
Geophysical & Astrophysical Fluid Dynamics

ISSN: 0309-1929 (Print) 1029-0419 (Online) Journal homepage: www.tandfonline.com/journals/ggaf20

Data-driven discovery of the equations of
turbulent convection

Christopher J. Wareing, Alasdair T. Roy, Matthew Golden, Roman O. Grigoriev
& Steven M. Tobias

To cite this article: Christopher J. Wareing, Alasdair T. Roy, Matthew Golden,
Roman O. Grigoriev & Steven M. Tobias (02 Jul 2025): Data-driven discovery of the
equations of turbulent convection, Geophysical & Astrophysical Fluid Dynamics, DOI:
10.1080/03091929.2025.2509469

To link to this article: https://doi.org/10.1080/03091929.2025.2509469

© 2025 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 02 Jul 2025.

Submit your article to this journal

Article views: 44

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ggaf20

https://www.tandfonline.com/journals/ggaf20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03091929.2025.2509469
https://doi.org/10.1080/03091929.2025.2509469
https://www.tandfonline.com/action/authorSubmission?journalCode=ggaf20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ggaf20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/03091929.2025.2509469?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/03091929.2025.2509469?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/03091929.2025.2509469&domain=pdf&date_stamp=02%20Jul%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/03091929.2025.2509469&domain=pdf&date_stamp=02%20Jul%202025
https://www.tandfonline.com/action/journalInformation?journalCode=ggaf20

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS
https://doi.org/10.1080/03091929.2025.2509469

Data-driven discovery of the equations of turbulent
convection

Christopher J. Wareing a, Alasdair T. Roya, Matthew Goldenb, Roman O. Grigorievb

and Steven M. Tobias a

aDepartment of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK; bSchool of
Physics, Georgia Institute of Technology, Atlanta, GA, USA

ABSTRACT
We compare the efficiency and ease-of-use of the Sparse Identifica-
tion of Nonlinear Dynamics (SINDy) algorithm and Sparse Physics-
Informed Discovery of Empirical Relations (SPIDER) framework in
recovering the relevant governing equations and boundary condi-
tions from data generated by direct numerical simulations (DNS) of
turbulent convective flows. In the former case, a weak-form imple-
mentation pySINDy is used. Time-dependent data for two- (2D)
and three-dimensional (3D) DNS simulation of Rayleigh-Bénard con-
vection and convective plane Couette flow is generated using the
Dedalus PDE framework for spectrally solving differential equations.
Using pySINDy we are able to recover the governing equations of
2D models of Rayleigh-Bénard convection at Rayleigh numbers, R,
from laminar, through transitional tomoderately turbulent flow con-
ditions, albeit with increasing difficulty with larger Rayleigh number,
especially in recovery of the diffusive terms (with coefficient magni-
tude proportional to

√
1/R). SPIDER requires a much smaller library

of terms and we are able to recover more easily the governing equa-
tions for a wider range of R in 2D and 3D convection and plane
flow models and go on to recover constraints (the incompressibil-
ity condition) and boundary conditions, demonstrating the benefits
and capabilities of SPIDER to go beyond pySINDy for these fluid
problems governed by second-order PDEs. At the highest values of
R, discrepancies appear between the governing equations that are
solved and those that are discovered by SPIDER. We find that this is
likely associated with limited resolution of DNS, demonstrating the
potential of machine-learningmethods to validate numerical solvers
and solutions for such flow problems. We also find that properties of
the flow, specifically the correlation time and spatial scales, should
inform the initial selection of spatiotemporal subdomain sizes for
both pySINDy and SPIDER. Adopting this default position has the
potential to reduce trial anderror in selectionofdataparameters, sav-
ing considerable time and effort and allowing the end user of these
or similar methods to focus on the importance of setting the power
of the integrating polynomial in these weak-form methods and the
tolerance of the optimiser technique selected.

ARTICLE HISTORY
Received 2 December 2024
Accepted 14 May 2025

KEYWORDS
Boundary conditions; Navier
Stokes equations; machine
learning; data-driven
techniques; sparse regression

CONTACT Christopher J. Wareing C.J.Wareing@leeds.ac.uk, cjwareing@gmail.com

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is anOpenAccess article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited. The terms
on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/03091929.2025.2509469&domain=pdf&date_stamp=2025-07-01
https://orcid.org/0000-0001-9641-0861
https://orcid.org/0000-0003-0205-7716
mailto:C.J.Wareing@leeds.ac.uk
mailto:cjwareing@gmail.com
http://creativecommons.org/licenses/by/4.0/

2 C. J. WAREING ET AL.

1. Introduction

Geophysical and astrophysical flows are characterised by their nonlinear interaction over
a vast range of spatial and temporal scales and hence the presence of turbulence. Often this
turbulence is inhomogeneous and anisotropic owing to the nature of the driving (and pos-
sibly the presence of rotation, stratification and mean flows) (Marston and Tobias 2023).
The large range of scales often requires the modelling of scales that are not captured by
the numerical solution, sometimes denoted as subgrid modelling. As recently reviewed in
Moser et al. (2021) this can take many forms, including the derivation of statistical repre-
sentations of the unresolved scales (e.g. Chorin et al. 2002), utilising machine learning
to replicate the response of the unresolved scales (Bolton and Zanna 2019, Zanna and
Bolton 2020) or discovering the effective equations satisfied by the low-order statistics
of those scales. These “turbulent closure equations” or parameterisations of the turbu-
lent transport coefficients are the subject of much ongoing cutting-edge research; see the
summary in Jakhar et al. (2024).

In this paper, as a first step to test the methods that we intend in future work to apply
to the search for turbulent closure models (such as Garaud et al. 2010), we focus on the
simpler problem of the reconstruction of the relevant full underlying equations from data.
This problem is easier because it does not rely on assuming the correct definition of an
averaging procedure or maintaining realisability of the reconstructed equations. Here we
are interested in how two leading equation inference methods perform for a turbulent flow
driven by buoyancy (and, in some cases, driven from the boundaries). This form of driving
is important in many geophysical and astrophysical settings where thermal convection is
responsible for heat (and possibly momentum) transport in planets and stars.

Whilst recovery of evolution equations via some form of regression is now com-
mon, with the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm (Brunton
et al. 2016) so far proven to be the default choice of approach, identification of flow con-
straints and boundary conditions from data – simulated or experimental – is still relatively
rare. Reduction techniques and regressive reconstruction, using neural networks, have
been shown to be able to reconstruct the latent fluid state for a number of unsteady flows,
e.g. vortex shedding at Reynolds numbers up to 20,000 (Dubois et al. 2022). Similarly,
artificial neural networks have been trained to solve a non-linear regression problem and
obtain inlet conditions for a fluid flow problem; see Véras et al. (2021) and citations of
this paper using this strategy. As far as we are aware, sparse regression machine-learning
techniques have only recently been shown as able to recover equations of flow constraints
and boundary conditions through the Sparse Physics-Informed Discovery of Empirical
Relations (SPIDER) framework (Gurevich et al. 2024).

In this paper, as a first step toward turbulence closure model recovery, we apply both
SINDy and SPIDER to convective flow problems. The goal is to compare their performance
and relative merits and look to provide guidance for the end-user of either technique. This
paper is organised as follows: In section 2, we present the convection models we have con-
sidered. In section 3 we obtain simulated data of these models using spectral methods. We
introduce and compare the two equation discovery methods, noting their similar objec-
tives and highlighting the differences in application in section 4. We explore the equation
recovery performance of both methods in section 5 and discuss the limitations, possible
reasons for the differences and some advice for future users of either machine-learning

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 3

approach in section 6. Finally, we summarise this work and look to future directions in
section 7.

2. Models

2.1. Rayleigh-Bénard convection

We consider classical Rayleigh-Bénard convective fluid flow in a flat horizontally-
periodic layer heated from below. We assume the Boussinesq approximation. The non-
dimensionalized dynamical equations for the fluid are

∂u
∂t

+ (u·∇) u = −∇p + T ẑ +
√
P
R

∇2u, (1a)

∂T
∂t

+ (u·∇)T = 1√
RP

∇2T, (1b)

∇ · u = 0, (1c)

where the non-dimensional fields are u, the vector velocity field, the scalar pressure field p
and the scalar temperature field T. Here the non-dimensional parameters are the Rayleigh
number R = αg(�T)L3/ν κ and the Prandtl number P = ν/κ . Gravity acts in the −ẑ
direction and α, κ and ν are the thermal heat expansion coefficient, thermal diffusivity and
kinematic viscosity respectively, g is the acceleration due to gravity, L is the vertical height
of the layer, and �T is the temperature difference between the bottom and top plates.

For the non-dimensionalization we have used L as the length-scale, the buoyancy free-
fall velocity (

√
αg(�T)L) as the velocity scale, and �T as the temperature scale. As a

consequence, L/
√

αg(�T)L is the time-scale. We consider both two-dimensional and
three-dimensional cases. We use an aspect ratio of four for the layer, such that for the 2D
simulations the layer is four times longer in the x direction than in the buoyancy direction
of z, and for the 3D simulations the layer is four times longer in both the x and y directions
than in the vertical z direction, defined as the one opposite to gravity.We confine ourselves
in this study to Prandtl number P = 1.

We impose the stress-free, isothermal, boundary condition on the problem, such that
fluid conditions on the top (z = 1) and bottom (z = 0) boundaries satisfy the following
relations as necessary depending on the number of dimensions

∂ux
∂z

= 0, (2a)

∂uy
∂z

= 0, (2b)

uz = 0, (2c)

T(z = 0) = 1, (2d)

T(z = 1) = 0. (2e)

4 C. J. WAREING ET AL.

2.2. Planar convective Couette flow

In this 2D model of planar convective Couette flow, we extend the model of Rayleigh-
Bénard convection above tomove the top and bottomboundaries in antiparallel directions,
such that the non-dimensionalized dynamical equations and the boundary condition on
the temperature remain unchanged, but the boundary condition on the velocity is now that
of the no-slip condition

uz(z = 0) = 0, (3a)

uz(z = 1) = 0, (3b)

ux(z = 0) = −U0, (3c)

ux(z = 1) = U0, (3d)

while the boundary condition on the temperature remains unchanged. U0 therefore rep-
resents the velocity on the the walls measured in units of the free-fall velocity. The vertical
height and aspect ratio of the problem remain the same, resulting in a physical extent of
4 × 1 in this 2D problem.

3. Numerical method and resolution

The above models are solved numerically for a Cartesian geometry using the Dedalus
framework for solving partial differential equations using spectral methods, specifically
version 3.0.11 (Burns et al. 2020). The 2D model of Rayleigh-Bénard convection closely
follows that of the 2D initial value problem (IVP) in the Cartesian examples packaged
in the examples subdirectory of the Dedalus3 code repository, except that the stress-free,
rather than no-slip, boundary condition is imposed on the problem. Furthermore, rather
than the second-order, two-stage DIRK+ERK (d3.RK222) timestepping scheme (Ascher
et al. 1997 sec. 2.6), we use the third-order, four-stage DIRK+ERK (d3.RK443) scheme
(Ascher et al. 1997 sec. 2.8) for greater accuracy and stability.

We use a periodic Fourier basis for the x and y directions, and a Chebyshev basis for the
z direction. In all bases, a Dedalus dealiasing factor of 3/2 (equivalent to the conventional
2/3) is employed. Scalar fields are defined for pressure and temperature and a vector field
for velocity. The generalised tau method is used for imposing boundary conditions; explicit
tau terms are added to the PDE introducing degrees of freedom that allow the problem
to be solved exactly over polynomials. Further details can be obtained from the Dedalus
repository1 and in the Dedalus methods paper (Burns et al. 2020).

