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Abstract
Phenotypic plasticity contributes significantly to treatment failure in many cancers.
Despite the increased prevalence of experimental studies that interrogate this phe-
nomenon, there remains a lack of applicable quantitative tools to characterise data, and
importantly to distinguish between resistance as a discrete phenotype and a continu-
ous distribution of phenotypes. To address this, we develop a stochastic individual-based
model of plastic phenotype adaptation through a continuously-structured phenotype
space in low-cell-count proliferation assays. That our model corresponds probabilisti-
cally to common partial differential equation models of resistance allows us to formulate
a likelihood that captures the intrinsic noise ubiquitous to such experiments. We apply
our framework to assess the identifiability of key model parameters in several population-
level data collection regimes; in particular, parameters relating to the adaptation velocity
and cell-to-cell heterogeneity. Significantly, we find that cell-to-cell heterogeneity is prac-
tically non-identifiable from both cell count and proliferation marker data, implying that
population-level behaviours may be well characterised by homogeneous ordinary dif-
ferential equation models. Additionally, we demonstrate that population-level data are
insufficient to distinguish resistance as a discrete phenotype from a continuous distribu-
tion of phenotypes. Our results inform the design of both future experiments and future
quantitative analyses that probe phenotypic plasticity in cancer.

Author summary
Many cancers adaptively and reversibly develop resistance to treatment, adding complex-
ity to predictive model development and, by extension, treatment design. While so-called

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013202 June 24, 2025 1/ 21

https://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1013202&domain=pdf&date_stamp=2025-06-27
https://doi.org/10.1371/journal.pcbi.1013202
https://doi.org/10.1371/journal.pcbi.1013202
https://doi.org/10.1371/journal.pcbi.1013202
https://creativecommons.org/licenses/by/4.0/
https://github.com/ap-browning/phenotypic_heterogeneity_ibm
https://github.com/ap-browning/phenotypic_heterogeneity_ibm
https://orcid.org/0000-0002-8753-1538
https://orcid.org/0000-0001-7342-0207
https://orcid.org/0000-0003-3127-0532
https://orcid.org/0000-0002-0146-9164
mailto:alex.browning@unimelb.edu.au
https://doi.org/10.1371/journal.pcbi.1013202


ID: pcbi.1013202 — 2025/6/26 — page 2 — #2

PLOS COMPUTATIONAL BIOLOGY Identifiability of phenotypic adaptation from low-cell-count experiments

drug challenge experiments are now commonly employed to interrogate phenotypic
plasticity, there are very few quantitative tools available to interpret the biological
data that arises. In particular, it remains unclear what is needed from drug challenge
experiments in order to identify the phenotypic structure of a population that responds
adaptively to treatment. In this work, we develop a new individual-level mathematical
model of phenotypic plasticity in parallel with a structured model calibration process.
Applying our framework to various existing and potential experimental designs reveals
that experiments that yield only population-level data cannot distinguish between drug
resistance as a distinct cell state, or drug resistance as a continuum of cell states. Conse-
quentially, at the population-level, we demonstrate that common mathematical models
that assume a set of distinct cell states can characterise the behaviour of cell populations
that, in actuality, respond through a continuum of states. Importantly, our results shed
light on both the mathematical models and experiments required to capture phenotypic
plasticity in cancer.

1. Introduction
Phenotypic plasticity is widely acknowledged as a significant factor in the eventual fail-
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ure in the treatment of many cancers [1–4]. Such short-term phenotypic adaptation arises
in isogenic populations through epigenetics such that cells quickly manifest a reversible
drug-tolerant phenotype when exposed to sufficiently high doses of a therapeutic drug [5,6].
Both experimental [6,7] and theoretical [8,9] studies have proposed adaptive therapy and the
intermittent delivery of drug to overcome this phenomenon. Mathematical models, in par-
ticular, have been proposed to characterise this behaviour; interpret experimental studies of
phenotypic adaptation; and to develop treatment schedules robust to resistance [10–16].

Complicating the characterisation of tumour-level plasticity within a given cancer are
contrasting observations in the literature that resistance corresponds to a well-defined dis-
crete phenotype [17–20] and to a continuous spectrum of phenotypes [21,22]. Indeed, many
mathematical models of resistance describe a heterogeneous population comprising cells that
are either firmly drug-sensitive or drug-resistant [18,23–25]. While mathematical models
that capture continuous phenotype adaptation have been proposed [26–28] and are in fact
well studied in the partial differential equation (PDE) literature [21,29], they remain largely
unvalidated with experimental data.

Despite an increased prevalence of experimental studies that interrogate adaptive plas-
ticity, there remains a lack of quantitative tools to calibrate models of phenotypic plasticity
to experimental data. Thus key questions—such as the data requisite to identify the mecha-
nisms behind adaptive plasticity, and the ability to distinguish between resistance as a discrete
phenotype and a continuous distribution of phenotypes —remain unanswered. Mathemat-
ically, the question of whether model parameters can be estimated from experimental data
is broadly referred to as parameter identifiability [30]. More specifically, if distinct parame-
ter sets always lead to distinct model outputs (i.e., the parameter to output map is bijective),
a model is said to be structurally identifiable [31]. In many cases, however, models may be
structurally but not practically identifiable: that is, model parameters cannot be accurately
estimated from a finite amount of noisy experimental data. It is this more pragmatic question,
which relates directly to the experimental design required to reliably estimate parameters of
interest, that we are primarily concerned with in this paper. Thus, from hereon we use the
term identifiability to refer to practical identifiability. Issues relating to the identifiability of
mechanisms behind adaptive plasticity from these models are likely to be further exacerbated
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by other sources of cell-to-cell variability present in even isogenic cell populations [32], and
by potential model misspecification.

