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Abstract: Apple variety identification plays a crucial role in pomology and agricultural 18 

sciences, as it could effectively assist growers in optimizing orchard management, 19 

enhancing product quality, and meeting consumer demand. Traditional identification 20 

methods based on visual observation are often influenced by various factors, including 21 

human subjective judgment and inter-cultivar variability. To address these challenges, 22 

with the support of the China Agriculture Research Systems for Apple Industry and 23 

Jiangsu University, we collected sample images of eleven common apple varieties in 24 

China, followed by image enhancement and dataset expansion to establish an apple 25 

sample database. Subsequently, Convolutional Neural Network (CNN), MobileNet 26 

Version 2 (MobileNetV2), and Visual Geometry Group 19 (VGG19) neural network 27 

models were utilized for apple variety classification using image-based data. 28 

Additionally, two optimization techniques, namely Multi-Head Attention and Gray-29 

Level Co-occurrence Matrix (GLCM), were incorporated to further improve 30 

classification accuracy. Results demonstrated that the baseline CNN achieved an 31 

accuracy of 96.46%, while MobileNetV2 and VGG19 reached 97.78% and 97.25%, 32 

respectively. Multi-Head Attention improved feature extraction but sometimes reduced 33 

performance, as observed in MobileNetV2 (87.33%). In contrast, GLCM significantly 34 

improved model accuracy, with MobileNetV2 achieving the highest accuracy (98.25%) 35 

and the lowest Mean Absolute Error (MAE) (0.0571). GLCM consistently 36 

outperformed other techniques across all models, proving particularly effective for 37 

texture-rich image classification. These findings suggest that GLCM is a powerful 38 

enhancement for deep learning models, improving accuracy, precision, and recall in 39 

apple variety classification, with MobileNetV2 combined with GLCM yielding the best 40 

overall results. 41 

Keywords: Apple variety classification; Deep learning; Optimization techniques; 42 

Convolutional neural network43 
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List of abbreviations  44 

Abbreviation Full Term 

CNN Convolutional Neural Network 

MobileNetV2 Mobile Network Version 2 

VGG19 Visual Geometry Group 19-layer 

MAE Mean Absolute Error 

GI Geographical Indication 

CNNs Convolutional Neural Networks 

RH Relative Humidity 

TP True Positive 

TN True Negatives 

FP False Positive 

FN False Negative 

t-SNE t-distributed stochastic neighbor embedding 

PC principal components 

SSL Self-Supervised Learning 

  45 
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1. Introduction 46 

As one of the most widely cultivated fruits globally, apples hold substantial 47 

economic value, contributing billions of dollars annually to economies around the 48 

world. China, as one of the largest apple-producing regions, harvested 47.57 million 49 

tons of apples in 2023, accounting for more than half of the global apple production [1]. 50 

The long shelf life of apples and their suitability for various preservation techniques, 51 

such as refrigeration and canning, further enhance their economic importance. 52 

Apples play a pivotal role in futures markets by facilitating price discovery and 53 

risk management, allowing producers, traders, and consumers to lock in prices and 54 

mitigate risks associated with price fluctuations. Accurate identification of apple 55 

varieties is fundamental for improving price discovery in futures markets, minimizing 56 

fraud during delivery, and enhancing agricultural efficiency.  57 

With the growing promotion of Geographical Indication (GI) products, the 58 

connection between specific apple varieties and their production regions has become 59 

crucial for enhancing commercial value. GI products, protected by intellectual property 60 

laws, are associated with high quality and authenticity, fostering consumer trust. 61 

Accurate identification of apple varieties is vital in preventing fraud, such as the 62 

substitution or mixing of similar varieties, which compromises the integrity of GI 63 

products. Ensuring only the correct cultivar is labeled and sold protects the authenticity 64 

of GI apples and prevents misleading claims. For example, misrepresenting a premium 65 

cultivar like "Yanfu" with a lower-quality one like "ordinary Red Fuji" damages the 66 
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market value and reputation of GI apples. Therefore, accurate cultivar identification is 67 

essential for improving trade transparency, promoting GI products, and protecting 68 

market integrity, thereby supporting the sustainable growth of the apple industry 69 

through fair competition and consumer trust [2]. 70 

However, identifying apple varieties is a significant challenge for farmers, traders, 71 

and consumers due to the large number of varieties that share similar appearances, 72 

especially within certain color ranges [3, 4]. Additionally, factors such as growing 73 

conditions, soil types, and cultivation practices influence the shape, color, and texture 74 

of apples, making the identification of apple varieties more complex [5]. In China, 75 

various apple varieties, such as Fuji, Red Delicious, and Gala, are cultivated for specific 76 

market segments. However, the introduction of new apple varieties closely resembling 77 

their parent varieties has made accurate classification challenging. Traditional methods, 78 

such as analyzing leaf and fruit characteristics, consulting experts, or using genetic 79 

testing, are time-consuming and struggle to balance efficiency with cost-effectiveness 80 

[6].  81 

Since 2012, Convolutional Neural Networks (CNNs) have emerged as a leading 82 

technology in image processing and computer vision. Originally introduced by LeCun 83 

in the 1980s, CNNs serve as the foundational architecture in deep learning and have 84 

been widely applied to image classification and object detection tasks. The specific 85 

architecture is shown in Fig. 1. With local connectivity and weight sharing, CNNs 86 

enable efficient feature extraction and robust performance under varying conditions. In 87 



Identification of apple by machine vision and deep learning 

recent years, deep learning driven by CNNs has increasingly been utilized to address 88 

complex challenges in agricultural systems [7, 8]. Applications include detecting 89 

cucumber powdery mildew [9], classifying the maturity stages of custard apple fruits 90 

through image processing [10], and predicting fruit size and weight in apples using 91 

RGB-D cameras [11]. Additionally, CNNs have been employed for target detection, 92 

with models developed for object category recognition [12, 13].  93 

Apple cultivar recognition involves extracting discriminative features from visual 94 

attributes such as shape, texture, and color [14-16]. A study [17] used VGG16, VGG19, 95 

and MobileNet to distinguish between ten apple varieties, with DenseNet201 achieving 96 