Our simulations use a Courant-Friedrichs-Lewy solver (d3.CFL) with an initial and
maximum timestep set to 0.01, a safety factor (the Courant number) of 0.5, an itera-
tion cadence of 10 for calculating a new timestep, a maximum and minimum fractional
change between timesteps of 1.5 and 0.5 respectively and a fractional change threshold for
changing the timestep of 0.05. We have not explored variation of these parameters.

Wemonitor Reynolds number, Nusselt number, average kinetic energy and total kinetic
energy in order to decide when a statistically steady state has been reached. We arbitrarily
select this regime for the application of machine learning methods, but one could examine
the ability in other more transient periods of the flow.

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 5

It is common knowledge that, in order for a data-driven approach to recover a mathe-
matical model, the data must exhibit enough variation on both space and time to sample
the state of the physical problem (Schaeffer et al. 2018). For this reason, we employ a con-
stant high resolution for each instance of the Rayleigh number, as detailed in this section.
The use of the same resolution for all, defined so as to resolve the turbulent evolution and
structure at the largest R, may seem over-resolved and numerically expensive, but tests
show there are no detrimental effects compared to lower resolutions and all run to a sta-
tistically steady state in a matter of hours at most on single 40-core blades of the HPC
resources for the 2D problem and ten 40-core blades for the 3D problem. We include our
Dedalus scripts for all the models studied in the data repository accompanying this paper
for reproducibility and replicability.2

3.1. 2D Rayleigh-Bénard convection

In two dimensions, we perform simulations for Rayleigh numbers R = 106, 108, 1010 and
1012, modelling the laminar, transitional and turbulent regimes, as confirmed by monitor-
ing of theNusselt andReynolds numbers. The physical domain is discretised into a uniform
grid of 1024 points in the x direction and 384 non-uniformpoints in the z direction defined
by the Chebyshev basis. The Chebyshev basis allows for more accurate resolution of the
boundary layers than a uniformly spaced grid of 384 points. This vertical resolution places
a similar number of grid points in the boundary layer compared to otherDNS studies of the
same problem (Zhu et al. 2018). Power spectra of the whole flow also demonstrate that the
steep drop off in power at small scales is fully captured at this resolution for R values of 106

and 108, but then approaching the limit at 1010 and at the limit for 1012. We return to the
importance of resolution and how this may be affecting the methods in later discussions.

The initial physical values of the scalar pressure field and components of the vector
velocity field are all set to zero. The physical temperature (buoyancy) field is filled with ran-
dom noise on a normal distribution curve with a magnitude of 10−5. The noise is damped
at the walls according to T(z) → T(z) × z × (L − z) and a linear background is imposed
T(z) = T(z) + (L − z).

The simulations are evolved until a time t = 50, which our investigations have shown is
the time at which all simulations have reached an approximately steadily evolving saturated
state. Note that some simulations, with lower Rayleigh numbers, reach a steadily evolv-
ing state of convective rolls sooner, as is to be expected. At t = 50 the Dedalus model is
restarted and evolved until t = 60 with the state of the fluid checkpointed at amuch higher
cadence, �t = 0.01, in order to provide the resolution in time required for the machine
learning approaches. We show snapshots of the temperature for a range of parameters in
figure 1.

3.2. 3D Rayleigh Bénard convection

In three dimensions, we perform simulations for Rayleigh numbers R= 104, 105, 106

and 107, again modelling the same range of fluid regimes and monitored by Nusselt and
Reynolds numbers. The physical domain is discretised into uniform grids of 128 points
in the x and y directions and 192 non-uniform points in the z direction defined by the
Chebyshev basis.

6 C. J. WAREING ET AL.

Figure 1. Snapshots of 2D Rayleigh-Bénard convection at varying times and Rayleigh number. Snap-
shots are shown early in the initial evolution (t = 22.5 in the left column) and once the steady state has
become established (t = 49.75 in the right column). Boxes indicated by numbers 1, 2 and 3 overlaid
in the right column show the approximate sample domains for the various pySINDy tests discussed in
section 5. (Colour online)

The initial values of the fields are generated in the same manner as in the 2Dmodel but
here the simulations are evolved considerably further to a time of t = 150 in order to reach
a statistically steady state, before restarting and evolving the simulation up to t = 175 in
order to obtain snapshots of the fluid state at the smaller interval of �t = 0.01 to provide
high cadence snapshots of the fluid for the machine learning algorithms.

3.3. Two-dimensional planar convective Couette flow

We perform simulations for the Rayleigh number R = 108, principally to examine the
capability of machine learning methods for recovering a boundary condition involving
a moving boundary. The physical domain is discretised into a uniform grid of 1024 points
in the x direction and 384 non-uniform points in the z direction defined by the Chebyshev
basis. The initial values of the fields are again generated in the same manner as in the 2D
Rayleigh-Bénard convection model, with vertical boundary velocities of U0 = 0.5 and 1.0.
The simulations are evolved up to t = 150 and then restarted in order to obtain fluid data
at the same smaller interval of �t = 0.01, up to t = 160.

4. Equation discovery methods

In this section we introduce the equation discovery algorithms andmethods we have used,
along with precise details of how we have applied them to the data obtained above. The

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 7

methods we use are the pySINDy implementation of the Sparse Identification of Nonlin-
earDynamics (SINDy) algorithm and the Sparse Physics-InformedDiscovery of Empirical
Relations (SPIDER) framework. For a recent review of machine learning for PDEs with
pySINDy see Brunton and Kutz (2023) and the references therein. The application of the
SPIDER algorithm to turbulent channel flow (Gurevich et al. 2024) also provides a wide
introduction to the history and application of machine learning to PDEs. For reproducibil-
ity and completeness, we include our pySINDy and SPIDER analysis scripts, as well as the
instances of the libraries used, in the repository accompanying this paper.3

4.1. The SINDy algorithm

Model discovery is an active field of research which aims to discover models of systems
and can find first-principles equations that govern such systems by using observational
data. SINDy (Brunton et al. 2016) has become a popular approach to this problem as
it allows the discovery of sparse models which represent the data with a method that is
both fast and simple to implement. For this reason SINDy has seen many extensions, such
as: implicit equation identification (Kaheman et al. 2020), latent space dynamics (Cham-
pion et al. 2019, Gao and Kutz 2024), globally stable models (Kaptanoglu et al. 2021) and
rapid-Bayesian formulations (Fung et al. 2024). It has since been made available publicly
in an open-source Python package called pySINDy (de Silva et al. 2020) as a generalisable
framework for solving sparse regression problems featuring many of these extensions.

To formulate the optimisation problem in pySINDy, we aim to produce a linear com-
bination of candidate features from a library of terms which generates the dynamics.
Explicitly, given n measurements of a d dimensional problem, we can construct a state
matrix X ∈ R

n×d where the columns j ∈ [0, 1, . . . , d] of X represent the state variables and
the rows i ∈ [0, 1, . . . , n] givemeasurements in time for each state. The regression problem
is cast by solving

Ẋj = �(X)ξ j (4)

where � ∈ R
n×p is a feature library constructed of p terms, ξ j is the coefficient vector for

the state variable j and Ẋj is the time-derivative of the state variable. The feature library can
then be constructed from any terms the user wishes to include, such as polynomial terms
of the input states.

Following its introduction, the SINDy algorithmwas later extended to learn PDEs from
data in the PDE-FIND algorithm (Rudy et al. 2017). Given some spatiotemporal data, the
extension from ODE to PDE identification is simple. For a general PDE of the form

∂tu =
N∑
l=0

clf l(u, ∂tu, ∂
2
t u,∇u,∇2u, . . .) = 0 (5)

where cl is the coefficient of f l, we construct a statematrixU where the columns are vectors
of length m × n where n is the number of temporal measurements and n the number of
spatial measurements. In our feature library we now include spatial derivative terms such

8 C. J. WAREING ET AL.

as Uxx and UUx to represent typical PDE terms. The regression problem is then

U t,j = �(U)ξ j (6)

where subscript t, j represents the time derivative of U for the jth state.
A primary limitation of SINDy as expressed in equation (6) is the use of finite-

differencing in approximating spatiotemporal derivatives. Even extremely low amplitudes
of noise have been noted to cause substantial errors in the identification of PDEs (Rudy
et al. 2017). This issue is further compounded by the presence of nonlinear product terms
in the feature library which conspire to violate the linear regression assumption of additive
Gaussian noise (Fung et al. 2024). The effect of noise can be ameliorated by using the weak
form of PDEs (Gurevich et al. 2019). In particular, a weak form of SINDy was introduced
by Messenger and Bortz (2021).

The advantage of the weak form lies in the ability to transfer high-order derivatives
from the state variables u on to a weight function w with known form and well defined
derivatives. Equation (5) is multiplied by w and each term in the library is integrated over
K randomly sampled subdomains of volume �k for k ∈ [1, 2, . . . ,K]. The optimisation is
then expressed as

q0,j =
N∑

n=1
cn,jqn = Qcj (7)

where Q = [q1, . . . , qN] is the collection of N different features of the PDE with the form

qkn =
∫

�k

w · f nd�k. (8)

We can then perform PDE identification by assuming the form of the PDE is not known,
and substituting a selection of candidate function �m for f n. This casts equation (7) as a
linear regression problem; i.e. we wish to minimise the residual sum of squared errors of
the K different integrals on each subdomain. The regression is performed over the results
of all the K integrated subdomains at once. Both the number K of subdomains used and
their locations impact the results of regression as has been shown previously (Abramovic
et al. 2022, Gurevich et al. 2024). A larger number of subdomains ensures that the data are
more diverse and representative, yieldingmore structurally robust results for the functional
form of the governing equations and recovering the coefficients with higher accuracy due
to averaging, especially for noisy data (Gurevich et al. 2019). The location of subdomains
also matters. For instance, choosing the domains that don’t overlap ensures linear inde-
pendence of the rows of the Qmatrix. On the other hand, the location can also determine
which physical effects are important. Poor sampling of the data can lead to models that are
less general. For instance, viscous effects might not be picked up if boundary layers are not
sampled (Gurevich et al. 2024). By using integration by parts on the amenable feature terms
qkn we can transfer derivatives from u to the weight function w, thus greatly improving the
robustness to noise. In this form weak SINDy can act as a low-pass filter which averages
over periodic high-frequency signals if�k spans periods of that frequency (Messenger and
Bortz 2021).

Despite an increased robustness to noise, weak SINDy is still susceptible, as with any
linear regression problem, to correlated terms in the feature library. This presents a gen-
eral issue for high-dimensional regression problems that despite including some form of

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 9

regularisation can still lead to models that are nonphysical. This has led to the inclusion of
physical constraints that reduce the overall library size. For theweak form, themost general
constraints are given by the SPIDER framework (Golden et al. 2023, Gurevich et al. 2024)
(described later), whereby the search is constrained to one of several group equivariant
subspaces. While both pySINDy and SPIDER employ both weak formulation and sparse
regression, the former requires specific domain knowledge to constrain the search space,
unlike the latter. We present the application of both from a standpoint of an end user.

4.1.1. Mixed-integer sparse regression
In this paper we make use of a recent addition to pySINDy termed mixed-integer opti-
miser for sparse regression (MIOSR) developed by Bertsimas and Gurnee (2023). Sparsity
is enforced in MIOSR through Specially Ordered Sets of Type 1 (SOS-1) restricting that
only one variable in a set can take a nonzero value. By restricting the total number of allow-
able terms in the system, an answer is found which chooses the most suitable features in
the linear regression problem. The solution is found using branch and bound algorithms
which partition the feasible solution space into subsets of problems and solve the linear
relaxation of the problem at different nodes. This process is continued until a solution with
integer coefficients is found that minimises the objective function and provides a solution
to a combinatorially hard search problem (Bertsimas and Gurnee 2023). MIOSR relies on
modern optimisation solvers such as CPLEX4 or GUROBI5 and we employ the latter here.
Interested readers can refer to the original work by Bertsimas et al. (2016) for full details.
When MIOSR is applied to all equations at once, the sparsity constraint k is termed the
group sparsity. Otherwise when it is applied to each equation individually it is referred to
as target sparsity.

