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Abstract
Chronic hepatitis B virus (HBV) infection is strongly associated with increased risk of
liver cancer and cirrhosis. While existing treatments effectively inhibit the HBV life cycle,
viral rebound frequently occurs following treatment interruption. Consequently, functional
cure rates of chronic HBV infection remain low and there is increased interest in a novel
treatment modality, capsid assembly modulators (CAMs). Here, we develop a multiscale
mathematical model of CAM treatment in chronic HBV infection. By fitting the model to
participant data from a phase I trial of the first-generation CAM vebicorvir, we estimate
the drug’s dose-dependent effectiveness and identify the physiological mechanisms that
drive the observed biphasic decline in HBV DNA and RNA, and mechanistic differences
between HBeAg-positive and negative infection. Finally, we demonstrate analytically and
numerically that the relative change of HBV RNA more accurately reflects the antiviral
effectiveness of a CAM than the relative change in HBV DNA.

Author summary
Capsid assembly modulators (CAMs) are a novel class of anti-hepatitis B virus (HBV)
treatments in clinical trials. These CAMs have a distinct mechanism of action from
nucleos(t)ide analogues and thus represent an attractive option for the treatment of
chronic HBV infection. We developed a multiscale model of the intracellular HBV
lifecycle and extracellular dynamics using a time-since-infection structured partial
differential equation. We fit the model to participant data from a recent phase I trial,
performed a detailed analysis of the parameter estimates, identified key mechanisms
driving viral response to first-generation CAM treatment, and demonstrated that HBV
RNA dynamics impart more information regarding CAM effectiveness than HBV DNA
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dynamics, highlighting the potential role of HBV RNA as an informative indicator of
CAM effectiveness.

Introduction
Despite the availability of an effective vaccine, chronic hepatitis B virus infection (CHB)
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imposes a major burden on health systems worldwide and is estimated to contribute to one
million deaths per year [1]. Often referred to as a silent epidemic [2], the World Health Orga-
nization estimated that over 250 million individuals worldwide were living with CHB in
2022 [3]. While effective antiviral therapies, such as pegylated interferon-𝛼 and nucleos(t)ide
analogues (NAs) exist, interferon-𝛼 treatment is associated with an unfavourable toxicity
profile and NA treatment has a low functional cure rate [4,5]. NA treatment typically leads
to complete suppression of circulating hepatitis B virus (HBV) DNA, however viral rebound
frequently occurs upon treatment interruption [5,6] which necessitates life-long treatment in
many infected individuals. There has therefore been increased interest in the development of
new HBV antivirals that could be used as monotherapy or, more likely, as part of combination
therapies.

A novel class of HBV antivirals with a distinct mechanism of action from NAs, capsid
assembly modulators (CAMs), have demonstrated promising results in recent clinical trials
[4,7–9]. CAMs interfere with a crucial step in the HBV viral life cycle by inhibiting the encap-
sidation of pregenomic RNA (pgRNA) [4,9,10]. By blocking the encapsidation of pgRNA and
the resulting production of HBV DNA, CAM treatment has been shown to drive significant
declines in HBV RNA and HBV DNA serum concentrations [4,7,9,11]. Here, we consider a
phase I trial of the first-generation CAM vebicorvir [4] and we analyze the antiviral efficacy of
vebicorvir by developing a multiscale mathematical model of CAM treatment in the context
of CHB.

Mathematical modeling has provided extensive insight into the viral dynamics of both
hepatitis B and C as well as other viruses [12–19,29]. The majority of existing models focus
on extracellular quantities, such as HBV DNA or HCV RNA, which can be immediately com-
pared against clinical data [12,13,73]. These models have provided valuable insight into the
development of drug-resistance and treatment efficacy in hepatitis C infection [12,23,24].
Further, multiscale models, which characterize both the intracelluar and extracelluar viral
dynamics, and thus permit a more precise representation of the mechanism of action of novel
therapies, have been established to understand viral kinetics during treatment of hepatitis
C [20,21,25–28]. However, much of the existing modeling in hepatitis B has focused on the
dynamics of HBV DNA without explicitly considering the intracellular processes that com-
prise the HBV viral life cycle [22,29–35]. This modeling has identified increased death rates
of infected hepatocytes in HBe antigen (HBeAg) negative infections, highlighted the role of
HBeAg status as a significant predictor of extracelluar viral dynamics, and has characterized
the decay kinetics of HBV DNA during treatment. Nevertheless, recent experimental and
modeling work has highlighted the role of HBV RNA as an important biomarker in under-
standing CHB treatment efficacy [36–38]. For example, Gonçalves et al. [39] developed a
multiscale model of HBV infection that explicitly includes intracellular pgRNA and relaxed
circular DNA (rcDNA) dynamics as well as circulating HBV DNA and RNA.They used the
model to understand clinical data following treatment with the CAM, RG7907, or the NA,
entecavir [39].

Here, we develop a multiscale model of HBV infection similar to the model developed
by Gonçalves et al. [39]. Specifically, we explicitly consider the dynamics of intracelluar
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HBV encapsidated pgRNA and rcDNA and tie these dynamics to the extracellular dynam-
ics of HBV RNA and HBV DNA. Unlike Gonçalves et al. [39], we incorporate the dynamics
of uninfected hepatocytes and alanine aminotransferase (ALT). As shown by [40,41], ALT
dynamics can facilitate parameter identification in mathematical models of HCV infection
and is commonly used as a biomarker of liver damage [42,43]. We fit our multiscale model
to the HBV RNA, HBV DNA, and ALT data from a multiple ascending dose monotherapy
trial of vebicorvir [4]. We then use our model to identify the effect of vebicorvir treatment
on HBV RNA and HBV DNA dynamics, identify mechanistic differences between HBeAg-
positive and HBeAg-negative infections, identify the intracellular mechanisms that contribute
to viral decline during treatment, and evaluate HBV RNA and HBV DNA as biomarkers of
CAM effectiveness.

Methods
Viral load data
Our study uses longitudinal viral measurements made on days 0, 1, 7, 14, 21, 28, 35, 42, and
56 from the phase 1, randomized, placebo-controlled, multiple ascending dose study of the
first-generation CAM, vebicorvir (Trial identifier: NCT02908191) [4]. Briefly, 32 partici-
pants with CHB and no anti-HBV therapy in the 3 months preceding the trial received either
100 mg (n = 10), 200 mg (n = 10), 300 mg (n = 10), or 400 mg (n = 2) oral doses of vebi-
corvir daily for 28 days and then were followed for another 28 days off therapy. The major-
ity (n = 17) of participants were HBeAg-positive with further inclusion criteria reported by
Yuen et al. [4].

One of the two participants in the 400 mg dose cohort discontinued treatment following
an adverse event [4]. We therefore excluded the 400 mg dose cohort as only one participant
completed the trial. In addition, we excluded an individual in the 300 mg dose cohort due to
a pre-existing known CAM resistance mutation (Thr109Met) [4]. The remaining 29 partic-
ipants in our study were in the 100 mg (n = 10), 200 mg (n = 10), and 300 mg (n = 9) dosing
groups, with six, five, and six HBeAg-positive individuals in the 100 mg, 200 mg, and 300 mg
dose cohorts, respectively.

