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Abstract
In drug development, quantitative systems pharmacology (QSP) models are be-
coming an increasingly important mathematical tool for understanding response 
variability and for generating predictions to inform development decisions. Virtual 
populations are essential for sampling uncertainty and potential variability in QSP 
model predictions, but many clinical efficacy endpoints can be difficult to capture 
with QSP models that typically rely on mechanistic biomarkers. In oncology, chal-
lenges are particularly significant when connecting tumor size with time- to- event 
endpoints like progression- free survival while also accounting for censoring due 
to consent withdrawal, loss in follow- up, or safety criteria. Here, we expand on our 
prior work and propose an extended virtual population selection algorithm that 
can jointly match tumor burden dynamics and progression- free survival times in 
the presence of censoring. We illustrate the core components of our algorithm 
through simulation and calibration of a signaling pathway model that was fitted 
to clinical data for a small molecule targeted inhibitor. This methodology provides 
an approach that can be tailored to other virtual population simulations aiming to 
match survival endpoints for solid- tumor clinical datasets.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE OF THIS TOPIC?
Algorithms have been established for exploring parameter uncertainty via the se-
lection of virtual patients for quantitative systems pharmacology models.
WHAT QUESTION DID THIS STUDY ADDRESS?
This study investigates algorithmic modifications that are needed for existing vir-
tual population algorithms to address specific complexities in the oncology drug 
development space.
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INTRODUCTION

Quantitative systems pharmacology (QSP) models have 
emerged as an important tool for interpreting and predict-
ing the performance of oncology therapies.1–4 Systems- 
level models help bridge the gap between our increasing 
knowledge of biological mechanisms—including onco-
genic drivers, drug action, and resistance—and clinical 
response to therapy.4,5 In oncology especially, under-
standing response variability due to resistance is essen-
tial for leveraging learnings from past trials and making 
accurate projections for new therapies or populations. 
Virtual populations (Vpops) have emerged as a useful tool 
for capturing patient heterogeneity with QSP models and 
are increasingly being used to inform drug development 
decisions.1,2,6,7 Vpops consist of parameter samples (i.e., 
virtual patients) selected to match clinical measurement 
distributions while accounting for parameter and biologi-
cal uncertainty.1 The distribution of parameters selected 
within a Vpop can contain key biological insights, as each 
parameter has a biological interpretation and thus may be 
suggestive of important processes involved in treatment 
response or resistance. Predictions made using Vpops can 
also be used to quantify the expected variability for novel 
therapies, a valuable analysis for guiding development 
decisions. However, Vpop generation methods tailored to 
oncology models and end points are lacking, and further 
development in this area is needed.

Here, we focus on challenges in building Vpops for 
solid- tumor applications, where QSP model predictions 
of tumor size dynamics can be compared with patient 
sum of longest diameter (SLD) time series that are col-
lected from sequential measurements of target lesions in 
many oncology trials. The observed SLD time series often 
change over months or years and interpreting them can 
be complex due to the multiple lesions and resistance pro-
cesses involved.8,9 Accurately capturing these time series 
with a virtual population can be especially difficult as 
they contain (i) a large degree of inter- patient variability 

in observed SLD trajectories, (ii) early truncation of tra-
jectories for patients that progress due to target lesion 
tumor growth above clinically established RECIST SLD 
threshold, (iii) truncation of observed tumor trajectories 
due to non- SLD related progression causes, such as me-
tastasis or non- target growth, or due to censoring.10 This 
complexity poses challenges for selecting virtual popu-
lations as a model must be calibrated to capture very di-
verse tumor trajectories, but the comparator time series 
are structured such that there are fewer observations for 
more rapidly growing tumors. If not properly accounted 
for this sparsity, structure increases the risk of bias in the 
virtual population selection. Many of the truncations of 
the SLD time series are due to RECIST- defined progres-
sion events.10 These progression events are important to 
predict as the primary efficacy end point in solid- tumor 
oncology trials is generally quantified as a time- to- event 
measurement, such as progression- free survival (PFS).10 
Predicting PFS as a QSP model output is therefore of great 
value for development decisions, but PFS events are only 
partially determined by SLD dynamics, and other events 
such as metastasis, censoring, or death also influence PFS. 
Careful consideration is therefore required to model the 
link between tumor size dynamics and primary efficacy 
end points like PFS.

