

Big Data Cogn. Comput. 2025, 9, 121 11 of 21

of the operating system, Docker containers, NAT gateways, and other system services that
contribute to the baseline resource consumption.

Figure 4. Comparison of training times on different platforms across models.

Figure 5. Comparison of inference times on different platforms across models.

These results emphasise that the cloud platform is better suited for executing memory-
and CPU-intensive tasks due to its scalable infrastructure and optimised resource utilisation.
The flexible and centralised nature of the cloud paradigm may also be particular useful in
cases where models are frequently updated. However, it is important to recognise that as
task complexity increases, the cloud may engage additional background processes, poten-
tially leading to increased latency and higher operational costs. Therefore, while the cloud
is advantageous for handling complex workloads, careful management of computational
tasks is essential to mitigate hidden overhead and ensure cost-efficiency.

Big Data Cogn. Comput. 2025, 9, 121 12 of 21

Figure 6. Comparison of CPU usage on different platforms across models.

Figure 7. Comparison of Memory usage on different platforms across models.

Figure 8. AWS dashboard showing resource utilisation.

4.2.4. Scalability Analysis

The study results demonstrate that the edge platform (Raspberry Pi) consistently
exhibited higher CPU and memory usage compared to the cloud platform (AWS EC2)
across all machine learning models tested. Specifically, the edge platform consumed more
than three times the CPU and memory resources of the cloud. This significant disparity

Big Data Cogn. Comput. 2025, 9, 121 13 of 21

highlights the cloud platform’s superior resource efficiency, enabling it to manage complex
computational tasks and data-intensive operations without straining its system resources.
For instance, during both training and inference phases, the DT model recorded a CPU
usage of approximately 4.2% and memory usage of 52% on the edge platform, whereas
the cloud platform maintained CPU usage below 1% and memory usage around 13%.
Similar trends were observed for the SVM and KNN models. This consistent performance
on the cloud is attributed to its ability to dynamically allocate computational resources
as needed. Additionally, while the cloud platform’s CPU usage during training and
inference was as low as 0.3%, data collected from the AWS CloudWatch dashboard revealed
a slightly higher average CPU utilisation of approximately 4%, as depicted in Figure 8.
This discrepancy arises because the cloud allocates CPU resources not only to the primary
computational tasks but also to various background operations, including the management
of the operating system, Docker containers, NAT gateways, and other essential services.
With respect to inference times and accuracies at various scales of sample data (Table 5), the
recorded inference times for the edge device were impacted the most with increasing data
sizes. The accuracies are not impacted across computing paradigms as expected. Some
models are found to achieve 100% accuracy, which does indicate overfitting, especially in
the case of the SVM models. This is expected where reduced sample sizes are intentionally
used for the scalability tests, and therefore, cross-validation is not directly employed to
overcome this issue. However, improvements with models in relation to this aspect are
then observed as the sampled sizes are scaled up.

These findings emphasise the cloud platform’s advantage in handling memory- and
CPU-intensive workloads due to its scalable and efficient infrastructure. However, it is
important to recognise that as computational complexity increases, the cloud may en-
gage additional background processes, potentially leading to increased latency and higher
operational costs. Therefore, while the cloud is well-suited for large-scale, complex compu-
tations, careful resource management is essential to optimise performance and maintain
cost-efficiency. In contrast, the edge platform, with its higher resource consumption, may
be more suitable for lightweight, latency-sensitive applications but is less capable of scaling
effectively for data-intensive tasks in industrial environments. This limitation could affect
critical processes such as real-time fault detection and predictive maintenance, where rapid
data processing is essential for timely decision-making.

4.2.5. Data Burden

The results of the data burden analysis, as summarised in Table 6, revealed that the
cloud platform incurs a significantly higher data transmission burden compared to the edge
platform. For example, collecting raw data over an 18-s period at a 50 kHz sampling rate
produced approximately 8 MB of data. In contrast, when processed into feature-engineered
data, the same dataset was reduced to around 10 KB. However, when scaled to a 24-h
monitoring period, the raw data would accumulate to approximately 34 GB, whereas the
feature-engineered data would only consume about 870 MB of storage. This substantial
difference underscores the inefficiency of transmitting raw data to the cloud, as it would
place a considerable burden on network bandwidth, leading to increased latency and
higher operational costs. Such an overhead makes the cloud platform less suitable for
real-time condition monitoring, where rapid data processing and cost-efficiency are critical.
In contrast, the edge platform processes data locally, significantly reducing the need for
large data transmissions and mitigating network strain. This local processing capability
makes the edge platform more appropriate for time-sensitive industrial applications that
demand immediate fault detection and minimal network dependency.