The lower limit of detection (LLoD) for HBV DNA was 0.95 log10 IU/mL while the lower
limit of quantitation (LLoQ) was 1.28 log10 IU/mL [4]. To convert from IU/mL to copies/mL,
we used the standard conversion factor of 5.82 copies/IU HBV DNA [44]. We fit the model
to HBV DNA and RNA data both expressed in units of copies/ml but present the HBV DNA
data in their conventional units of IU/ml. Finally, Yuen et al. [4] used two independent assays
for HBV RNA concentrations; we use the LLoD of 2.49 log10 copies/mL, which corresponds
to the more sensitive of the two assays. Vebicorvir treatment decreased serum HBV RNA
and HBV DNA concentrations. We calculated the minimal estimate for the mean decrease in
HBV RNA and HBV DNA by replacing any measurements below the LLoD by the value of the
LLoD. Across all dose levels, this minimal estimate for the mean decrease in HBV RNA and
HBV DNA was 1.3 log10 copies/mL and 2.1 log10 IU/mL, respectively, during the 28 day treat-
ment period. Rebound to approximately pre-treatment baseline serum HBV RNA and HBV
DNA concentrations occurred rapidly following treatment cessation.

Multiscale model of chronic HBV infection
Our multiscale model of CHB incorporates the major features of both the intracellular life
cycle and extracellular dynamics of HBV. Broadly speaking, we model the intracellular
dynamics of encapsidated pgRNA and rcDNA within infected hepatocytes, which allows us to
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accurately represent the mechanism of action of vebicorvir. Further, we model the extracellu-
lar dynamics of infected and uninfected hepatocytes, HBV RNA and DNA, and ALT.

As has been shown previously in hepatitis C [40], modeling ALT dynamics can inform
estimates of infected hepatocyte lifespans. Moreover, as hepatocytes are able to proliferate to
counter liver damage, we do not expect the hepatocyte population to be constant. Therefore,
we explicitly include the dynamics of the uninfected hepatocytes in our model. A schematic
representation of our model is given in Fig 1.

At the extracellular scale, uninfected hepatocytes (T) are produced at a constant rate 𝜆 and
cleared linearly with per capita rate dT. Hepatocytes are infected by HBV DNA containing
particles (V) with rate constant 𝛽. These infected hepatocytes die with per capita death rate
𝛿 and produce HBV RNA containing particles (R) and HBV DNA containing virions, which
are cleared at per capita rates cr and cv, respectively. In principle, death of infected hepato-
cytes could be driven by cytolytic T cells (CTLs), which we do not include in our model. CTL
involvement typically results in an “ALT flare,” where the ALT concentration increases by
orders of magnitude. None of the participants in this study exhibited an ALT flare and thus we
assume that if CTLs have any effect on infected cells, this effect is approximately constant for
the duration of the trial and included in the constant parameter 𝛿.

As mentioned, we explicitly model the intracellular processes leading to HBV RNA and
HBV DNA production. We keep track of the time since infection (or infection age) of HBV
infected hepatocytes using an age-structured partial differential equation (PDE), where the
density of infected cells with infection age a at time t is given by i(t,a). Following infection,
HBV rcDNA is converted to cccDNA in the nucleus of infected hepatocytes [6]. This cccDNA
forms a stable template for the production of encapsidated HBV pgRNA. We assume the
production of encapsidated pgRNA from cccDNA occurs at a constant rate 𝛼 and denote the

Fig 1. Schematic illustration of the multiscale model. Left panel: HBV extracellular dynamics, where uninfected hepatocytes (T) are produced at a constant
rate 𝜆 and die at per capita rate dT. Hepatocytes become infected cells (I), following infection by HBV DNA (V). Infected cells are lost at per capita rate 𝛿 and
secrete HBV RNA (R), HBV DNA, and ALT (A) at constant rates. The HBV RNA and HBV DNA are cleared at rates cr and cv, respectively. Right panel: HBV
intracellular life cycle, which begins with a hepatocyte being infected and the release of rcDNA into the cell cytoplasm following the disintegration of its cap-
sid. This rcDNA enters the cell nucleus and is converted to cccDNA. Encapsidated pgRNA (r) is produced by cccDNA at rate 𝛼. The encapsidated pgRNA is
assembled into membrane bound particles and secreted as HBV RNA by the infected cell at rate 𝜌r, decays at rate 𝜇r, or is reverse transcribed into encapsidated
rcDNA (v) at rate 𝜋. The rcDNA is either assembled into viral particles and secreted into the circulation at rate 𝜌v or decays at rate 𝜇v in the cell. Treatment with
vebicorvir inhibits the production of encaptidated pgRNA with an effectiveness of 𝜀 (red cross in the right panel).

https://doi.org/10.1371/journal.pcbi.1012322.g001
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amount of intracellular encapsidated pgRNA in an infected hepatocyte with infection age a by
r(t,a). Encapsidated pgRNA decays intracellularly at rate 𝜇r, is reverse transcribed into encap-
sidated rcDNA, v(t,a), with rate constant 𝜋, or is secreted by infected cells as enveloped HBV
RNA containing particles into the circulation at rate 𝜌r per cell. The rate at which encapsi-
dated pgRNA enters the circulation as HBV RNA is 𝜌rP(t), where P(t) is the total amount of
pgRNA in infected cells and is given by

P(t) =∫
∞

0
r(t, a) i(t, a) da. (1)

Following reverse transcription of intracellular encapsidated pgRNA, intracellular rcDNA
either decays at rate 𝜇v or is assembled into viral particles containing HBV DNA and secreted
with rate 𝜌v per cell. The total rate at which HBV DNA containing particles are released into
the circulation is given by 𝜌vC(t), where C(t) represents the total amount of encapsidated
rcDNA in infected cells, given by

C(t) =∫
∞

0
v(t, a) i(t, a) da. (2)

Finally, we explicitly model the dynamics of ALT, where A(t) represents its serum concen-
tration. Following Cardozo et al. [40], we assume that ALT is produced at a constant back-
ground rate s, independently of the death of infected hepatocytes, is cleared with rate cA, and
is released at a constant rate 𝛼A𝛿 due to the death of infected cells. Note 𝛼A is the amount of
ALT released when an infected cell dies.

Taken together, the equations describing the multiscale model are

d
dt
T(t) = 𝜆 – dT T(t) – 𝛽 T(t)V(t),

(𝜕t + 𝜕a) i(t, a) = –𝛿 i(t, a),
(𝜕t + 𝜕a) r(t, a) = 𝛼 – (𝜇r + 𝜌r + 𝜋) r(t, a),
(𝜕t + 𝜕a) v(t, a) = 𝜋 r(t, a) – (𝜇v + 𝜌v) v(t, a),

d
dt
R(t) = 𝜌r ∫

∞

0
r(t, a) i(t, a) da – cr R(t),

d
dt
V(t) = 𝜌v ∫

∞

0
v(t, a) i(t, a) da – cvV(t),

d
dt
A(t) = s + 𝛼A 𝛿∫

∞

0
i(t, a) da – cAA(t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

Newly infected cells have infection age a = 0, and the density of newly infected cells at time
t is given by i(t, 0) = 𝛽V(t)T(t). We assume that newly infected cells have no intracellular
pgRNA or rcDNA, i.e., r(t, 0) = 0 and v(t, 0) = 0, as the rcDNA from the initial virion that
successfully infected an hepatocyte must have been transported to the nucleus and converted
to cccDNA, and thus behaves differently than newly produced rcDNA that can be converted
into virions or degraded.