There are three reasons we make use of this optimiser. First, MIOSR out-performs
many of the other available optimisers on a series of benchmarking problems outlined
by Kaptanoglu et al. (2023). It is also the only optimiser that allows the inclusion of
hard-constraints which we make use of to eliminate specific library terms. Finally, as
sparsity is enforced by limiting the maximum number of allowable terms appearing in a
given equation, terms with small coefficients can readily be identified. Given that diffusive
terms scale with ∼ 1/

√
R, the coefficients adorning these terms will be small. The latter

two points make the sequentially thresholded least-squares approach as implemented in
pySINDy unsuitable for this problem.

4.1.2. Problem formulation in the pySINDy implementation
In general when using pySINDy there are two approaches to library construction. The first
is to create a general feature library of say, all product terms of the state variables and their
derivatives up to an arbitrarily chosen order of polynomial, and then if necessary constrain
the resulting library. The second is to create a bespoke library which contains only the exact
features required. More details of how to create complex pySINDy libraries are shown in
the documentation.6 While the second approach is appealing, in practise we found this
to be challenging to implement specifically in the weak form SINDy as it involves taking
many products of the input features and can still result in derivative terms which are not
intended. The simplest approach in pySINDy is to create a full general product library and
remove unwanted feature terms by constraining them. We return to discuss the possible

10 C. J. WAREING ET AL.

implications of this choice, particularly with respect to the amount of computing memory
consumed by pySINDy, in the Discussion section.

Herein, the pySINDy candidate library is constructed from the pressure p, the temper-
ature T and each component of the velocity, treated as a separate scalar feature object:
ux and uz for the 2D problems; ux, uy and uz for the 3D problem. To construct the cus-
tom library for 2D Rayleigh-Bénard convection, we have included these four data objects
p(x, z), T(x, z), ux(x, z) and uz(x, z) (4 terms), first-order partial derivatives (8 terms), sec-
ond order partial derivatives (16 terms, reduced to 12 applying chain rule), products of
the four data objects with the first-order partial derivatives (32 terms) and products of the
four data objects with the reduced second-order partial derivatives (48 terms). A total of
104 possible library terms includes all the terms that we know appear in the governing
equations. Equivalently, the full candidate library for the 3D problem contains 290 possi-
ble terms. Once this library has been generated by brute-force, pySINDy, scalar only in its
operation, can then seek a relation for a predefined term by sparse regression and optimi-
sation, which in the case of governing equations here is the time derivative for each feature
object, e.g. ∂tp.

The library vector and vector of data objects together create a matrix of all coefficient
possibilities, which we now artificially constrain using knowledge about the problem in
order to create a library of physical termswhich ismore comparable to themanner inwhich
SPIDER generates a library. We take this artificial step in order to guide hyperparameter
sweeping using an unconstrained library, as this is the proper test of whether the machine
learning can recover the governing equations. We enforce ∂tp = 0 by explicitly including
instruction not to seek a relation for this expression.We apply the knowledge that diffusion
only appears in the governing equations in the form of a Laplacian operator, thus reducing
60 second-order terms to only 6. Furthermore, four of these are explicitly “switched off”
for each equation and the coefficients of the remaining terms in each equation are inter-
linked (i.e. enforced to be equal to each other, in for example the inertial terms – utilising
knowledge that the equations are vectorial in nature). For the artificial constraint of the
library, we choose to apply the incompressibility constraint in the form

∂xux = −∂zuz, (9)

removing 15 terms from theux equation and 15 terms from theuz equation. Elements of the
full matrix of library terms are then interlinked, i.e. enforced to be equal, so as to represent
the coefficients of the vector equations. The regression is thus forced to select exactly equal
coefficient values for each component of every vector term (e.g. advection, diffusion and
pressure term). We have used these artificial choices, justified only by comparison to the
known correct model, to construct and constrain the library only in order to guide the
subsequent use of unconstrained libraries, as we discuss below. Note that due to symmetry
breaking induced by gravity there is no systematic a priori way either to choose the library
terms or interlink the coefficients of equations describing different components of vectors
(or higher-rank tensors) in SINDy, requiring a lot of ad hoc assumptions to be made.

When using weak SINDy there are several hyper-parameters and domain choices that
must be made. The first is the volume �k over which the integration is performed. In the
3D case we define the volume following Reinbold et al. (2020)

�k = {(x, y, z, t) : |x − xk| ≤ Hx, |y − yk| ≤ Hy, |z − zk| ≤ Hz, |t − tk| ≤ Ht} (10)

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 11

such that the volumes are centred around randomly selected points (xk, yk, zk, tk) in the
computational domain. We interpolate from 384 Chebyshev grid space points vertically to
a uniform 384-point grid spacing, in order to match the uniform domain division applied
in the formation of the library. This involves some loss of detail at the boundaries, which
we counter when necessary by increasing the number of uniformly spaced grid points
vertically. A further issue is that positive-definite terms can become increasingly large
with increasing �k, thus presenting scaling issues in the feature library, which degrade
the quality of the fit. The total number of these subdomains K must also be chosen and
we have experimented with using between 300 and 1500, though in general more subdo-
mains is more computationally expensive but yields better results. We explore the effect
of varying these parameters in the Results section. We hold other parameters constant,
typically to their default values. For example, we use a NumPy random seed of 100 and
we set the order of the interpolating polynomial to be 6 in the initiation of the weak PDE
library.

For hyper-parameters related to the optimiser, MIOSR only has a few that must be
selected. The first is α which relates to the strength of the l2 regularisation. In general as
the allowable sparsity is small we keep α small. The second is the sparsity – either group
or target. If we fit all equations at once then the correct numbers of terms is 15 in total
(group), corresponding to 5 for ux, 6 for uz, 0 for p and 4 for T (target = 5,6,0,4). Reducing
this beyond these “correct” values can lead to a loss of smaller contributing terms and can
bring some understanding of the dominant balance of the equations. For example, one can
search for the Euler equations to test the hypothesis that the diffusive terms will be lost
first (with target = 3,4,0,2). Increasing this beyond these values can “overfit” spurious extra
terms, though this is not necessarily the case as MIOSR only has the requirement that the
total number of terms be less than or equal to the total sparsity value. However, increasing
the number of allowed terms does produce a more ill-posed regression problem.

4.2. The SPIDER framework

The SPIDER framework has been shown (Gurevich et al. 2024) to be able to recover the
complete mathematical model of a physical process (channel flow) - governing equations,
constraints and boundary conditions.Unlike SINDy and its variantswhich all use an adhoc
approach to constraining the search space, SPIDER is a complete framework that combines
1) physical assumptions of smoothness, locality and symmetry for systematic construc-
tion of a collection of term libraries which define the search space; 2) a weak formulation
of PDEs for evaluating the contribution of different terms; and 3) model agnostic sparse
regression algorithm for inferring one or more parsimonious equivariant equations from
each library.

For our purpose, SPIDER has some important differences to pySINDy. In partic-
ular, SPIDER is able to recover not only scalar equations, but also vector equations.
Libraries in SPIDER are constructed by combining physical fields {u, p, . . .} with differ-
ential operators {∂t ,∇} using symmetry covariant operations such as tensor products and
contractions. In this way, term libraries containing scalars, vectors, or even higher rank
tensors can be constructed for model discovery. Symmetries further split libraries into
irreducible representations via the construction of projection operators (Cvitanović 2008)
when possible.

12 C. J. WAREING ET AL.

Following the example of the turbulent channel flow SPIDER analysis (Gurevich
et al. 2024) we take the scalar pressure field p and the vector velocity field u, add the
scalar temperature field T and combine them with differential operators. To account for
the partial symmetry breaking associated with gravity, we add the unit vector ẑ. Using
these objects, we can construct a feature library of possible candidate scalar terms

L0 ={1, p,T,∇ · u, ∂tp, p2, p3, ∂tT,T2,T3, u2, u · ∇p, u · ∇T,∇2p,∇2T,

p∂tp,T∂tp, p∂tT,T∂tT, ∂2t p, ∂
2
t T, p(∇ · u),T(∇ · u), u2p, u2T, u · ∂tu}

(11)

and a second feature library of possible candidate vector terms

L1 ={u, ∂tu,∇p,∇T, pu,Tu, (u · ∇)u,∇2u, ∂2t u, u
2u, p2u,

T2u, ∂t∇p, ∂t∇T, p∇p, p∇T,T∇P,T∇T, u(∇ · u),

u · (∇u),∇(∇ · u), p∂tu,T∂tu, u∂tp, u∂tT, pẑ,Tẑ}
(12)

which can be applied separately in searching for scalar or vector relations. Employing
Galilean invariance could reduce the size of the libraries further (Gurevich et al. 2024).
This should be the approach going forwards.

SPIDER yields a significantly smaller library; the 26-term scalar library forms the search
space for any scalar fields, while the 27-term vector library forms the search space for any
vector fields. As noted by Gurevich et al. (2024), we emphasise that no domain knowledge
specific to the problem, aside from the symmetry (rotational and translational) and the
choice of variables, has been used in constructing these two libraries, in contrast to many
other approaches. It should also be noted that libraries are modest in size compared to an
equivalent 104-term library constructed by the brute-force approach in pySINDy for the
2D problem. Inclusion of physical symmetries and constraints can and does reduce these
pySINDy libraries, as we have done above, but this is a process that requires deep library
understanding (exact knowledge of the ordering of terms) and given the larger library size
to be reduced, is naturally more susceptible to human error.

The simplest scalar and vector relations describing pressure, temperature and velocity
data (the governing equations) can now be identified by performing a sparse regression
using these libraries L0 and L1. Similarly to pySINDy, SPIDER uses the weak form of the
PDEs following the approach inGurevich et al. (2019) in order tomake the regressionmore
robust. In this application, the numerical data contains only noise at the level of numerical
accuracy (10−6), but even so, terms involving higher-order derivatives, such as ∇2p, ∇2T
and∇2u are still sensitive to this noise. Specifically, the SPIDER frameworkmultiplies each
equation by a smooth weight function wj(x, t) and then integrates it over a rectangular
spatiotemporal domain �i of size Hx × Hz × Ht (in 2D) or Hx × Hy × Hz × Ht (in 3D).

The derivatives are shifted from the data onto the weight function whenever possible
via integration by parts. The integrals are then evaluated numerically using trapezoidal
quadratures. We use the same weight function forms raised to a power β for the scalar
and vector libraries as defined in Gurevich et al. (2024). We similarly start from a value of
β = 8 in our analysis and only vary this if necessary, as this choice ensures that boundary
terms vanish andmaximises the accuracy of the numerical quadrature along the uniformly

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 13

gridded dimensions (Gurevich et al. 2019). Given that for SPIDER, we maintain the non-
uniform grid in the z direction, increasing β further has no benefit as it only affects the
errors of the quadrature, as illustrated in figure 2 of Gurevich et al. (2024).

In this work, we vary the size of the subdomains�i, the number of subdomains and the
value of β in order to recover the governing equations, as discussed in more detail below.