Big Data Cogn. Comput. 2025, 9, 121 14 of 21

4.2.6. Cost Analysis

The cost analysis compared the expenses associated with running machine learning
models on the cloud platform (AWS EC2) and the edge platform (Raspberry Pi 3B). The total
cost for using the AWS EC2 instance was $8.14, based on a rate of approximately $0.80 per
hour over a 10-h period. In contrast, the edge platform incurred a one-time purchase cost of
$35 for the Raspberry Pi 3B. At first glance, the edge platform appears more expensive due
to its higher initial investment. However, the cloud platform’s operational costs increase
proportionally with usage duration, which could make it significantly more expensive over
time than the fixed-cost edge device.

Additionally, the AWS billing dashboard (Figure 9) reveals that the cloud charges
approximately $0.40 for compute resources (CPU and memory) and an additional $0.40 for
background services. These include resources such as NAT gateways, EBS storage volumes,
Docker containers, and idle Elastic IP addresses, which continue to incur charges even when
not actively in use. This continuous billing for idle services can contribute to unexpected
costs, especially for applications that require intermittent or lightweight processing.

While this study focused on short-term cost analysis, real-world condition monitoring
applications typically require continuous or periodic operation over months or years. The
long-term cost implications of cloud vs. edge computing will depend on factors such as:

• Frequency of model retraining, which increases cloud usage costs.
• Power consumption of edge devices over extended periods.
• Data transmission costs, particularly when large amounts of sensor data are sent to

the cloud.
• Maintenance and hardware replacement for edge devices.

A more comprehensive long-term cost analysis would require extended testing under
real industrial conditions. Future studies should consider evaluating these costs over
a prolonged duration, incorporating factors such as total cost of ownership (TCO) and
operational efficiency in real-world deployments.

Figure 9. AWS dashboard showing costs incurred during testing.

4.3. Impact of PCA

PCA led to a significant rise in resource consumption, with memory usage increasing
by 72.46% and CPU usage by 105.16% on both platforms. This suggests that while PCA

Big Data Cogn. Comput. 2025, 9, 121 15 of 21

reduces complexity during training, it introduces additional processing demands during
inference, thereby impacting overall operational efficiency. Importantly, the analysis shows
that PCA did not significantly impact the F1 scores across the tested models, indicating
that model accuracy remained stable despite the reduction in feature space. This stability
suggests that PCA successfully preserved the most informative features for model per-
formance. In summary, while PCA effectively enhanced training efficiency by reducing
training time, it introduced trade-offs in the form of increased inference time and greater
CPU and memory utilisation. These findings suggest that PCA should be applied with
caution, particularly in real-time industrial applications where inference speed and resource
usage are critical performance metrics.

4.4. Qualitative Considerations: Ease of Deployment, User Experience, and Network Variability

Although this study has focused primarily on quantitative performance metrics, qual-
itative factors also play a significant role in determining the practical feasibility of edge
and cloud computing in industrial condition monitoring. Based on widely acknowledged
advantages and limitations of these paradigms in the literature, there are some key impacts
of real-world deployment that are not necessarily quantifiable with the presented experi-
mental setup but still require careful consideration. One of these key considerations is the
ease of deployment. Cloud platforms provide a streamlined deployment pipeline where
machine learning models can be integrated with scalable infrastructure and managed re-
motely. This reduces the burden of on-site hardware setup and maintenance but introduces
additional concerns regarding API configurations, cloud security policies, and compliance
with regulatory frameworks [51]. In contrast, edge computing requires local hardware
deployment and software management, which may involve additional setup complexity.
However, it offers greater control over the data pipeline, minimising dependence on ex-
ternal service providers. Another critical aspect is user experience. Cloud-based solutions
benefit from centralised monitoring dashboards and managed services, allowing seamless
integration with industrial IoT frameworks [52]. However, they require stable internet con-
nectivity to ensure uninterrupted operation. Edge devices, on the other hand, process data
locally, reducing reliance on network connectivity and enabling real-time decision-making.
This makes edge computing particularly advantageous in remote locations or industrial
environments where consistent internet access is not guaranteed.

Network variability can also significantly impact the efficiency of cloud computing.
Variability in latency, bandwidth availability, and network outages may introduce delays
in data transmission, affecting real-time inference. The cloud platform’s performance is
highly dependent on internet stability, which can fluctuate due to factors such as network
congestion, infrastructure limitations, or geographic constraints. In contrast, edge comput-
ing ensures that critical computations remain independent of external network conditions,
thereby offering greater reliability in latency-sensitive applications. These qualitative fac-
tors, alongside the quantitative performance metrics of this study, should be taken into
account when selecting a computing paradigm for condition monitoring applications. Al-
though cloud computing offers a highly scalable and centralised approach, edge computing
provides localised decision-making and operational independence. The choice between
these two paradigms depends on the specific requirements of the industrial application,
including deployment complexity, data sensitivity, and real-time processing needs.