We are motivated by a recent study of intermittent therapy of mutant melanoma cells by
Kavran et al. [6], in which the authors provide genetic evidence for the presence of at least
two (reversible) phenotype states: a drug-resistant phenotype and a drug-sensitive pheno-
type arising within a seven-day period of drug exposure and drug removal, respectively. From
reported cell fold-change data from each phenotype, we have previously quantified a dose and
phenotype dependent difference in net growth rate (Fig 1a); a characteristic of high interest
in the context of the eventual development of treatments robust to adaptation [33]. Notably,
Kavran et al. [6] provide compelling evidence for a continuous distribution of phenotypes
present in the period between days 7 and 14 as the cells resensitise through observations of
the cell-adhesion marker L1CAM (reproduced in Fig 1b), a protein well-known as a marker
of the epithelial-to-mesenchymal transition and drug resistance in melanoma [34]. While

Fig 1. Experimental data of phenotype adaptation. An example suite of experimental data of phenotype adaptation. (a) Kavran et al. [6] expose WM239A melanoma
cells to either a continuous treatment, or an intermittent treatment, as shown in (e). Net growth rate of cells calculated for various drug dose levels [33]. Cells that have
been exposed to drug in the 7 days prior to measurement are classified as drug-resistant; cells that have not as drug-sensitive. (b) Phenotype characterised experimentally
by the expression of L1CAM, a marker for cell adhesion. Day 14 intermittent data (i.e., cells that have not been exposed to drug between days 7 and 14) show a similar
profile to day 0. Reprinted from [6] with permission from the author. (c) Schematic of a cell proliferation assay; cells grow on the substrate of 9mm wells, and a central
region is imaged at various time points. (d) Example suite of cell proliferation assay data; experiments conducted with a low density of 3T3 Fibroblast cells (reprinted
from [35] under a CC-BY license and further analysed in [36]). (e) Cells are subject to either continuous treatment, in which a drug concentration is maintained, or to
intermittent treatment, in which treatment alternates between 7-day periods of drug exposure and drug removal. (f,g) Schematics of continuous and discrete models of
phenotypic heterogeneity, respectively (see text for details).

https://doi.org/10.1371/journal.pcbi.1013202.g001
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sequence and protein data provide qualitative insight into the adaptive dynamics, their link
to cell growth rate is unlikely to be direct. We must, therefore, resort to using cell count data
arising from proliferation assay experiments (Fig 1c) to quantify adaptive dynamics and the
corresponding, possibly heterogeneous, net cellular growth rate.

To capture the stochasticity intrinsic to low-cell count experiments such as proliferation
assays, we develop an individual-based model (IBM) of drug-based adaptation [27]. We
build on the IBM of Hamis et al. [33] in a stochastic differential equation (SDE) frame-
work to present a model in a continuous phenotypic space where a population of cells tend
reversibly toward either a drug-sensitive state (mathematically, denoted by xi = 0 where xi
denotes the phenotype of cell i) or a drug-resistant state (denoted by xi = 1). Changes in
cellular phenotype are driven by two key mechanisms. First, deterministic drug-responsive
movement described by a function of potentially unknown analytical form. Second, by a
random diffusive process that induces cell-to-cell heterogeneity. For simplicity, all cells are
otherwise statistically identical. The choice to work in an SDE framework means that our
IBM corresponds precisely in a probabilistic sense to common PDE models of phenotypic
adaptation [37].

Exploiting the tractability of the SDE and analogous PDE model, we build an inference
framework that captures intrinsic noise in low-cell-count proliferation assay experiments
without the pervasive, but often unjustified, assumption that experimental observations of
cell count are subject to additive Gaussian noise. To do this, we derive and present a chem-
ical master equation (CME) that describes the time-evolution of cell count, with which we
construct a likelihood function [38]. We then perform inference and identifiability analysis
under three data collection scenarios. First, we consider a suite of cell proliferation exper-
iments for cells that are initially either resistant or sensitive and are exposed (or not) to a
drug over a seven day period. Second, we consider a hypothetical scenario in which prolifer-
ation assays are observed continuously such that the time of cell-proliferation and cell-death
events are directly observed. Lastly, we consider another hypothetical scenario in which a cell
proliferation marker (i.e., L1CAM) correlates weakly, but linearly, with cell proliferation.
All analysis is initially conducted in an idealised scenario where the functional form of the
phenotype adaptation mechanism is correctly specified. We later relax this assumption and
perform model selection.

Together, the data collection regimes we study establish the identifiability of individual
model parameters and, more importantly, our ability to distinguish the phenotypic
heterogeneity induced by random changes in phenotype from possible model misspecifi-
cation. Given that the entrenched model of reversible phenotypic adaptation is that of two
well-defined discrete phenotypes, we conclude our study by investigating whether such
discrete heterogeneity can be distinguished, using cell count data alone, from a model
comprising a continuous phenotypic space. As we are primarily interested in establishing the
theoretical identifiability of model parameters and mechanisms, in the main text we focus
our analysis on regimes where cell counts are extracted from images precisely; we relax this
assumption in the supplementary material (S5 File) by investigating where identifiability is
lost if only imprecise measurements can be made.

2. Mathematical methods
2.1. Individual-based model
We assume that individuals undergo a biased random walk in phenotype space, such that the
phenotype of a cell i, denoted xi, is given by
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dxi = v(xi,Tx)dt + 𝛽 dWi, (1)

where Tx ∈ {0, 1} indicates whether a drug is present or not present, respectively; v(xi,Tx)
describes the adaptation velocity; 𝛽 describes the magnitude of diffusive movement through-
out the phenotype space, andWi is a Wiener process. We further assume that, for 𝛽 = 0, the
system has a stable steady state at xi = 0 for Tx = 0 (this is referred to as the sensitive state), and
likewise at xi = 1 for Tx = 1 (referred to as the resistant state).

We assume that the net cellular growth rate is phenotype-dependent, modelled as a linear
function of xi [33], parameterised as

𝜆(xi,Tx) = {
𝛾1 + (𝛾3 – 𝛾1)xi if Tx = 0,
𝛾2 + (𝛾4 – 𝛾2)xi if Tx = 1,

(2)

as shown in Fig 1a. Provided that the growth rate is monotonic in xi, the functional form of 𝜆
is arbitrary since we could, in theory, rescale the phenotypic space in Eq (1) and thus equiv-
alently the functional form of v. Furthermore, we follow [33], and assume that 𝜆(xi,Tx) < 0
corresponds solely to net death (apoptosis or necrosis), and 𝜆(xi,Tx) > 0 corresponds solely to
net proliferation. We further assume that both proliferation and death events occur according
to a Poisson process. Upon death, a cell is removed from the population. Upon proliferation,
a cell is replicated such that daughter cells are created with an (initially) identical phenotype
index to the parent.