97.48% accuracy. Another study [18] combined CNNs with a convolutional 97 

autoencoder to classify 26 fruits, including nine apple varieties. Additionally, a separate 98 

study [19] developed a shallow CNN to simplify deep neural networks for apple image 99 

recognition, achieving 92% accuracy. 100 

For real-time applications and deployment on mobile or embedded devices, 101 

models with lower computational complexity are essential [20, 21]. While architectures 102 

like EfficientNet and Vision Transformers offer high performance, their high 103 

computational demands make them unsuitable for resource-constrained environments. 104 

Similarly, YOLO's emphasis on object localization limits its effectiveness in fine-105 

grained classification, such as distinguishing subtle apple cultivar differences [22, 23]. 106 

In contrast, CNNs, including MobileNetV2 and VGG19, provide robust feature 107 

extraction. MobileNetV2, optimized for mobile environments, reduces computational 108 



Identification of apple by machine vision and deep learning 

costs through depth-wise separable convolutions and an inverted residual structure 109 

while maintaining strong representational power [24]. VGG19, developed by the Visual 110 

Geometry Group at Oxford in 2014, features a deeper architecture with 3×3 111 

convolutional kernels, enabling better multi-level feature extraction and enhanced 112 

capability for distinguishing subtle morphological differences in apple varieties [25]. 113 

Both models balance efficiency, feature extraction, and robustness, making them ideal 114 

for apple cultivar recognition in practical, resource-limited settings [26, 27]. 115 

To improve model performance, two optimization techniques—Multi-Head 116 

Attention mechanism and GLCM—were used. Multi-Head Attention mechanism from 117 

the Transformer architecture enhances feature representation by capturing global 118 

dependencies [28]. GLCM, a texture analysis method, identifies pixel intensity co-119 

occurrence patterns, aiding in the differentiation of similar apple varieties [29]. Its low 120 

computational complexity makes it ideal for lightweight models [25]. Together, these 121 

techniques improve accuracy and robustness in apple cultivar recognition. 122 

The research approach is illustrated in Fig. 2. Our study utilizes a comprehensive 123 

dataset comprising eight varieties from the Fuji series, along with three additional 124 

widely cultivated apple varieties from major apple-producing regions in China. To 125 

address the challenge of new varieties closely resembling their parent varieties, we 126 

employ traditional CNN models, MobileNetV2 (efficiency), and VGG19 (feature 127 

extraction), incorporating the Multi-Head Attention mechanism and GLCM to improve 128 

feature extraction and classification accuracy. The objective is to enhance the accuracy 129 
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and efficacy of apple cultivar classification by developing more efficient deep learning 130 

models and optimizing CNN architectures, evaluating the interaction of various 131 

components in real-world applications, and providing a comprehensive classification 132 

model for common apple varieties in China. 133 

2. Material and methods 134 

2.1 Apple samples 135 

According to the 2023 data from the National Bureau of Statistics of China, the 136 

major apple varieties cultivated in China include the Fuji series, Red Delicious series, 137 

Gala series, and Golden Delicious series. Within the Fuji series, sub-varieties such as 138 

Red Fuji, Yanfu, and Miyakiji are widely cultivated. Fuji apples, including these sub-139 

varieties, account for 69.8% of the total apple cultivation area in China, highlighting 140 

their dominance in the industry [30]. For this study, eleven apple varieties were selected, 141 

including eight from the Fuji series and three additional widely cultivated varieties, 142 

representing the major apple types in China. 143 
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With support from the China Agriculture Research Systems for Apple Industry, 144 

samples of eleven apple varieties were collected (Fig. 3). To enhance the 145 

generalizability of the apple sample images, samples of the same cultivar were 146 

sourced from different regions, improving the applicability of the apple 147 

classification model across diverse production areas and testing environments. 148 

The apple samples were gathered from major apple-producing regions across 149 

seven provinces in China and transported to the Apple Testing Center at Jiangsu 150 

University. Upon arrival, the apples were stored in the cold storage of the 151 

laboratory at a temperature of 0-2°C and a relative humidity (RH) of 85-90%.2.2 152 

Image acquisition 153 

The image collection for all evaluated apple varieties was completed within three 154 

days of receiving the samples at the Apple Testing Center at Jiangsu University. These 155 

samples were sourced from cooperatives, companies, and experimental stations in 156 

major apple-producing regions across China. The image collection process took place 157 

from September 18, 2023, to January 28, 2024. 158 

Upon receipt of the samples, we classified them according to the GB/T 10651-159 

2008 Chinese National Standard for Fresh Apples, categorizing them into Extra Class, 160 

Class I, Class II, and Substandard [31]. To minimize the impact of surface defects on 161 

feature extraction, apples classified as Class II or above were selected for image 162 

acquisition. The selection criteria were as follows: 1) A fruit diameter of at least 65 mm; 163 

2) A shape index of 0.8 or higher; 3) A surface coloration rate of over 30%; 4) No more 164 

than two surface defects; 5) A total damage area smaller than one square centimeter. 165 

Advanced hardware was utilized in the image acquisition process to ensure high-166 

quality data collection. A BVC8350LC, a 3CMOS color area scan camera (Blue Vision 167 
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Corporation, Japan) served as the primary imaging device. This industrial-grade camera 168 

featured a resolution of 324 million pixels and was equipped with an f/1.2 maximum 169 

aperture lens to capture fine details. Full-spectrum industrial lighting was employed to 170 

provide uniform and consistent illumination, minimizing the influence of external 171 

lighting variations. The camera was equipped with a fixed-focus lens with a focal length 172 

of 20 mm and operated at a working distance of 650 mm. It operated at a shutter speed 173 

of 1/60 s to ensure sharp image capture. All images were saved in BMP format to 174 

preserve their quality and facilitate subsequent processing.  175 

An average of 50 apple samples from each cultivar were selected for image 176 

collection. During this process, each apple sample was placed on a white-background 177 

