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1. Introduction

The apatite subgroup represented by chemical formula
IXM12

VIIM23 (
IVTO4)3X

[1,2] is an ensemble of materials possess-
ing high structural and compositional flexibility.[3] The apatite
subgroup consisting of phosphates, arsenates, vanadates, sili-
cates, and sulfates, each offering unique properties that make
them suitable for diverse applications, for example, biomedicine

and catalysis.[4–6] The apatites crystallizes
in the P63/m space group; however, the
deviation from the original group may
occur frequently due to cation ordering,
resulting in more complex structural varia-
tions. Apatite structure owes the versatility
to their ability to accommodate a range of
ions in their crystal structure.[7] In the apa-
tite structure, the M-site can be hosted
by divalent and trivalent cations such as
Mn2þ, Y3þ, Ba2þ, Ce3þ, Naþ, Sr2þ, Pb2þ,
La3þ, Ca2þ, and Bi3þ. The higher valency
cations such as Si4þ, P5þ, V5þ, S6þ, and
As5þ can be present at the T-site,[8] while
the anions such as F�, (OH)�, and Cl�

often occupy the X-site.[9] Doping apatite-
based materials with rare-earth ions is a
widely used method to tailor their proper-
ties, including improved thermal stability,
optical performance, magnetic behavior,
and catalytic efficiency.[3,10] Rare-earth
ions, because of 4f electronic configura-
tions, introduce localized distortions in
the crystal lattice, changing bond lengths
and angles.[11] Changes in the dimensions
and angles of apatite materials alter their

physicochemical characteristics, which in turn influence bond
strength, atomic arrangement, and crystal symmetry. These
modifications impact solubility by altering ion mobility and
mechanical properties by affecting structural rigidity. They also
influence bioactivity by changing surface charge and chemical
reactivity.[12] It is extremely essential to identify and optimize
the phase stability of rare-earth ion-doped apatite in different
thermal conditions. Phase stability has a significant impact on
the solubility of apatite, mechanical properties, and bioactivity.[13]

Temperature-driven phase transformations may result in ion
migration or deformation of the lattice.[7,14,15] Such information
is critical in applications of rare-earth-doped apatites in waste
treatment, lighting, and biomaterials, where high-temperature
treatment is demanded.[16–18]

In an earlier report, we investigated the phase transformation
properties of rare-earth-doped apatite structures containing
cerium, samarium, and holmium ions across a broad temperature
range (25–1200 °C).[3] By employing advanced characterization
techniques such as in situ high-temperature X-ray diffraction
(HT-XRD), thermogravimetric analysis (TGA), X-ray photoelectron
spectroscopy (XPS), and Fourier-transform infrared spectroscopy
(FTIR), we studied the structural evolution, thermal expansion
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behavior, and decomposition mechanisms of apatite materials. It
was shown that the temperature dependence of phase decomposi-
tion is dependent on the type and site occupied in P63/m by the
RE3þ-ions and their concentrations in the lattice structure of
apatite.[3]

Based on previously published experimental data,[3] we here
describe a machine learning (ML) approach for predicting the
phase stability and decomposition tendencies of rare-earth ion
doped apatite structures across a wide temperature range
(25–1200 °C). ML in materials science has transformed the ability
to generate rapid predictions. It augments experiments by deriv-
ing patterns and relationships from high-dimensional data.[19–21]

This work uses ML to model the stability and decomposition
behavior of cerium ion, samarium ion, and holmium ion-doped
apatite materials. A decision tree model is developed to predict
stable phases, decomposition temperatures, and products for the
following four compositions: fluoroapatite (FA); Ce3þ-doped FA
(FACe); Ce3þ and Sm3þ co-doped FA (FACeSm); and Ce3þ,
Sm3þ, and Ho3þ co-doped FA (FACeSmHo). The model achieves
an accuracy of around 86%, detecting important transition points
such as the onset of instability and development of multi-phase
products. Temperature is identified as the key factor influencing
phase stability in the feature-only analysis. The ML model frame-
work reduces the need for extensive experimental screening at
large scales by finding key transition points like nucleation of
multiple phases and instability onset. The predictive modeling
of biominerals can be used to give insights into phase transfor-
mation in vivo, e.g., osseointegration of dental implants and bone
remodeling. This work shows the capability of ML-assisted mate-
rials science in designing rare-earth-doped apatite structure.