4.5. Practical Implications and Recommendations

Selecting the most suitable computing paradigm for DDCM of industrial induction
motors requires a careful evaluation of multiple factors, including real-time processing
needs, data complexity, cost, model retraining frequency, network stability, and data

Big Data Cogn. Comput. 2025, 9, 121 16 of 21

security. Developers must carefully weigh these factors to determine whether to implement
a solution using edge computing, cloud computing, or a hybrid approach. This discussion
explores key questions that industrial developers must consider and offers evidence-based
insights derived from the findings of this study.

4.5.1. Is Real-Time Fault Detection and Low Latency Critical?

The edge platform proves to be the most effective solution for condition monitoring
systems where real-time fault detection and immediate response are critical. This study
demonstrates that edge computing offers significantly lower latency compared to the
cloud due to its localised data processing, eliminating delays caused by network data
transfer. In industrial settings, where machine faults can lead to costly downtimes or safety
hazards, the ability to detect anomalies and trigger immediate responses is essential. The
cloud, despite its superior computational resources, introduces inherent latency through
data transmission, which can hinder timely interventions. Therefore, in environments
where instantaneous decision-making is required, deploying machine learning models
on the edge is recommended. The cloud can still be utilised effectively for more complex
analyses in applications where minor delays are acceptable. However, latency should be
assessed in these cases where the risk of delay is more substantial. Since latency is highly
system-dependent, these end-to-end delays should be carefully evaluated based on the
features of the application scenario, such as the network topology, sensor and data centre
networks, etc.

4.5.2. How Large and Complex Are the Data That Are Being Processed?

The nature and scale of data being processed play a crucial role in determining the
suitable computing paradigm. This study revealed that the edge platform struggles with
large datasets and complex machine learning models due to its limited computational
power and memory capacity. In contrast, the cloud platform efficiently manages large-scale
data processing and supports complex models through scalable computational resources.
When condition monitoring involves high-frequency sensor data or requires advanced
analytics using deep learning models, the cloud’s ability to dynamically allocate resources
would make it the more suitable option. Conversely, for lightweight models and moderate
data volumes, the edge platform offers a more practical and efficient solution. There is
certainly scope for further comparisons in this regard, with a focus on more computa-
tionally intensive models, where the scope of this study is limited to lightweight models.
Additionally, the case study used in this work employed MCSA, where current is the key
measurement modality. Although this is one of the most popular online measurement
modalities for DDCM in rotating electrical machines, it should be noted that there is scope
for further comparison of different measurement modalities, inter alia, vibration- and
thermal-based modalities, that may introduce different context and complexities to the data
handling requirements.

4.5.3. What Are the Cost Constraints of Deployment and Operation?

The study’s findings indicated that the edge platform offers a cost-effective solution
due to its one-time hardware investment (e.g., the Raspberry Pi at $35), with minimal
ongoing expenses. In contrast, the cloud platform operates on a pay-as-you-go model,
incurring continuous costs for compute power, data storage, and background services,
which can accumulate over extended use. These findings suggest that for industries
with tight budget constraints or long-term monitoring needs, the edge platform is more
financially viable. However, for applications requiring advanced computational power,
large-scale data processing, and frequent model retraining, the cloud’s higher operational
costs are justified by its ability to handle complex workloads efficiently.

Big Data Cogn. Comput. 2025, 9, 121 17 of 21

4.5.4. How Frequently Does the Model Need to Be Retrained and Updated?

In dynamic industrial environments, where equipment conditions and operational
demands are constantly evolving, the frequency of machine learning model retraining
becomes a critical factor for maintaining high predictive accuracy. This study demonstrated
that the cloud platform significantly outperforms the edge platform in managing frequent
model updates due to its scalable computational resources and ability to handle large-scale
retraining tasks efficiently. Conversely, the edge platform’s limited processing power and
memory capacity make it unsuitable for regularly updating complex models, restricting
its use in adaptive learning environments. These findings suggest that industries with
operations that require continuous model adaptation, such as those affected by changing
load conditions or environmental factors, would greatly benefit from deploying models
on the cloud platform. In contrast, the edge platform is more effective for applications
involving static models that rarely need updates, offering a stable and cost-efficient solution
to monitor consistent and predictable processes.