While we focus on analysis of synthetic data, we choose biologically realistic parameters
based upon analysis on the emergence of reversible resistance to the BRAF-inhibitor LGX818
in BRAFV600E-mutant melanoma cells [6,33]. The growth rate parameters are chosen to be
𝛾1 = 0.15, 𝛾2 = –0.3, 𝛾3 = 𝛾4 = 0.1 to approximately match the mean growth rate of sensitive
and resistance cells under drug and no drug conditions (see dose-response curve in Fig 1a).
Very little information is available regarding the adaptation dynamics through v(xi,Tx) and
diffusivity 𝛽, other than the qualitative observation that cells move between drug-sensitive
and drug-resistant states within a seven day window. We set

v(xi,Tx) = –𝜈(xi – Tx) (3)

with 𝜈 = 0.4 such that xi is an Ornstein-Uhlenbeck process. We revisit this assumption with
a more general form in Sect 3.4. Finally, we set 𝛽 = 0.05 such that the stationary distribu-
tion of sensitive cells has a standard deviation of approximately 0.05. Implicit in our model is
an assumption that the mechanisms behind drug-sensitisation and the reverse are identical.
However, this need not be the case as we later exposit: it is sufficient to study identifiability in
a single direction.

We set the initial condition in the model to a probabilistic representation of a spatially
uniform low-cell count proliferation assay experiment; specifically, a cell proliferation assay
conducted in a standard 9mm well initialised with approximately 1000 cells (this is slightly
larger than the initial population in [6]). The field-of-view of the imaged proliferation assay
in Fig 1c–1d is 817×614 µm, and so each cell has probability 𝜌 = 817× 614/(45002𝜋) of
presenting in the field-of-view. The initial condition is thus set to n0 ∼ Binomial(1000,𝜌),
corresponding to a mean initial cell count of approximately 7.9 per image.

In Fig 2a–2d, we simulate a set of synthetic cell proliferation assay experiments with our
IBM under both continuous and intermittent treatments; the latter is defined as alternating
7-day periods of drug and no drug (Fig 1d). Results in Fig 2a, 2b highlight emergent isogenic
heterogeneity due to white-noise driven fluctuations in the phenotype index. Results in Fig 2c,
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Fig 2. Model comparison.We compare realisations of the SDE-based IBM to the solution of both the corresponding Fokker-Planck PDE (Eq 4) and the CME (Eq 12)
for the population size. (a–b) A single realisation of an IBM initiated with drug sensitive cells. The mean phenotype is zero in the equilibrium drug-sensitive state, and
unity in the equilibrium drug-resistant state. Also shown are the timings of birth and death events. Treatment applied is (a) continuous; and (b) intermittent (Fig 1e).
(c–d) Cell count observations from 10 realisations of the IBM (blue) under both (c) continuous and (d) intermittent treatment. Also shown is the expected population
⟨N⟩(t) computed from a numerical solution of the PDE (black), and both a 50% and 95% credible region computed from a numerical solution of the CME (grey). A full
comparison between the solution of the CME and the IBM is provided as supplementary material (S1 File). (e–f) Comparison between the phenotypic distribution com-
puted empirically using an IBM initiated with 500 cells (coloured) and from the PDE (black dashed). Results in (e) show the phenotype distribution for both continuous
and intermittent treatment for 0 ≤ t ≤ 7 d (in which both regimes are identical) and in (f) for intermittent treatment from 7 ≤ t ≤ 14 d.

https://doi.org/10.1371/journal.pcbi.1013202.g002

2d show high levels of stochasticity in cell count. Since the simulations are discrete, there
is a non-zero probability of extinction as our model does not, in its standard formulation,
consider migration into and out of the cell proliferation assay field-of-view (Fig 1c).

2.2. Partial differential equation model
We now define u(x,t) as the density of cells with phenotype x at time t, such that the dynamics
of u(x,t) are governed by the Fokker-Planck equation

𝜕u(x, t)
𝜕t + 𝜕

𝜕x(v(x,Tx(t))u(x, t)) = 𝛽
𝜕2u(x, t)
𝜕x2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fokker-Planck equation

+𝜆(x,Tx(t))u(x, t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Proliferation and Death

, (4)

subject to the usual set of no-flux and vanishing far-field boundary conditions [27,37,39].
Experiments are initiated with a sample of cells from a zero-net-growth stationary distri-

bution for either a sensitive or resistant population. For the Ornstein-Uhlenbeck formulation
of v(x,Tx), this corresponds approximately to
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xi(0)∼N (0,𝛽/
√
2𝜈), (5)

which we set as the initial condition in the model.
We denote by ⟨N⟩(t) the expected cell count and by p(x,t) probability density function

(PDF), given by

⟨N⟩(t) ∶=∫ℝ
u(x, t)dx, (6)

and

p(x, t) ∶= u(x, t)
⟨N⟩(t)

, (7)

respectively.
In Fig 2e–2f, we compare a finite-difference approximation to the PDE to a set of real-

isations of the IBM initialised with a large (n0 = 500) number of initial cells. We remind
the reader that we expect a close match (that converges as n0 →∞), as the PDE is an exact
probabilistic representation the IBM.

2.3. Chemical master equation
We now derive an approximate master equation for the time-evolution of the probability mass
function for the cell count, defined as

q(n, t) ∶=ℙ(N(t) = n). (8)

We consider that

q(n, t + 𝛿t) = q(n, t) +ℙ(proliferation in (t, t + 𝛿t)|N(t) = n – 1)q(n – 1, t)
+ℙ(death in (t, t + 𝛿t)|N(t) = n + 1)q(n + 1, t)
–ℙ(proliferation in (t, t + 𝛿t)|N(t) = n)q(n, t)
–ℙ(death in (t, t + 𝛿t)|N(t) = n)q(n, t).

(9)

Note that we can also include terms in the above that explicitly capture migration into and out
of the field of view. Generally, however, we would expect these to vanish if we assume that the
assay as a whole is sufficiently homogeneous such that migration out of the window occurs at
the same rate as migration into the window (i.e., periodic boundary conditions).