2. Experimental Section

2.1. Synthesis of Apatites

The sol–gel process was used to synthesize OH-containing fluo-
rapatite doped with 2mole% strontium and rare-earth elements.[3]

The host matrix was doped with 2mole% Ce3þ for Ca2þ and
2mole% of PO4� substituted with F�. To examine the influence
of the increased concentration of doping on the structural
aspects, apatite compositions thus prepared were double and
triple-doped with other rare-earth ions (Sm3þ and Ho3þ). Four
different compositions were produced, namely Ca4.98Sr0.02(PO4)3
OH0.98F0.02, Ca4.96Sr0.02Ce0.02(PO4)3OH0.98F0.02, Ca4.95Sr0.02
Ce0.02Sm0.01(PO4)3OH0.98F0.02, and Ca4.94Sr0.02Ce0.02Sm0.01Ho0.01
(PO4)3OH0.98F0.02 (referred to as FA, FACe, FACeSm, and
FACeSmHo, respectively). The detail of synthesis procedure is
reported elsewhere.[3]

2.2. Experimental Methods

In situ HT-XRD analysis was used to investigate high-temperature
phase transitions. An Anton Paar HTK 1200N high-temperature
chamber equipped with a Panalytical X’Pert Pro powder diffrac-
tometer was used for the investigations. In increments of
50 °C, the temperature was raised from ambient temperature
(25 °C) to 1200 °C. XRD scans were recorded within the
20°–70° range, using a scan step of 0.013°. The synthesized

materials closely matched the reference XRD data for fluorapatite,
confirming the presence of an OH�/F�-substituted crystal struc-
ture (ICDD: 04-015-6661). A simultaneous thermal analyzer
(PerkinElmer STA 8000) with TGA capabilities was used to further
study the decomposition behavior of apatite and related phase
transitions following heating in an air atmosphere. Over a temper-
ature range of 25–1200 °C, thermal measurements were carried
out in alumina crucibles at a heating rate of 10 °Cmin�1.

2.3. Data Collection

The HT-XRD was used to examine the phase decomposition
behavior of the four apatite materials (FA, FACe, FACeSm,
and FACeSmHo). The Rietveld refinement was used to analyze
the XRD pattern for identification of phases and their evolution
across the temperature range studied (25–1200 °C). The findings
provided information on the thermal stability of each composi-
tion by revealing temperature-sensitive phase transitions as well
as the emergence of new phases. The XRD results were in agree-
ment with the TGA results. Using XRD data, a structured dataset
was produced that included transition temperatures, phase sta-
bility, and the number of different phases. This dataset served as
input for training ML model. The ML algorithm was used to
identify the key patterns in the structural evolution of the mate-
rials, which were used to design a predictive model. The model
forecasted phase changes as a function of temperature and com-
position. The approach describes the potential of combining
ML with the experimental study to accelerate the finding of ther-
mally stable apatite-based materials.

2.4. ML and Modeling

The ML method was used to develop a decision tree model due
to its well-defined structure, interpretability, and visualizabil-
ity.[22,23] Other models were also tested, including K-nearest
neighbors (kNN).[24,25] However, kNN achieved an accuracy of
only 37%. Therefore, the decision tree model was opted.
Across the temperature range of 25–1200 °C, the decision tree
model examined the key factors affecting the stability and prod-
uct formation of four apatite materials. The analysis specifically
focused on two main parameters: temperature and material com-
position, which determined the outputs related to stability
(classified as stable or unstable), products, and number of prod-
ucts formed. As temperature increased, each material’s behavior
was categorized into distinct phases of stability, followed by the
decomposition into multiphase products at higher temperatures.
The materials investigated included FA, FACe, FACeSm, and
FACeSmHo, which were encoded in the model as 0, 1, 2, and
3, respectively. Stable and unstable products were labeled as 0
and 1. Table 1 and 2 list the encoding scheme for classification
labels and abbreviations of decomposition products respectively.