4.5.5. Is Network Reliability and Bandwidth Availability a Concern?

Network reliability and bandwidth availability are critical factors in determining the
suitability of edge or cloud computing for industrial condition monitoring. This study
demonstrated that the edge platform is inherently more resilient to network instability
because it performs data processing locally, eliminating reliance on continuous internet
connectivity. This makes edge computing particularly effective for deployment in remote
industrial environments or facilities with limited or unreliable network infrastructure,
where transmitting large datasets to the cloud could introduce significant latency and
increase the risk of data loss. In contrast, the cloud platform requires a stable, high-speed
internet connection for efficient data transfer and real-time processing. Although the cloud
is ideal for operations in environments with robust and reliable network infrastructure, it
may be impractical in settings where network interruptions are frequent, or bandwidth
is constrained. Therefore, industries operating in network-constrained or geographically
isolated locations would benefit from the edge platform, ensuring consistent and uninter-
rupted condition monitoring. Conversely, industries with access to reliable high-bandwidth
networks can leverage the cloud platform for scalable, high-performance data analysis.

4.5.6. Large-Scale Industrial Condition Monitoring

Considering the trade-offs between edge and cloud computing, this study recommends
adopting a hybrid edge-cloud architecture for large-scale industrial condition monitoring.
The hybrid solution combines the real-time processing capabilities of the edge with the
scalability and computational power of the cloud, offering an optimised and balanced
framework. In this configuration, edge devices could handle real-time data acquisition,
preprocessing, and fault detection, reducing network traffic and latency. Processed data,
particularly key features, anomalies, and even just assessments, could be transmitted to
the cloud for either front-end dashboards, complex analysis, model retraining, and/or
long-term data storage. This division of labour could potentially ensure fast and localised
responses to critical issues while leveraging the computational resources of the cloud
for advanced analytics. The hybrid model offers several advantages. It significantly re-
duces network burden by transmitting only essential data to the cloud, thereby lowering
bandwidth costs and minimising latency. It also optimises costs by limiting reliance on
expensive cloud services for routine data processing. Additionally, the cloud provides
scalability for handling large datasets and complex models, while edge devices enable
real-time responsiveness. Despite implementation challenges, such as data synchronisation
and system integration, the benefits of the hybrid model make it a superior solution for in-

Big Data Cogn. Comput. 2025, 9, 121 18 of 21

dustrial condition monitoring. Although this study focuses on performance metrics such as
computational efficiency, scalability, and cost, power consumption remains a critical factor
for industrial condition monitoring applications. Edge computing platforms like Raspberry
Pi typically consume significantly less power (2–5 W) compared to cloud instances (over
100 W under load) [53,54]. However, power demand on edge devices increases by up to
40% during machine learning operations, depending on model complexity [53]. Emerg-
ing energy management strategies, such as dynamic power scaling and integration with
renewable energy sources, could potentially offer optimised edge computing for industrial
deployments [55]. Thus, the hybrid architecture requires careful design and implementa-
tion, where the impacts of power consumption should be considered in conjunction with
computational efficiency, scalability, and costs for large-scale DDCM.

5. Conclusions
This study compared the Raspberry Pi (edge) and AWS EC2 (cloud) platforms for the

DDCM application of induction motor fault diagnosis based on three widely used machine
learning algorithms: SVM, KNN, and DT. Key differences were highlighted between the
two platforms in terms of accuracy, training time, inference time, CPU and memory usage,
data burden, cost, and scalability. The findings indicate that the edge platform excels
in applications requiring low latency and real-time processing due to its localised data
handling, making it ideal for time-sensitive industrial operations. However, its limited
computational power restricts its ability to process large datasets and complex machine
learning models. In contrast, the cloud platform offers superior computational capacity and
scalability, making it more suitable for data-intensive tasks and models requiring frequent
retraining, albeit with higher costs and greater reliance on stable network infrastructure.
These findings suggest that neither paradigm alone can comprehensively meet all of the
various requirements of modern industrial condition monitoring in a cost-sensitive manner.

Valuable insights were also provided to support practical and balanced assessment of
computing frameworks to be deployed in DDCM applications. The insights gained from
this initial study provide a basis for future work, and certain limitations are acknowledged
where there are several issues that warrant further investigation. The analysis did not
include comparisons of energy consumption between edge and cloud systems, which is
a critical factor for sustainable deployment in industrial environments. The study did
not fully explore the performance of more advanced deep learning models, which are
becoming increasingly important in condition monitoring. Instead, we decided to focus on
relatively lightweight models as an initial scope of exploratory work. Further investigation
dedicated to more complex deep learning models is required in this context and will,
therefore, form part of future work. The experimental evaluation offered here focused
solely on induction motor data related to broken rotor bar faults. Although the results
provide valuable insights for this specific fault type, more research is needed to validate
the generalisability of these findings across other condition monitoring tasks, including
different measurement modalities and fault types, in industrial machines. Future work will
also include direct power measurements for both edge and cloud computing platforms to
provide a comprehensive comparison of energy efficiencies. These investigations will be
presented in future work to provide further insight into the trade-offs between performance,
cost, and sustainability of computing paradigms in DDCM systems.