In past publications, we have proposed Vpop genera-
tion approaches that employ probabilistic samplings of 
parameter space1,2 and other groups have proposed meth-
ods based on prevalence weighting.6,7 However, existing 
methods are not generally applicable to capture the statis-
tical complexity of SLD and PFS end points in solid- tumor 
oncology, which involve interrelated time series and time- 
to- event end points subject to censoring. In this work, 
we propose an extension to the Rieger et al. Metropolis–
Hasting (MH) algorithm that can be used to capture both 
aspects of the time- varying SLD dynamics and time- 
to- event end points like PFS with censoring.2 In virtual 
trial simulation with large QSP models,11 it is common 
to approach survival- type end points using some form of 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study presents an improved approach for virtual patient selection for matching 
QSP model outputs to solid- tumor clinical data that accounts for complexities in 
linking tumor dynamics to time- to- event outcomes like progression- free survival.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT 
AND/OR THERAPEUTICS?
Improved virtual population selection algorithms within oncology drug devel-
opment can help to better inform development decisions by improving efficacy 
projections, aiding clinical trial design via simulation, and identifying and inter-
preting causes of treatment resistance.
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approximation (i.e., equating the survival event with a spe-
cific tumor size threshold12–14), or focusing on response 
rates which are approximated from tumor size alone.15–17 
These approximations can serve as useful guides for 
many analysis goals, but they can pose challenges when 
attempting to precisely match clinical observations. In 
clinical datasets, censoring and metastasis events invari-
ably occur, and there is an interdependence between the 
response rate and the times at which patients exit the trial. 
Accounting for these complexities is therefore important 
for efficacy projections to guide development decisions. 
Work in pharmacometrics using joint models of tumor 
burden time series and survival end points can account 
for some of these complexities and can help assess the cor-
relation of covariates with tumor dynamics and survival 
end points.18 However, further method development is 
needed as these methods are not readily applicable to typ-
ical large mechanistic QSP models.

While our methodology was designed to be broadly 
applicable to solid- tumor oncology QSP models, we will 
illustrate the steps involved in building a Vpop using a 
relatively simple mechanistic signaling and tumor growth 
model that predicts the time- varying tumor growth trajec-
tory, illustrated in Figure 1. The QSP Vpop for this example 
was calibrated to data from a non- small cell lung cancer 
(NSCLC) phase II study of an ALK inhibitor, consisting of 
an SLD time series and censored PFS measurements.19 We 
show that our Vpop selection algorithm can sample the 
parameters of the mechanistic model to capture patient 
heterogeneity in both SLD and PFS response and account 

for the dependence between the SLD trajectory and the 
PFS end point of primary interest using a probabilistic ap-
proach. We also demonstrate many of the advantages of 
this probabilistic approach, including making bootstrap 
predictions about PFS uncertainty, suggesting putative 
biomarkers, and informing future study planning.

METHODS

Dataset used for fitting

We used published data from a phase II study of an ALK 
inhibitor19 in patients with NSCLC. The dataset consisted 
of SLD time series for each patient as well as a time- to- 
event measure indicating the time of patient exit from the 
trial and the cause, whether due to progression or censor-
ing. We specifically focused our analysis on the subset of 
patients with at least two SLD measurements. Our dataset 
was also truncated at the 500th day of treatment, with all 
patients who remained in the trial up to this point being 
right- censored.