platform for image capture, with images taken at 90-degree intervals along the apple's 178 

equator. Additionally, two images focusing on the apple’s stem and calyx were captured, 179 

resulting in a total of six images per apple. Detailed information about the eleven 180 

photographed apple varieties was shown in Fig. 3. The dataset was then divided into 181 

training, validation, and test sets in a 6:2:2 ratio for model training. 182 

2.3 Database construction 183 

The original apple images were preprocessed to enhance data diversity and expand 184 

the dataset, thereby mitigating overfitting during model training. To reduce the 185 

influence of irrelevant information and highlight the apple as the primary subject, the 186 

images, initially with a resolution of 2448×1840 pixels, were cropped to 1324×1256 187 

pixels. Four augmentation techniques—darkening, variation, Gaussian filtering, and 188 
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Gaussian noise—were applied to the images. For each cultivar, 50 images were 189 

randomly selected from the set and processed with each technique, ensuring a total of 190 

approximately 500 sample images per cultivar, as shown in Table 1. 191 

2.4 Experimental design and algorithms 192 

2.4.1. Experimental design 193 

Image preprocessing: The quality of the apple images was affected by 194 

environmental factors, such as low light and vibration, as well as varietal characteristics. 195 

Preprocessing steps included cropping to focus on the apples, color correction for 196 

consistent lighting, noise reduction, brightness and contrast adjustment, and 197 

normalization. These measures improved image quality, ensuring reliable model 198 

training. 199 

Model Training: Three base models (CNN, MobileNetV2, and VGG19) were 200 

employed for training. Additionally, GLCM features and Multi-Head Attention 201 

mechanisms were integrated with these models to create composite architectures. This 202 

combination harnesses both low-level texture information and high-level semantic 203 

features, enhancing classification accuracy and robustness. In total, nine distinct deep 204 

learning models were developed during the training process. 205 

Model Evaluation and Deployment: Accuracy, precision, recall, and MAE were 206 

commonly used parameters for evaluating model performance [32]. The trained models 207 

were tested for prediction to identify issues related to overfitting or underfitting [2]. 208 

The validated models were uploaded to the server, and the local device accessed the 209 

server through software developed using PyCharm Professional (version 2023.1, 210 
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JetBrains, Prague, Czech Republic) and Qt Creator (version 5.0.2, the Qt Company, 211 

Espoo, Finland) on a system running Windows 10 (version 22H2, Microsoft, Redmond, 212 

WA, USA) with Python (version 3.7.6, Python Software Foundation, Wilmington, DE, 213 

USA). This software was designed for downloading the models to perform image 214 

acquisition, preprocessing, and cultivar prediction. 215 

2.4.2. Implementation description 216 

The research was conducted on a Windows 10 (version 22H2, Microsoft, 217 

Redmond, WA, USA) operating system with Python (version 3.7.6, Python Software 218 

Foundation, Wilmington, DE, USA) and the TensorFlow framework, leveraging a Tesla 219 

P4 GPU (NVIDIA Corporation, Santa Clara, CA, USA)for computation. These 220 

computational resources ensured efficient task execution within the projected 221 

timeframe. 222 

The apple cultivar recognition system was developed using TensorFlow (version 223 

2.3.0, TensorFlow, Inc., Mountain View, CA, USA), a widely adopted Python deep 224 

learning framework. To maintain experimental rigor and fairness, a concise ten-layer 225 

CNN architecture, comprising convolutional and pooling layers, was employed. This 226 

design balanced simplicity and performance, minimizing overfitting risks. Both the 227 

MobileNetV2 and VGG19 architectures were integrated into the framework, 228 

maintaining uniform training parameters. Each model underwent preliminary training 229 

for 10 epochs to assess stability and determine the optimal number of training steps. 230 

The final training was conducted in 70 epochs, which accurately reflected the model's 231 
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validation accuracy and loss throughout the process. The Multi-Head Attention 232 

mechanism employed consists of eight attention heads, with a hidden feature dimension 233 

of 256. The Adam optimizer was adopted for all models, with cross-entropy loss serving 234 

as the loss function to optimize classification performance. 235 

2.4.3. Evaluation metrics 236 

The confusion matrix is an essential tool for evaluating classification model 237 

performance and for assessing multi-class models. It provides a clear representation of 238 

predicted versus actual outcomes for each class, highlighting classification 239 

misclassifications [33]. The confusion matrix primarily consists of parameters such as 240 

accuracy, precision, recall, and F1 score, facilitating a comprehensive assessment of the 241 

model's performance. 242 

These metrics depend on four fundamental values derived from the confusion 243 

matrix: true positives (TP), true negatives (TN), false positives (FP), and false negatives 244 

(FN). Specifically, precision represents the ratio of true positives to all predicted 245 

positives, while recall indicates the proportion of true positives among all actual 246 

positives. The F1 score, calculated as the harmonic mean of precision and recall, 247 

effectively balances these two metrics. It is particularly advantageous in scenarios with 248 

class imbalance, as it considers both the precision and recall of correct positive 249 

predictions. 250 

In addition, MAE is a regression metric that quantifies the average absolute 251 

difference between predicted and actual values. It is computed as the mean of the 252 
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absolute residuals over all samples, offering an intuitive and interpretable measure of 253 

prediction accuracy [34]. 254 

These performance indicators can be mathematically defined as follows: 255 

 256 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 

(1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 

 

(2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 

 

(3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑇𝑃2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

 

(4) 

𝑀𝐴𝐸 = 1𝑛 

 

(5) 

Moreover, five-fold cross-validation was employed to assess the model's 257 

performance, ensuring robustness given the sample size and specific experimental 258 

requirements. This approach divided the dataset into five subsets, with each subset 259 

serving as a validation set once, while the others were utilized for training. By 260 

systematically rotating through these subsets, this approach mitigated the risks of 261 

overfitting and underfitting, thereby improving the model’s predictive performance. 262 

Furthermore, this robust evaluation method provided a comprehensive assessment of 263 

the model's generalization ability on unseen data, ensuring stable and reliable 264 

performance in real-world applications. 265 
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3. Results and discussion 266 