The dataset comprised 100 samples, which were split into fea-
tures (X) and target variables (y), where “ABBR” represented the
classification of different phases. The train_test_split function
was used to split the dataset into an 80% training set and a
20% testing set for model training. A DecisionTreeClassifier
was then fitted to the training data, learning to classify material
behavior based on the input features. The model achieved �86%
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accuracy on the test set as calculated with the accuracy_score
function. In order to evaluate the model robustness and prevent
overfitting, the training set was subjected to a five-fold cross-
validation. In this process, the data was split into five subsets:
four were used to train the model, and one was used for valida-
tion. The method was repeated five times with each subset being
used for validation once. The accuracy values obtained across the
folds were [1.00, 1.00, 1.00, 0.95, 1.00], with an average accuracy
of 0.99. The results indicate that the model performed well for all
the various partitions of the data, which validates its robustness.
The method also helps in reducing bias and variance, encourag-
ing better generalization to new data. Feature importance analy-
sis of the decision tree confirmed that temperature was the
primary driver towards material stability accounting for 89%
of the explanatory power, whereas the material type contributed
only 11%.[26] This finding was also validated through a correla-
tion heatmap[27] that indicated strong positive correlation of tem-
perature values above 600 °C and instability across all the
materials, with simultaneous capture of material-specific effects
on product formation at high temperatures.

3. Results and Discussion

3.1. Material Phase Analysis at Various Temperatures

The XRD patterns show characteristic diffraction peaks
corresponding to ICDD no. 04–015-6661, confirming a hexago-
nal crystal structure (P63/m) (Figure 1). The phase decomposi-
tion behavior of the apatite lattice doped with rare-earth ions
was analyzed between temperature 25–1200 °C using in
situ high-temperature powder XRD. Figure S1–S5, Supporting
Information, present the high-temperature XRD patterns for
undoped FA, FACe, FACeSm, and FACeSmHo are in the sup-
plementary section. The phase decomposition behavior aligns
well with thermal analysis results, with thermal analysis results
detailed in Figure S6, Supporting Information. XPS spectroscopy
confirmed the presence of dopants and their oxidation states. The
cerium and samarium ions existed in multiple oxidation states
(Ce3þ, Ce4þ, Sm3þ, Sm2þ), while holmiumwas found exclusively
in the Ho3þ state (reported elsewhere).[3] All the samples exhibit
two clearly differentiated zones, a stable phase initially followed
by phase instability, in which several decomposition products
appear at various temperatures. Rare-earth ion substitution
affects the apatite lattice’s vacancy creation, changing the break-
down processes, byproducts, and the fraction of tri-calcium
phosphate formed.[3] Determining the stability range and decom-
position pathways for these materials remains a complex task. To
predict phase stability and better understand the decomposition
pathways, ML was employed to analyze the dataset derived from
HT-XRD and thermal analysis.

3.2. Thermal Behavior of Apatite Materials

Figure 2 is a box plot of the thermal response of FA, FACe,
FACeSm, and FACeSmHo, designated 0, 1, 2, and 3,

Table 1. Label encoding scheme for material stability classification and
doped material types in the apatite system.

Label value Description Target
variable

Stability classification

0 Stable Material
stability

1 Unstable Material
stability

Material composition
classification

0 FA (base material) Material
type

1 FACe (FA cerium ion doped) Material
type

2 FACeSm (FA cerium and samarium
ion doped)

Material
type

3 FACeSmHo (FA cerium, samarium, and
holmium ion doped)

Material
type

Table 2. Abbreviations of decomposition products.

Abbreviation
(ABBR)