To make progress, we assume that the phenotypic states of cells are independent. While
not strictly true for very high proliferation and death rates (since cells inherit their pheno-
type from a parent), this is appropriate for the range of growth rates we observe (Fig 1a).
Under these assumptions, the per-capita instantaneous proliferation and death rates are
given by

rprol(t) =∫ℝ
p(x, t)max(0,𝜆(x, t))dx, (10)

and

rdeath(t) = –∫ℝ
p(x, t)min(0,𝜆(x, t))dx, (11)

respectively, where p(x,t) is governed by the PDE (Eqs 4 and 7).
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For 𝛿t sufficiently small, we can consider a Taylor expansion of the exact Poisson proba-
bility to obtain an asymptotic expression for the event probabilities in Eq (9). These are given
by

ℙ(proliferation in (t, t + 𝛿t)|N(t) = n)∼ nrprol(t)𝛿t,
and

ℙ(death in (t, t + 𝛿t)|N(t) = n)∼ nrdeath(t)𝛿t.
Substituting into the difference equation (Eq 9) and taking 𝛿t→ 0, we arrive at the CME

dq(n, t)
dt

= (n – 1)rprol(t)q(n – 1, t)

– n(rprol(t) + rdeath(t))q(n, t)
+ (n + 1)rdeath(t)q(n + 1),

(12)

subject to absorbing boundaries such that q(n) = 0 for n<0.
In Fig 2c–2d, we compare the solution of the CME to realisations of the IBM, showing that

the CME captures both the average and variance of the cell count. A more detailed compari-
son is provided in S1 File.

2.4. Likelihood-based inference
We take a Bayesian approach to parameter estimation and identifiability analysis and apply
the CME (Eq 12) to construct a likelihood for cell count data reported from proliferation
assays. The advantage of this approach, compared to a more standard approach that consid-
ers an average cell count subject to additive Gaussian noise, is that we account directly for the
stochasticity intrinsic to the proliferation death process. As we are primarily interested in the
identifiability of model parameters, we assume that all cell counts are exact. In the supplemen-
tary material (S5 File), we investigate identifiability in the case that experimental observations
are potentially subject to miscounting.

Experiments are conducted for t days, at the conclusion of which a cell count observation
is taken. We denote by n(t,Tx ,P)k a cell count taken from the kth replication of an experiment
terminated at time t, conducted entirely with (Tx = 1) or without (Tx = 0) drug, using an ini-
tial population of sensitive (denoted P = 0) or resistant (denoted P = 1) cells, and denote by
D the complete set of data. Further denoting the solution to the CME with conditions (P ,Tx)
and parameter values 𝜽 by q(P ,Tx)(n, t;𝜽), the log-likelihood is given by

ℓD(𝜽) = ∑
(P ,Tx)

∑
t
∑
k
log q(P ,Tx)(n

(t,Tx ,P)
k , t;𝜽). (13)

Here, the summation is taken over all experimental conditions, all time points, and
all experimental replicates. Note that we have assumed that cell count observations are
independent between time points; effectively assuming that measurements are taken at the
termination of an experiment and not as a time-series. While our approach could be triv-
ially extended to account for time-series data, this would add significant computational cost
by potentially requiring a numerical solution to the CME for each individual observation.
While we focus our results on inference using cell count data, we also consider log-likelihood
functions constructed for two other data types: event timing data (i.e., the exact time of pro-
liferation or cell death observed from temporal data) and from a cell proliferation marker that
may linearly correlate with the net growth rate.
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Following the construction of the log-likelihood function, we can either take a frequentist
approach and find the maximum likelihood estimate (MLE), or apply a Bayesian approach
to quantify identifiability and parameter uncertainty. While unusual to consider both
approaches, we do so in this work as the former is advantageous as it allows us to perform
model selection using frequentist hypothesis tests [40].

For the latter, we assume that knowledge about model parameters is initially encoded in a
prior distribution, p(𝜽). We choose p(𝜽) to be independent uniform over a sufficiently wide
range of parameter magnitudes (full details are given in S1 File). This choice also ensures that
the maximum a posteriori estimate (MAP) corresponds to the MLE. Following a set of obser-
vations, denoted byD, arising from cell proliferation assay measurements, or otherwise, we
update our knowledge about the model parameters using the relevant likelihood denoted ℓD
to obtain the posterior distribution, given by

p(𝜽|D)∝ exp(ℓD(𝜽))p(𝜽). (14)

When applying the Bayesian approach, we sample from the posterior using the adaptive
scaling within adaptive Metropolis Markov-Chain Monte Carlo algorithm implemented by
[41] in AdaptiveMCMC.jl with 10,000 iterations. To obtain MLEs we apply the DIRECT
global search algorithm implemented in NLopt for Julia [42] to the likelihood function.
Similarly, for MAPs we apply the same algorithm to the posterior density function. As we are
primarily interested in parameter identifiability, which relates to whether the likelihood is
flat in the vicinity of either the “true” or best fitting parameter values, for simplicity we initi-
ated each chain using the “true” set of parameter values that are used to generate the synthetic
data.

3. Results
3.1. Phenotypic heterogeneity is poorly identified from cell count data
We begin our analysis by considering a suite of synthetic cell proliferation assays conducted
within a seven day period (specifically, a set of assays that terminate at t = 1, 3, 5, and 7d). For
each termination time, we conduct a set of four experiments: with or without drug and initi-
ated with either a population of fully sensitive or resistant cells. We devote two 96-well plates
to each termination time, such that the sample size for each condition isM = 48. The duration
is chosen based on the observation that the population adapts or resensitises within a seven
day interval [6] (in S2 File, we consider a variety of termination time sets).