To summarise the method of Gurevich et al. (2024), the repetition of this procedure
for a number of domains �i contained either within the full dataset or a specific region of
interest (e.g. bulk flow or boundary region), constructs a feature matrix, which can be nor-
malised to ensure themagnitudes of all the columns are comparable, the effect ofwhich is to
improve accuracy and robustness of the regression if necessary, although we don’t find that
necessary for the recovery herein. The resulting over-determined linear system is homoge-
neous and treats all terms in the library on equal terms, in contrast to pySINDy. Complete
details of the procedure can be found in Gurevich et al. (2024). Note that in the same
result as that work, scalar terms are found that correspond to the incompressibility condi-
tion ∇ · u = 0 and its corollaries in the scalar library p(∇ · u) and T(∇ · u). Now that the
incompressibility condition has been identified, all the terms which involve ∇ · u = 0 can
be pruned from both the scalar and vector libraries, reducing their complexity even further
compared to brute-force approaches. An iterative greedy algorithm (Golden 2024, Gure-
vich et al. 2024) then identifies multiple term relations from this pruned library. Alongside
this algorithm, a residual error is calculated; this error describes the weak form of the rela-
tions over all K subdomains. Selecting a final relation from the comparison of reduced
sequences formed by repeating the process and dropping one term each time, is based
on the choice between the simplicity (i.e. number of terms N) and the accuracy quanti-
fied by the residuals, a choice which we explore in depth in the next section. Full details
of the SPIDER framework have been published elsewhere (Golden et al. 2023, Gurevich
et al. 2024) and we encourage the interested reader to review those works as well as several
other relevant earlier studies (Gurevich et al. 2019, Reinbold et al. 2020, 2021) on which
this implementation of SPIDER is based.7

5. Results

5.1. pySINDy

We have considered the application of pySINDy only to 2D Rayleigh-Bénard convection,
owing to memory constraints; it is our finding that pySINDy, for this method of appli-
cation at least, quickly reaches the limits of the available RAM (196Gb) on the nodes of
the supercomputing resources we had available to us. The high memory requirements of
pySINDy for the PDEFIND method in application to 2D and 3D data have been noted in
the pySINDy documentation, with an example showing that a resolution of 32 × 32 × 32
was the resolution possible for a 3D reaction-diffusion system.8 We discuss the possible
reasons for this problematic consumption of memory in the Discussion section.

5.1.1. Hyperparameter sweeping
Without intuition about which hyperparameter values to choose, the natural start is to
perform a sweep across possible values. We set the location of the spatiotemporal domains
according to the randomised selection of points detailed above and the division of each

14 C. J. WAREING ET AL.

domain (x, z and t) extent by a constant for each dimension (xdiv, zdiv and tdiv). In com-
bination with the number of spatiotemporal domains K, these constants are limited at the
smallest values (resulting in the largest spatiotemporal domains) by the memory capacity
available. At the largest values (resulting in the smallest spatiotemporal domains) we limit
our investigation to the maximum number of points in each direction for that particular
constant (theoretically true for the strong form only).

The aim of sweeping across these hyperparameters is to find reliable values that can be
used to recover governing equations from the unconstrained library. We initially set out to
recover governing equations from the constrained pySINDy libraries. The hope is that in
future work, any physical intuition that can be inferred from these values can be applied in
the search for unknownproperties of the fluid (e.g. new sub-grid-scale turbulencemodels).
To assess the performance of the resulting models, we calculate the predicted root mean-
squared errors over the K subdomains for which the regression problem is formed.

Initially, we consider 2D Rayleigh-Bénard convection at R = 106. In the first three tests
cases, the numerical results are interpolated from a Chebyshev grid to a uniform grid
with 384 points in the vertical, with the horizontal resolution remaining the same. This
is because pySINDy assumes a uniformly sampled spatiotemporal grid from the user in
the numerical quadrature. Using a subset of the high-resolution time data available, typ-
ically 400 points in the range 50 ≤ t ≤ 54, because of the memory-demands, in the first
test, we sample between 300 and 1500 spatiotemporal domains from the bulk of the flow –
specifically in the region defined on the ranges 2.60 ≤ x ≤ 3.60 and 0.27 ≤ z ≤ 0.73 (see
box 1 in figure 1). This corresponds to a region of the flow containing approximately half
of a quasistable periodic convective roll, including the plume and the centre of the roll.
In the second test, we sample from the whole of the bulk, i.e. all x and 0.27 ≤ z ≤ 0.73
(see box 2 in figure 1). In the third test, we sample only from the lower boundary layer,
following the hypothesis that this may be able to isolate the diffusive terms more eas-
ily, i.e. from the range 0 ≤ x ≤ 4 and 0 ≤ z ≤ 0.13 (see box 3 in figure 1). The uniform
grid of the first two cases has spacing set by the bulk of the flow, and thus under-resolves
the boundary layers. In this case it is necessary to interpolate to a finer grid with spacing
determined by the Chebshev grid at the boundary. The accuracy of numerical quadra-
tures required by the weak form is substantially higher for uniform grids (Gurevich
et al. 2019). Hence, in the fourth test, motivated by reducing the error and improving
the accuracy of the equations recovered, we interpolate the non-uniform vertical 384-
point grid defined by the Chebyshev polynomials onto a higher resolution uniform grid
of 3840 points and then select spatiotemporal domains from the full x range and from
0 ≤ z ≤ 0.026.

For all these tests, we have explored the hyperparameter range of x, z and t divisions
with a default of 300 spatiotemporal domains, which we have increased if necessary. In the
first test, we have used divisions in x of (xdiv = 8, 10, 12, 14, 16, 18, 20, 22, 24), divisions
in z of (zdiv = 3, 6, 10, 13, 16, 20) and divisions in t of (tdiv = 8, 10, 12, 16, 20, 24). For the
other tests, the set of values used for x and z are scaled by the size of range sampled, such
that we maintain as close to the same size of spatiotemporal domains between the tests.

We illustrate the results of a hyperparameter sweeping test in figure 2. The results for
each equation, for each combination of divisions is colour coded by the residual error
of fit. Most published applications of SINDy calculate some normalised measure of the
coefficient error to assess model performance (or this choice is not discussed at all). We

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 15

Figure 2. Results of the first pySINDy test at R = 106 for 2D Rayleigh-Bénard convection. Sampling spa-
tiotemporal domains from a region of the bulk flow, the figures show the effect of varying the size of
the spatiotemporal domains on the resulting residual error (in weak form, over K subdomains) of the
governing equations recovered by the pySINDy implementation. The error shown is the logarithm of
the residual sum of squared errors. Specifically (a) visualises the residual error for the ux equation, (b)
visualises the error for the uz equation, (c) visualises the error for the T equation. Part (d) of the figure
combines the residual errors for each equation together with the aim of finding a choice of xdiv, zdiv and
tdiv that corresponds to correct recovery of eachgoverning equation independently; a choice of low xdiv,
zdiv, and tdiv appears to achieve this aim. (Colour online)

use this approach here, but it is a limited solution in our case as it relies on recovering
only the correct equations (and knowing this beforehand to constrain the libraries and be
able to compare the result). The only other option available is to integrate the resulting
PDEs and assess their performance, which is computationally infeasible for hyperparame-
ter selection. This normalised cumulative coefficient residual error is lowest in the region
of small xdiv, zdiv and tdiv, specifically at (xdiv, zdiv, tdiv) = (12, 10, 8). Physically, these
correspond to physically large spatial domains (1024/12, 384/10)with the longest periods
of time evolution (400/8). We further find that equivalents of these values are consistent
between the first, second and third tests at R = 106, implying that for this method, it is
equally possible to recover Navier-Stokes in both the bulk and at the boundary. The fourth
test, sampling from the refined boundary layer, was inconclusive suggesting that the region
we sampled from, even with enhanced vertical resolution, was not large enough to recover
both the viscous terms (which you would expect to dominate) and the advection terms.
Further, any errors existing in the data will simply be interpolated to an increased grid
resolution and thus still prevent successful recovery. We return to the question of data

16 C. J. WAREING ET AL.

accuracy later. The governing equations recovered using the constrained library (where
we have constrained vector properties of the equations, as well as applied the incompress-
ibility constraint, in order to produce a more physical library) typically lose the diffusive
terms first as you move away from this optimal combination, followed by the addition
of extra terms which are not found in the true equations. This may be because weak
SINDy introduces a smoothing effect if the domain is too large (Fung et al. 2024) or nor-
malisation issues are introduced as terms become larger. For smaller integration domain
sizes, there may be insufficient smoothing of errors. It is difficult to be conclusive as one
thing we have been unable to adjust when the MIOSR method is used within pySINDy
is the tolerance of the MIOSR method and we suggest this may be an avenue for future
investigation.

It is worth noting that each test required repeated applications of the pySINDy imple-
mentation for each combination of xdiv, zdiv and tdiv, corresponding to different sized
spatiotemporal domains. Each test took approximately 24 to 48 hours on a single compute
node of the ARC4 facility at the University of Leeds, at one number of K spatiotemporal
domains. Future users may find it useful to note that we found that certain combinations,
corresponding to the largest spatiotemporal domains, would attempt to use more than the
196Gb of RAM available and would have to be run on the largememory nodes with 768Gb
RAM.

5.1.2. Increasing the Rayleigh number R
We now increase the value of R (and hence the level of turbulence) and examine the ability
of this pySINDy implementation to recover the Navier-Stokes equation governing velocity
and the heat advection-diffusion equation governing temperature, continuing with the use
of a constrained library. As demonstrated in the previous section, recovery of these equa-
tions at R = 106 was robust when the library was constrained in the manner described
above. In figure 3, we show an example output of our pySINDy analysis. Four equations
are shown, all scalar, for the evolution of the two components of velocity, the pressure and
the temperature. There is no pressure evolution equation, as expected from the constraints.
The equivalent scalar equations following the notation of equation (1) are

∂u
∂t

= 0.00099995
∂2u
∂z2

+ −0.99981655
∂p
∂x

+ 0.00099995
∂2u
∂x2

+ −0.99979113w
∂u
∂z

+ −0.99979113u
∂u
∂x

, (13)

∂w
∂t

= 0.99981780T + −0.99981655
∂p
∂z

+ 0.00099995
∂2w
∂z2

+ 0.00099995
∂2w
∂x2

+ −0.99979113w
∂w
∂z

+ −0.99979113u
∂w
∂x

, (14)

∂p
∂t

= 0, (15)

∂T
∂t

= 0.00100058
∂2T
∂z2

+ 0.00100058
∂2T
∂x2

+ −0.99920030w
∂T
∂z

+ −0.99929939u
∂T
∂x
(16)

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 17

Figure 3. Results of constrained-library sparse regression using the pySINDy implementation applied to
simulationof 2DRayeighBénard convection at a Rayleighnumber ofR = 106. Terms that are constrained
by interlinking andhave identical coefficients are indicated by colour boxes; gradient of pressure (green),
advection (red and purple), diffusion (blue and yellow). Residual (root mean-squared) error is shown for
each of the four equation on the bottom line. The third value (for the pressure equation) can be ignored.
Wechoose topresent this inpySINDyoutput format as anexampleof the results obtainedby this analysis.
(Colour online)

where the same colour coding has been used to highlight values of coefficients that are
enforced to be exactly identical to one another - interlinked – by the constraint of the
library.