In principle, the rate constants describing intracellular processes within an infected cell,
as well as the death rate of infected cells, could depend on the infection age of the cells. For
example, Nelson et al. [45], examined an HIV model in which the rate of viral production
and the death rate of productively infected cells varies with their infection age. Similarly,
Hailegiorgis et al. [46] developed an agent-based model of acute HBV infection in which
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the rate of virion production increased until reaching a constant rate. As little information is
available on the age-dependence of the parameters in our model, we restrict our analysis to
the case of age-independent parameters. In this case, the multiscale PDE model Eq (3) can
be transformed into the following ordinary differential equation (ODE) system by integrating
over the age structure as previously shown [18,19,39,47]

dT
dt
= 𝜆 – 𝛽VT – dT T,

dI
dt
= 𝛽VT – 𝛿I,

dP
dt
= 𝛼I – (𝜇r + 𝛿 + 𝜋 + 𝜌r)P,

dC
dt
= 𝜋 P – (𝜇v + 𝛿 + 𝜌v)C,

dR
dt
= 𝜌rP – crR,

dV
dt
= 𝜌v C – cvV,

dA
dt
= s + 𝛼A 𝛿I – cAA.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

Here, I(t) is the total concentration of infected hepatocytes defined by

I(t) =∫
∞

0
i(t, a) da,

while P(t) and C(t) are given in Eqs (1) and (2), respectively. The ODE system Eq (4) is a
mathematically equivalent and numerically tractable representation of the PDE model, Eq (3),
under the assumption of age-independent parameters. We refer to the ODE system Eq (4) as
the pre-treatment/baseline model throughout this study.

Modeling vebicorvir effectiveness In the phase I trial of vebicorvir [4], participants
received vebicorvir once daily for 28 days and then were followed for another 28 days.
We neglect drug pharmacokinetics during the daily dosing period as the drug was rapidly
absorbed [4]. We assume that vebicorvir inhibits pgRNA encapsidation immediately follow-
ing dosing and leads to the production of empty capsids, consistent with its classification as a
type-E (empty capsid) CAM.Thus, during the treatment period, we model the effect of vebi-
corvir as reducing the production rate of encapsidated pgRNA, 𝛼, by a constant factor (1 – 𝜀c),
where 𝜀c ∈ [0, 1] represents the CAM effectiveness and its value depends on the dose of the
CAM.

During treatment we assume the concentration of vebicorvir is at a dose-dependent
steady-state concentration C*. At the end of treatment, we assume that the drug washes out
and its concentration decays exponentially at rate k. Then, during drug washout, we use a
maximum effect, or Emax model, for vebicorvir’s effectiveness given by

𝜀(t) = C∗e–k(t–𝜏)

C∗e–k(t–𝜏) + EC50
, t > 𝜏, (5)

where 𝜏 = 28 days is the duration of the treatment period and EC50 is the concentration of
vebicorvir that gives half of the maximum effectiveness of the drug. To calculate the ratio of
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the EC50 to C* at a given dose level, we note that 𝜀(𝜏) = 𝜀c, where 𝜀c is the drug effectiveness
during therapy. We can then re-arrange Eq (5) to find

C∗

EC50
= 𝜀c
1 – 𝜀c

,

and using this identity gives

𝜀(t) = C∗e–k(t–𝜏)

C∗e–k(t–𝜏) + EC50
= 𝜀c e–k(t–𝜏)
𝜀c (e–k(t–𝜏) – 1) + 1

.

Incorporating the waning vebicorvir effects during drug wash-out only necessitates esti-
mating the clearance rate, k. We also considered an approach where the drug effectiveness,
𝜀(t), is set to zero immediately after treatment cessation (see S1 Text).

Incorporating vebicorvir mediated inhibition of pgRNA encapsidation into the baseline
model Eq (4) gives

dT
dt
= 𝜆 – 𝛽VT – dTT, (6)

dI
dt
= 𝛽VT – 𝛿I, (7)

dP
dt
= 𝛼(1 – 𝜀(t))I – (𝜇r + 𝛿 + 𝜋 + 𝜌r)P, (8)

dC
dt
= 𝜋P – (𝜇v + 𝛿 + 𝜌v)C, (9)

dR
dt
= 𝜌rP – crR, (10)

dV
dt
= 𝜌vC – cvV, (11)

dA
dt
= s + 𝛼A𝛿I – cAA, (12)

where the drug effectiveness over the entire trial, 𝜀(t), is defined by

𝜀(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜀c t≤ 𝜏 ;
𝜀c e–k(t–𝜏)

𝜀c (e–k(t–𝜏)–1)+1
t > 𝜏. (13)

We refer to the ODE model, Eqs (6)–(12), as the treatment model.
Initial conditions corresponding to chronic HBV infection Since we are interested in

chronic HBV infection, we assume that the viral dynamics model is in steady-state prior to
treatment. We thus use the steady-state solutions of the baseline model Eq (4) as the initial
conditions of the treatment model Eqs (6)–(12). The baseline viral load, V0, is given by

V0 =
𝜆 𝜌vM

cv
–
dT
𝛽 ,

whereM = 𝜋𝛼/(𝛿 𝜓1 𝜓2), with 𝜓1 = 𝜇r+𝛿+𝜋+𝜌r and 𝜓2 = 𝜇v+𝛿+𝜌v. The remaining steady-
state concentrations can be written in terms of V0 as follows
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T0 = 𝜆
𝛽V0 + dT

, I0 =
𝛽V0T0

𝛿 , P0 =
𝛼I0
𝜓1

,

C0 = cv
𝜌v

V0, R0 =
𝜌rP0
cr

, and A0 =
1
cA
(s + 𝛼A cv

𝜌vM
V0) .

We calculate these expressions explicitly in terms of the model parameters in S1 Text. We
consider t = 0 as the beginning of CAM treatment and set

T(0) = T0, I(0) = I0, P(0) = P0, C(0) = C0, R(0) = R0, and V(0) =V0.

Finally, we note that imposing that the viral dynamics model is in steady-state prior to
treatment yields natural candidates for initial densities i0(a), r0(a), and v0(a) of the age-
structured PDE model. Specifically, the initial density of infected hepatocytes at time t = 0
represent precisely those hepatocytes that were infected at t<0 and have not been cleared
in the intervening time. Following Cassidy et al. [48], it is possible to map the initial densi-
ties backwards along the characteristic line, and using the assumption that pre-treatment the
system is in steady state, obtain explicit expressions for i0(a), r0(a), and v0(a) as functions of
the baseline viral load and uninfected hepatocyte concentration.

Statistical and error model for parameter estimation
We estimate model parameters using a non-linear mixed effects modeling framework imple-
mented in Monolix software version 2021R1 [49]. Below, we give the details of the statistical
and error models used in our fitting.

Statistical model We assume that the majority of our structural model parameters 𝜙i are
log-normally distributed. The individual parameters that follow a log-normal distribution are
defined as

𝜙i = 𝜑 e(𝜓i+𝜂i), (14)

where 𝜑 is the population estimate, 𝜓i ∼N (0,𝜔2) represents the random effects corre-
sponding to inter-individual variability, and 𝜂i is a potential covariate vector for individual
i [49].

The parameter capturing vebicorvir effectiveness, 𝜀, has natural upper and lower bounds,
namely 𝜀 ∈ [0, 1]. Thus, we assume that 𝜀 follows a logit-normal distribution in the open
interval (0,1). Then, the individual estimates for 𝜀 are defined as

𝜙i =
𝜑 e(𝜓i+𝜂i)

1 + 𝜑 (e(𝜓i+𝜂i) – 1)
, (15)

where 𝜑, 𝜂i and 𝜓i are as defined in Eq (14).
We tested multiple covariate structures for the population estimates of different parame-

ters, including effects of the categorical variables “HBeAg status” and “vebicorvir dose” in 𝜂i.
Details and results are described in the S1 Text. We also included a correlation between 𝛼 and
𝛽, as suggested by Monolix.

Error model We simultaneously fit Eqs (10), (11), and (12) to the HBV RNA, HBV
DNA, and ALT data, respectively. These biomarkers are sampled at j = 9 distinct time points
tj in the phase I trial of vebicrovir. For each participant, we consider k = 3 observations,
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corresponding to the HBV DNA, HBV RNA, and ALT data, respectively. Accordingly, for the
i–th participant, we denote this data by Yi,j,k and the vector of model parameters by 𝜙i.