Applying the CME-based Bayesian inference procedure reveals that all growth rate param-
eters are practically identifiable. The results in Fig 3a–3b show how model predictions pro-
duced at the MAP align with synthetic cell count data observations. Furthermore, results in
Fig 3c show that the adaptation speed parameter, 𝜈, is identifiable. However, we see from
results in Fig 3d that the diffusion parameter 𝛽, which corresponds to the variance in the
phenotype variable x within an adapting population, is only one-sided identifiable: we can
establish an upper bound, but no lower bound. In the supplementary material, we show this
to also be the case if temporally correlated cell count observations are made (S6 File). The
parameter is, however, structurally identifiable: we show this in the supplementary mate-
rial (S4 File) using a significantly larger (M = 768) data set, however the parameter becomes
again non-identifiable when imprecise cell-count observations are made (S5 File). Thus, from
cell count data alone, we expect that models with a phenotypic heterogeneity (i.e., models
with a random component to phenotype changes) to be indistinguishable from models with
deterministic adaptation (the 𝛽 = 0 scenario).
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Fig 3. Proliferation assay inference.We perform Bayesian inference on a set of synthetic cell proliferation assay data using the CME as a likelihood. Independent cell
count observations (M = 48 replicates per condition) are collected from experiments conducted with fully sensitive or fully resistant cells, with and without drug, and
terminated at t = {1 d, 3 d, 5 d, 7 d}. (a–b) Synthetic proliferation assay cell count data (box plots), the chemical master equation predicted median cell count at the MAP
(solid lines), and the model predicted first and third quantiles (dashed semi-transparent lines). (c–d) Posterior distributions for the logarithms of v, the adaptation speed,
and 𝛽, the diffusivity. Shown also is the uniform prior (blue), the true value (black dashed), and the MAP (red dashed). While the adaptation speed is identifiable (as are
all other parameters; see S2 File), the diffusivity is only one-sided identifiable; the model cannot be distinguished from that with purely deterministic adaptation (i.e., no
heterogeneity).

https://doi.org/10.1371/journal.pcbi.1013202.g003

To investigate the identifiability of 𝛽 further, we recall that the phenotype distribution,
p(x,t), affects overall cell count dynamics only indirectly. Specifically, cell proliferation
and death is governed at the population-level by the overall proliferation and death rates,
given by Eqs (10) and (11). For 𝛽 = 0, p(x,t) tends to a degenerate distribution such that
rprol(t) = 𝜆(x̄, t), where x̄ is the mean phenotype (in the case of homogeneity, the only phe-
notype). Following from our assumption that a positive net growth rate corresponds solely
to proliferation, the most obvious consequence of the 𝛽 = 0 parameter regime is that pro-
liferation and death cannot occur simultaneously: thus, we expect a sharp proliferation-
death transition at rprol(t) = 0 as the population switches between death and proliferation
events, depending on the presence of drug and the mean phenotype. In contrast, the tran-
sition at rprol(t) = 0 will be diffuse for non-zero 𝛽. In Fig 4, we compare the event rates for
various values of 𝛽. Clearly, aside from minor differences at the proliferation-death tran-
sition, rate curves are visually indistinguishable for decreasing values of 𝛽. For large 𝛽,
which has very little or no posterior mass (see Fig 3d), the proliferation rate curve becomes
distinguishable.

3.2. Phenotype heterogeneity is identifiable from event-timing data
Under the current model formulation, in which heterogeneity is driven solely by diffu-
sion through the phenotypic space, it is only in the regime where 𝛽 > 0 that we will ever see
proliferation and death events occur simultaneously. Thus, in the constraints of our model
formulation, we expect to be able to more precisely identify 𝛽 if we observe the precise tim-
ings of cellular proliferation and death events from, for example, live cell imaging.

We therefore investigate a hypothetical scenario where we have access to noise-free event
timings from a set of proliferation assays that are initiated with a total of 10,000 cells. With-
out loss of generality, for the rest of the study we focus only on adaptation in the forward
direction (i.e., from drug-sensitive to drug-resistant), since an analogous analysis could be
conducted in the reverse direction. A log-likelihood function can be constructed by dis-
cretising the resultant Poisson process such that the number of proliferation and death events
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Fig 4. Practical non-identifiability from cell count data. Practical non-identifiability of the diffusion parameter 𝛽 (corresponding to a
measure of the heterogeneity), seen through differences in the total expected proliferation and death rate functions, rprol(t) and rdeath(t),
respectively. All other parameters are fixed at their true values. Clear differences are seen in the proliferation rate between 𝛽 and a prolifer-
ation rate constructed where 𝛽 ↦ 2𝛽; we have seen previously that 𝛽 is one-sided identifiable. However, reducing 𝛽 shows (visually) very
minor differences between the proliferation and death rate functions as both tend to the deterministic limit (in this case, corresponding
to exponential decay from the negative maximum death rate through to the maximum proliferation rate). In the absence of heterogeneity
(i.e., for 𝛽 → 0), proliferation and death events cannot occur simultaneously in a population.

https://doi.org/10.1371/journal.pcbi.1013202.g004

occurring in the interval (t, t+𝛿t), denoted E(𝛿t)prol (t) and E(𝛿t)death(t), respectively, are distributed
according to

E(𝛿t)prol (t)∼ Poisson(rprol(t)N(t)𝛿t), E(𝛿t)death(t)∼ Poisson(rdeath(t)N(t)𝛿t), (15)

where N(t) is the (observed) cell population at time t. Under the well-mixed phenotype
assumption for which the CME applies, Eq (15) is exact as 𝛿t→ 0. We choose 𝛿t = 0.035d
such that the seven-day experiment is subdivided into 200 observation intervals (as a
consequence, one could also consider event-timing data that is not exact, but accurate to
intervals of width 𝛿t that correspond to a finite imaging frequency). As the intervals are
non-overlapping, the observed number of birth and death events within each interval are
statistically independent, and the log-likelihood is given simply through the probability mass
function for the Poisson distribution in each interval.

The synthetic data set is shown in Fig 5a, along with an estimate for the instantaneous
event rate constructed using a moving average. Visually, heterogeneity can be detected
through the transition from primarily cell proliferation to primarily cell death. That is, for
𝛽 = 0 the homogeneous population of cells will exclusively either proliferate or die, but not
both. We proceed to perform inference on this synthetic data set using the Poisson likelihood,
with the posterior shown for 𝛽 in Fig 5b (all other relevant parameters remain identifiable).
Clearly, heterogeneity is now identifiable; estimates of 𝛽 can be drawn precisely.