A repeated set of tests at R = 108 has shown similar ability to correctly recover the gov-
erning equations, again accurate for a range of hyperparameter spatiotemporal domain
values (xdiv, zdiv and tdiv) around those optimally found for R = 106. At larger R, this
robust result of the regression becomes less stable, meaning that even with a constrained
library, at R = 1010 only the optimal parameters recover the governing equations and
at R = 1012, only the Euler equation is recoverable. Again, this behaviour is consistent
between tests 1, 2 and 3 and inconclusive for test 4. This is interesting in of itself, as from
physical intuition, natural expectation may expect us to see different behaviour between
these tests – we did not see that. The difficulty of recovering governing equations at high
R may be due to the coefficient of the diffusive term being a factor of 106 smaller than
the other coefficients – equation discovery algorithms are known to struggle with a wide
numerical range of coefficient values. It should also be noted that the diffusive terms in the
boundary layer are the smallest structures and therefore the most difficult to resolve. In
this instance we are inclined to conclude that the tolerance of the MIOSR optimiser is set
too high by default for this case, but we also return to the effect of our chosen resolution
on these machine learningmethods later. Future investigation is advised to understand the
difference in equation recovery when sampling from different regions of the flow, although
we can say that applying a post-computation increase in the number of points vertically by
interpolation, simply to provide a larger number of points to sample from for the selec-
tion of spatiotemporal domains, does not improve the equation recovery performance; the
end-user of machine learning equation recovery techniques should be sure the numerical
computations are well-resolved from the outset – a point we return to in later discussion.

5.1.3. Unconstrained library regression
It should be noted that with a constrained library, the correct formof each term in the equa-
tions is selected in the regression. When using unconstrained libraries, where all possible
library terms are available, there are some common swaps which appear in the recovered
equations. In particular for this incompressible problem, swaps related to the incompress-
ibility condition are common (though of course this is then simply a different correct way
of writing the resulting equations –though may lead to a different physical interpretation
of the terms in the equations).

18 C. J. WAREING ET AL.

Figure 4. Results of unconstrained-library sparse regressionusing thepySINDy implementation applied
to simulation of 2D Rayeigh Bénard convection at a Rayleigh number of R = 106. Residual (root mean-
squared) error is shown for each of the four equation on the bottom line. The third value (for the pressure
equation) can be ignored.

Noting that this occurs, with the optimally selected hyperparameters from the con-
strained fitting, regression with the unconstrained library is able to recover the governing
equations at the parameter values which correspond to the minimal error, as shown in
figure 4 for R = 106. A “swap” is notable in the uz (W’) equation in the diffusive terms,
where ∂2uz/∂z2 has been replaced by ∂2ux/∂x∂z which is equivalent through the incom-
pressibility condition. The residual errors are in fact slightly smaller than in the constrained
regression case, which shows that each equation is being obtained separately, albeit from
the same library. Limited target sparsity was also enforced in the regression at an earlier
result than shown in order to see if simpler equations (e.g. the Euler equation) are recovered
first and this is indeed the case. It is clear then that in order to recover the correct governing
equations with large libraries, if no physical intuition is decipherable from inspection of the
flow (a point we return to later) one must first optimise the values of the hyperparameters,
for example by using a brute-force repetitive computational test of regression at all values
to minimise the residual error.

It is also possible to alter the random selection of the spatiotemporal domain locations
and statistically quantify some robustness of the result. We find that this process is effec-
tive at Rayleigh numbers of 106 and 108, in that with 100 variations of the random seed
initialising locations of selected spatiotemporal domains, the resulting equations recov-
ered are correct more than 75% of the time for R = 106 and more than 50% of the time for
R = 108. But evenwith tuned hyperparameters, the regression on an unconstrained library
is unsuccessful at R = 1010 and above. More specifically, again it is possible to recover the
simpler advection terms robustly e.g. the Euler equation, but the recovery of the diffusion
terms, with their smaller coefficients, has been found to be very difficult – impossible at
R = 1012. In future work, variation of the order of the interpolating polynomial may be
able to improve on this poor results at high R.

This is as far as we have been able to go with the pySINDy implementation. Clearly
for these kind of complex fluid flows, some physical intuition is crucial for this method to
constrain the candidate library of possible terms for the sparse regression. Further, exam-
ining the flowmay provide some intuition about the optimal selection of hyperparameters
(and we explore this and the limits imposed by resolution later). The generalised nature
of pySINDy places the onus on the end user to make appropriate choices in these areas
before investigation of more nuanced parameters like the MIOSR tolerance and the order
of the integrating polynomial - which may in fact have much greater bearings on the qual-
ity of the resulting equation recovery.We discuss this further in the subsequent Discussion
section.

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 19

Figure 5. Dependence of the residual on the number of terms N retained in a recovered relation for the
governing (a) momentum equation and (b) heat advection-diffusion equation for 2D Rayleigh-Bénard
convection.

5.2. SPIDER

5.2.1. Governing equations
Inference of single-term relations in the SPIDER framework requires independent evalua-
tion of all the terms in the corresponding library but does not involve regression (Gurevich
et al. 2024). We verified that the incompressibility condition (1c) is indeed recovered from
the scalar library L0 for suitable choices of the sizes of integration domains.

In figure 5(a) we show the results of the regression analysis performed using the vector
library L1 pruned for the incompressibility condition (see preceding section) in order to
recover the momentum equation (1a). We show the residual error computed as the num-
ber of terms allowed in the library is reduced to only 1. The residual error for N>10 is
not shown as it follows the flat trend aboveN = 6 for the momentum equation andN = 3
for the heat advection-diffusion equation. A natural choice of N, therefore, would either
be 5 or 6 as this is the smallest number of terms at which the error becomes more or less
constant. In table 1 we show the details of the momentum equation recovered by the SPI-
DER framework for R = 1010. It is not until four terms are selected that SPIDER recovers
an evolution equation and this is reflected in the large reduction in error at this N. It is
reassuring to note that this is the Euler equation. With 5 terms, the SPIDER recovers the
Navier-Stokes equation, with very close to the correct coefficient for the diffusive term
(−10−5 ∇2u). Addition of a 6th term appears to reduce the error further. This extra term,
indicated in table 1 is spurious, but is likely to be fitting a real numerical error, which we
discuss further in the next section.

From figure 5(a), one might naively deduce that the SPIDER framework improves (i.e.
produces smaller residuals) with increasing R. However, note that this masks the adjust-
ment of regression hyperparameters needed to obtain accurate recovery of themomentum
equation, which we required for the largest R. More specifically, at R = 106, we used 1024
spatiotemporal subdomains, β = 12 and �i = 128. At R = 108, we can reduce �i to 64.
ForR = 1010 wewere able to recover governing equationwith only 128 subdomains, β = 4
and again�i = 64.AtR = 1012, the best recovery parameterswe foundof�i = 128,β = 4
and 1024 subdomains were able to recover the Euler equation with 4 terms, but the SPI-
DER framework consistently selected a ∂t∇p term before the diffusive term. Given that the
coefficient of the diffusive term should be 10−6, perhaps it is no surprise that any method

20 C. J. WAREING ET AL.

Table 1. Vector equations recovered by the SPIDER framework from 2D simulation of
Rayleigh-Bénard convection at aRayleighnumberR = 1010, indicative of the same termorder
recovery with different coefficients for smaller Rayleigh numbera.

Coefficients of termsb

N Error ∂tu (u · ∇) u ∇p T ẑ ∇2u ∂t∇p

2 0.740 – – 0.579c −1c – –
3 0.242 – 0.882 0.960 −1 – -
4 5.261 × 10−4 1 0.999 0.999 −0.999 – –
5 3.219 × 10−4 0.999 1 1 −0.999 −1.023 × 10−5 –
6 4.048 × 10−5 1 1 1 −0.999 −1.006 × 10−5 −5.112 × 10−4

aWhilst recovery of the 4-term Euler equation is consistent across all R, this table is not indicative of recovering
the Navier-Stokes equation for R = 1012. Please see the text for further explanation.bThe sign of the terms
here is shown as if everything was moved to the left-hand side of the momentum equation i.e. ∂u/∂t +
· · · = 0.cThe results produced by the SPIDER framework do indicate a difference between exact integers and
decimals.

struggles to reproduce such coefficients close to the numerical precision of the simula-
tion. Or, it is possible that SPIDER is telling us something about the quality of the data
– we explore this question in the Discussion section. All the same, the recovery of the
Euler equation alone by the SPIDER framework for R = 1012 and the robust recovery of
Euler andNavier-Stokes equations forR = 1010 is a remarkable performance improvement
over pySINDy, at least for this problem and in the manner we have applied both equation
discovery methods.

The larger value of �i required for the lowest R laminar flow is not surprising, since
the structures of the laminar flow are large convective rolls and this larger �i will sample
larger regions of the flow in both space and time. Whilst we have presented results with
varying β , in reality the effect of varying this parameter with Fourier-Chebyshev data is
small compared to the effect of variation in the number of subdomains and very small
compared to the effect of variation of subdomain sizes. Since β would only be expected to
improve the regression in the x direction, then this is no surprise.

In figure 5(b), we show the results of the regression analysis performed using the scalar
library L0 pruned for the incompressibilty condition and also for time derivatives of p
(akin to deselecting the ∂p/∂t equation in the pySINDy libraries) in order to recover the
heat advection-diffusion equation (1b). The residual error goes constant fromN = 3 terms
and it is reassuring to see that the 3-term equation recovered by SPIDER for Rayleigh num-
bers 106, 108 and 1010 is the correct heat advection-diffusion equation, as shown in table 2.
In this analysis, we used 1024 subdomains and β = 8 for all R. We also set �x,z = 64 and
�t = 128 for both R = 106 and R = 108. For R = 1010 we found it necessary to reduce the
size of the subdomains to �i = 48, indicative of the smaller scale more turbulent struc-
ture and thinner boundary layer at this R. It is noteworthy that despite wide investigation,
including converting the vertical resolution from 384 points in a Chebyshev grid to 1024
and 2048 points on a Fourier grid and then experimenting with varying�i and β , we have
only been able to recover a heat advection equation at N = 2 (and even then only with a
reduced scalar library that removes other time derivative terms than ∂T/∂t), but never the
heat advection-diffusion equation for larger numbers of terms; the residual error of this
is not shown in figure 5 as it is 0.01 for N ≥ 2. Similarly to the vector equation, where
more coefficients are tied together across the vector components, thus possibly making

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 21

Table 2. Scalar equations recovered by the SPIDER framework from 2D simulation
of Rayleigh-Bénard convection at a Rayleigh number R = 1010, indicative of the
same term order recovery with different coefficients for smaller Rayleigh number.

Coefficients of termsa

N Error ∂tT (u · ∇)T ∇2T T2

2 1.191 × 10−2 0.997 1 – –
3 9.694 × 10−3 0.997 1 −1.009 × 10−5 –
4b 9.613 × 10−3 0.997 1 9.814 × 10−6 1.598 × 10−3

aThe signof the termshere is shownas if everythingwasmoved to the left-hand sideof themomen-
tum equation i.e. ∂T/∂t + · · · = 0.bAt N = 4, an anti-diffusive term is recovered, along with a
spurious T2 term, demonstrating that care has to be taken to physically interpret the recovered
results for reasonable solution to the observed problem.

Table 3. Parameters of the vector regression analysis used for the application of
the SPIDER framework to simulations of 3D Rayleigh-Bénard convection.

R Nwindows β Hx Hy Hz Ht

104 512 8 32 32 64 64
105 512 8 32 32 64 64
106 256 4 32 32 32 32
107 256 4 32 32 32 32

the regression more robust, the identification of the diffusive term with a coefficient close
to numerical accuracy is clearly at (and beyond for R = 1012) the limit of the algorithms
for this data. We also limited the analysis to the boundary layer only, but were still unable
to recover the full equation. One might also note that the flow is also highly turbulent
at this R and that this incoherence and short correlation lengths and times might pose
difficulty for the ML methods, but as we shall demonstrate with three-dimensional simu-
lations, this does not seem to affect the capability of the SPIDER framework to recover the
governing equations. In fact, in three dimensions, the accuracy of the recovery improves
for both the Navier-Stokes and heat advection-diffusion equations at R values which result
in a turbulent flow, as we discuss next.