Chemical formula Product name

FA with water loss Oxyapatite Oxyapatite

αTCP α-Ca3(PO4)2 α-Tricalcium phosphate

βTCP β-Ca3(PO4)2 β-Tricalcium phosphate

TTCP Ca4P2O9 Tetra calcium
phosphate

CaSrAP Ca9.37Sr0.63(PO4)6(OH)0.98-2xF0.02Ox Calcium-strontium
apatite

SrCaAP Sr7.3Ca2.7(PO4)6(OH)0.98-2xF0.02Ox Strontium-calcium
apatite

Figure 1. Powder X-ray diffraction patterns at room temperature for a) FA,
b) FACe, c) FACeSm, and d) FACeSmHo show characteristic diffraction
peaks corresponding to the hexagonal apatite structure, compared with
the e) standard data ICDD 04–015-6661. The incorporation of dopants
result in shifts in peak positions and changes in intensities, suggesting
slight lattice distortions due to ionic substitution.
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respectively, for the temperature range of 25–1200 °C The x-axis
indicates the stability regimes, denoted as “stable” and “unsta-
ble,” and the y-axis represents the temperature. Materials 0, 1,
and 3 remain stable until around 500 °C, whereas material 2
is more thermal-resistant by being stable up to around 600 °C.
All the materials destabilize at temperatures above these, where
materials 2 and 3 decompose faster than materials 0 and 1
beyond 600 °C. The breakdown of the materials is influenced
by the oxidation state of the rare-earth ions substituted in the apa-
tite lattice.[3] Figure 3 shows the decision tree feature importance
analysis. It identifies the temperature as the primary factor for
material stability. Temperature is accounting for 89% of the pre-
dictive power whereas material type is responsible for 11% only.
The finding is supported by the correlation heat map shown in
Figure 4. The material type and temperature versus product

formation correlation plot is shown in Figure 4a,b. It is evident
from Figure 4a that α-TCP demonstrates a strong positive corre-
lation (r= 0.78) with temperature range 901–1200 °C, demon-
strating that its formation is favored at high temperatures.
Similarly, β-TCP and SrCaAP exhibit moderate correlations with
mid-to-high temperature ranges (601–900 °C and 901–1200 °C),
corresponding to temperature-induced phase formation. In con-
trast, CaSrAP and SrCaAP have negative correlation with low
temperatures and shows no formation at 25–300 °C. Thematerial
type also affects the product phases and is plotted in Figure 4b.
Although most materials exhibit weak correlations, FACeSmHo
composition shows a moderate positive correlation (r= 0.40)
with TTCP formation, which indicates that certain rare-earth
dopants can influence certain phase formations. Temperature
is the main determinant when instability occurs, dopant
selection significantly influences which decomposition products
forms.

The decision tree model was used to predict the stability and
behavior of decomposition of rare-earth-doped apatite materials
(FA, FACe, FACeSm, and FACeSmHo) based on composition
and temperature. Temperature (continuous variable) and compo-
sition of material (categorical variable with values 0, 1, 2, and 3
for various materials) are input variables. Phase stability and
decomposition products are the coveted outputs of the model.
Terminal leaves are for temperature or material composition-
based decisions, and internal nodes are for predicted outcomes.
The model can detect the most severe change points, i.e., where
a phase degraded to many products or destabilized, by a temper-
ature value. The observation led to the fact that material
composition and temperature played a strong controlling role

Figure 2. Box plot comparing the thermal stability of four materials—FA, FACe, FACeSm, and FACeSmHo (labeled as 0, 1, 2, and 3, respectively)—from
25 °C to 1200 °C. Stability of each material is labelled as “stable” or “unstable,” representing the effect of rare-earth doping on phase transition and
decomposition characteristics. The plot shows data at the temperature points where each material undergoes a transition from stable to unstable phase.

Figure 3. Feature importance plot showing that temperature is the pri-
mary factor influencing product formation, while material type has mini-
mal impact.
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in managing phase transformation, especially at temperatures of
500 °C and above. Figure 5 shows the decision tree indicating
influence of temperature on material stability and product devel-
opment and how dopants can affect material responses.

In lower temperatures (25–550 °C), the apatite materials are
stable and exist in single phase. All the four materials—material
0 (FA), material 1 (FACe), material 2 (FACeSm), and material 3
(FACeSmHo)—are stable at temperature up to 50 °C. Above this

Figure 4. a) Correlation heatmap showing the correlation coefficients between temperature ranges and the formation of different products. Strong
positive correlations (e.g., α-TCP at 901–1200 °C, r= 0.78) suggest thermally favored phases, while negative correlations (e.g., CaSrAP at 25–300 °C,
r= –0.68) indicate suppression at lower temperatures. The FAwithwaterloss product favors lower temperatures by a distinct margin and
b) heatmap of the correlation between different types of dopants (material compositions) and product formation. While material-product correlations
in general are weak, FACeSmHo shows a strong positive correlation (r= 0.40) with TTCP formation, suggesting that specific dopants can trigger the
formation of certain phases.