Signaling pathway and tumor growth 
inhibition

The QSP model used in this work consists of two core 
components: a minimal signaling MAPK/PI3K module 
and a tumor growth inhibition module where the cell 

F I G U R E  1  Structure of the mechanistic quantitative systems pharmacology (QSP) model used for virtual populations (Vpop) selection. 
Shown above is the cell signaling component, that captures the ALK inhibitor drug effect, and its connection to net cell growth/death in 
the proliferating shell compartment of a shell- core tumor growth model.20 Here, transition to the necrotic compartment is presumed to 
be irreversible. The tumor physiology is controlled by the proliferating shell diameter, �shell , and the ratio of necrotic cells in the core to 
the proliferating cells in the shell, �core. Here, Np is the proliferating cell count, Nni are the necrotic cell counts across the initial necrotic 
compartment and four subsequent clearance compartments, kg0 is the proliferation rate, kn is the transition rate to the necrotic core, ke is 
elimination rate into the clearance compartments, and � is the timescale of necrotic clearance. The sum of longest diameter (SLD) for each 
simulated patient is defined as the diameter of the combined shell- and- core mass.
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growth rates are controlled from signaling component 
concentrations. A graphical summary of the model is 
given in Figure 1 and further details are provided in the 
Supporting Information. In brief, the signaling model 
captures a minimal pathway of ALK downstream sig-
nal propagation through simplified RAS, ERK, and AKT 
components that drive the proliferation and apoptosis 
rates of cancer cells. A generic growth- factor receptor 
(GFR) term captures receptor tyrosine kinase (RTK) 
upstream signaling that drives the MAPK pathway 
through RAS/ERK. The signaling model, in turn, drives 
the shell- and- core tumor growth model via the net pro-
liferation/death rate of cells in the tumor shell. The 
shell- and- core model builds on past works using a simi-
lar structure.20–22 The SLD for each patient was mod-
eled as the diameter of the combined shell- and- core cell 
volumes assuming a single spherical tumor shape per 
patient (Figure 1). A summary of the model and math-
ematical details can be found in Section S1. Parameters 
were included in the virtual population based on sen-
sitivity analysis and consideration of known resistance 
mechanisms. The parameters selected to vary in the 
Vpop, along with their bounds, are shown in Table S1. 
Other parameters were held fixed at their nominal value 
which are given in Table S2.23,24 The signaling model is 
driven by a simulated median steady- state drug plasma 
concentration–time course from a previously published 
model.23 The plasma concentration directly modu-
lates downstream signaling from ALK, see Section  S1 
for details.

Parameter sampling strategy to generate 
plausible patients

Our algorithmic approach is an extension of the two- step 
procedure described in Allen et al. and extended in Rieger 
et al.1,2 The algorithm presented here consists of a plau-
sible patient generation step, which uses a modified ver-
sion of the MH implementation of Rieger et al.2 Our base 
implementation of the MH algorithm is taken from Rieger 
et al. but novel additions have been made to sample time- 
to- event end points like PFS within each MH iteration. 
This approach adds a specialized scoring procedure for 
the PFS end point, one which respects RECIST criteria for 
progression based on primary tumor size but which also 
uses resampling of observed events and censoring labels 
to account for other risks. These novelties are highlighted 
in Figure 2 (right side). Plausible patients generated from 
the initial step conform to all prior bounds on parameters 
and model outputs and additionally have been selected for 
similarity in distribution to the observed clinical data via 
MH scoring. As in Rieger et al., a second stage is then used 

to further subsample plausible patients into a final vir-
tual population via an acceptance–rejection algorithm to 
match the observed clinical distributions more precisely 
than the initial plausible population. Figure 2 provides a 
visual overview of our algorithm.