Figure 6(a) presents the results of the regression analysis performed using the vector
library L1 in order to recover the momentum evolution equation in three dimensions. In
contrast to the two-dimensional analysis, this time the 4-term Euler equation and 5-term
Navier-Stokes equation are recovered before any other expression for the whole range of
R examined from 104 to 107, which again covers the laminar, transitional and turbulent
regimes. The regression parameters are shown in table 3. It was possible during this analy-
sis to keep the regression parameters fairly consistent, so as to be able to examine the effect
of R on the residual error and it can be seen from figure 6(a) that a smaller residual error
corresponds to a smallerR, or in other words amore laminar flow patternwith larger struc-
tures, which is more coherent and correlated in both space and time, is easier to recover by
these methods. This is perhaps not a surprising result – that such an algorithm would have
less difficulty with a smoother, less turbulent flow – but interesting to note and reassuring
that physical intuition is aligned with the SPIDER framework.

figure 6(b) presents the results of the regression analysis performed using the scalar
library L0 in order to recover the heat advection-diffusion equation for three dimensional
convection. In an improvement over the analysis of the 2D Rayleigh-Bénard convection

22 C. J. WAREING ET AL.

Figure 6. Dependence of the residual on the number of terms N retained in a recovered relation for the
governing (a) momentum equation and (b) heat advection-diffusion equation for 3D Rayleigh-Bénard
convection.

data, here the 3-term heat advection-diffusion equation is robustly recovered at all R.
Regression parameters are held constant at 1024 subdomains, β = 4 and �i = 32 for
R = 104, R = 105 and R = 106 and the residual error is consistent across all these values,
albeit higher than for two-dimensional convection. In order to recover the correct equation
and coefficients for the simulation of 3D convection at R = 107, 2048 subdomains, a value
of β = 8 and �i = [16, 16, 32, 32] were required and even then the residual error is far
from ideal. Turbulence in the flow does clearly make the regression analysis more difficult,
but unsurprisingly there is also a distinct cut off in the ability of machine learningmethods
as the numerical accuracy of the data is reached.

We show the results of the regression analysis performedusing the same libraries applied
to the simulated data of 2D planar convective Couette flow in figure 7. Similarly to the
previous two cases, the SPIDER framework is again able to robustly recover the 4-term
Euler equation and the 5-term Navier-Stokes equation for the momentum evolution and
the 3-term heat advection-diffusion equation before including other terms. These analy-
ses have both used 1024 subdomains. For the vector analysis β = 12 and�i = [64, 64, 64]
produced better residuals and for the scalar analysis β = 8 and �i = [64, 64, 128] pro-
duced better residuals. The velocity of the top and bottom planes did not seem to affect the
regression analysis in the recovery of governing equations.

Gurevich et al. (2024) noted that for noiseless data, as we have here, the asymptotic value
of the residual is determined by the discretization of the data, which would imply accept-
able residual errors on the order 10−3, as in general is consistent with what is observed
here.

5.2.2. Boundary conditions
The recovery of boundary conditions using the SPIDER framework requires a different
approach to the libraries, because the rotational symmetry assumption is broken in 2D
and partially broken in 3D – the problem is only invariant with respect to rotations about
the normal n̂ to the boundary. To overcome this problem, we follow the approach of Gure-
vich et al. (2024) and include n̂ in constructing a library Lu of terms that transform as
vectors, whilst excluding time derivatives. Similarly, to account for the symmetry breaking
associated with the wall motion, we include the unit vector x̂ in that direction. Finally, we

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 23

Figure 7. Dependence of the residual on the number of terms N retained in a recovered relation for the
governing (a) momentum equation and (b) heat advection-diffusion equation for 2D planar convective
Couette flow.

exclude the scalar fields p and T which yields

Lu = {n̂, u,∇(u · n̂), (n̂ · ∇)u, x̂}, (17)

where n̂ = ±ẑ, depending on whether the top or the bottom boundary is considered. We
then split this library into the irredicible representations, an invariant and a covariant, with
respect to rotations about n̂ (corresponding to the normal and tangential components,
respectively), by applying the projection operators P⊥ = n̂n̂ and P‖ = 1 − n̂n̂. This yields
the following separate libraries for the velocity

L‖ = {P‖ u,P‖∇(u · n̂),P‖(n̂ · ∇)u, x̂},
L⊥ = {n̂ · u, 1, n̂ · ∇(u · n̂), n̂ · (n̂ · ∇)u}. (18)

In 2D, these libraries reduce to the components of each field and the derivatives of the
components either parallel or perpendicular to the boundary. A scalar library LT for the
temperature field T can be constructed in a similar fashion

LT = {1,T, (n̂ · ∇)T, (x̂ · ∇)T}. (19)

Only data on the boundary is sampled, effectively selecting a physical profile (for 2D data)
or slice (for 3D data) which has variation with time. Again, a number of spatiotempo-
ral subdomains are sampled, typically 256, of a specific size, typically �i = 64. β = 4 is
used. As integration in the wall-normal direction cannot be performed for these samples,
a finite differencing of the data has to be performed on the full data and stored, before
the original data arrays and the arrays of their derivatives are reduced to obtain a profile
or slice. In application to the Rayleigh-Bénard convection problems and specifically only
the solid boundaries at z = 0 and z = 1, the correct temperature and stress-free velocity
boundary conditions are recovered for all R in both 2D and 3D. In application to the 2D
planar convective Couette flow problem, again the correct temperature and velocity no-slip
(fixed velocity of 0.5 or 1.0) boundary conditions are recovered. This demonstrates another
advantage of SPIDER in being able to recover boundary conditions, as well as governing
equations and constraints.

24 C. J. WAREING ET AL.

6. Discussion

It has been difficult to find other works which are as revealing about finding the hyper-
parameters which work well for pySINDy as we have been herein. This is not a simple
process and in order to perform the methodical hyperparameter sweeps we have per-
formed above, requires access to computing resourceswith significant amounts ofmemory.
Further, assessing the results of these sweeps is also tricky.

The key difference between pySINDy and SPIDER is physical constraints. In the
pySINDy implementation, the brute force approach combines everything together and
the end user is left to use the resulting large library or manually reduce this library in a
non-simple manner. The linking of terms across the regressionmatrix to make coefficients
of vectors adds another layer of complexity. Extending pySINDy to libraries containing
higher-rank tensorswhile ensuring equivariance is prohibitively difficult. SPIDER crucially
relies on the physics to define the library –more specifically the irreducible representations
of the symmetry group describing the physical problem, defined by the data and differ-
ential operators such as ∂t (or ∂t + u · ∇ in the Galilean-invariant case) and ∇ . This is
really the crucial difference between pySINDy and SPIDER that is shown clearly in the
size of the respective libraries and that makes SPIDER more intuitive to use, at least for
fluid dynamicists such as ourselves.

It is also interesting to reasonably hypothesise that the memory problem we have
observed when using pySINDy, even in 2D, may be related to the size of the library. Even
with terms “disabled”, the column for that term still exists in the matrix and therefore con-
sumes computing memory in the regression calculation. A way to overcome this memory
problem in future work may therefore be to only use very custom libraries which mimic
the same physical approach as that used in our SPIDER framework. We emphasise that
this is not currently a simple task to consider, especially when further interlinking of terms
in this library is then required to mimic vector (or even higher-rank) equations. But, we
also emphasise, this is our suggested route to overcoming the memory problem we have
observed and that is opaquely referred to in pySINDy documentation (see earlier in this
work for specific details).

It is interesting to consider how thesemethodsmay be used to discover unknown, rather
than known, governing equations, constraints and boundary conditions aswe have detailed
here. In fact, we intend to apply these same methods to the search for turbulent closure
models such as Garaud et al. (2010) using our insight from this work and that of other
authors Jakhar et al. (2024). In particular, for pySINDy, it is clear that parameter sweeps of
the regression hyperparameters do result in finding the best combination of these parame-
ters for the analysis, which can then be used as, for example,R is increased, as we did herein,
or in future may be used to construct the default position for the uninformed turbulence
closure analysis. We expect such similar parameter sweeps may be easily done in the future
with SPIDER as and when the python library for SPIDER becomes available. This would
also be aided by the ability to fit higher order tensors. In combination with careful library
selection of suitable terms, e.g. triple correlation velocity terms, this regression tuning for a
particular flow will be key to uninformed discovery with either machine learning method
used here. Such parameter sweeping with SPIDER as we did with pySINDy, when possi-
ble, may fill in the gaps and/or extend the ability to fine tune the regression parameters
and solve the open questions/limits of SPIDER above. For any turbulence closure analysis,

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 25

we remind the interested reader that there is also the question of separating the mean and
fluctuating components of the flow, a fuller discussion of which can be found in Jakhar
et al. (2024).

It is notable that only a certain set of hyperparameters were varied for the pySINDy
approach. Throughout the pySINDy analyses, we held the order of the integrating polyno-
mial constant at 6, in order tomake the exploration tractable with the resources available as
much as anything else. With SPIDER, it was an easier proposition to alter the equivalent β
parameter andwe did so as detailed above. Future pySINDywork should consider the vari-
ation of the order of the integrating polynomial if the four-dimensional hyperparameter
exploration is possible.

We have observed that both pySINDy and SPIDER are capable of recovering small spu-
rious terms in the governing equations, likely to be fitting real error. In our experience,
this error is either some small numerical error in the fields (common in low order inte-
gration/reconstruction schemes) or it is possible that the weak form subdomains are not
matched to the length/time scale of the dynamics.We have observed that tuning of the size
of the subdomains is key to obtaining the “correct” result and requires investigation for each
specific instance ofR, making it difficult to generalise themethod for this flow problem and
only possible for a specific value ofR. This will be useful to recall as our investigationmoves
to recovery of unknown equations, specifically the recovery of existing and new turbulence
closures. Thankfully we are not dealing with a large degree of numerical noise or incom-
plete data. The machine learning process we detail may be possible with such data, but we
leave that to future work which could be easily investigated from the Dedalus, pySINDy
and SPIDER scripts we publish alongside this paper.

It has been emphasised previously (Gurevich et al. 2024) that a proper non-
dimensionalisation of the data is required. The non-dimensionalisation of the model,
chosen here for numerical convenience more than anything else (see section 2), seems
to have been effective for both the machine learning analyses. It is possible that a better
non-dimensionalisation, or further a recasting into different coordinates (as noted is par-
ticularly effective for certain problems in pySINDy),may improve the performancewe have
observed here. An exploration of different non-dimensionalisations and such recasting is
beyond the scope of this work.

6.1. Using domain knowledge to choose subdomain sizes – correlation scales

It should be possible to avoid the kind of hyperparameter sweeping that we have done
here, as analysis of the flow can inform the initial choice of the size of the subdomains.
In particular, calculation of the correlation length and time of the flow from the data
may give some good a priori indication of the optimal spatiotemporal domain. That
said, in the SPIDER analysis, the box sizes were held constant in terms of the number
of grid points – which crucially allowed the boxes to be physically smaller in the vertical
direction closer to the boundaries as an effect of the non-uniform spacing of the grid. It is
possible that this approach is key to the improved performance we have obtained with
SPIDER.

We have calculated the temporal and spatial correlation scales, defined at the point
where the normalised autocorrelation function drops from 1 to 0.5 for the first time,
from the same data modelling the 2D Rayleigh-Bénard convection as used in the machine

26 C. J. WAREING ET AL.

Table 4. Correlation lengthscales and timescales for the simula-
tions of 2D Rayleign Bénard convection.