Then, for each participant, we define the statistical model

Yi,j,k = f(ti,j,k,𝜙i) + g(f(ti,j,k,𝜙i),𝛾) ei,j,k,

where f(ti,j,k,𝜙i) represents the structural model output for participant i, given by Eqs 6 to 12.
In this framework, the error model is given by g(f(ti,j,k,𝜙i),𝛾)ei,j,k, where ei,j,k is the residual
error of participant i at measurement j for biomarker k, and 𝛾 is a vector of parameters which
depends on the specific error model. Here, ei,j,k follows a normal distribution with mean 0 and
variance 1. The error function g(f(ti,j,k,𝜙i),𝛾) determines the variance of the residual error
model [50]. We consider ALT, HBV RNA, and HBV DNA concentrations on the logarithmic
scale. For HBV RNA and HBV DNA, we set

logYi,j,k = log f(ti,j,k,𝜙i) + akei,j,k for k = 1, 2,

which linearly scales the residual error ei,j,k by the error parameter ak, which is estimated
during our parameter fitting. As viral load is measured in terms of the number of PCR ampli-
fication cycles, the viral load measurements have a proportional error, that is multiplicative,
on the linear scale. Consequently, this error is additive on the logarithmic scale as is common
in many models of viral dynamics [39,51–54]. We fit the ALT data using a proportional error
model

logYi,j,3 = log f(ti,j,3,𝜙i) + a3 log f(ti,j,3,𝜙i) ei,j,3,

where a3 is an unknown error parameter to be estimated.

Model fitting and parameter estimation
We solve the multiscale model (Eqs (6) to (12)) numerically, and fit the model solutions
simultaneously to the longitudinal HBV RNA (R(t)), HBV DNA (V(t)), and ALT (A(t)) mea-
surements of the 29 participants in our study. The mixed-effect approach uses a total of 783
data points, from all 29 participants, to fit our model and estimate the model parameters for
each individual participant. Consequently, the model dynamics are informed by the entirety
of the participant data, even for participants, such as ID:26, who do not have any HBV RNA
measurements above the LLoD.

Parameter estimation was performed by maximizing the likelihood estimator using the
stochastic approximation expectation-maximization (SAEM) algorithm [57] implemented in
Monolix [49]. The log-likelihood was calculated using the importance sampling Monte Carlo
method. HBV RNAmeasurements below the LLoD of 2.49 log10 copies/mL and HBV DNA
measurements below the LLoD of 0.95 log10 IU/mL were left-censored.

Fixed parameters We fixed some of the model parameters to estimates from the litera-
ture to reduce the number of free parameters in our model. Based on the estimate that, in the
absence of infection, the liver has 2 × 1011 hepatocytes [58], we assumed the hepatocyte con-
centration is Tue ≈ 1.3 × 107 cells/mL, as was previously done [12]. Uninfected hepatocytes
have a roughly 6 month (∼ 180 days) half-life [59], which corresponds to a per capita death
rate of dT = loge(2)/180≈ 0.004 /day. In the absence of infection, the steady-state concentra-
tion of hepatocytes is given by Tue = 𝜆/dT so 𝜆 = dT Tue = 5.2 × 104 cells/mL/day.

Estimated parameters At the extracellular scale, we estimated the infection rate (𝛽) and
the death rate of infected cells (𝛿). We also estimated the intracellular production rate of
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encapsidated pgRNA (𝛼), the reverse transcription rate of encapsidated pgRNA to rcDNA
(𝜋), and the secretion rates of HBV RNA (𝜌r) and HBV DNA (𝜌v). Additionally, we estimated
both the effectiveness, 𝜀, and clearance rate, k, of vebicorvir.

In the ALT ODE, Eq (12), there are three unknown ALT specific parameters that need to
be estimated, the ALT background production rate, s, the ALT clearance rate, cA, and the ODE
initial condition, i.e., the pretreatment level of ALT, A0. As we have no a priori estimate of s,
we chose to estimate the baseline level of ALT in the absence of infection (Aue), which is typ-
ically below the upper limit of normal of approximately 40 IU/L. In the absence of infection,
the ODE for ALT reduces to

dA
dt
= s – cAA.

At the uninfected steady state, s = cAAue and thus s can be computed from estimates of cA
and Aue. This estimate for s corresponds to ALT production that results from natural turnover
of hepatocytes as well as production of low levels of ALT by cells other than hepatocytes, such
as muscle cells [72], and may differ between individuals. At the pre-treatment steady-state A0,
the amount of ALT released when an infected cell dies is given by (see Eq (12))

𝛼A =
cAA0 – s
𝛿I0

,

where I0 is the baseline number of infected hepatocytes at treatment initiation and A0 is the
ALT concentration at treatment initiation, which we estimate from the viral load data.

Parameter identifiability analysis We used the baseline concentrations of HBV DNA,
HBV RNA, and the ratio between these measurements to demonstrate how the available viral
load data identify the model parameters. Further, we also estimate the rate of viral rebound
following treatment cessation using a quasi-steady state assumption. Finally, we adapted the
likelihood continuation technique from [63] to quantify the dependence of each estimated
parameter on the viral load data. Further details are presented in S1 Text.

Statistics
We used the Wilcoxon test [55] in R version 3.6.3 [56] to compare the distributions of the pre-
treatment steady-states of the model variables for the HBeAg-positive and HBeAg-negative
individuals.

Results
Model development
To test our model, given in Methods, against other alternatives, we tried different assump-
tions based on preliminary fitting of the models to the full data set (HBV DNA, HBV RNA
and ALT). Initial results indicated that the export rates of particles containing encapsidated
RNA and encapsidated DNA were very similar, which makes biological sense, since the phys-
ical properties of these particles are similar. Indeed, when we tested a model with 𝜌v = 𝜌r = 𝜌,
we found that this model had a lower corrected Bayesian information criterion (BICc) value
of 21.0 than when estimating these export rates separately, where the BICc was 28.9. More-
over, the estimate of the random effects for 𝜌 was small, and a model with no random effects
for this parameter had an even lower BICc (=12.1) [61,62].

Biologically, we expect that the clearance rates of HBV RNA particles (cv) and of HBV
DNA particles (cr) are similar as these particles differ only in their internal content [36]. We
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tested this, by fitting preliminary models estimating cv and cr separately, with and without
random effects, and comparing the results with estimating only c = cv = cr. We found that the
latter model was more parsimonious, with lower BICc (see Table D in S1 Text). Therefore, we
assumed cv = cr = c in the modeling that followed (as was also used before [39]). Still, estimat-
ing the clearance rate c is challenging from our data, so we followed Gonçalves et al. [39] and
tested seven different fixed values of c = 1, 2, 3, 5, 10, 15, and 20/day based on previous studies
[32,60]. We found that c = 1/day provided the lowest BICc (see Table B in S1 Text).

Not having data to distinguish the intracellular degradation rates of encapsidated pgRNA
and rcDNA, and as in [39], we assumed that these rates are identical, 𝜇v = 𝜇r = 𝜇. This intra-
cellular degradation rate is difficult to estimate from our data which is taken from the cir-
culation. We thus tested 13 fixed values of 𝜇 = 0, 0.05, 0.1, 0.2, ..., 1, 2/day and found that the
best-fit occurred with 𝜇 = 0 (see Table B in S1 Text). Thus, based on this analysis, as well as
for consistency with previous modeling [39] and the expectation that encapsidation protects
molecules from degradation, we fixed 𝜇 = 0.