3.1. Model training  267 

3.1.1 Model performance evaluation 268 

The training dataset comprised approximately 5,500 images, encompassing a 269 

diverse range of apple varieties widely cultivated in China, including the Fuji series and 270 

newer varieties such as Venus Gold and Yuhua Fushi. Because of the large size of the 271 

raw apple images, all images were resized to 224×224 pixels. The t-SNE (t-distributed 272 

stochastic neighbor embedding) dimensionality reduction of the training samples was 273 

shown in Fig. 4. Before performing t-SNE, PCA was applied to reduce the 274 

dimensionality to 50 components, and the first two principal components (PC1 and PC2) 275 

explained 41.36% of the variance (PC1: 27.10%, PC2: 14.26%). Most apple varieties 276 

exhibited significant confusion in feature distribution, such as Yanfu No.10 and Yanfu 277 

No.3. Conversely, varieties such as Holstein and Venus Gold exhibited clearer 278 

clustering due to distinct differences in their color features compared to other varieties. 279 

In contrast, Nagafu No.2, was more dispersed across the clusters of other varieties, 280 

suggesting that it posed a greater challenge for identification. 281 

To evaluate the performance of the CNN models, training accuracy and loss rate 282 

graphs were generated and illustrated in Fig. 5.  283 

The CNN series models exhibited relatively smooth fluctuations overall in Fig. 284 

5(a). However, significant variability was observed in the later stages of the CNN model 285 

incorporating Multi-Head Attention, which suggested overfitting due to excessive 286 

exposure to certain features. This was confirmed by its higher overall loss rate. Similar 287 
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trends were observed in the MobileNetV2 and VGG19 models, highlighting the impact 288 

of the Multi-Head Attention mechanism on performance. 289 

All three foundational models were found to perform well when integrating 290 

features with GLCM in Fig. 5(a) and Fig. 5(b). Among them, the combination of 291 

MobileNetV2 and GLCM demonstrated the best overall performance, as evidenced by 292 

a stable accuracy curve and a closely following loss rate curve. Additionally, integrating 293 

GLCM with the VGG19 model significantly reduced the variability of the validation 294 

loss curve, indicating that GLCM effectively mitigated the overfitting issues observed 295 

with this model. 296 

3.1.2. Comparative analysis of the overall performance of deep learning models 297 

The performance of CNN, MobileNetV2, and VGG19 model architectures for 298 

apple cultivar classification was evaluated, with the test results presented in Table 2. 299 

Classification accuracy, precision, recall, F1 score, and MAE were selected as the 300 

evaluation metrics for these models. 301 

The baseline CNN model achieved excellent performance with an accuracy of 302 

96.46%, precision of 96.48%, recall of 96.46%, and F-score of 96.41%. The MAE for 303 

this model was 0.1311, which is relatively high compared to other optimized models 304 

[35, 36]. Upon incorporating the Multi-Head Attention mechanism into the CNN model, 305 

the accuracy slightly increased to 97.08%, accompanied by improvements in precision, 306 

recall, and F1-score. The precision reached 97.10%, the recall was 97.08%, and the F-307 

score was 97.04%. The MAE decreased to 0.1090, reflecting a reduction in error. This 308 
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suggests that the inclusion of Multi-Head Attention enabled the model to focus on more 309 

relevant features, thereby enhancing its classification performance. 310 

On the other hand, integrating GLCM with the CNN model resulted in even better 311 

performance. The accuracy increased to 97.92%, with precision, recall, and F-score all 312 

showing similar improvements, reaching 97.91%, 97.92%, and 97.86%, respectively. 313 

The MAE further decreased to 0.0980, demonstrating that the integration of GLCM not 314 

only enhanced the model's classification accuracy but also significantly reduced errors. 315 

The GLCM method, which extracts texture features from images, likely enabled the 316 

CNN to better capture subtle visual patterns specific to the apple varieties. 317 

The MobileNetV2 model, known for its computational efficiency, also 318 

demonstrated strong performance. In its baseline configuration, the model achieved an 319 

accuracy of 97.78%, with both precision and recall at 97.78%, and an F-score of 97.74%. 320 

The MAE was 0.0696, indicating the best error performance among the baseline models 321 

tested. When Multi-Head Attention was applied to MobileNetV2, the accuracy 322 

decreased to 87.33%, with precision, recall, and F-score following a similar decline. 323 

The MAE increased dramatically to 0.5490. This suggests that, in this case, the Multi-324 

Head Attention mechanism did not provide the expected improvements and negatively 325 

impacted the model’s performance. Such complexity may have interfered with the 326 

added complexity from the attention mechanism interfered with MobileNetV2's 327 

efficient feature extraction, resulting in overfitting or poor generalization. 328 

Integrating GLCM with MobileNetV2 resulted in a significant improvement. The 329 
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accuracy increased to 98.25%, with precision and recall both reaching 98.29% and 330 

98.25%, respectively. The F-score was 98.20%, while the MAE dropped to 0.0571. 331 

GLCM’s texture features enhanced MobileNetV2’s performance, leading to 332 

improvements in both classification accuracy and error reduction. 333 

The VGG19 model, a deeper network known for its efficient feature extraction 334 

capabilities, achieved an accuracy of 97.25%, with both precision and recall at 97.25%, 335 

and an F-score of 97.22%. The MAE was 0.0992, indicating acceptable performance. 336 

However, when Multi-Head Attention was incorporated, the accuracy slightly 337 

decreased to 97.01%, with corresponding declines in precision, recall, and F1-score. 338 