R xcorr zcorr 	corr = (x2corr + z2corr)
0.5 tcorr

106 0.49 0.23 0.54 1.07
108 0.62 0.24 0.67 0.68
1010 0.63 0.24 0.67 0.80
1012 0.32 0.22 0.39 0.82
Average: 0.51 0.23 0.57 0.84

learning approaches. We have employed the calculation techniques detailed in Saxton
et al. (2024) to calculate these correlation scales. The results of this analysis are shown
in table 4. Perhaps unsurprisingly, all of these scales seem relatively constant with respect
to R and we include the average values across R in the bottom row of the table; this shows
that the correct non-dimensionalisation can yield results that are not sensitive to parame-
ter values. The PDFs of these values across the domains are relatively narrow, especially for
xcorr. It should be noted that this does support our finding that the same optimal pySINDy
hyperparameter set of (12,10,8) worked across varying R. Dividing the domain size for the
machine learning analysis (xdom,zdom,tdom) = (4,1,4) by the optimal hyperparameter set
(12,10,8), gives the physical size of the spatiotemporal subdomains: (0.33,0.1,0.5). This is
not in full agreement, but it can be noted from the range of values explored and limited by
memory capacity, we did not go lower than 8 for tdiv. The trend with varying xdiv, zdiv and
tdiv in figure 2 is for the residual error of the machine learning fit to improve (decrease) as
the values approach these correlation scales. The comparison with the SPIDER spatiotem-
poral subdomains is less obvious, as the physical sizes of the boxes varied in z, but we were
typically using�i equal to 128 or 64 for 2D Rayleigh-Bénard convection, corresponding to
0.5 or 0.25 in x and 1.28 or 0.64 in t, which are pleasingly close to the average correlation
time and spatial scales in both cases. On this basis we would suggest that hyperparame-
ter exploration takes the correlation time and spatial scales of the bulk flow as a default
starting point for the size of the spatiotemporal subdomains. It may also be necessary to
consider the correlation scales in the boundary layer to infer the small terms that scale
as R−0.5.

Gurevich et al. (2019) considered the physical and mathematical intuition regarding
optimal integration domain size. They found that optimal integration domain size is a
balance. Too small a domain and the error is large because the integration domain is too
small to effectively average out the influence of noise. Further, the numerical quadrature
error becomes large. Too large a domain and the machine learning analysis enters a regime
where the error should grow exponentially in the dimensions Hx, Hy, Hz and Ht of the
integration domains. The optimal choice is a crossover between these two regimes, which
we find herein has a similarity to the correlation scales. The interested readermay also want
to consider the recent Handbook of Numerical Analysis Vol. 25, and in particular Chapter
2 (Bortz et al. 2024).

6.2. Numerical accuracy

The failure of the machine learning methods to recover all of the terms – and hence
all of the physics – contained in the original governing equations raises the important

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 27

question of whether this is due to a limitation of these methods or the underlying data
that is used. More precisely, we should question whether that failure is indicative of the
simulations with the highest values of R being sufficiently well resolved. Our choice of
Chebyshev polynomials in the vertical direction with the number of cells in the bound-
ary layer matching published DNS simulations (as discussed in section 3) and tracking
of statistics and monitoring of the simulations gave us initial confidence in the quality of
the data, but on the other hand the presence of spurious terms in the equation recovery is
concerning.

In an attempt to definitively answer this question, noting that the difficulties have been in
the recovery of diffusive terms in 2D Rayleigh-Bénard convection, which takes the largest
values in the boundary layers, we investigated the resolution of the data in that region.
Since the vertical grid spacing in the boundary layer is much finer than the horizontal grid
spacing, we focussed on the power spectra along the x direction at a height just above the
boundary. The results are shown in figure 8. Clearly the boundary layer in the R = 106
and R = 108 simulations (shown across the top row) is spatially well resolved, accurately
capturing the steep gradient of the spectra beyond the peak to many orders of magni-
tude below peak power in the boundary layer. However, at R = 1010 we see that far less
of the steeply dropping spectrum beyond the peak at k∗

x ≈ 200 is captured with only 1024
points in the horizontal direction. At R = 1012, it’s now clear that with the same horizon-
tal resolution, DNS does not capture the structures in the boundary layer corresponding
to wavenumbers kx greater than the peak k∗

x ≈ 500. With the smallest scales (kx > k∗
x)

unresolved in the boundary layer, it is not surprising that the both pySINDy and SPI-
DER fail or struggle to recover the diffusive terms at these high R. In fact, it is worth
emphasising that SPIDER was telling us, by recovering Euler rather than Navier-Stokes
equations, that the DNS data is under-resolved before we confirmed this for the bound-
ary layer through these power spectra. Future theoretical work in particular may therefore
be able to use machine-learning tools as an additional method of validation and verifica-
tion of simulations to demonstrate that they are indeed accurately resolving everything the
governing equations should be generating in the flow. We strongly suggest that any future
work explores the resolution question very carefully if the machine learning methods are
to prove their true usefulness in discovering new physics, rather than just demonstrat-
ing an ability, when carefully tuned, to recover known properties of a particular problem.
Spatial resolution can clearly be examined by power spectra not only of the whole flow
and bulk flow, but also of horizontal slices in the boundary layer. Dedalus also allows the
end-user to track maximum values of the tau terms, which for example relate to the diver-
gence of u, and can be used to establish the necessary resolution in any direction using a
Chebyshev basis, and we have monitored this to ensure we have resolved the numerical
simulations. However, it is not clear that the choice of the Chebyshev basis, which place
most of the nodes near the boundaries, is necessarily the wisest approach for fully tur-
bulent simulations where small-scale structure can also be found in the bulk flow region.
The DNS results (Zhu et al. 2018) to which we have compared our resolution in section 3
use the Fourier basis in all directions. It is also not yet clear, at least from this work, how
temporal resolution between the “snapshots” that are used in the machine-learning meth-
ods may affect their performance, but we suggest this avenue could also be easily explored
in future.

28 C. J. WAREING ET AL.

Figure 8. 1D power spectra along profiles in the x direction (kx only) at a height of 10 Chebyshev nodes
above the boundary layer for the 2D simulations of Rayleigh-Bénard convection, so as to sample the
power spectra of the small-scale dissipative structures in the boundary layer. As can be seen from the
top row, the complete power spectra of the boundary layer is captured at Rayleigh numbers of 106 and
108. As can be seen from the bottom row, most of the power spectra at 1010 is captured, but at R = 1012

the simulations capture the peak of power spectra in the boundary layer only. (a) R = 106. (b) R = 108.
(c) R = 1010 and (d) R = 1012.

Table 5. Benefits of either machine learning approach.

pySINDy implementation SPIDER framework

Generalisability to further problems Specific applicability to tensor PDEs
Flexibility of library generationa Specificity of library generation
Ease of hyperparameter sweeping using pySINDy Ease of Matlab scripting
Range of optimisers available Ease of optimiser adjustment
Extensive documentationb Relative high speed
Support groupc Interpretable results

Ability to validate and verify DNS
aAlthough flexibility without guidelines can more of a problem for these complex PDE
problems.bhttps://pysindy.readthedocs.io/en/latest/chttps://github.com/dynamicslab/pysindy/issues

6.3. Guidance for future end-users

In an attempt to provide helpful guidance to readers for the future work and the application
of these methods to other problems, we tabulate some of the advantages of either method
in table 5.

https://pysindy.readthedocs.io/en/latest/
https://github.com/dynamicslab/pysindy/issues

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 29

For our purposes, we have found above that either method is capable of generating
results, although SPIDER has been easier to apply than pySINDy. The memory problems
we have observed with pySINDy may be avoided by a different approach to library gen-
eration. The ability to parameter sweep with SPIDER may be possible with command line
application of a reduced library. That said, investigation of the results of hyperparameter
sweeping requires very careful examination of every recovered set of equations in order
to check the model and find optimum hyperparameter combinations. We are aware that a
future Python version of SPIDER may also make parameter sweeping easier.

The search for the optimal size of spatiotemporal subdomains may be avoided by the
detailed examination of the raw flow data. Optimal parameters for pySINDy clearly show
a similarity to the correlation lengths and times we have calculated for the simulations
of 2D Rayleigh-Bénard convection. Further investigation may then be able to more thor-
oughly explore the variation of the order of the integrating polynomial p for the pySINDy
implementation and the same thing in SPIDER, the power of the weight function β . We
have found that starting from 8 and exploring the range from 4 to 15 is worthwhile. That
said, the uniformity of the gridding can strongly affect the performance on variation of
this parameter and conversion of non-uniform grids to uniform grids is worth consid-
eration. Note though that SPIDER’s advantage herein may in part be due to effect of the
non-uniform vertical grid spacing allowing for resolution of the boundary layers. Finally,
it bears repeating that variation of the MIOSR tolerance in the pySINDy implementation
of SINDy and in fact any tolerances for these optimisers requires further investigation.

7. Summary and future work

In this work, we have applied two machine learning methods to simulated convective
fluid flows. In particular, we have applied the Sparse Identification of Nonlinear Dynam-
ics (SINDy) algorithm through the pySINDy implementation and the Sparse Physics-
Informed Discovery of Empirical Relations (SPIDER) framework with the aim of equation
recovery from the raw data. Both pySINDy and SPIDER have proved able to recover gov-
erning equations of the 2D Rayleigh-Bénard convection flow simulated. SPIDER was also
able to recover governing equations of the 3D Rayleigh-Bénard convection flow and pla-
nar convective Couette flow simulated. All simulated data was generated using the Dedalus
PDE framework. However, our method of application has shown that whilst pySINDy and
SPIDER are essentially doing the same thing, it is clear that the generalised approach of
pySINDy puts it at a disadvantage when examining problems that SPIDER is tailored to
from the outset. Specifically, the creation of suitable libraries of possible terms for selec-
tion in the sparse regression process is physically intuitive with SPIDER as opposed to
combinatorially brute force approach-like with pySINDy. This generation of large libraries
with pySINDy followed by the deactivation of many terms in the library due to physical
constraints is likely to be presenting itself in the high memory demands of the algorithm
as we have applied it, so much so that we were only able to apply pySINDy to the recov-
ery of the governing equations of 2D Rayleigh-Bénard convection at Rayleigh numbers of
106, 108 and 1010. Sweeping of the hyperparameters used to perform the sparse regres-
sion, specifically the size of spatiotemporal subdomains, was possible though and analysis
indicates that properties of the flow, specifically correlation lengthscales and correlation
timescale should inform the initial selection of these parameters. With SPIDER, we were

30 C. J. WAREING ET AL.

able to demonstrate the recovery of governing equations, constraints (the incompressibility
condition) and boundary conditions for all the fluid flows considered: 2DRayleigh-Bénard
convection at Rayleigh numbers of 106, 108, 1010 and 1012 (albeit with performance lim-
ited at R = 1012 most likely for reasons of numerical accuracy which it seems SPIDER can
robustly identify), 3D Rayleigh-Bénard convection at Rayleigh numbers of 104, 105, 106

and 107, and 2D plane convective Couette flow at a Rayleigh number of 108 with varying
moving boundary velocities. In combination with the fact that SPIDER is able to directly
recover scalar and vector equations, it is clear that it is well-tailored to the search for poten-
tial new turbulence closures with the addition of extra library terms (e.g. cubic and quartic
derivatives) and higher rank tensor equations, something that we intend to examine in
future work as development of these methods allows such capabilities. A harder test of
both methods may have been to include such higher derivatives in both libraries and per-
haps it is little surprise that a method performs better when more knowledge is applied in
the generation of the library. All the same, we would recommend starting with the SPIDER
framework for similar problems to those considered here and using flowproperties, specifi-
cally the time and spatial correlation scales, to inform the initial selection of spatiotemporal
subdomain sizes. Investigation of equation recovery can then focus on the importance of
other hyperparameters, such as the order of the integrating polynomial in pySINDy and
the equivalent power of the weighting function β in SPIDER, as well as tolerance of the
optimising methods. We make available all our Dedalus, pySINDy and SPIDER scripts in
the hope that they prove useful to anyone considering this or similar problems in the future.