We next tested the inclusion of random effects and covariates for different model parame-
ters. We tested if the drug effectiveness, 𝜀, depended on the vebicorvir dose. We also tested if
various parameters differed between HBeAg-positive and HBeAg-negative infection. Finally,
we also tested for correlations between estimated the parameters. A summary of these results
can be found in Table C of S1 Text.

Finally, we tested alternative models, described in S1 Text, for the biology of HBV infec-
tion and the mechanism of action of vebicorvir. We found that none of the tested models
improved the goodness of fit. More importantly, the population parameter estimates were
very similar for models that provided the best fits, as assessed by BICc (see Table D, Fig F,
and the corresponding discussion in S1 Text).

Overall, the model that we used going forward to analyze our data is based on Eqs (6)
to (12), with 𝜌v = 𝜌r = 𝜌, cv = cr = c = 1/day, 𝜇v = 𝜇r = 𝜇 = 0, and no random effects on 𝜌, cA,
nor on any of the fixed parameters. Moreover, the model includes dose as a covariate on the
drug effectiveness, 𝜀, and HBeAg status as a covariate on the infection rate (𝛽), the produc-
tion rate of encapsidated pgRNA (𝛼), and the death rate of infected cells (𝛿). This best model
also included a negative correlation between the pgRNA production rate (𝛼) and the virus
infection rate (𝛽) with coefficient –0.945.

The model parameters, units, and biological descriptions are summarized in Table 1.

Model fits to participant data
We show the individual fits of our model to the HBV RNA and HBV DNA data in Figs 2
and 3. The corresponding individual fits to ALT are shown in Figs J and K of S1 Text. In gen-
eral, our model captures the viral dynamics in all participants both during treatment and
during the viral rebound that follows treatment cessation.

The population-level parameters were well-estimated, as measured by the relative stan-
dard error, and are reported in Table 2. We identified a dose-dependent vebicorvir effect, with
estimated efficacies of 90.7%, 97.0%, and 98.4% for the 100, 200, and 300 mg daily dose.

Our identifiability analysis, given in S1 Text, demonstrates that the observable viral
kinetics during treatment and following treatment cessation inform the unknown model
parameters. We next tested if small perturbations in the observed data will influence indi-
vidual parameter estimates using the likelihood continuation method [63]. We found that
the estimates of the export rate 𝜌 are sensitive to 10% changes in each of the HBV RNA and
HBV DNAmeasurements. This parameter is particularly sensitive to viral load measurements
taken during the final two weeks of treatment (Fig I of S1 Text). The likelihood continuation
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Table 1. Model parameters and descriptions.
Parameter (unit) Description Value Random effects
𝜆 (cells/mL/day) Production rate of hepatocytes 5.2 × 104 Fixed1

dT (/day) Death rate of uninfected hepatocytes 0.004 Fixed1

𝛽 (mL/copies/day) Infection rate constant Fitted Yes
𝜀c Drug effectiveness during treatment Fitted Yes
𝛿 (/day) Death rate of infected cells Fitted Yes
𝛼 (copies/cell/ml/day) Production rate of encapsidated pgRNA Fitted Yes
𝜋 (/day) Reverse transcription rate of pgRNA to rcDNA Fitted Yes
𝜌 (/day) Secretion rate of encapsidated pgRNA and rcDNA Fitted No
𝜇 (/day) Intracellular decay rate of encapsidated pgRNA and

rcDNA
0 Varied2

c (/day) Extracellular clearance rate of HBV RNA and HBV
DNA

1 Varied2

s (U/L/day) Baseline production rate of ALT Fitted Yes
𝛼A (U/L/mL/cell) Amount of ALT released upon infected cell death Calculated No
cA (/day) Clearance rate of ALT Fitted No
k (/day) Drug clearance rate Fitted Yes
𝜏 (days) Treatment duration 28 Fixed1

1 Fixed indicates that the population parameter was fixed prior to fitting. These parameters did not have random effects 2 Varied indicates that
we tested different values for the indicated parameter before fixing the population estimate at the value indicated. These parameters did not have
random effects. Further details are given in S1 Text.

https://doi.org/10.1371/journal.pcbi.1012322.t001

analysis also indicates that 𝜌 and 𝜀 are informed by measurements during treatment [63].
Lastly, the initial conditions that correspond to the subjects being at steady-state pre-
treatment are directly informed by the baseline viral load and strongly depend on 𝛽. In S1
Text, we demonstrate that these initial conditions, combined with the viral dynamics dur-
ing treatment and following treatment cessation, are sufficient to link the model parameters
with the observable viral dynamics. Taken together, our analysis indicates that our parameter
estimates for the intracellular dynamics are well-informed by the available extracellular data.

We found no significant difference in the baseline ALT levels between the HBeAg-positive
and HBeAg-negative groups, even though two HBeAg-positive individuals (ID: 5, 24) had
elevated ALT at the start of treatment. The elevated baseline ALT levels in these individuals
may indicate an anti-HBV immune response prior to treatment initiation. Their ALT levels
declined during treatment and approached a similar level to the other participants by day 56
post-treatment initiation (Fig K of S1 Text). There were no significant changes in the ALT
levels of the remaining participants throughout the study period.

Mechanistic differences between HBeAg-positive and negative infection
HBeAg status is an important predictor of clinical progression with faster progression to
liver disease observed in HBeAg-negative patients, despite persistently higher viral load in
HBeAg-positive patients [32,64]. We leveraged our multiscale model to identify the mecha-
nistic differences between HBeAg-positive and HBeAg-negative participants. As expected, the
baseline HBV DNA concentration, V0, is significantly higher in HBeAg-positive participants
(1.3 × 108 vs 2.4 × 104 IU/mL, p = 7.7 × 10–8).

We also systematically tested for a covariate effect of HBeAg status on all our model
parameters and found that it is a significant covariate on three model parameters, 𝛽, 𝛼, and
𝛿 (Table 2). Infected hepatocytes typically harbor higher cccDNA concentrations in HBeAg-
positive infections [65], which provides a biological mechanism underlying the increased
encapsidated pgRNA production rate, 𝛼. Further, as HBeAg-positive infections are typically
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Fig 2. Model fits of HBV RNA and HBVDNA (HBeAg-negative group). Individual fits to the longitudinal HBV RNA (blue) and HBV DNA (red) measure-
ments during treatment (shaded area) and follow-up using the multiscale model Eqs (6)–(12) with individual parameter estimates in Table A of S1 text. Dots
are viral measurements, and solid lines are model predictions. Horizontal dashed lines represent the lower limit of detection (LLoD) of 0.95 log10 IU/mL for
HBV DNA (red) and 2.49 log10 copies/mL for HBV RNA (blue). Open circles are viral measurements below the LLoD. The corresponding ALT fits for these
participants are given in S1 Text Fig J. Participants 19, 26, and 27 have no HBV RNAmeasurements above the LLoD while participants 8 and 29 do not have
HBV RNAmeasurements during treatment.

https://doi.org/10.1371/journal.pcbi.1012322.g002

linked to immune tolerance, the higher death rate of infected hepatocytes, 𝛿, during HBeAg-
negative infections may indicate a stronger antiviral immune response in these individuals
[66,67]. In S1 Text, we calculate the basic reproduction number of our model as