Author Contributions: Conceptualization, W.D.; methodology, C.C.W. and W.D.; software, C.C.W.;
validation, C.C.W.; formal analysis, C.C.W. and W.D.; investigation, C.C.W.; resources, C.C.W. and
W.D.; writing—original draft preparation, C.C.W. and W.D.; writing—review and editing, W.D.;
visualization, C.C.W. and W.D.; supervision, W.D.; project administration, C.C.W. and W.D. All
authors have read and agreed to the published version of the manuscript.

Big Data Cogn. Comput. 2025, 9, 121 19 of 21

Funding: This research received no external funding.

Data Availability Statement: The data used in this study is publicly available [37].

Acknowledgments: The authors acknowledge the University of Leeds for providing the necessary
resources and facilities that supported this research project.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tavner, P.; Ran, L.; Penman, J.; Sedding, H. Condition Monitoring of rOtating Electrical Machines; The Institution of Engineering and

Technology: London, UK, 2008.
2. Ahmad, R.; Kamaruddin, S. A review of condition-based maintenance decision-making. Eur. J. Ind. Eng. 2012, 6, 519–541.

[CrossRef]
3. Ali, A.; Abdelhadi, A. Condition-based monitoring and maintenance: State of the art review. Appl. Sci. 2022, 12, 688. [CrossRef]
4. Haq, S.U.; Trivedi, A.; Rochon, S.; Moorthy, M.T. Alternative Methods of Machine Online Condition Monitoring: Recommenda-

tions for Rotating Machines in the Petroleum and Chemical Industry. IEEE Ind. Appl. Mag. 2024, 30, 19–31. [CrossRef]
5. Das, O.; Das, D.B.; Birant, D. Machine learning for fault analysis in rotating machinery: A comprehensive review. Eng. Appl.

Artif. Intell. 2023, 9, e17584. [CrossRef]
6. Latil, D.; Ngouna, R.H.; Medjaher, K.; Lhuisset, S. Enhancing Data-driven Vibration-based Machinery Fault Diagnosis Generaliza-

tion Under Varied Conditions by Removing Domain-Specific Information Utilizing Sparse Representation. In Proceedings of the
PHM Society European Conference, Prague, Czech Republic, 3–5 July 2024; Volume 8.

7. Zhao, C.; Chen, J.; Jing, H. Condition-driven data analytics and monitoring for wide-range nonstationary and transient continuous
processes. IEEE Trans. Autom. Sci. Eng. 2020, 18, 1563–1574. [CrossRef]

8. Paul, A.K. Edge or Cloud: What to Choose? In Cloud Network Management; Chapman and Hall/CRC: New York, NY, USA, 2020;
pp. 15–25.

9. Ferrari, P.; Rinaldi, S.; Sisinni, E.; Colombo, F.; Ghelfi, F.; Maffei, D.; Malara, M. Performance evaluation of full-cloud and
edge-cloud architectures for Industrial IoT anomaly detection based on deep learning. In Proceedings of the 2019 II Workshop on
Metrology for Industry 4.0 and IoT (MetroInd4.0 & IoT), Naples, Italy, 4–6 June 2019; IEEE: New York, NJ, USA, 2019; pp. 420–425.

10. Verma, A.; Goyal, A.; Kumara, S.; Kurfess, T. Edge-cloud computing performance benchmarking for IoT based machinery
vibration monitoring. Manuf. Lett. 2021, 27, 39–41. [CrossRef]

11. Edomwandekhoe, K.I. Modeling and Fault Diagnosis of Broken Rotor Bar Faults in Induction Motors. Ph.D. Thesis, Memorial
University of Newfoundland, St. John’s, NL, Canada, 2018.

12. Lee, S.B.; Stone, G.C.; Antonino-Daviu, J.; Gyftakis, K.N.; Strangas, E.G.; Maussion, P.; Platero, C.A. Condition monitoring of
industrial electric machines: State of the art and future challenges. IEEE Ind. Electron. Mag. 2020, 14, 158–167. [CrossRef]

13. El Hachemi Benbouzid, M. A review of induction motors signature analysis as a medium for faults detection. IEEE Trans. Ind.
Electron. 2000, 47, 984–993. [CrossRef]

14. Raman, R.; Naikade, K. Smart Industrial Motor Monitoring with IoT-Enabled Photovoltaic System. In Proceedings of the 2023
7th International Conference on IoT in Social, Mobile, Analytics and Cloud (I-SMAC), Kirtipur, Nepal, 11–13 October 2023; IEEE:
New York, NJ, USA, 2023; pp. 53–57.