We compare candidate plausible patients against the 
observed population data on three measured outputs from 
the clinical dataset, namely baseline SLD, best percentage 
change in the SLD time series, and dropout time. Baseline 
SLD measurement is an SLD recorded prior to the start of 
therapy. Best percentage change is defined as the small-
est observed on- trial percentage change in SLD from 
baseline for each patient. We define dropout time as the 
time to progression or censoring whichever was observed 
first, and these therefore correspond to the time patients 
are removed from the study for any cause. Together, best 
percentage change, which quantifies the change in tumor 
size, and dropout time, which quantifies the timing of the 
change, jointly provide information about the growth ki-
netics of the tumor. We have specifically focused on these 
outputs as best percentage change can be computed from 
available waterfall plots, and a dropout time distribu-
tion can be imputed from reported Kaplan–Meier (KM) 
curves—allowing for the potential use of published data-
sets alongside the individualized internal data used here.

To quantify the relative likelihood of various dropout 
time and best percentage change combinations for each 
plausible patient, a two- component Gaussian mixture was 
fit simultaneously to the three end points—baseline SLD, 
best percentage change, and dropout time—from the ob-
served dataset. The fit Gaussian mixture distribution is 
shown as the blue contours in Figure 4. The baseline SLD 
was log- transformed prior to fitting as it is strictly positive 
and approximately log- normal. The dropout time is also 
strictly positive; however, better fits were achieved using 
the original scale; minimal probability mass (<2%) was al-
located to non- positive dropout times. We experimented 
with a variety of distribution types along with Gaussian 
mixtures with a range of components and we observed the 
best fit and performance with a two- component mixture. 
However, the algorithm was sensitive to the type of dis-
tribution selected and may require careful tuning for new 
datasets. The fit mixture distribution was used to compute 
an acceptance score for each best percentage change and 
dropout time combination associated with a given plau-
sible patient. The acceptance score is proportional to the 
probability density value of the fit Gaussian mixture dis-
tribution evaluated at the candidate baseline SLD, best 
percentage change, and dropout time values.

To compare plausible patients to the observed data, 
values for the above three outputs—baseline SLD, best 
percentage change, and dropout time—need to be com-
puted from the model for each plausible patient. In our 
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algorithm, plausible patients are defined by their unique 
parameter values and tumor initial conditions. The plau-
sible patient parameter sets are proposed in each MH iter-
ation from a uniform proposal distribution centered at the 
last accepted patient and spanning 10% of the bounded 
parameter ranges in each sampled parameter dimension. 
Proposed parameter values are constrained to fall within 
the identified plausible ranges listed in Table S1. To cap-
ture non- signaling sources of variability in tumor physiol-
ogy we also sample the core- shell ratio, �core, and the shell 
thickness, �shell, in the Vpop directly, see Figure  1 and 
Section S2 for notational details. The values for �core and 
�shell are therefore proposed alongside the model parame-
ters in Table S1 at the beginning of the MH iteration, each 
with a uniform proposal distribution. Plausible ranges for 
�core and �shell are listed in Table S3 and are enforced for 
each proposed pair of values. These physiological values 
also impose constraints on the initial conditions of the 
proliferative and necrotic cell populations. The initial 
conditions are randomized subject to these derived con-
straints and to ensure there is no untreated spontaneous 
tumor shrinkage. This procedure is depicted in the left box 
of Figure 2. Further details of the constrained randomiza-
tion procedure can be found in Figure S1. After the initial 
conditions are set, the baseline SLD value for the plausible 
patient is calculated from �core and �shell, see Section S2 for 
details. Once the parameter values and initial conditions 
have been proposed, subject to the above plausibility con-
straints, untreated growth is also simulated for 6 weeks 
to ensure a plausible doubling time in the absence of 
treatment. Plausible untreated doubling time ranges are 
listed in Table S3 and any candidate plausible patient that 

violates the untreated growth constraints, is rejected in 
the MH iteration.