In conclusion, we look forward to some kind of automation procedure for the pruning
and constraining of candidate term libraries for the recovery of governing PDEs, as well
as further intuition that can be garnered from the raw data to informmachine learning, as
both of these appear key to streamlining our methods and applying them tomore complex
problems.We also anticipate that the use of suchmachine learningmethodsmay now open
a new avenue to validate and verify DNS in both a qualitative sense (are the equations being
solved reconstructed?) and a quantitative sense (what is the residual of the equations which
does not rely on a particular discretization scheme?).

Notes

1. https://github.com/DedalusProject/dedalus/releases/tag/v3.0.1
2. https://doi.org/10.5518/1577
3. https://doi.org/10.5518/1577
4. CPLEX, I.I.: V12. 8: User’s manual for cplex. Int. Bus. Mach. Corp. 46(53), 157 (2017)
5. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021). https://www.gurobi.

com
6. https://pysindy.readthedocs.io/en/latest/examples/15_pysindy_lectures/example.html#Part-5:-

How-to-build-complex-candidate-libraries
7. https://github.com/mgolden30/SPIDER
8. https://pysindy.readthedocs.io/en/latest/examples/10_PDEFIND_examples/example.html
9. https://doi.org/10.5518/1577

Acknowledgments

The calculations for this paper were performed on the University of Leeds ARC4 facility, hosted and
enabled through the ARC HPC resources and support team at the University of Leeds, to whom we

https://github.com/DedalusProject/dedalus/releases/tag/v3.0.1
https://doi.org/10.5518/1577
https://doi.org/10.5518/1577
https://www.gurobi.com
https://pysindy.readthedocs.io/en/latest/examples/15_pysindy_lectures/example.html#Part-5:-How-to-build-complex-candidate-libraries
https://pysindy.readthedocs.io/en/latest/examples/10_PDEFIND_examples/example.html
https://doi.org/10.5518/1577

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 31

extend our grateful thanks. We express our thanks to Dr Curtis J Saxton for the application of his
correlation length calculation scripts to our data.

Author contributions

All authors contributed to the conception and design of this work. Data generation and analysis
were performed by Chris Wareing. Initial pySINDy guidance and scripting was co-developed with
Alasdair Roy. Initial SPIDERguidance and scriptingwas co-developedwithMattGolden andRoman
Grigoriev. The first draft of the manuscript was written by Chris Wareing and all authors helped
with manuscript further development and revision. Steven Tobias provided critical leadership and
guidance. All authors read and approved the final manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant agreement No. D5S-DLV-
786780).

Data &materials availability

With the intention of making this entire work reproducible and applicable by other researchers to
different data in the future, all of the code, model initialisations, libraries, data, instructions for
the recreation of the larger datasets and machine learning analysis scripts are available in a data
repository accompanying this paper9 provided by the University of Leeds Research Data Repository
Service.

ORCIDs

Christopher J. Wareing http://orcid.org/0000-0001-9641-0861
Steven M. Tobias http://orcid.org/0000-0003-0205-7716

References

Abramovic, I., Alves, E.P. and Greenwald, M., Data-driven model discovery for plasma turbulence
modelling. J. Plasma Phys. 2022, 88, 895880604.

Ascher,U.M., Ruuth, S.J. and Spiteri, R.J., Implicit-explicit Runge-Kuttamethods for time-dependent
partial differential equations. Appl. Numer. Math. 1997, 25, 151–167.

Bertsimas, D. and Gurnee, W., Learning sparse nonlinear dynamics via mixed-integer optimization.
Nonlinear Dyn. 2023, 111, 6585–6604.

Bertsimas, D., King, A. and Mazumder, R., Best subset selection via a modern optimization lens.
Ann. Stat. 2016, 44, 813–852.

Bolton, T. and Zanna, L., Applications of deep learning to ocean data inference and subgrid
parameterization. J. Adv. Model. Earth Syst. 2019, 11, 376–399.

Bortz, D.M., Messenger, D.A. and Tran, A., Chapter 2 – Weak form-based data-driven model-
ing: Computationally efficient and noise robust equation learning and parameter inference. In
Handbook of Numerical Analysis, Vol. 25, pp. 53–82, 2024 (Elsevier: Amsterdam).

Brunton, S.L. and Kutz, J.N., Machine learning for partial differential equations. 2023,
arXiv:2303.17078. https://doi.org/10.48550/arXiv.2303.17078.

Brunton, S.L., Proctor, J.L. and Kutz, J.N., Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proc. Nat. Acad. Sci. 2016, 113, 3932–3937.

http://orcid.org/0000-0001-9641-0861
http://orcid.org/0000-0003-0205-7716
https://doi.org/10.48550/arXiv.2303.17078

32 C. J. WAREING ET AL.

Burns, K.J., Vasil, G.M., Oishi, J.S., Lecoanet, D. and Brown, B.P., Dedalus: A flexible framework for
numerical simulations with spectral methods. Phys. Rev. Res. 2020, 2, 023068.

Champion, K., Lusch, B., Kutz, J.N. and Brunton, S.L., Data-driven discovery of coordinates and
governing equations. Proc. Nat. Acad. Sci. 2019, 116, 22445–22451.

Chorin, A.J., Hald, O.H. and Kupferman, R., Optimal prediction with memory. Physica D 2002, 166,
239–257.

Cvitanović, P., Group Theory: Birdtracks, Lie’s and Exceptional Groups, 2008 (Princeton, NJ: Prince-
ton University Press). ISBN:978-0-691-11836-9.

Dubois, P., Gomez, T., Planckaert, L. and Perret, L., Machine learning for fluid flow reconstruction
from limited measurements. J. Comput. Phys. 2022, 448, 110733.

Fung, L., Fasel, U. and Juniper, M.P., Rapid Bayesian identification of sparse nonlinear dynamics
from scarce and noisy data. 2024. arXiv:2402.15357.

Gao,M.L. andKutz, N.J., Bayesian autoencoders for data-driven discovery of coordinates, governing
equations and fundamental constants. Proc. R. Soc. A. 2024, 480, 20230506.

Garaud, P., Ogilvie, G.I.,Miller, N. and Stellmach, S., Amodel of the entropy flux and Reynolds stress
in turbulence convection.MNRAS 2010, 407, 2451–2467.

Golden, M., Scalable sparse regression for model discovery: the fast lane to insight. 2024.
arXiv:2405.09579.

Golden, M., Grigoriev, R.O., Nambisan, J. and Fernandez-Nieves, A., Physically informed data-
driven modeling of active nematics. Sci. Adv. 2023, 9, eabq6120.

Gurevich, D.R., Reinbold, P.A.K. and Grigoriev, R.O., Robust and optimal sparse regression for
nonlinear PDE models. Chaos 2019, 29, 103113.

Gurevich, D.R., Golden, M.R., Reinbold, P.A.K. and Grigoriev, R.O., Learning fluid physics from
highly turbulent data using sparse physics-informed discovery of empirical relations (SPIDER).
J. Fluid Mech. 2024, 996, A25.

Jakhar, K., Guan, Y., Mojgani, R., Chattopadhyah, A. and Hassanzadeh, P., Learning closed-form
equations for subgrid-scale closures from high-fidelity data: promises and challenges. J. Adv.
Model. Earth Syst. 2024, 16, e2023MS003874.

Kaheman, K., Kutz, J.N. and Brunton, S.L., SINDy-PI: A robust algorithm for parallel implicit sparse
identification of nonlinear dynamics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2020, 476, 20200279.

Kaptanoglu, A.A., Callaham, J.L., Aravkin, A., Hansen, C.J. and Brunton, S.L., Promoting global
stability in data-drivenmodels of quadratic nonlinear dynamics. Phys. Rev. Fluids 2021, 9, 094401.

Kaptanoglu, A.A., Zhang, L., Nicolaou, Z.G., Fasel, U. and Brunton, S.L., Benchmarking sparse
system identification with low-dimensional chaos. Nonlinear Dyn. 2023, 111, 13143–13164.

Marston, J.B. and Tobias, S.M., Recent developments in theories of inhomogeneous and anisotropic
turbulence. Annu. Rev. Fluid Mech. 2023, 55, 351–375.

Messenger, D.A. and Bortz, D.M.,Weak SINDy for partial differential equations. J. Comp. Phys. 2021,
443, 110525.

Moser, R.D., Haering, S.W. and Yalla, G.R., Statistical properties of subgrid-scale turbulence models.
Ann. Rev. Fl. Mech. 2021, 53, 255–286.

Reinbold, P.A.K., Gurevich, D.R. and Grigoriev, R.O., Using noisy or incomplete data to discover
models of spatiotemporal dynamics. Phys. Rev. E 2020, 101, 010203(R).

Reinbold, P.A.K., Kageorge, L.M., Schatz, M.F. and Grigoriev, R.O., Robust learning from noisy,
incomplete, high-dimensional experimental data via physically constrained symbolic regression.
Nat. Commun. 2021, 12, 3219.

Rudy, S.H., Brunton, S.L., Proctor, J.L. and Kutz, J.N., Data-driven discovery of partial differential
equations. Sci. Adv. 2017, 3, e1602614.

Saxton, C.J., Marston, J.B., Oishi, J. and Tobias, S.M., Ordering of time scales predicts applicability
of quasilinear theory in unstable flows. J. Fluid Mech. 2024, 998, A37.

Schaeffer, H., Tran, G. and Ward, R., Extracting sparse high-dimensional dynamics from limited
data. SIAM J. Appl. Math. 2018, 78, 3279–3295.

de Silva, B.M., Champion, K., Quade, M., Loiseau, J., Kutz, J.N. and Brunton, S.L., pySINDy: A
Python package for the sparse identification of nonlinear dynamical systems from data. J. Open
Source Softw. 2020, 5, 2104.

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 33

Véras, P., Balarac, G., Métais, O., Georges, D. and Bombenger, A., Reconstruction of numerical inlet
boundary conditions using machine learning: Application to the swirling flow inside a conical
diffuser. Phys. Fluids 2021, 33, 085132.

Zanna, L. and Bolton, T., Data-driven equation discovery of oceanmesoscale closures.Geophys. Res.
Lett. 2020, 47, e2020GL088376.

Zhu, X., Mathai, V., Stevens, R.J.A.M., Verzicco, R. and Lohse, D., Transition to the ultimate regime
in two-dimensional Rayleigh-Bénard convection. PRL 2018, 120, 144502.

	1. Introduction
	2. Models
	2.1. Rayleigh-Bénard convection
	2.2. Planar convective Couette flow

	3. Numerical method and resolution
	3.1. 2D Rayleigh-Bénard convection
	3.2. 3D Rayleigh Bénard convection
	3.3. Two-dimensional planar convective Couette flow

	4. Equation discovery methods
	4.1. The SINDy algorithm
	4.1.1. Mixed-integer sparse regression
	4.1.2. Problem formulation in the pySINDy implementation

	4.2. The SPIDER framework

	5. Results
	5.1. pySINDy
	5.1.1. Hyperparameter sweeping
	5.1.2. Increasing the Rayleigh number R
	5.1.3. Unconstrained library regression

	5.2. SPIDER
	5.2.1. Governing equations
	5.2.2. Boundary conditions

	6. Discussion
	6.1. Using domain knowledge to choose subdomain sizes – correlation scales
	6.2. Numerical accuracy
	6.3. Guidance for future end-users

	7. Summary and future work
	Notes
	Acknowledgments
	Author contributions
	Disclosure statement
	Funding
	Data & materials availability
	ORCIDs
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