The MAE decreased to 0.0975, suggesting that while the attention mechanism 339 

contributed to error reduction, it did not substantially enhance classification 340 

performance. 341 

Consistent with the findings from other models, integrating GLCM with VGG19 342 

led to improved performance. The accuracy reached 97.92%, with both precision and 343 

recall at 97.91%, and the F-score at 97.66%. The MAE decreased to 0.0921. These 344 

results demonstrate that the texture features extracted by GLCM enhanced VGG19’s 345 

classification performance and reduced prediction errors. 346 

To conclude, the application of GLCM demonstrated consistent improvements in 347 

classification performance across all models, resulting in significant advancements in 348 

accuracy and error reduction. The incorporation of Multi-Head Attention, however, 349 

produced mixed results, improving some models, such as CNN, but significantly 350 
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degrading MobileNetV2’s performance. Overall, GLCM was a valuable optimization 351 

technique, enhancing classification accuracy and reducing MAE, particularly for 352 

MobileNetV2 and CNN. 353 

3.2. Model comparison of algorithms within the same series 354 

Heatmap visualizations confirmed that models integrating GLCM and the Multi-355 

Head Attention mechanism, built upon CNN, MobileNetV2, and VGG19 architectures, 356 

effectively focused on relevant image regions during feature extraction. These 357 

visualizations demonstrated that each model achieved satisfactory classification 358 

performance across most apple varieties. 359 

3.2.1. CNN series cultivar detection models 360 

The prediction results for eleven varieties of apples were shown in Fig. 6 from 361 

three models: (a) CNN model, (b) CNN+Multi-Head Attention model, and (c) 362 

CNN+GLCM model. The CNN model demonstrated generally high accuracy, with 363 

categories such as Changhong (95.93%) and Red Fuji (95.07%) achieving high 364 

classification accuracy. Other categories, such as Chengji No.1, Holstein, Lifu No.2, 365 

Miyakuj, Venus Gold, and Yuhua Fushi, also achieved near 100% accuracy, indicating 366 

solid performance in distinguishing these apple varieties. However, there were 367 

exhibited considerable misclassification, such as Nagafu No.2 (76.52%) and Yanfu 368 

No.3, which showed lower accuracy and higher misclassification rates. This suggested 369 

that the CNN model struggled to distinguish certain varieties which had visually similar 370 

features. 371 
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The addition of Multi-Head Attention improved the model’s performance, 372 

particularly in categories such as Changhong (97.29%) and Red Fuji (96.06%), where 373 

accuracy improved compared to the CNN model. It also enhanced the overall prediction 374 

reliability for categories such as Chengji No.1 and Holstein, which now exhibited 100% 375 

accuracy. The Multi-Head Attention mechanism appears to have enabled the model to 376 

focus more effectively on key features, enhancing its classification performance, 377 

particularly in complex scenarios. However, despite the improved performance over the 378 

CNN model, some categories, such as Nagafu No.2 (79.13%), still showed confusion, 379 

though the performance was better than that of the CNN model. 380 

The CNN + GLCM model demonstrated a significant performance improvement, 381 

particularly for categories such as Changhong (97.74%) and Red Fuji (95.07%), 382 

achieving high accuracy consistently. The integration of GLCM enhanced the model’s 383 

ability to capture texture features, enabling it to more effectively differentiate between 384 

varieties with similar visual characteristics. The confusion for Nagafu No.2 (76.52%) 385 

persisted, but the accuracy improved slightly compared to the CNN model, indicating 386 

that GLCM contributed to better differentiation of such varieties. Overall, the 387 

combination of CNN and GLCM resulted in improved performance, particularly for 388 

texture-based features, although some categories still exhibited minor 389 

misclassifications. 390 

In conclusion, the CNN model demonstrated strong classification performance, 391 

which was further enhanced by integrating Multi-Head Attention and GLCM, resulting 392 
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in improved accuracy, especially for categories with similar visual features. However, 393 

some categories, such as Nagafu No.2, still posed classification challenges. 394 

3.2.2. Analysis of MobileNetV2 series cultivar detection models 395 

The original MobileNetV2 model demonstrated strong performance in predicting 396 

varieties, particularly for Changhong, Chengji No.1, and Holstein, achieving accuracies 397 

of 99.55%, 99.46%, and 100%, respectively (Fig. 7). However, the model struggled 398 

with varieties such as Nagafu No.2, Red Fuji, and Yanfu No.10, with accuracies ranging 399 

from 0% to 5%. The model excelled in identifying distinct varieties but struggled with 400 

those with less distinctive features, particularly Nagafu No.2. Despite these challenges, 401 

the model effectively distinguished the most distinctive apple varieties but faced 402 

difficulty classifying more complex or visually similar ones. 403 

Integrating Multi-Head Attention into the MobileNetV2 model, its performance 404 

improved, particularly on more challenging varieties. This enhancement helped the 405 

model better capture intricate patterns, particularly for varieties such as Nagafu No.2 406 

and Red Fuji, where accuracy increased. While the model's performance on Changhong 407 

decreased slightly to 97.74%, varieties such as Yanfu No.10 and Yanfu No.3 showed 408 

notable improvements, with accuracies of 91.79% and 83.33%, respectively. 409 

Nevertheless, the model continued to face challenges with certain varieties, such as 410 

Miyakuj and Venus Gold, where misclassifications persisted. 411 

The final version, which combined MobileNetV2 with GLCM, showed the most 412 

significant improvements in classification accuracy. This hybrid model performed 413 

exceptionally well, achieving 100% accuracy on Changhong, 99.46% on Chengji No.1, 414 
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and 98.98% on Holstein. It also excelled in identifying varieties such as Red Fuji 415 

(97.44%) and Venus Gold (100%). “The GLCM-based approach, focusing on texture 416 

features, helped differentiate visually similar varieties more effectively, improving 417 

precision, especially for challenging varieties like Yanfu No.3 (96.15%). 418 

The combination of MobileNetV2 with the Multi-Head Attention mechanism and 419 

GLCM resulted in noticeable performance variations. While MobileNetV2 with GLCM 420 

demonstrated strong classification abilities, the inclusion of Multi-Head Attention 421 

resulted in a decline in overall performance. This decline was especially noticeable in 422 

the identification of varieties such as Nagafu No.2, Red Fuji, and Yanfu No.3. 423 

MobileNetV2, designed for efficiency with depthwise separable convolutions, is 424 

lightweight, but the addition of Multi-Head Attention, which captures global context, 425 

and increased computational complexity. This added complexity likely hindered 426 

performance, particularly on smaller datasets, and may have contributed to overfitting. 427 