Given the proposed parameter values and initial con-
ditions for the plausible patient, a tumor trajectory under 
treatment is then simulated. This trajectory is truncated 
according to the RECIST criteria of 20% growth over nadir 
or the 500th treatment day, whichever occurs first. The 
computed RECIST threshold time or the 500th day rep-
resents the latest possible time a plausible patient could 
have an assigned dropout time. Earlier dropout times 
are possible or even likely depending on the tumor tra-
jectory and the population being matched. For example, 
causes of progression under RECIST 1.1 criteria, include 
a >20% increase in SLD over nadir for target lesions (the 
change must also be >5 mm), discovery of a new lesion, 
qualitative assessment by the clinician of progression in 
non- target lesions, or death.10 Importantly, the assign-
ment of earlier dropout can influence the best percentage 
change end point for plausible patients, as earlier dropout 
times will be associated with relatively smaller changes in 
tumor size and therefore smaller best percentage change 
magnitudes.

To account for the risk of earlier dropout prior to reach-
ing the RECIST threshold or the 500th day of treatment, 
for each plausible patient we sample from the distribu-
tion of observed dropout times from the actual study. For 
the given simulated parameter set in the algorithm, we 
consider truncating the tumor growth trajectory at any 
observed dropout time from the study occurring before 
the trajectory reaches the on- target RECIST threshold or 
500th day. Therefore, if the RECIST threshold is reached, 
only observed times earlier than the point of threshold are 

F I G U R E  2  Overview of the virtual population selection procedure including (left) the procedure for sampling tumor physiology and 
enforcing untreated growth constraints, and (right) the procedure for selecting dropout times and assigning censoring labels. SLD, sum of 
longest diameter; BPC, best percentage change (in SLD); MH, Metropolis–Hasting.
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   | 273AN INTEGRATED QSP VIRTUAL POPULATION APPROACH

considered, otherwise, all observed times are considered. 
Each feasible dropout time implies a specific best per-
centage change for the simulated trajectory and plausible 
patient. At this point in each MH algorithm iteration, the 
potential plausible patient—with a fixed parameter set, 
initial conditions, and growth trajectory—has a range of 
feasible dropout times and best percentage change combi-
nations, each varying in likelihood relative to the observed 
distribution from the clinical data. This procedure is sum-
marized in the right box of Figure 2.

After scoring each feasible dropout time and best per-
centage change combination from the study for the given 
plausible patient trajectory, a single dropout time is se-
lected probabilistically for the given plausible patient. This 
is done by first generating a uniform random threshold in 
the range from zero to one, similar to a standard MH algo-
rithm, see Rieger et al. for details on MH used for virtual 
populations2 and Chib et  al. for general background on 
the MH algorithm.25 The acceptance score ratio of each 
feasible dropout time and best percentage change for the 
current patient trajectory is then computed relative to the 
score for the previously accepted plausible patient from 
the prior MH iteration. A single dropout time is then ran-
domly selected with equiprobability from the feasible set 
of dropout times that have acceptance score ratios above 
the random threshold. Dropout times with a score ratio 
below the random threshold are not considered for selec-
tion. If no dropout times have a score ratio meeting the 
random threshold, the plausible patient is rejected. For 
an accepted dropout time, the censoring status of the ob-
served patient from which that accepted dropout time was 

sampled is also assigned to the plausible patient, as either 
censored or progressed. This allows the algorithm to ac-
count for censoring in the resulting virtual population. All 
together the proposed parameter set, initial conditions, 
dropout time, and censoring label are recorded together 
for the given accepted plausible patient.

Virtual population sampling strategy

As in prior work, a large set of plausible patients (here 
10,000) are initially selected using the MH procedure out-
lined above.2 This step provides a large collection of para-
metrically diverse plausible patients spanning the range of 
outputs observed in the clinical data. Accepted plausible 
patients are then subsampled using the acceptance–rejec-
tion algorithm described in Allen et al.1 Scoring at this stage 
is only applied to the single assigned dropout time selected 
with each plausible patient in the MH algorithm. Readers 
are referred to the previous articles for a full description 
of the acceptance–rejection algorithm,1,2 but in brief, the 
same Gaussian mixture fit to the observed data is used to 
acceptance score and subsample the overall plausible pop-
ulation into a final virtual population with an improved fit. 
The number of virtual patients selected by the Allen et al. 
and Rieger et  al. acceptance–rejection algorithm is non- 
deterministic, but for the number of plausible patients con-
sidered here, it invariably exceeds the target sampled size 
for the dataset being matched.1,2 We therefore use equal- 
probability down- sampling without replacement from 
the original virtual population to select a smaller virtual 