3.3. Phenotype heterogeneity is not identifiable from proliferation
marker data
Our study is in part motivated by Kavran et al. [6] who provide compelling evidence for a
continuous transition from a sensitive to resistant state through the cell-adhesion marker
L1CAM. Such data are difficult to interpret directly due to uncertainty in the precise link
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Fig 5. Identifiability of heterogeneity from event timing data.We generate a synthetic data set from an experiment (or set of exper-
iments) that are initiated with a total of 10,000 cells that are under continuous treatment. The exact event timings (i.e., time of cell
proliferation, and time of cell death) are recorded and used for inference. (a) Synthetic event timing data. Shown is a rug plot of a sam-
ple of 500 each of proliferation and death events, and a local regression (LOESS) of the observed proliferation and death rate. (b) Posterior
distribution for log(𝛽), previously non-identifiable, constructed using a Poisson likelihood for the exact timing data. Shown also is the
uniform prior (blue), the true value (black dashed), and the MAP (red dashed).

https://doi.org/10.1371/journal.pcbi.1013202.g005

between the net growth rate and the expected marker expression and the resultant flow
cytometry measurement. Challenges aside, we now consider identifiability of 𝛽 in the case
that the measured marker expression correlates linearly with the proliferation rate (and
effectively, since the link between the net growth rate and phenotype index is also linear, the
phenotype index).

We assume that the observed marker expression for cell i, denoted byMi, is given by

Mi ∼ xi + 𝜀 (16)

where 𝜀 is independent of xi. We consider both that 𝜀 is normally distributed with zero
mean and unknown standard deviation 𝜎, and a scenario where the shape of 𝜀 is addition-
ally unknown such that 𝜀 is given by a translated Gamma distribution with zero mean,
unknown standard deviation, and unknown skewness 𝜔 (this distribution becomes normal as
𝜔→ 0) [43]. By convoluting the distribution of 𝜀 with that for x, we can construct an exact
log-likelihood for a set of marker data. In Fig 6a, we show the resultant (weak) linear correla-
tion between phenotype index and marker measurement.

We fix all other mechanistic parameters, which we previously established to be identi-
fiable from cell count data, at the corresponding true values. We then consider a synthetic
data set in which marker data is taken from a set of proliferation assays terminated at
t = {1d, 3 d, 5 d, 7 d}. Results in Fig 6b show samples from the joint posterior distribution for
log(𝜎) and log(𝛽) in the case that 𝜔 = 0. In both the case where the marker error shape is
known (𝜔 = 0) and unknown, we are unable to place a lower bound on 𝛽. Furthermore, the
shape of the posterior in Fig 6b indicates that, even if we had knowledge of 𝜎, 𝛽 wouldremain
only one-sided identifiable. We conclude that, from a marker that does not correlate perfectly
with growth rate, heterogeneity in the proliferation rate is indistinguishable from marker
noise.
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Fig 6. Identifiability of heterogeneity from noisy marker data.We generate a synthetic data set comprising noisy measurements of the phenotype state of each cell
using a hypothetical marker for cell proliferation (i.e., L1CAM). (a) Measurements are normalised such that the mean of fully sensitive cells is approximately zero, and
that of fully resistant cells (which arise in the limit as t→∞) is approximately unity. The marker is assumed to weakly linearly correlate with growth rate (and hence,
the phenotype index); we model this by a measurement noise process that is normally distributed with variance 𝜎2. (b) We perform Bayesian inference on a dataset
generated from cell proliferation assays with fully sensitive cells, exposed to drug continuously, with independent measurements taken at t = {1 d, 3 d, 5 d, 7 d} (M = 48
replicates per measurement time). All other parameters, identifiable from cell count data, are fixed, and 𝜎 and 𝛽 are estimated, with the joint posterior (grey discs)
shown alongside the true value (blue diamond). (c) We repeat the analysis in the case that the shape (skewness, quantified by𝜔) of the measurement noise distribution is
additionally unknown.

https://doi.org/10.1371/journal.pcbi.1013202.g006

3.4. Model selection and misspecification for cell-count data
We have made two significant observations thus far: first, that the 𝛽 > 0 regime is indis-
tinguishable from the 𝛽 = 0 regime from cell count data; and second, that all other model
parameters are identifiable given a correctly specified model. As a consequence of the first
observation, we perform all remaining analysis using what we term the “homogeneous
continuous model”: an ordinary differential equation (ODE) model given by Eq (1) with
𝛽 = 0. Therefore, all cells carry the same phenotype, denoted now by x(t). Our goal now is
assess whether we can not only identify model parameters, but also the functional form of
the adaptation velocity v(x,Tx) (without loss of generality in the case that Tx = 1 such that
v(x, 1) = u(x)).

We consider a relatively general functional form for u(x), given by

u(x) = a sgn(1 – x) + (1 – x)(b + cx + dx2), (17)

where sgn(x) is the sign function. This form of u(x) allows choices of increasing complex-
ity to be recovered by setting parameters to zero. As before, we consider a set of synthetic
cell proliferation assays conducted with drug sensitive cells under continuous treatment and
terminated at t = {1d, 3 d, 5 d, 7 d} (M = 48 per condition). The true model (Eq 3) is recov-
ered by setting a = c = d = 0. We can recover a variety of velocity models using the functional
form given by Eq (17), including for b = c = d = 0 the constant adaptation presented in our
previous work [33]. As the growth rate parameters for the drug-on experiment, 𝛾2 and 𝛾4,
were found to be identifiable (and can be established by conducting drug-off and drug-on
experiments with sensitive and resistant cells, respectively) we fix each to their corresponding
true value.

We perform model selection using the frequentist likelihood ratio test (equivalent to
profile likelihood). For example, to test whether a = 0, we compare the likelihood at the MLE
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(equivalently, the MAP) where we fix a = 0 to that for the model where all parameters in
Eq (17) are non-zero, denoted by ̂𝜽. Fig 7a shows the resultant set of log-likelihoods, trans-
lated such that ℓ( ̂𝜽) = 0. From the likelihood ratio test [40], we can construct a threshold
based on a 95% confidence interval outside of which we reject a null hypothesis that the
parameter set, i.e., [a] is equal to zero.

Results in Fig 7a show that any individual parameter can be set to zero. Furthermore, any
pair of parameters can be set to zero except a and b simultaneously. Finally, only the parame-
ter triples that do not contain both a and b can be set to zero. If the goal was to identify a sin-
gle model, one would use an information criterion [40] (or similar) to penalise differences in
log-likelihood by the dimensionality of the non-zero parameter set; in our case, we expect a
model where only one of a or b is non-zero as the most parsimonious.