The inclusion of GLCM notably enhanced classification performance, particularly 428 

for varieties such as Nagafu No.2 and Yanfu No.3. By extracting textural features, 429 

GLCM improved MobileNetV2's ability to capture subtle texture variations that might 430 

have been overlooked by the model, leading to better classification accuracy. 431 

3.2.3. Analysis of VGG19 series cultivar detection models 432 

VGG19 exhibited robust performance in classifying apple varieties, consistently 433 

achieving high accuracy, as illustrated in Fig. 8. The model did not exhibit overfitting 434 

for most varieties, achieving prediction accuracies of 98.64% for Changhong and 99.46% 435 

for Chengji No. 1, demonstrating excellent performance. Holstein reached 98.98% 436 
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accuracy, while Miyakuj attained 99.48%, further showcasing the robustness of VGG19. 437 

Although the classification accuracy for Lifu No. 2 slightly decreased to 96.02%, it 438 

remained high overall. However, Nagafu No. 2 showed a relatively lower accuracy of 439 

81.74%, revealing challenges in recognizing this cultivar. Despite this, VGG19 440 

continued to perform strongly across most varieties, handling classification tasks with 441 

only minor difficulties for a few specific cases. 442 

The addition of the Multi-Head Attention mechanism significantly enhanced the 443 

performance of VGG19 in classifying apple varieties. While the accuracy for 444 

Changhong decreased slightly to 97.32%, it remained high. Chengji No. 1 and Holstein 445 

maintained perfect classification at 100%, and Miyakuj also achieved 100%, 446 

highlighting the effectiveness of the Multi-Head Attention mechanism. Lifu No. 2 447 

showed stability with an accuracy of 99.50%. However, Nagafu No. 2 experienced a 4% 448 

drop in accuracy to 74.00%, indicating that the mechanism might have introduced 449 

interference for some varieties. Other varieties, such as Red Fuji and Venus Gold, saw 450 

modest improvements, with accuracies of 98.70% and 98.00%, respectively. The 451 

classification accuracy for Yanfu No. 10 and Yanfu No. 3 remained mostly unchanged 452 

at 98.50% and 92.50%. Yuhua Fushi continued to perform flawlessly with an accuracy 453 

of 100%. 454 

After incorporating GLCM into the VGG19 model, the performance for many 455 

varieties showed improvement. Nagafu No.2 saw a significant increase to 84.17%, up 456 

from 81.74% in the original VGG19 model. The model's ability to correctly identify 457 
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"Red Fuji" remained consistent at 98.22%. Yanfu No.3 experienced a modest 458 

improvement to 94.06%, with only 0.60% misclassified. Meanwhile, varieties such as 459 

Chengji No.1 (100%) and Holstein (100%) showed no major changes, as the addition 460 

of texture-based features from GLCM did not impact these already high-performing 461 

categories. This indicates that GLCM had a substantial effect on the more challenging 462 

varieties.  463 

The performance of the VGG19 model changed notably with the addition of Multi-464 

Head Attention and GLCM, highlighting the interplay between these mechanisms and 465 

the network's structure. VGG19’s deep architecture, with its multiple convolutional 466 

layers and pooling operations, effectively captured hierarchical image features. 467 

However, the introduction of Multi-Head Attention sometimes caused interference, 468 

particularly with varieties such as Nagafu No. 2, where the model struggled to 469 

distinguish subtle differences. This may have been due to an overemphasis on less 470 

relevant features. On the other hand, GLCM improved texture-based feature extraction, 471 

boosting Nagafu No. 2's accuracy. This improvement likely stemmed from GLCM’s 472 

ability to capture subtle texture differences that VGG19 alone might have missed, 473 

which was especially beneficial for varieties with more intricate surface textures where 474 

color alone was insufficient for accurate classification. 475 

GLCM provides complementary information about the spatial relationship 476 

between pixels, helping the model discern finer details that distinguish varieties such 477 

as Nagafu No. 2. This texture-based enhancement aids the model in focusing on 478 
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important patterns that might be overlooked in color-based feature extraction, resulting 479 

in improved classification accuracy for varieties with complex textures. 480 

3.3 Model comparison of algorithms across different series 481 

Among the nine models assessed, MobileNetV2+GLCM achieved the highest 482 

performance, achieving an overall classification accuracy of 98.25% with an MAE of 483 

0.0571. It was followed by VGG19+GLCM, which achieved a classification accuracy 484 

of 97.92% and an MAE of 0.0921. The training-related charts show that the 485 

introduction of GLCM positively impacted all three baseline models, significantly 486 

enhancing their performance. For instance, the inclusion of GLCM improved the 487 

MobileNetV2 model's accuracy to 98.25%, outperforming the baseline model. 488 

Similarly, the CNN model saw an increase in accuracy to 97.92%, maintaining strong 489 

performance compared to the version without optimization techniques. 490 

In contrast, the Multi-Head Attention mechanism exhibited a selective effect. After 491 

its introduction, slight improvements were observed in the performance of CNN, with 492 

accuracy rising from 96.46% to 97.08%. However, the Multi-Head Attention 493 

mechanism had a pronounced negative impact on the MobileNetV2 model, leading to 494 

a decline in performance. A slight decrease in performance was also noted when Multi-495 

Head Attention was applied to the VGG19 model. The confusion matrix for 496 

MobileNetV2 with Multi-Head Attention revealed a significant drop in prediction 497 

accuracy across several varieties, resulting in distorted predictions. Notable 498 

misclassifications occurred, particularly among closely related varieties such as Yanfu 499 
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No. 10 and Yanfu No. 3. This suggested that Multi-Head Attention did not effectively 500 

enhance MobileNetV2’s performance, potentially causing overfitting or feature loss.  501 