R0 =
𝜆 𝛼 𝛽 𝜋 𝜌
dT c𝛿 𝜓1𝜓2

,

with 𝜓1 = 𝛿 + 𝜋 + 𝜌 = 𝜇 and 𝜓2 = 𝛿 + 𝜌 + 𝜇.
Although the estimated infection rate (𝛽) is lower in the HBeAg-positive group (Table 2),

we found thatR0 is larger for HBeAg-positive participants (R0 = 22.9) than for HBeAg-
negative participants (R0 = 15.0). As the infection rate, 𝛽, is directly proportional to the
basic reproduction number, this result may initially seem counter-intuitive. However, the
significantly faster production rate of encapsidated pgRNA, 𝛼, and the lower death rate of
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Fig 3. Model fits of HBV RNA and HBVDNA (HBeAg-positive group). Individual fits to the longitudinal HBV RNA (blue) and HBV DNA (red) measure-
ments during treatment (shaded area) and follow-up using the multiscale model Eqs (6)–(12) with individual parameter estimates in Table A of S1 text. Dots
are viral measurements, and solid lines are model predictions. Horizontal dashed lines represent the lower limit of detection (LLoD) of 0.95 log10 IU/mL for
HBV DNA (red) and 2.49 log10 copies/mL for HBV RNA (blue). Open circles are viral measurements below the LLoD. The corresponding ALT fits for these
participants are given in Fig K of S1 Text.

https://doi.org/10.1371/journal.pcbi.1012322.g003
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Table 2. Estimated population parameters. Fixed parameters do not have random effects and this is indicated as
NA (Not Applicable), some parameters were estimated at the population level (without random effects), and this is
indicated as –. R.S.E. is the relative standard error of the estimate. P-values were computed using the Wald test in
Monolix and used to compare the population estimates for covariates.
Parameter Fixed Effects (R.S.E., %) Random Effects (R.S.E., %)
𝜀c (100 mg) 0.907 (4.55) 1.36 (14.3)
𝜀c (200 mg)*1 0.970 (1.52) 1.36 (14.3)
𝜀c (300 mg)*2 0.984 (0.90) 1.36 (14.3)
𝛽 (HBeAg-negative)** 4.2 × 10–7 mL/copies/day (4.53) 0.92 (15.2)
𝛽 (HBeAg-positive) 1.1 × 10–10 mL/copies/day (2.89) 0.92 (15.2)
𝛼 (HBeAg-negative)*** 0.199 copies/cell/day (34.3) 0.81 (15.7)
𝛼 (HBeAg-positive) 390.8 copies/cell/day (9.23) 0.81 (15.7)
𝜋 204.6/day (5.57) 0.35 (15.8)
𝛿 (HBeAg-negative)† 0.070/day (14.4) 0.38 (34.1)
𝛿 (HBeAg-positive) 0.025/day (28.9) 0.38 (34.1)
𝜌 2.48/day (26.6) –
c 1/day (fixed) NA
𝜇 0/day (fixed) NA
cA 0.057/day (26.4) –
A0 38.4 U/L (3.59) 0.30 (13.6)
Aue 22.8 U/L (5.90) 0.27 (20.1)
k 2.29/day (230) 0.24 (71.6)
∗1p = 0.059, ∗2p = 0.006, ∗∗p = 2.2 × 10–16 , ∗∗∗p < 2.2 × 10–16 , †p = 1.0 × 10–3 .

https://doi.org/10.1371/journal.pcbi.1012322.t002

infected cells, 𝛿, in HBeAg-positive participants counterbalances the lower infection rate and
results in a largerR0 estimate for the HBeAg-positive participants.

As mentioned above, HBeAg-positive infections tend to lead to higher viral loads. Our
model also predicts increased levels in the mean predicted pre-treatment steady-states for the
concentrations of infected hepatocytes, intracellular pgRNA and rcDNA, and HBV RNA and
DNA for HBeAg-positive participants. We show the distribution of individual pre-treatment
steady-states in Fig M of S1 Text.

Analytical solution of the viral dynamic model identifies mechanisms
driving HBV DNA and HBV RNA decay
Following treatment initiation, both HBV RNA and HBV DNA concentrations exhibited
mostly biphasic declines. The rapid first phase of decline is characterized by a half-life of
approximately 17 hours for both HBV RNA and HBV DNA, where this half-life is determined
by loge(2)/c. This phase of rapid decline lasts for roughly 7 days in both HBeAg-positive and
HBeAg-negative infections. On the other hand, the second, slower phase of decline differed
between HBeAg-positive and HBeAg-negative individuals, with estimated half-lives of 28 and
10 days, respectively. This second phase of decline is determined by loge(2)/𝛿.

Under the assumption that HBV DNA concentrations fall sufficiently rapidly during vebi-
corvir treatment to neglect de novo cell infections during treatment, we solved the multiscale
model Eqs (6)–(12) analytically in S1 Text. We evaluated this approximation by comparing
the predicted HBV DNA dynamics obtained by simulating the full ODE model Eqs (6)–(12)
and the approximation obtained by neglecting new infections for each participant in Figs A
and B of S1 Text for HBV DNA and RNA, respectively. The difference between the approx-
imate and full model predictions is less than 0.3 log10 for all participants during the 28 day
treatment period in this trial. However, the difference between the exact and approximate
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solutions are generally less than 0.1 log10 when the drug effectiveness is high, i.e., for the 200
mg and 300 mg doses.

The analytical solution for HBV RNA concentrations after the start of treatment, derived
in Eq (S17) of S1 Text, is the sum of three exponentially decaying terms with rates 𝜓1, c, and
𝛿, whereas the concentration of HBV DNA is the sum of four exponentially decaying terms
with rates 𝜓1,𝜓2, c, and 𝛿 as given in Eq (S18) of S1 Text (see also Fig H of S1 Text for an
illustration of these multi-exponential dynamics).

We also show the predicted population HBV RNA and HBV DNA decay curves in Fig 4 to
illustrate the transition between the decay at rate c and at rate 𝛿. These exponential decays are
directly related to the mechanism of action of vebicorvir. As vebicorvir inhibits the encapsi-
dation, and thus production of encapsidated pgRNA, the intracellular encapsidated pgRNA
concentration declines with rate 𝜓1 due to degradation, secretion, and reverse transcription,
and very rapidly reaches a treated quasi-equilibrium level P∗treat within infected hepatocytes.
This decay, at rate 𝜓1, which occurs for the intracellular concentrations of both pgRNA and
rcDNA is sufficiently fast to not be visible in the data. There is a corresponding decline to a
treated quasi-equilibrium C∗treat with rate 𝜓2 in intracellular rcDNA concentrations, and this is
observable as the slight delay between treatment initation and the decay of HBV DNA at rate c
(see red line in Fig 4).

Then, as 𝜌P∗treat < 𝜌P0 and 𝜌C∗treat < 𝜌C0, there is a corresponding fall in the secretion of
HBV RNA and HBV DNA. Recalling that the system was at steady-state prior to treatment
with 𝜌P0 = cR0 and 𝜌C0 = cV0, the rapid convergence to the treated quasi-equilibria, P∗treat
and C∗treat, for intracellular pgRNA and rcDNA implies that the subsequent observable HBV
RNA and DNA dynamics are initially dominated by clearance, with rate c, during the ini-
tial phase of decline following treatment initiation. Then, due to the significant decrease of
HBV DNA during the first phase of decline, the virus is not able to maintain the infected

Fig 4. Biphasic decay of HBV RNA and HBVDNA during vebicorvir treatment Panels A and B show the HBV DNA (red) and HBV RNA (blue) decay profiles during
300 mg daily vebicorvir treatment for the population parameter estimates for HBeAg-negative and positive participants, respectively.

https://doi.org/10.1371/journal.pcbi.1012322.g004
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hepatocyte population at the pre-treatment level via secondary infections. Thus, the death of
infected cells drives the second phase of decline and leads to viral decline at the death rate of
infected hepatocytes.