F I G U R E  3  (A) A diagram illustrating 
our approach for computing the 
probability of plausible patient inclusion 
in a virtual population. Here, pi is a 
vector of scored model outputs for the 
ith plausible patient, f (. ) is the Gaussian 
mixture density fit to the observed output 
data, �(. ), is local density estimate for 
plausible population in the neighborhood 
around the ith plausible patient, and q(. ) 
Is the probability of inclusion for the ith 
plausible patient. A full description of this 
approach is given in Section S3.
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population with the same sample size as the observed pop-
ulation when required in the results below.

A single virtual population of fixed sample size, as de-
scribed above, can be useful for simulating novel thera-
pies or trial designs for a fixed sample of virtual patients. 
However, by taking advantage of the probabilistic nature 
of our approach and repeatedly sampling virtual popula-
tions from the plausible population we can gain a better 
understanding of the expected variability of clinical end 
points over multiple simulated trials of a specified sam-
ple size and design. To efficiently enable this sampling, 
we use a simplified approach derived from Allen et al. to 
bootstrap- resample multiple, variable- sized, virtual popu-
lations from the plausible population. A graphical sum-
mary of our approach is shown in Figure  3 and further 
details are provided in the Section S3. In brief, the proba-
bility of inclusion for a plausible patient being included in 
a given virtual population is proportional to the likelihood 
of the plausible patient's clinical outputs (baseline SLD, 
best percentage change, and dropout time) with respect 
to the fit distribution to the observed data, and inversely 
proportional to the relative density of plausible patients 
in the local neighborhood of clinical outputs. The reader 

is referred to Allen et al. for the full derivation of the al-
gorithm for computing the probability of inclusion but a 
summary of the procedure is provided for completeness in 
the Section S3.1 The probability of inclusion can be used 
to resample the plausible population repeatedly allowing 
us to estimate how a given summary end point or statisti-
cal test will vary with sample size. We use this procedure 
to compute the expected uncertainty in the estimated 
median PFS for a given cohort size and perform a power 
analysis, as described in the Results. Our power analysis 
procedure involves simulating repeated virtual cohorts of 
varying sample sizes. On each of these cohorts, we per-
form the given statistical test we are interested in estimat-
ing the statistical power for, and over the set of virtual 
cohorts of a given size, we compute the fraction achieving 
statistical significance which yields an estimated power 
for a trial of the prescribed size.

RESULTS

To illustrate our algorithm, we first generated 10,000 plau-
sible patients using our adapted MH approach. Generating 

F I G U R E  4  Example virtual population of 155 virtual patients, selected via our two- step algorithm, compared with observations from 
clinical data used for selection.19 This example serves as a visual predictive check in comparing a realization of the virtual population with 
the observed population. (a) Left, the distribution of individual virtual patients is overlayed on the contours of the Gaussian fit to the clinical 
data used for scoring, showing good agreement in distribution and correlation. (b) The virtual and observed populations are compared 
on common visualizations for clinical data including a waterfall plot for best percentage change, median SLD time series with standard 
deviations, and Kaplan–Meier estimates for progression- free survival (PFS) functions.
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the set of plausible patients is the costliest component of 
the overall procedure, and the required number of plausi-
ble patients can vary depending on the parametric size of 
the mechanistic model; the relation between model com-
plexity and the needed number of plausible patients is not 
generally known. However, the simulated set of plausible 
patients can be reused to select multiple virtual popula-
tions using the bootstrapping procedure described above. 
Here, we used diagnostics plots of mixing and convergence 
across the plausible sample, Section S4, to guide selection 
of the appropriate number of plausible patients. We found 
that 10,000 plausible patients allowed for dense and uni-
form coverage in the marginal pairwise parameter plots 
(Figure S2). Furthermore, we observed that autocorrelation 
for the MH chain parameter values decreased and then sta-
bilized after several 100 plausible patients (Figure S3) and 
that, with 10,000 plausible patients, the individual param-
eter values over the course of the chain showed thorough 
mixing across each set of parameter bounds (Figure S4).