Figure 5. Decision tree classification of phase stability and decomposition behavior of rare-earth-doped apatite materials (FA, FACe, FACeSm, and
FACeSmHo) in the temperature between 25 °C and 1200 °C. The model differentiates between stable and unstable phases, predicts phase transitions,
and determines decomposition products like tri-calcium phosphates and apatite structures, as a function of material composition and temperature.
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temperature, all of them get dehydrated upon heating. Near
600 °C, there is a critical phase transition that causes instability
and creation of different decomposition products such as
CaSrAP and SrCaAP. At temperatures above 650 °C, the system
is more complicated, yielding extra calcium phosphate phases. At
1000 °C, products such as CaSrAP and α-TCP are created, which
exhibit extra structural transformation.

The model discriminates between highly similar decomposition
products due to temperature-driven transitions and dopant-
specific chemical signatures. α-TCP and β-TCP, for example,
are distinguished primarily due to their customary formation
temperatures—β-TCP forms predominantly within the range
700–900 °C—while α-TCP forms at temperatures above 1100 °C.
Such temperature thresholds constitute key decision nodes in
the tree. Also, interactions between dopants govern phase selectiv-
ity; for instance, FACeSmHo composition has high correlation
with TTCP formation above 1000 °C, suggesting that certain dop-
ant combinations influence decomposition behavior. For complex
multicationic phases like Ca9.37Sr0.63(PO4)6(OH)0.98-2xF0.02Ox, the
model is based on stoichiometric trends (e.g., Sr/Ca ratios), the
specific thermal window of stability (600–1200 °C), and co-occur-
rence patterns with phases like β-TCP. Correlation heatmap also
support these model paths. This validate that the model is not
entirely temperature reliant but accepts chemically meaningful pat-
terns so that it can deconvolve phase superpositions. Figure 6
shows the temperature trend and product formation with distinct
single-phase stability at low temperatures to a more complex mul-
tiphase system at higher temperatures above 650 °C.

3.3. Influence of Multiple Oxidation States of Dopants on
Phase Stability

The presence of multiple oxidation states of dopants such as
cerium (Ce3þ/Ce4þ), samarium (Sm3þ/Sm2þ), and holmium
(Ho3þ) ions significantly affect the thermal and phase stability
properties of the apatite lattice. XPS analysis of the FACe system
established that cerium exists as Ce3þ (36.5%) and Ce4þ (66.5%).
The higher valency Ce4þ ions induce vacancy formation for
charge compensation, and with heat treatment, further oxidation

of Ce3þ to Ce4þ increases the number of vacancies. These
vacancies are known to induce phase transitions by localized
rearrangements and induce phase separation, which tends
to reduce structural stability.[28] In the FACeSm system,
co-doping with samarium changes the redox balance: Ce3þ con-
tent increases to 47.7%, while samarium ion exists predomi-
nantly as Sm3þ (80.2%) with a smaller amount as Sm2þ

(19.8%). Sm2þ increases (to 31.3%) when heated, but since
Sm2þ is isovalent with Ca2þ, it does not create additional vacan-
cies. The internal redox exchange between cerium and samarium
ions reduces the vacancy concentration, leading to improved lat-
tice stability and resistance to phase decomposition. On the other
hand, holmium ion doping adds the single oxidation state Ho3þ

only, as confirmed by XPS. While it does not form vacancies
via redox processes, its very small ionic size induces lattice
distortion, which can be responsible for phase instability
upon thermal stress. Mixed-valent dopant ions like cerium
and samarium regulate phase behavior primarily by vacancy for-
mation, whereas Ho3þ does so by lattice distortion.

3.4. Thermodynamic Analysis of Phase Transitions in Apatite
Materials

Gibbs free Energy calculations were done to understand the ther-
modynamics of phase transformations happening at various tem-
peratures using Equation (1).[29,30] The calculated values of ΔG for
each type of phase transition is calculated and listed in Table 3.
The temperature-dependent-free energy change is controlling
the phase transitions. All these transitions confirm to the key role
of temperature-dependent free energy changes in controlling
phase transformations. The adsorbed water is evaporated sponta-
neously as indicated by ΔG of �13.65 kJmol�1. A negative free
energy change that promotes dehydration. At a temperature of
600 °C (873 K), formation of oxyapatite becomes thermodynami-
cally favorable with a ΔG of �37.30 kJmol�1 leads to phase sta-
bilization. At 800 °C (1073 K), spontaneous formation of β-TCP
is supported by a ΔG of �53.76 kJmol�1, for its emergence as
an intermediate phase. At 1000 °C (1273 K), the strongly negative
ΔG of �100.95 kJmol�1 supports the formation of α-TCP and