Our analysis has identified a family of possible adaptation velocity functions, given by the
MLE for each combination for which the relative log-likelihood in Fig 7a is above the cor-
responding threshold. In Fig 7b we compare the identified adaptation velocities for the true
model (b non-zero) to the full model (no non-zero parameters) and a model where only a is
non-zero. Clearly, there remains large uncertainty as to the functional form of u(x) through-
out the phenotype space. Results in Fig 7c, however, demonstrate why these differences do
not manifest in statistically different cell count observations: while u(x) varies significantly,
the possible paths for x(t) are similar.

3.5. Continuous and discrete-binary heterogeneity may be
indistinguishable
Arguably the standard model of plasticity describes a drug-dependent switch between two
discrete phenotypes: sensitive and resistant. Such an analogue of our model is

X0
r01(d)⇌
r10(d)

X1, (18)

Fig 7. Model selection and misspecification.We perform inference and model selection on a general adaptation velocity function of form given by Eq (17). The true
model corresponds to b = 0.4 and a = c = d = 0 (i.e., the combination [a, c, d]). (a) Results from a likelihood ratio test where the null hypothesis in each column is that
the stated parameter combination [⋅] is zero. Relative log-likelihood values below the relevant threshold (colours correspond to different dimensionalities) indicate that
the null hypothesis can be rejected at the level of a 95% confidence interval. Arrows indicate that observed statistics are below the plotted region. (b,c) Identified possible
adaptation velocities and phenotype transitions respectively.

https://doi.org/10.1371/journal.pcbi.1013202.g007
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where sensitive cells, X0, have net growth rate ̃𝜆0(d) dependent on the drug concentration d,
and resistant cells, X1, have net growth rate ̃𝜆1(d) (Fig 1g). We assume that r10(d) and r01(d)
are also drug-dependent.

As Eq (18) is linear, the mean cell count in each subpopulation, denoted by n0(t) and
n1(t), is given by

dn0
dt
= ̃𝜆0(d)n0 – r01(d)n0 + r10(d)n1,

dn1
dt
= ̃𝜆1(d)n1 + r01(d)n0 – r10(d)n1.

(19)

To draw a correspondence to the continuous model, we consider now the mean
x̃(t) ∶= n1(t)/(n0(t)+n1(t)), which we expect to correspond with x(t) in the continuous
model (although not exactly, as in general at equilibrium x̃(t) ≠ 1). The dynamics of x̃(t) are
governed by

dx̃
dt
= r01(d) + ( ̃𝜆1(d) – ̃𝜆0(d) – r01(d) – r10(d))x̃ + ( ̃𝜆0(d) – ̃𝜆1(d))x̃2

=A(d) + B(d)x̃ + C(d)x̃2.
(20)

Thus, we expect the average cell count in the discrete model to correspond exactly to the
average cell count in a continuous model with a quadratic and drug-dependent adaptation
velocity. We cannot make an equivalent statement for higher order moments, however we
can define an exact CME for the evolution of the joint density q̃(n1,n2, t) ∶=ℙ(N1(t) = n1,
N2(t) = n2) and hence the probability mass q̃(n, t) ∶=ℙ(N1(t)+N2(t) = n) in the discrete
model (S3 File).

For a given set of discrete model parameters, we compute a rescaled velocity function
and set of continuous model net growth rates such that both models have equivalent initial
and fully adapted net growth rates. In Fig 8a, we demonstrate under continuous application
of the drug that the mean cell counts are identical between models. Therefore, from aver-
age cell count data, and by extension large-cell-count proliferation assays, we cannot distin-
guish a discrete model from a continuous model with quadratic adaptation velocity. Results in
Fig 8b–8d demonstrate (subtle) differences in higher-order moments and the mass function
for each model. We conclude, therefore, that within our modelling framework it may be pos-
sible to distinguish between the discrete and continuous models using higher order moments
in low-cell-count proliferation assays; however this is unlikely to be the case if only imprecise
cell count observations are available. Provided that the adaptation velocity is drug-dependent
(i.e., cells sensitise at a rate different to that at which they develop resistance), these findings
also apply for so-called intermittent treatment [33,44]. In Fig 8e–8g, we demonstrate that
this equivalence between the discrete and continuous model holds for a variety of different
treatment schedules.

4. Discussion and conclusion
Phenotypic plasticity and the rapid adaptation of cells upon the application of treatment are
widely recognised as a significant factor in the failure of many anti-cancer treatments [45].
Complicating a comprehensive characterisation of phenotypic plasticity is a lack of consen-
sus as to whether adaptation occurs between a set of well-defined discrete cell states or across
a continuous spectrum of phenotypes. While both hypotheses are associated with mature sub-
sets of the mathematical modelling literature, there remains—particularly for the latter—a
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Fig 8. Continuous and discrete-binary models are only distinguishable from higher order moments.We compare the solutions of the CME for a discrete-binary
model and a continuous model with quadratic adaptation velocity under (a–d) continuous application of a drug, and (e–g) intermittent application of a drug. In (e–f),
blue regions indicate time periods during which the drug is present, white regions indicate time periods when the drug is removed. (a,e,f,g) Exact correspondence in the
mean cell count for each model; the regimes are non-identifiable. (b–d) Solution to the complete CME under continuous drug treatment at various time points, showing
higher-order differences between the models. Discrete model parameters are give by r01(1) = 1, r10(1) = 0.01, �̂�0(1) = –0.3, �̂�1(1) = 0.1 when the drug is applied (i.e.,
d = 1) and r01(0) = 0.02, r10(0) = 0.5, �̂�0(0) = 0.15, �̂�1(0) = 0.1 when the drug is removed (i.e., d = 0).

https://doi.org/10.1371/journal.pcbi.1013202.g008

dearth of statistical methodology to parameterise such models. Indeed, key questions relat-
ing to the identifiability of adaptation mechanisms and the within-population heterogeneity
arising out of random diffusive phenotypic changes, the ability of practitioners to distinguish
between discrete and continuous adaptation, and the experimental design requirements to
parameterise models, remain unanswered.