From the plausible population, we used the acceptance–
rejection algorithm from Allen et al. to select a virtual popu-
lation, which was then down- sampled to match the sample 
size of the target dataset. The acceptance–rejection step is 
needed because our MH proposal distribution is not nec-
essarily symmetric, which is technically required for con-
vergence to the target distribution given the acceptance 
threshold used here.25 Enforcing a symmetric proposal 
for large QSP- type models is difficult which motivates the 
previously developed two- step procedure.2 Here, we also 
down- sample to the target cohort size to aid in the inter-
pretability of the visual predictive checks when comparing 
the simulated and observed cohorts. An example of a result-
ing virtual population is shown in Figure 4 alongside the 
clinical data used for selection. Figure  4a shows how the 
virtual population (orange points) captures the correlation 
structure between targeted clinical outputs from the ob-
served data. The observed data distribution is shown here 
as the contours (blue) of the fit Gaussian mixture used for 
scoring. The virtual and observed populations also show 
good agreement in key clinical end points when compared 
on common visualization metrics including best percentage 
change shown in the waterfall plot, the median SLD time se-
ries, and PFS survival functions. The survival functions for 
both the observed and virtual populations were computed 
using a KM estimator to take account of the observed and 
simulated censoring. The KM estimators for the observed 
and virtual populations show good agreement in Figure 4b.

Multiple virtual population sampling

Using the Vpop resampling approach described in 
Methods, we compute a probability of inclusion for each 

plausible patient into a virtual population. We use these 
probabilities to efficiently sample multiple virtual popula-
tions to better quantify variability across virtual trials. For 
example, in Figure 5 we quantified the expected PFS end 
point variability, visualized as the 99th percentile interval 
for the survival probability over each week. This interval 
was computed for each week as the 0.5th and 99.5th per-
centiles of the weekly KM estimate of survival probability 
computed from 1000 bootstrapped virtual populations of 
155 virtual patients each. These virtual populations were 
selected with replacement from the plausible population 
according to the probabilities of inclusion computed as in 
Figure 3. Also shown is the 99th percentile interval for the 
median survival time computed for the same set of simu-
lations, which contains the observed median survival time 
and overlaps with the Greenwood 99% confidence interval 
computed from the observed data.

The probabilities of inclusion computed for our boot-
strapping approach can also be used to explore, using the 
mechanistic signaling pathway model, potential mecha-
nistic drivers of response within a clinical population of 
interest that our virtual trials match. These causes are 
not necessarily observable in the clinical population, as 
not all relevant biomarkers are measured, but in the vir-
tual population, we are able to infer what specific com-
binations of model parameters drive predicted response. 
For example, we categorize virtual patients with a best 
percentage change <−30% as responders and patients 
with a best percentage change >−30% as non- responders 
and seek to understand the distributional differences 

F I G U R E  5  Plot of the Kaplan–Meier estimate and 99% 
confidence interval for the targeted clinical cohort in Solomon 
et al.19 is shown in blue. Using our bootstrapping approach, the 
99th percentile progression- free survival (PFS) interval computed 
by week for 1000 virtual trials of 155 virtual patients is shown in 
orange, along with the estimated 99th percentile interval for the 
median survival time shown for the same set of simulations.
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between these two groups in terms of mechanistic pa-
rameter values. Comparing outcome subgroups on their 
parametric differences in a fixed- size virtual popula-
tion (i.e., Figures  4 and 5 with N = 155) can be highly 
variable due to the small number of patients in each 
comparison relative to the parameter dimensionality 
and end- point variability. To compute an estimate of 
the underlying subgroup difference in parameter values 
across the relevant clinical population at large, in the 
limit of large sample size, we selected a large, weighted 
resampling (10,000 patients with replacement) from the 
plausible population using the probabilities of inclusion 
as weights. We refer to this population as the weight- 
resampled population. This resampling procedure ap-
proximates the end point and parameter distributions of 
the smaller fixed sample size virtual populations but in 
the large sample size limit so that virtual trial- to- trial 
variability does not affect estimates of differences in pa-
rameters among population subgroups.