To analyze why the Multi-Head Attention mechanism had adverse effects on 502 

MobileNetV2, we considered both the model's parameter count and the nature of the 503 

attention mechanism. MobileNetV2 is a lightweight model with only 2,263,108 504 

parameters, far fewer than CNN (53,767,748) and VGG19 (26,585,163). Designed for 505 

efficiency, MobileNetV2 was optimized to work with limited computational resources, 506 

making it highly effective for tasks that require fewer parameters. However, the 507 

introduction of Multi-Head Attention, which adds complexity and increases 508 

computational demands, may have disrupted this balance, negatively impacting 509 

performance. 510 

The introduction of the Multi-Head Attention mechanism added computational 511 

complexity and increased the model's capacity, which may have led to overfitting or 512 

instability, especially in lightweight models such as MobileNetV2. These effects were 513 

particularly noticeable in cases where the dataset or training process was sensitive to 514 

parameter adjustments. The observed training fluctuations and the decline in 515 

recognition accuracy indicated that the added complexity disrupted MobileNetV2's 516 

balance, ultimately reducing its efficiency and performance. In contrast, models with 517 

higher parameter capacities, such as CNN, better accommodated the additional layers 518 

introduced by attention mechanisms, which explains their improved performance. 519 

Finally, we observed that the recognition accuracy for the Nagafu No. 2 cultivar 520 
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remained around 80% across the nine models, with frequent misclassifications as Lifu 521 

No. 2, Miyakuj, or Venus Gold. Similarly, the recognition accuracy for Yanfu No. 3 522 

clustered around 92%, indicating a high degree of similarity between Yanfu No. 3 and 523 

other apple varieties. The persistent misclassification of Nagafu No. 2, a key maternal 524 

parent in Fuji-lineage breeding, is likely attributable to its similar genomic traits, which 525 

lead to phenotypic ambiguities in standard RGB imaging and, consequently, contribute 526 

to classification errors. 527 

To further improve cultivar recognition accuracy, plan to implement data 528 

augmentation techniques such as rotation, scaling, flipping, and color adjustments. 529 

These methods will introduce variability, increase dataset diversity, and enhance the 530 

model's generalization capability. Additionally, the loss function will be modified by 531 

incorporating class weights to place greater emphasis on reducing misclassifications of 532 

underrepresented varieties. 533 

We will also integrate additional features, such as color histograms, shape 534 

descriptors, and metadata, to better differentiate between varieties. Furthermore, to 535 

enhance the model's feature extraction capabilities, we will explore advanced 536 

techniques such as Adaptive Feature Fusion and Self-Supervised Learning (SSL). 537 

These methods will enable more effective high-level feature learning, ultimately 538 

improving the model’s accuracy in recognizing apple varieties with genetic 539 

relationships, such as Nagafu No. 2. 540 
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4. Conclusion 541 

This research presented an innovative approach to classifying and recognizing 542 

apple varieties using deep learning techniques, investigating the integration of the 543 

Multi-Head Attention mechanism and GLCM optimization across three distinct 544 

architectures: CNN, MobileNetV2, and VGG19. By combining image processing with 545 

machine learning, the study significantly improved the accuracy and efficiency of apple 546 

cultivar identification. Focusing on eleven popular apple varieties in China, the 547 

optimized models consistently achieved classification accuracies above 95%, with 548 

some varieties exceeding 98%. 549 

MobileNetV2+GLCM achieved the highest accuracy of 98.25%, demonstrating 550 

the effectiveness of combining traditional methods with advanced image processing 551 

techniques. Compared to the study in [17], which trained seven types of CNN models 552 

on a dataset comprising 5,808 images from 10 different Turkish apple varieties and 553 

identified DenseNet as the best-performing model with an accuracy of 97.48%, and the 554 

study in [37], which employed MobileNetV2 and EfficientNetV2B0 to classify six 555 

Turkish apple varieties from a dataset of 120 images, where EfficientNetV2B0 556 

combined with GLCM and Color-Space achieved the highest accuracy of 98.33%, our 557 

research covered a broader range of apple varieties and utilized a significantly larger 558 

dataset. Moreover, the MobileNetV2 model offers advantages over EfficientNet and 559 

DenseNet in terms of computational efficiency and suitability for deployment in 560 

resource-constrained environments. 561 
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However, integrating Multi-Head Attention into lightweight models such as 562 

MobileNetV2 resulted in training instability and potential overfitting. In contrast, its 563 

incorporation into CNN and VGG19 resulted in moderate improvements, with 564 

accuracies exceeding 97.08%, demonstrating the selective advantages of advanced 565 

feature enhancement[38, 39]. These findings provide valuable insights for developing 566 

models for fruit species recognition and surface defect detection in agricultural products 567 

such as citrus, pears, and peaches. By enhancing the precision and efficiency of 568 

agricultural technology, these models have the potential to be applied across a wide 569 

range of agricultural applications, from quality control to automated sorting. 570 

Our research focuses on identifying 11 apple varieties commonly cultivated in 571 

China, contributing to the development of deep learning models for apple recognition. 572 

The study holds significant potential for integration into commercial apple sorting lines. 573 

These models can complement existing systems for quality recognition, thereby 574 

enhancing both sorting efficiency and accuracy. Furthermore, the system is d designed 575 

for deployment on mobile devices, enabling farmers, traders, and consumers to 576 

conveniently use the software and models for real-time cultivar identification and 577 

quality assessment.  578 

Despite these advantages, the apple images used in our study were collected under 579 

controlled conditions using a professional acquisition platform. In practical applications, 580 

factors such as lighting, vibrations, and the presence of foreign objects may affect image 581 

quality. To improve model robustness and generalizability, it is essential to incorporate 582 
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images captured in real-world conditions, such as those obtained from conveyor belts, 583 

storage environments, and varying lighting scenarios. Additionally, apple phenotypes 584 

vary with maturity, causing certain varieties to exhibit striking similarities at specific 585 

growth stages while diverging significantly at others, which poses challenges for 586 

classification, sorting, and grading models. 587 

To further validate the efficacy of the proposed approach, future research should 588 

expand both the dataset and the diversity of varieties to enhance broader applicability. 589 

We will focus on optimizing the baseline models to improve robustness, building upon 590 

the current findings. Additionally, we will explore the incorporation of additional 591 

features, such as color, shape, and temporal information, to enhance grading accuracy. 592 

Furthermore, real-time applications will be developed to improve automation and 593 

efficiency in apple cultivar recognition systems. 594 
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Figure Captions 

Fig. 1. Schematic of the steps involved in intelligent identification of apples based on 

deep learning. 