15. Thorsen, O.; Dalva, M. Condition monitoring methods, failure identification and analysis for high voltage motors in petrochemical
industry. In Proceedings of the 8th International Conference on Electrical Machines and Drives, Cambridge, UK, 1–3 September
1997; IET: Stevenage, UK, 1997.

16. Oñate, W.; Perez, R.; Caiza, G. Diagnosis of incipient faults in induction motors using mcsa and thermal analysis. In Advances in
Emerging Trends and Technologies: Volume 2; Springer: Cham, Switzerland, 2020; pp. 74–84.

17. Manikandan, S.; Duraivelu, K. Fault diagnosis of various rotating equipment using machine learning approaches–A review. Proc.
Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 629–642. [CrossRef]

18. Bensaoucha, S.; Moreau, S.; Bessedik, S.A.; Ameur, A. Broken Rotor Bars Fault Detection in Induction Machine Using Machine
Learning Algorithms. In Proceedings of the 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), Sétif,
Algeria, 6–10 May 2022; IEEE: New York, NJ, USA, 2022; pp. 851–856.

19. Ali, M.Z.; Shabbir, M.N.S.K.; Liang, X.; Zhang, Y.; Hu, T. Machine learning-based fault diagnosis for single-and multi-faults in
induction motors using measured stator currents and vibration signals. IEEE Trans. Ind. Appl. 2019, 55, 2378–2391. [CrossRef]

20. Khalil, A.F.; Rostam, S. Machine Learning-based Predictive Maintenance for Fault Detection in Rotating Machinery: A Case
Study. Eng. Technol. Appl. Sci. Res. 2024, 14, 13181–13189. [CrossRef]

21. Ferraz Júnior, F.; Romero, R.A.F.; Hsieh, S.J. Machine Learning for the Detection and Diagnosis of Anomalies in Applications
Driven by Electric Motors. Sensors 2023, 23, 9725. [CrossRef]

http://doi.org/10.1504/EJIE.2012.048854
http://dx.doi.org/10.3390/app12020688
http://dx.doi.org/10.1109/MIAS.2024.3387136
http://dx.doi.org/10.1016/j.heliyon.2023.e17584
http://dx.doi.org/10.1109/TASE.2020.3010536
http://dx.doi.org/10.1016/j.mfglet.2020.12.004
http://dx.doi.org/10.1109/MIE.2020.3016138
http://dx.doi.org/10.1109/41.873206
http://dx.doi.org/10.1177/0954408920971976
http://dx.doi.org/10.1109/TIA.2019.2895797
http://dx.doi.org/10.48084/etasr.6813
http://dx.doi.org/10.3390/s23249725

Big Data Cogn. Comput. 2025, 9, 121 20 of 21

22. Zhong, X.; Ban, H. Crack fault diagnosis of rotating machine in nuclear power plant based on ensemble learning. Ann. Nucl.
Energy 2022, 168, 108909. [CrossRef]

23. Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge computing in industrial internet of things: Architecture,
advances and challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [CrossRef]

24. Holmes, T.; McLarty, C.; Shi, Y.; Bobbie, P.; Suo, K. Energy Efficiency on Edge Computing: Challenges and Vision. In Proceedings
of the 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, TX, USA, 11–13
November 2022; IEEE: New York, NJ, USA, 2022; pp. 1–6.

25. de Las Morenas, J.; Moya-Fernández, F.; López-Gómez, J.A. The edge application of machine learning techniques for fault
diagnosis in electrical machines. Sensors 2023, 23, 2649. [CrossRef] [PubMed]

26. Mostafavi, A.; Sadighi, A. A novel online machine learning approach for real-time condition monitoring of rotating machines. In
Proceedings of the 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 17–19 November
2021; IEEE: New York, NJ, USA, 2021; pp. 267–273.

27. Shubita, R.R.; Alsadeh, A.S.; Khater, I.M. Fault detection in rotating machinery based on sound signal using edge machine
learning. IEEE Access 2023, 11, 6665–6672. [CrossRef]

28. Mirani, A.A.; Velasco-Hernandez, G.; Awasthi, A.; Walsh, J. Key challenges and emerging technologies in industrial IoT
architectures: A review. Sensors 2022, 22, 5836. [CrossRef]

29. Joshi, R.; Somesula, R.S.; Katkoori, S. Empowering Resource-Constrained IoT Edge Devices: A Hybrid Approach for Edge Data
Analysis. In Proceedings of the IFIP International Internet of Things Conference, Denton, TX, USA, 2–3 November 2023; Springer:
Cham, Switzerland, 2023; pp. 168–181.