Using this approach, we performed a Wilcoxon rank- 
sum test between responder and non- responder pa-
tients in the weight- resampled plausible population and 
ranked parameters on their significance. Figure  6a de-
picts the four most significant parameters and visualizes 
the parameter quartiles for both the responder and non- 
responder populations. We see that the GFR is the most 
significant parameter in determining response; the GFR 
distribution demonstrates large variability in both groups, 
but there is an increase in median GFR activation among 
non- responders.

While Figure  6a shows potential drivers of differing 
virtual patient response, these differences may not neces-
sarily be detectable in a realistic clinical population given 
the inherent parameter variability and bounds on realistic 

sample sizes. This may be relevant to planning biomarker 
measurements for future trials and informing trial size 
and design. To better understand the detectability of these 
inferred parameter differences between responder sub-
groups in realistic trials, we performed a power analysis to 
understand how large a sample would be needed to detect 
a significant difference in the top four parameters between 
the responder and non- responder populations using a 
Wilcoxon rank- sum test and a significance level of 5%. 
Figure 6b shows these results simulated using 1000 virtual 
trials with the specified sample size on the horizontal axis. 
The computed curves represent probabilities of correctly 
detecting a significant difference for the given sample size 
and illustrate that the difference in a composite measure 
of GFR activity could likely be detected with 80% power 
using fewer than 100 patients, whereas the differences in 
�shell �, and, kg0 would require larger trials of hundreds of 
patients to detect. While the exact nature of GFR activity 
measurement would add additional qualifications to this 
analysis, this approach can serve as an initial guide for 
what drivers of resistance may be important and detect-
able in future studies.

DISCUSSION

Virtual populations are becoming an increasingly impor-
tant development tool for analysis and prediction using 
QSP models. In this work, we propose an extended virtual 
population selection procedure for solid- tumor oncology 
trials. Our procedure ensures constrained yet interpretable 
sampling of tumor physiology and provides a novel, data- 
driven approach to account for both censoring and non- 
target progression risks when matching PFS end points. 

F I G U R E  6  Analysis of variability in virtual population parameter values using bootstrap resampling of the virtual population (a) The 
distribution of the most significant parameters in differentiating responder (best percentage change <−30%) and non- responder (best 
percentage change >−30%) populations according to a Wilcoxon rank- sum test of the weight- resampled plausible population. (b) Power 
analysis showing the influence of sample size on power to detect significant differences in the top- ranked parameters from 6A in bootstrap 
simulated virtual trials of varying sample sizes.
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Our selection procedure can match important measures 
of efficacy in oncology including best percentage change 
(i.e., waterfall plots) and PFS (i.e., survival curves) using 
the demonstration dataset. We further use the probabilistic 
sampling approach inherent in our method to demonstrate 
how the plausible and virtual populations can be leveraged 
to understand patterns in parameter values between re-
sponder subgroups and across trials of varying size. At this 
time, we advise that care is needed if using this approach 
with new therapeutic modalities or indications. Careful 
checking of virtual population agreement with any targeted 
clinical data is important when applying the method to new 
datasets, and further validation would be ideal before the 
method is used for prospective extrapolation across modali-
ties or indications. Also, in this work we do not incorporate 
pharmacokinetic variability, instead using a median model. 
In future work, we aim to benchmark our approach in 
terms of predictive accuracy and computational efficiency 
to make it more general and broaden its applicability.
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