Fig. 2. Images of the eleven major apple cultivars in the detection dataset created by 

Jiangsu University and supported by China Agriculture Research Systems for the Apple 

Industry. 

Fig. 3. Apple classification algorithm based on deep learning, including (a) Apple 

dataset, (b) Multi-Head Attention mechanism, (c) Detection result, (d) CNN algorithm, 

(e) VGG19 algorithm, and (f) MobileNet-V2 algorithm. 

Fig. 4. t-SNE Dimensionality Reduction Distribution of Apple Samples. 

Fig. 5. Comparison of Training Accuracy and Validation Accuracy of the Eight 

Proposed Models. 

Fig. 6. Prediction of eleven apple cultivars using three CNN-based models, including 

(a) CNN model, (b) CNN+Multi-Head Attention model, and (c) CNN+GLCM model. 

Fig. 7. Prediction of eleven apple cultivars using three MobileNet V2-based models, 

including (a) MobileNet V2 model, (b) MobileNet V2+Multi-Head Attention model, 

and (c) MobileNet V2+GLCM model. 

Fig. 8. Prediction of eleven apple cultivars using two VGG19-based models, including 

(a) VGG19 model, (b) VGG19+GLCM model, and (c) VGG19+Multi-Head Attention 

model. 
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Fig. 1. Schematic of the steps involved in intelligent identification of apples based on deep learning.  



Identification of apple by machine vision and deep learning 

 

Fig. 2. Images of the eleven major apple cultivars in the detection dataset created by Jiangsu University and supported by China Agriculture 

Research Systems for the Apple Industry.  
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Fig. 3. Apple classification algorithm based on deep learning, including (a) Apple dataset, (b) Multi-Head Attention mechanism, (c) Detection 

result, (d) CNN algorithm, (e) VGG19 algorithm, and (f) MobileNet-V2 algorithm. 
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Fig. 4. t-SNE dimensionality reduction distribution of apple samples. 
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Fig. 5. Comparison of Training Accuracy and Validation Accuracy of the eight 

proposed models. 

Model 1: CNN
Model 2: CNN+Multi-Head Attention
Model 3: CNN+GLCM
Model 4: MobileNetV2
Model 5: MobileNetV2+Multi-Head Attention
Model 6: MobileNetV2+GLCM
Model 7: VGG19
Model 8: VGG19+MultiHead Attention
Model 9: VGG19+GLCM
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Fig. 6. Prediction of eleven apple cultivars using three CNN-based models, including (a) CNN 

model, (b) CNN+Multi-Head Attention model, and (c) CNN+GLCM mode.
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Fig. 7. Prediction of eleven apple cultivars using three MobileNet-V2-based models, including (a) 

MobileNet-V2 model, (b) MobileNet-V2+Multi-Head Attention model, and (c) MobileNet- 

V2+GLCM model. 
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Fig. 8. Prediction of eleven apple cultivars using three VGG19-based models, 

including (a) VGG19 model, (b) VGG19+Multi-Head Attention model and (c) 

VGG19+GLCM model. 
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Table Captions 

Table 1 Apple cultivar recognition dataset, featuring initial images of eleven apple 

samples and their augmented versions. 

Table 2 Performance of deep learning models combining Multi-Head Attention 

mechanism and Gray-Level Co-occurrence Matrix with CNN, MobileNet-V2, and 

VGG19. 
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Table 1 Apple cultivar recognition dataset, featuring original images of eleven apple 

cultivar samples and their augmented versions. 

Cultivar Name 

Apple 

Origin 

Original 

Images 

Darkened 

Images 

Varied 

Images 

Gaussian 

Filtered 

Images 

Gaussian 

Noise 

Images 

Total 

Images 

Changhong 
Shaanxi 

Province 
294 50 50 50 50 494 

Chengji No.1 
Shanxi 

Province 
294 50 50 50 50 494 

Holstein 
Shanxi 

Province 
312 50 50 50 50 512 

Lifu No.2 
Henan 

Province 
306 50 50 50 50 506 

Miyakji 
Hebei 

Province 
312 50 50 50 50 512 

Nagafu No.2 
Hebei 

Province 
312 50 50 50 50 512 

Red fuji 
Hebei 

Province 
288 50 50 50 50 488 

Venus Gold 
Liaoning 

Province 
288 50 50 50 50 488 

Yanfu No.3 
Shandong 

Province 
312 50 50 50 50 512 

Yanfu No.10 
Shandong 

Province 
324 50 50 50 50 524 

Yuhua Fushi 
Shandong 

Province 
300 50 50 50 50 500 



 

Table 2 Model performance of CNN, MobileNet-V2, and VGG19. 

Morphological 

method 

Model 

optimization 

content 

Accuracy Precision Recall F-score MAE 

CNN / 0.9646 0.9648 0.9646 0.9641 0.1311 

CNN 
Multi-Head 

Attention 
0.9708 0.971 0.9708 0.9704 0.1090 

CNN GLCM 0.9792 0.9791 0.9792 0.9786 0.0980 

MobileNet-V2 / 0.9778 0.9778 0.9778 0.9774 0.0696 

MobileNet-V2 
Multi-Head 

Attention 
0.8733 0.8834 0.8733 0.8704 0.5490 

MobileNet-V2 GLCM 0.9825 0.9829 0.9825 0.9820 0.0571 

VGG19 / 0.9725 0.9725 0.9725 0.9722 0.0992 

VGG19 
Multi-Head 

Attention 
0.9701 0.9703 0.9700 0.9698 0.0975 

VGG19 GLCM 0.9792 0.9791 0.9772 0.9766 0.0921 

 

 

 