30. Filho, C.P.; Marques, E., Jr.; Chang, V.; Dos Santos, L.; Bernardini, F.; Pires, P.F.; Ochi, L.; Delicato, F.C. A systematic literature
review on distributed machine learning in edge computing. Sensors 2022, 22, 2665. [CrossRef]

31. Phan, T.L.J.; Gehrhardt, I.; Heik, D.; Bahrpeyma, F.; Reichelt, D. A systematic mapping study on machine learning techniques
applied for condition monitoring and predictive maintenance in the manufacturing sector. Logistics 2022, 6, 35. [CrossRef]

32. Jagati, A.; Subbulakshmi, T. Building ML workflow for walware images classification using machine learning services in leading
cloud platforms. In Proceedings of the 2023 International Conference on Computational Intelligence and Sustainable Engineering
Solutions (CISES), Greater Noida, India, 28–30 April 2023; IEEE: New York, NJ, USA, 2023; pp. 233–239.

33. Gautam, A.; Jindal, S.; Baitha, P.; Arora, A.; Gautam, A. The role of cloud computing in machine learning approaches. Int. J. Eng.
Appl. Sci. Technol. 2023, 8, 73–79. [CrossRef]

34. Pourmajidi, W.; Steinbacher, J.; Erwin, T.; Miranskyy, A. On challenges of cloud monitoring. arXiv 2018, arXiv:1806.05914.
35. Bajic, B.; Cosic, I.; Katalinic, B.; Moraca, S.; Lazarevic, M.; Rikalovic, A. Edge vs cloud computing: Challenges and opportunities

in Industry 4.0. Ann. DAAAM Proc. 2019, 30, 864–871.
36. Amazon Web Services. Amazon EC2 Instance Types. Available online: https://aws.amazon.com/ec2/instance-types (accessed

on 20 January 2025).
37. Treml, A.E.; Flauzino, R.A.; Suetake, M.; Maciejewski, N.R.; Afonso, N. Experimental database for detecting and diagnosing rotor

broken bar in a three-phase induction motor. IEEE DataPort 2020 . [CrossRef]
38. Valles-Novo, R.; de Jesus Rangel-Magdaleno, J.; Ramirez-Cortes, J.M.; Peregrina-Barreto, H.; Morales-Caporal, R. Empirical

mode decomposition analysis for broken-bar detection on squirrel cage induction motors. IEEE Trans. Instrum. Meas. 2014,
64, 1118–1128. [CrossRef]

39. Qiao, W.; Qu, L. Prognostic condition monitoring for wind turbine drivetrains via generator current analysis. Chin. J. Electr. Eng.
2018, 4, 80–89.

40. Li, Z.; Fei, F.; Zhang, G. Edge-to-cloud IIoT for condition monitoring in manufacturing systems with ubiquitous smart sensors.
Sensors 2022, 22, 5901. [CrossRef]

41. Ameen, S.; Siriwardana, K.; Theodoridis, T. Optimizing Deep Learning Models For Raspberry Pi. arXiv 2023, arXiv:2304.13039.
42. Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 11. [CrossRef]
43. Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A brief review of nearest neighbor algorithm for learning and classification.

In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India,
15–17 May 2019; IEEE: New York, NJ, USA, 2019; pp. 1255–1260.

44. Khan, M.A.; Bilal, A.; Vaimann, T.; Kallaste, A. An Advanced Diagnostic Approach for Broken Rotor Bar Detection and
Classification in DTC Controlled Induction Motors by Leveraging Dynamic SHAP Interaction Feature Selection (DSHAP-IFS)
GBDT Methodology. Machines 2024, 12, 495. [CrossRef]

45. Edomwandekhoe, K.; Liang, X. Current spectral analysis of broken rotor bar faults for induction motors. In Proceedings of the
2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, QC, Canada, 13–16 May 2018; IEEE:
New York, NJ, USA, 2018; pp. 1–5.

http://dx.doi.org/10.1016/j.anucene.2021.108909
http://dx.doi.org/10.1109/COMST.2020.3009103
http://dx.doi.org/10.3390/s23052649
http://www.ncbi.nlm.nih.gov/pubmed/36904851
http://dx.doi.org/10.1109/ACCESS.2023.3237074
http://dx.doi.org/10.3390/s22155836
http://dx.doi.org/10.3390/s22072665
http://dx.doi.org/10.3390/logistics6020035
http://dx.doi.org/10.33564/IJEAST.2023.v08i04.010
https://aws.amazon.com/ec2/instance-types
http://dx.doi.org/10.21227/fmnm-bn95
http://dx.doi.org/10.1109/TIM.2014.2373513
http://dx.doi.org/10.3390/s22155901
http://dx.doi.org/10.21037/atm.2016.03.37
http://dx.doi.org/10.3390/machines12070495