Figure 6. Scatter plot of the formation of various products as a function of temperature for four materials—FA, FACe, FACeSm, and FACeSmHo. The x-axis
is the temperature range 25–1200 °C, and the y-axis is a list of phases that have been observed. The data points mark the onset of new phases and phase
transitions with temperature increase, which illustrates the effect of rare-earth doping on thermal stability and decomposition pathway.
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TTCP, underlining their high-temperature thermodynamic stabil-
ity. The change in the Gibbs free energy with temperature is
shown in Figure 7.

ΔG ¼ ΔH � TΔS (1)

4. Usage of Decision Tree Classifier beyond
1200 °C

The decision tree model was employed to predict the thermal
stability of doped apatite systems at elevated temperatures of
1300 and 1500 °C. The decision tree yielded an accuracy of
1 for these temperatures. The predicted phase transformations
and decomposition trends showed strong agreement with previ-
ously reported experimental findings. Chun-Jen Liao et al., inves-
tigated the thermal decomposition of apatites up to 1500 °C and
reported the formation of secondary phases such as tetra calcium
phosphate (TTCP) and tricalcium phosphate (TCP), consistent
with our model’s projection of apatite breakdown andmultiphase
formation at high temperatures.[31] Similarly, Makarova et al.
demonstrated that Fe and Si co-doping induces phase instability
and dopant segregation at higher concentrations, leading to the

formation of non-apatites calcium phosphate phases—an effect
also captured by our model.[32] These comparisons support the
model’s capacity to reliably extrapolate phase stability and com-
positional behavior of doped apatite systems beyond experimen-
tally explored temperature regimes.

5. Conclusions

Herein, the successful incorporation of a ML approach with tra-
ditional but necessary experimental phase transformation char-
acterization methods is illustrated. The work aimed to analyze
the means and methods of phase stability enhancement in
rare-earth ion-doped apatite materials. The phase decomposition
and stability behavior of some apatite compositions in the wide
temperature between 25 °C and 1200 °C were predicted using a
decision tree model. Clearly defined stable and unstable regimes
were observed, along with phase transitions at the critical point
of about 600 °C. Single-phase material dominated the stable
regime, but instability was succeeded by a complicated mixture
of various decomposition products, such as tri-calcium phos-
phates and apatite structures. The HT-XRD and TGA data sets
collected were extremely helpful in training the MLmodel, which
was found to predict phase stability and product formation accu-
rately (�86%). This work demonstrates the capability of ML in
the field of materials science, focusing on material composition
and discovery optimization for desired thermal properties. The
study not only improves the understanding of apatite structures
but also paves the way for the development of high-temperature
applications and new material synthesis in future studies.
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Table 3. Thermodynamic parameters (ΔH, ΔS, and ΔG) for phase transitions in apatite system at various temperatures. NegativeΔG values confirm the
thermodynamic stability of each phase at its respective range of temperatures, with α-TCP and TTCP formation being the most spontaneous
(ΔG=�100.95� 4.61 kJ mol�1 at 1000 °C).

Phase transition Temperature [°C] Temperature [K] ΔH [kJ mol�1] ΔS [kJ mol·K�1] ΔG [kJ mol�1)

Loss of absorbed water 200 473 10.00� 0.50 0.050� 0.01 �13.65� 2.42

Formation of oxyapatites 600 873 50.00� 0.85 0.100� 0.03 �37.30� 3.08

β-TCP (Ca3(PO4)2) 800 1073 75.00� 1.24 0.120� 0.00 �53.76� 4.41

α-TCP (Ca3(PO4)2) and TTCP (Ca4P2O9) 1000 1273 90.00� 1.06 0.150� 0.04 �100.95� 4.61

Figure 7. Gibbs free energy change (ΔG) of phase transitions as a function
of temperature (K). The graph represents the temperature ranges over
which each phase becomes thermodynamically stable, as indicated by
negative ΔG values. The data indicate the thermodynamic favorability
of the processes, with more negative ΔG values indicating greater
spontaneity under the conditions.
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