For both HBeAg-positive and negative participants, intracellular pgRNA declines to the
treated quasi-equilibria with a half-life of loge(2)/𝜓1 = 0.003 days, while intracelluar rcDNA
declines to its treated equilibrium with a half-life of loge(2)/𝜓2 = 0.27 days. The impact of
these declines on serum HBV RNA and DNA levels could potentially inform an improved
understanding of the intracellular HBV life cycle. For example, by measuring the number
of rcDNA copies per infected hepatocyte from a pre-treatment liver biopsy and estimating
the percentage of infected hepatocytes, we could estimate the baseline total concentration
of rcDNA, C0. Then, assuming that we were able to observe 𝜓2, recalling that the HBV RNA
and DNA declines directly inform c and 𝛿, and that V0 is typically measured in clinical stud-
ies, we find an explicit expression for the intracellular rcDNA decay rate as follows. At the
quasi-steady state cV0 = 𝜌C0, so cV0/C0 = 𝜌 = 𝜓2 – 𝛿 – 𝜇v or

𝜇v = 𝜓2 – 𝛿 –
cV0

C0
.

This relationship further demonstrates how, under appropriate circumstances, our multi-
scale modeling framework can facilitate the identification of intracellular mechanisms directly
from clinical data.

The first phase decay of HBV RNA is more sensitive than that of HBV DNA
to CAM effectiveness
Due to the mechanism of action of CAMs in blocking intracellular pgRNA production, HBV
RNA dynamics are a potential direct biomarker of target engagement, and thus, drug effec-
tiveness [5,68]. Here, we use our mathematical model to understand the relationship between
CAM efficacy and the observed decay in HBV RNA and HBV DNA.

We performed an analytical sensitivity analysis of the response of HBV RNA and DNA
to an increase in CAM effectiveness. Under the assumption that CAM treatment was suffi-
ciently potent to neglect new infections and that the first phase of decline is sufficiently short
to neglect the death of previously infected cells, we solved the multiscale model Eqs (6)–(12).
In S1 Text, we used this analytical solution to evaluate the impact of parameter changes on
model predictions and show that perturbations of CAM effectiveness result in larger rela-
tive changes in HBV RNA concentrations than in HBV DNA concentrations. Specifically, we
show

RRRRRRRRRRRRR

𝜕 R(t,𝜀)
R0

𝜕𝜀

RRRRRRRRRRRRR
≥
RRRRRRRRRRRRR

𝜕 V(t,𝜀)
V0

𝜕𝜀

RRRRRRRRRRRRR
,

where R0 and V0 are the pre-treatment steady-state HBV RNA and HBV DNA levels, respec-
tively, and 𝜀 is the drug effectiveness. This analytical result indicates that HBV RNA, rather
than HBV DNA imparts the most information regarding CAM efficacy, as has been suggested
recently [37].

In Fig 5, we compare the predicted relative changes in log10 concentrations of HBV RNA
and HBV DNA during the first 14 days of treatment with vebicorvir. We use the mean pop-
ulation parameter estimates for HBeAg-negative and HBeAg-positive participants as the
viral dynamics parameters and the population estimates for 100, 200, or 300 mg of vebicorvir
for the values of 𝜀 in Panels A and B, respectively. In all cases, we see that the predicted fold
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Fig 5. Larger fold decay in HBV RNA than HBVDNA particularly during the first phase of decline after treat-
ment. Panels A and B show the fold decay in HBV RNA and HBV DNA during 14 days of treatment for 100 mg, 200
mg, and 300 mg of vebicorvir for the population parameter estimates for HBeAg-negative and positive participants,
respectively. Panels C and D show the predicted fold decay in HBV RNA and HBV DNA during 14 days of treat-
ments with a hypothetical next-generation CAM that is 5, 30, or 500 fold more effective at blocking the production of
encapsidated pgRNA than daily administration of 300 mg of vebicorvir.

https://doi.org/10.1371/journal.pcbi.1012322.g005

decline in HBV RNA concentration is larger than the corresponding prediction in HBV DNA,
in agreement with our analytical results. In Fig E of S1 Text, we show the same comparison for
each participant in the vebicorvir trial. In all cases, while the decay dynamics of HBV RNA
and HBV DNA are similar, HBV RNA undergoes a larger relative decay, particularly in the
first phase of decline where the effect of the drug is most pronounced, as shown in Fig 5.

We expect next-generation CAMs to more potently inhibit the production of encapsi-
dated pgRNA than vebicorvir. For example, later-generation CAMs demonstrate 5-500 fold
increases in in vitro potency [81]. Using our model and the population parameter estimates,
we therefore simulated potential HBV RNA and HBV DNA dynamics following treatment
with hypothetical next-generation CAM that is 5, 30, or 500 times more potent against the
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production of encapsidated pgRNA than the 300 mg daily dose of vebicorvir. These hypo-
thetical CAMs have predicted effectiveness of 𝜀 = 0.997, 0.9995, and 0.99997, respectively. In
Fig 5C and 5D , we show the predicted fold decline in HBV RNA and HBV DNA. As before,
the predicted fold decline is larger in HBV RNA than HBV DNA and this difference extends
throughout the first phase of decline. As the CAM effect is most pronounced during first
phase of decline, it is unsurprising that the first phase of decline is predicted to have a longer
duration during treatment with these next-generation CAMs.

The larger response of HBV RNA to changes in CAM effectiveness indicates that the
dynamics of HBV RNA are more sensitive to treatment with a CAM than HBV DNA dur-
ing the first phase of decline. As previously mentioned, this first phase of decline corresponds
directly to the CAMmediated blocking of encapsidated pgRNA production. Following the
initiation of treatment and on time-scales where infected cell death is negligible, intracellu-
lar encapsidated pgRNA and rcDNA amounts rapidly decay to a treated quasi-steady state.
The crux of our analytical sensitivity analysis is tying the decay dynamics of these intracel-
lular quantities to the extracellular dynamics of HBV RNA and HBV DNA. Encapsidated
pgRNA approaches the treated quasi-equilibrium concentration much faster than rcDNA.
Consequently, the HBV RNA dynamics will reflect the effect of CAM treatment more rapidly
than HBV DNA. However, once these intracellular quantities reach their treated quasi-steady
states, the dynamics of the HBV RNA and HBV DNA are similar. Thus, it is not surpris-
ing that the differences in the dynamics of HBV RNA and HBV DNA are most pronounced
during the first phase of treatment mediated decline. Indeed, at the first day post-treatment
initiation for all three doses of vebicorvir, we calculate

RRRRRRRRRRRRR

𝜕 R(1,𝜀)
R0

𝜕𝜀

RRRRRRRRRRRRR
> 1.4

RRRRRRRRRRRRR

𝜕 V(1,𝜀)
V0

𝜕𝜀

RRRRRRRRRRRRR
,

for both HBeAg-positive and negative participants. Accordingly, considering the early rel-
ative dynamics of HBV RNAmay facilitate estimation of 𝜀 in on-going CAMmonotherapy
trials. However, as can be observed in Fig 5, the dynamics of the relative HBV RNA and HBV
DNA concentrations are similar during the second week of treatment decline, as intracellular
encapsidated pgRNA and rcDNA populations have reached their respective treated quasi-
steady states by the second phase of decline. Altogether, the clinical interpretation of our
result indicates that the additional utility of HBV RNA, compared to HBV DNA, in reflect-
ing the most information regarding CAM effectiveness in preventing encapsidation is limited
to the first decay phase as this phase reflects the intracellular dynamics and the mechanism of
action of the CAM. As the duration of this first phase of decline is predicted to be longer dur-
ing treatment with more potent next-generation CAMs (Fig 5), our results suggest that HBV
RNA dynamics may be increasingly useful indicators of treatment effectiveness in on-going
clinical trials.