Big Data Cogn. Comput. 2025, 9, 121 21 of 21

46. Marino, R.; Lanza-Gutierrez, J.M.; Riesgo, T.M. Embedding principal component analysis inference in expert sensors for big data
applications. In Big Data Recommender Systems—Volume 2: Application Paradigms; IET: Stevenage, UK, 2019; Chapter 6, pp. 83–105.
[CrossRef]

47. Rooshenas, P.; Rabiee, H.R.; Movaghar, A.; Naderi, M.Y. Reducing the data transmission in Wireless Sensor Networks using
the Principal Component Analysis. In Proceedings of the IEEE Sixth International Conference on Intelligent Sensors, Sensor
Networks and Information Processing, Brisbane, Australia, 7–10 December 2010; pp. 133–138.

48. Burrello, A.; Marchioni, A.; Brunelli, D.; Benatti, S.; Mangia, M.; Benini, L. Embedded Streaming Principal Components Analysis
for Network Load Reduction in Structural Health Monitoring. IEEE Internet Things J. 2021, 8, 4433–4447. [CrossRef]

49. Chippalakatti, S.; Renumadhavi, C.; Pallavi, A. Comparison of unsupervised machine learning Algorithm for dimensionality
reduction. In Proceedings of the 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES),
Chickballapur, India, 28–29 December 2022; IEEE: New York, NJ, USA, 2022; pp. 1–7.

50. Reddy, G.T.; Reddy, M.P.K.; Lakshmanna, K.; Kaluri, R.; Rajput, D.S.; Srivastava, G.; Baker, T. Analysis of dimensionality
reduction techniques on big data. IEEE Access 2020, 8, 54776–54788. [CrossRef]

51. Ross, P.; Luckow, A. EdgeInsight: Characterizing and Modeling the Performance of Machine Learning Inference on the Edge
and Cloud. In Proceedings of the IEEE International Conference on Big Data, Los Angeles, CA, USA, 9–12 December 2019;
pp. 1897–1906.

52. Raileanu, S.; Borangiu, T.; Morariu, O.; Iacob, I. Edge Computing in Industrial IoT Framework for Cloud-based Manufacturing
Control. In Proceedings of the IEEE 22nd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia,
Romania, 10–12 October 2018; pp. 261–266.

53. Sebbio, S.; Morabito, G.; Catalfamo, A.; Carnevale, L.; Fazio, M. Federated Learning on Raspberry Pi 4: A Comprehensive Power
Consumption Analysis. In Proceedings of the IEEE/ACM 16th International Conference on Utility and Cloud Computing,
Taormina, Italy, 4–7 December 2023; pp. 1–6.

54. Anand, A.; Goel, S.; Panesar, G.S. Energy-Efficient Edge Computing Architectures for AI Workloads: A Comparative Analysis
in Cloud-Driven Environments. In Proceedings of the 2024 International Conference on Emerging Innovations and Advanced
Computing (INNOCOMP), Sonipat, India, 25–26 May 2024; pp. 614–620.

55. Abdoulabbas, T.E.; Mahmoud, S.M. Power consumption and energy management for edge computing: State of the art. Telkomnika
Telecommun. Comput. Electron. Control 2023, 21, 836–845. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1049/PBPC035G_ch6
http://dx.doi.org/10.1109/JIOT.2020.3027102
http://dx.doi.org/10.1109/ACCESS.2020.2980942
http://dx.doi.org/10.12928/telkomnika.v21i4.24350

	Introduction
	Background
	Condition Monitoring of Industrial Motors
	Edge Computing
	Cloud Computing
	Comparative Analysis and Research Gap

	Methodology
	Experimental Setup
	Hardware Configuration
	Dataset
	Software Environment

	Modelling
	Machine Learning Models for Condition Monitoring
	Data Preprocessing and Feature Engineering

	Results and Analysis
	Tables of Results
	Discussion of Results
	F1-Score
	Training and Inference Times
	CPU and Memory Usage
	Scalability Analysis
	Data Burden
	Cost Analysis

	Impact of PCA
	Qualitative Considerations: Ease of Deployment, User Experience, and Network Variability
	Practical Implications and Recommendations
	Is Real-Time Fault Detection and Low Latency Critical?
	How Large and Complex Are the Data That Are Being Processed?
	What Are the Cost Constraints of Deployment and Operation?
	How Frequently Does the Model Need to Be Retrained and Updated?
	Is Network Reliability and Bandwidth Availability a Concern?
	Large-Scale Industrial Condition Monitoring

	Conclusions
	References