Our most significant result is that we are unable to detect heterogeneity arising from
random phenotypic changes from population-level (i.e., cell count or proliferation marker)
data. While we find that the relevant model parameter, 𝛽, is theoretically identifiable given a
sufficiently large number of experimental observations, this identifiability is lost for imprecise
cell-counts. Indeed, the difficulty in distinguishing between the functional form of the adapta-
tion velocity (Fig 7), combined with the narrow time window in which the proliferation and
death rates are distinguishable (Fig 4) suggests that heterogeneity may be indistinguishable
from misspecification of other model terms. It is only if cell-level information (i.e., timings of
proliferation and death events in the population) are available that we are, in theory, able to
establish heterogeneity; although, the timescale of adaptation compared to the cell doubling
time (less than 7d compared to ∼2–7 d for melanoma [6]) may arise as a practical limitation
if individual cells are not observed to proliferate sufficiently many times during the adaptation
phase.
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A consequence of the non-identifiability of the parameter 𝛽 is that we cannot distinguish
between a heterogeneous and a homogeneous model of continuous adaptation. Mathemat-
ically, this offers a practical benefit as it implies that population-level behaviours are well
characterised by a simple, and in many cases analytically tractable, ODE model. All other
model parameters: the on- and off-drug growth rates in each fully adapted state, and the
adaptation velocity, are practically identifiable. In the supplementary material (S2 File), we
explore a number of experimental designs in which various combinations of termination
times are considered for a fixed total number of proliferation assays. Even if all experiments
are terminated after 3 d, all relevant parameters remain identifiable; albeit estimates are drawn
with reduced precision. The indistinguishability of the heterogeneous and homogeneous
continuous transition model motivates us to explore the model selection question using an
ODE-based homogeneous model. We are unable to distinguish the functionally correct adap-
tation velocity, however we do identify a class of models that manifest similar trajectories
through phenotype space (Fig 7c).

The theoretical identifiability of heterogeneity from event-timing data using our stochastic
formulation highlights two potential (and rarely considered) sources of potential misspecifi-
cation in our model. First, that proliferation and death events are mutually exclusive: often it
is only in a stochastic modelling framework that the two can be distinguished [46]. A more
realistic (and correspondingly, further parameterised) model would consider individual and
phenotype-dependent proliferation and death rates. Depending on the action of the drug and
the metabolic cost of resistance, it may be appropriate for one of these rates to be phenotype-
independent. For experiments initiated with a large number of cells, where cell competition
may play a role, it may also be appropriate to consider a stochastic analogue of logistic, rather
than exponential, growth. A second source of misspecification, the effects of which are, to the
best of our knowledge, largely unknown in the context of population-level behaviour in IBMs,
is that proliferation occurs according to a Markov process. Clearly, this is a strong assumption
that, while routine in the mathematical literature, may be inappropriate. Given that adapta-
tion occurs on a similar timescale as proliferation and that the proliferation rate varies, future
application of established alternative models, for example those based on Erlang distributions
[47], is not straightforward. Furthermore, any move away from a Markovian formulation in
the IBM would render intractable the ODE, PDE, and CME formulations that we rely upon
for inference.

Following the vast majority of the PDE literature, the heterogeneity in our model only
manifests through random diffusive changes in phenotype [27]. Consequentially, all cells are
statistically identical, and the phenotypic state of each cell is constantly evolving, even within
a system that appears static at the population-level. It is only this formulation of heterogene-
ity that we find to be non-identifiable. A potentially more realistic model of heterogeneity is
one that also considers inherent heterogeneity between individual cells; for example, vari-
ation in the growth rates of cells that are otherwise fully adapted (i.e., variation across cells
where xi = 1), or variation in the rate of adaptation for each cell. The question of identifiabil-
ity of these population-level distributions from population-level statistics, such as cell count,
remains open, although there is a fast-growing set of statistical tools that could be adapted
to answer these questions [43,48]. Given the difficulty faced within our framework identi-
fying variability in the instantaneous proliferation rate, we hypothesise that other sources of
heterogeneity are likely to be non-identifiable (or at least, indistinguishable from measure-
ment error or model misspecification) from population-level data.

Our final result is to demonstrate that the discrete-binary model of heterogeneous
phenotypic adaptation is indistinguishable at the population level from an appropriately
formulated continuous model. Our results do show very minor differences in high-order
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behaviours (cell count variance), although we still expect both models to remain indistin-
guishable upon consideration of potential model misspecification and measurement noise.
We do expect, however, the binary strategy to be distinguishable from marker data that cor-
relate well with proliferation: the distribution of net growth rates in the binary model will
always be bimodal throughout the adaptation phase, contrasting with the continuous tran-
sition we see both experimentally (Fig 1b), and in our model (Fig 6a). The equivalence we
derive in Sect 3.5 also suggests at a hybrid discrete-continuous model that could be studied
in future. Namely, a model in which drug-sensitive cells switch to an intermediate transition
state with some drug-dependent propensity, in which the phenotypic state varies continu-
ously until the cell reaches the drug-resistant state.

From a practical perspective, our work provides a statistical framework sufficient to
characterise a population-level continuous phenotypic transition in response to a drug within
relatively simple experiments. Key model parameters relating to the net growth rates and
adaptation velocity were identifiable from an experimental design involving only eight stan-
dard 96-well plates (as few as two if images are taken as a time-series). To distinguish between
a continuous phenotypic transition and the binary model of disparate sensitive and resis-
tant phenotypes, or to establish the role of random diffusive phenotype changes (i.e., het-
erogeneity in the continuous framework), single-cell data are required. For example, marker
data such as L1CAM (Fig 1b) are likely sufficient to distinguish between the binary and con-
tinuous models. In the continuous framework, however, heterogeneity can likely not be dis-
tinguished from either misspecification or marker noise. More sophisticated experiments,
potentially based on microfluidics [49], may be necessary to accurately quantify heterogeneity
in proliferation.

We establish the identifiability of reversible phenotype driven by both directed and
random changes from commonly reported low-cell-count proliferation assay experiments.
To achieve this, we develop a computationally efficient inference framework that captures
potential information arising as intrinsic noise, without resorting to the study of a mean-
field model subject to an additive Gaussian measurement process. That we find heterogene-
ity non-identifiable is significant to the mathematical modelling community, and implies
that population-level behaviours (including, importantly, the response of systems to drugs
and the design of adaptive therapies) are well characterised by homogeneous ODE models.
For the experimental community, our methodology can be used to design and characterise
experiments that probe continuous phenotypic adaptation in cancer.
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