Discussion
Many CAMs, including the first-generation agent vebicorvir, have entered clinical trials and
represent a promising treatment option for CHB. Here, we developed a multiscale model of
CHB that bridges the intracellular viral life cycle and extracellular viral dynamics to under-
stand the observed viral kinetics in a multiple ascending dose study of vebicorvir. Our model
builds on the multiscale model of CHB developed by Gonçalves et al. [39] to include both
the dynamics of ALT and uninfected hepatocytes. While multiscale models have been used
in modeling chronic hepatitis C infection [20,21,25–27] and are beginning to be developed
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for CHB [39,69–71], many previous modeling studies of CHB have not included the intra-
cellular viral life cycle [32,33,46,72,74,75]. Multiscale models, such as the model presented in
this work or developed elsewhere [39,70], offer unique insight into the intracellular and extra-
cellular dynamics of HBV via the ability to explicitly model distinct mechanisms of action
for novel small-molecule antiviral therapies and simulate the potential antiviral effects of
next-generation therapies.

We fit our model to longitudinal HBV RNA, HBV DNA and ALT data of 29 individ-
uals with chronic HBV infection treated with vebicorvir [4]. Our model describes these
dynamics well both during treatment and following treatment cessation. Vebicorvir treat-
ment led to two observable phases of decline in HBV RNA and, after a slight delay, HBV
DNA.This first phase of decline was rapid in both HBV RNA and HBV DNA, with a half-
life of approximately 17 hours. Our analysis of the multiscale model indicates that this phase
of decline is dominated by the clearance from the circulation of both HBV RNA and HBV
DNA. Our estimated clearance rate, c, is consistent with earlier results from Nowak et al. [29],
Tsiang et al. [30] and Ribeiro et al. [32], but is much smaller than the estimate reported by
Gonçalves et al. [39]. They reported c = 20/day, with similar model fits obtained for c = 5/day
and c = 10/day. However, the rapid decay of HBV RNA and HBV DNA predicted by large
values of c≥ 5/day is incompatible with our viral dynamics data from baseline and day 1
post-treatment initiation. Indeed, our fitting and exploration of parameter space indicated a
strong preference for c≤ 5/day. We note that the viral dynamics data considered by Gonçalves
et al. [39] did not include HBV RNAmeasurements taken before day 7 post-treatment initi-
ation, which may explain the differences in our estimates of c, although Gonçalves et al. [39]
suggest that the pharmacokinetics of RG7907 may play a role. The second phase of decline
of HBV RNA and HBV DNA was slower and our model analysis shows it is mainly driven
by the death of infected hepatocytes. We also found that vebicorvir exhibits dose-dependent
efficacy, with 300 mg daily dosing leading to the highest suppression of both HBV RNA
and HBV DNA. Unlike the modeling of the CAM RG7907 [39], our results do not indicate
a HBeAg-dependent difference in drug efficacy. However, we identified significant HBeAg
status dependent differences in the infection rate and death rate of infected hepatocytes,
𝛿, with higher values found in HBeAg-negative participants, possibly due to the loss of
immune tolerance in these participants [66]. Despite the estimated higher infection rate, 𝛽, in
HBeAg-negative than in HBeAg-positive infection, we found that the significantly larger
production rates of intracellular encapsidated pgRNA, 𝛼, results in a larger basic reproduc-
tion number in HBeAg-positive infection, which is consistent with the higher viral load in
HBeAg-positive infection. While we were able to directly link these parameters to observable
dynamics in HBV RNA and HBV DNA, we have not identified a mechanistic basis for
the estimated three order of magnitude difference in 𝛽 between HBeAg-positive and
HBeAg-negative individuals.

Recently, there has been increased interest in using HBV RNA as a potential biomarker of
treatment efficacy for CHB [38,64]. As HBV RNA is a direct downstream product of cccDNA
activity, via the production of encapisdated pgRNA, that is not directly impacted by treat-
ment with NAs, decays in HBV RNA during NA treatment have been suggested to correspond
to decays in cccDNA activity [38]. In particular, HBV RNA has been shown to predict viral
rebound following treatment interruption in individuals treated with NAs [64]. Here, we eval-
uated HBV RNA as a indicator of CAM efficacy using our multiscale model. Specifically, we
performed an analytic sensitivity analysis of our multiscale model and showed that HBV RNA
concentrations are more sensitive to increases in CAM efficacy than HBV DNA concentra-
tions during first phase decay. Our ability to distinguish between the HBV RNA and HBV
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DNA response to vebicorvir treatment crucially depends on our multiscale model explic-
itly including the dynamics of intracellular encapsidated pgRNA and rcDNA. Our analytical
and simulation results suggest the continued use of HBV RNA as an important biomarker
for CAM efficacy. Further, our modeling suggests that HBV RNA dynamics impart more
information regarding CAM effectiveness than HBV DNA dynamics during the first phase of
decline, and suggests the utility of this biomarker in on-going CAM trials. Consequently, our
results highlight the potential benefits of more sensitive HBV RNA assays and of obtaining
more frequent HBV RNAmeasurements early after treatment initiation.

Our modeling has some limitations. We did not include a mechanistic pharmacokinetic
model to drive vebicorvir dynamics but rather assumed that vebicorvir concentrations rapidly
reach their steady-state value during daily dosing. Consequently, we used a phenomeno-
logical model to capture vebicorvir washout and the resulting decline in CAM efficacy fol-
lowing treatment cessation. Using this model and data obtained after cessation of therapy,
we estimated a half-life of roughly 7.3 hours for the antiviral effect of vebicorvir, which is
shorter than the estimated circulating half-life of 23.5-28.4 hours for vebicorvir observed
by Yuen et al. [4]. This discrepancy in estimates may be due to the infrequent sampling after
the end of therapy, which led to a very large percent relative standard error in our estimate
of the drug washout rate k. Further, our multiscale model simplified the intracellular life
cycle and extracellular dynamics of HBV infection. At the intracellular level, we neglected
cccDNA dynamics and potential rcDNA recycling within an infected cell, as the half-life of
cccDNA has been estimated as approximately 40 days [76] and between 6.9 and 21.7 weeks
in a more recent study[77], and vebicorvir has not been shown to inhibit rcDNA recycling
[78]. However, as next-generation CAMs have demonstrated inhibition of rcDNA recy-
cling, explicitly including cccDNA dynamics is a natural extension of our model. During
treatment with these next-generation CAMs, we anticipate that the final phase of decline of
HBV RNA and HBV DNA will correspond to the loss of infected cells either due to death or
degradation of intracellular cccDNA, while ALT dynamics correspond only to the death of
infected cells. Consequently, extending our modelling to these next-generation CAMs may
inform the rate of cccDNA degradation in vivo. Furthermore, we did not model the dynam-
ics of unencapsidated pgRNA nor the dynamics of other known HBV biomarkers, such as
HB surface antigen and core-related antigen, which are useful in diagnosing CHB [79,80],
although an extension of our multiscale model could explicitly model the dynamics of these
biomarkers.

All told, we developed a multiscale viral dynamic model to investigate the effect of vebi-
corvir monotherapy on the dynamics of HBV RNA and HBV DNA in chronically infected
individuals. We note that, by including the intracellular dynamics of encapsidated pgRNA
and rcDNA, our multiscale model can be used to study the effect of both NA and CAM plus
NA combination therapy and future studies may include studying the effect of combination
therapies on HBV dynamics. Here, we identified mechanistic differences between partici-
pants with HBeAg-positive and HBeAg-negative infection, showed that HBV RNA is more
sensitive to CAM efficacy through an analytical study of our model, and finally predicted the
time-scales on which HBV RNA dynamics are a potentially informative indicator of CAM
efficacy.
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