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A new perspective on Bayesian operational modal analysis

Brandon J. O’Connell a,∗, Max D. Champneys a, Timothy J. Rogers a

aDynamics Research Group, Department of Mechanical Engineering, The University of Sheffield, Mappin Street,

Sheffield, S1 3JD, UK

Abstract

The quantiőcation of uncertainty is of particular interest to the dynamics community, which increas-
ingly desires a measure of uncertainty for greater insight, allowing for more informed and conődent
decision-making. In the őeld of operational modal analysis (OMA), obtained modal information is
frequently used to assess the current state of aerospace, mechanical, offshore and civil structures.
However, the stochasticity of operational systems and the lack of forcing information can lead to
inconsistent results. Quantifying the uncertainty of the recovered modal parameters through OMA
is therefore of signiőcant value. In this article, a new perspective on Bayesian OMA is proposed
Ð a Bayesian stochastic subspace identiőcation (SSI) algorithm. Distinct from existing approaches
to Bayesian OMA, a hierarchical probabilistic model is embedded at the core of canonical variate-
weighted, covariance-driven SSI. Through substitution of canonical correlation analysis with its
Bayesian equivalent, posterior distributions over the modal characteristics are obtained. Two in-
ference schemes are presented for the proposed Bayesian formulation: Markov Chain Monte Carlo
and variational Bayes. Two case studies are then explored. The őrst is benchmark study using
data from a simulated, multi degree-of-freedom, linear system. Following application of Bayesian
SSI using both forms of inference, it is shown that the same posterior is targeted and recovered by
both schemes, with good agreement between the mean of the posterior and the conventional SSI
result. The second study applies the variational form of Bayesian SSI to data obtained from an
in-service structure Ð the Z24 bridge. The Z24 is chosen given its familiarity in the őelds of OMA
and structural health monitoring. The results of this study are őrst presented at a single model
order, and then at multiple model orders using a stabilisation diagram. In both cases, the recovered
posterior uncertainty is included and compared to the conventional SSI result. It is observed that
the posterior distributions with mean values coinciding with the natural frequencies exhibit much
lower variance than posteriors situated away from the natural frequencies.
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Uncertainty Quantiőcation
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1. Introduction

The characterisation of dynamical systems in the absence of measured input information continues to
be of signiőcant importance in modern engineering practice. This problem is of particular interest to
the structural dynamics community, who routinely encounter such scenarios when conducting modal
analysis. Operational modal analysis (OMA) is the subset of modal analysis methods concerned with5

the recovery of modal characteristics in the absence of measured input information; often the case
when testing a structure in-situ (operationally) [1]. By the very nature of OMA, response data is
typically obtained at very low amplitudes lending itself to low signal-to-noise ratios. This tends to
make the task of system identiőcation more challenging. Nevertheless, various approaches to OMA
exist in the literature and work well in practice [1]. These include methodologies such as frequency-10

domain decomposition (FDD) [2] and stochastic subspace identiőcation (SSI) [3, 4], now industry
standards for performing frequency-domain and time-domain OMA. OMA as a methodology has
gained increased popularity in recent years. This is predominantly due to its high economic value
and convenience in many engineering applications. This is especially the case for high-value large-
scale assets [1].15

With increasing amounts of data being measured and growing demand for improved data-based
models, there is now a desire in the engineering community to obtain some measure of the uncer-
tainty. Access to uncertainty can allow the practitioner to better assess the precision of a chosen
methodology and evaluate the risk of different outcomes. The inclusion and application of uncer-
tainty through probabilistic machine learning and Bayesian methodologies has already been observed20

in the closely related őelds of structural health monitoring (SHM) [5–9], digital-twins [10–13] and
risk-based decision-making [14]. From the perspective of OMA, understanding and assessing the
uncertainty of the recovered modal characteristics, i.e. the natural frequencies, damping ratios and
mode shapes, is of particular value. Multiple sources of uncertainty can result in variability in the
recovered modal parameters. Understanding this variability is important in SHM for example, where25

modal information is often used to assess the health state of a structure. The impacts of aleatory
and epistemic uncertainties on operationally obtained modal identiőcation has been studied in [15],
whilst a comprehensive list of the associated uncertainties for SSI are described in [16]. Fundamen-
tally, being able to quantify the uncertainty over the modal properties can provide the practitioner
with greater insight and additional information, allowing for more-informed and conődent decision-30

making. Furthermore, the authors believe probabilistic system identiőcation tools and the inclusion
of uncertainty may provide a framework for addressing many of the current research challenges in
OMA.

Across different methodologies, the deőnition of ‘uncertainty’ can vary, taking many forms: bounds,
conődence intervals, őducial intervals, variance estimates, and distributions. There is no explicit35

deőnition for the correct type of uncertainty in any case, however the overall objective of uncertainty
quantiőcation (UQ) is the same: To obtain a measure of the uncertainty to better understand the
variability of a given result. The authors’ preference is to operate within a Bayesian framework
where the recovery of posterior distributions is desired, hence the focus of this paper.

1.1. Uncertainty quantification for OMA40

In the literature, UQ for OMA is approached and handled in a variety of ways. Several methodologies
for quantifying the uncertainty from output-only testing have been presented over the last 30 years,
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taking a variety of approaches including autoregressive techniques [17, 18], Bayesian methods [19–23],
sensitivity analysis and perturbation theory [16, 24–29].

Several developments in UQ for OMA have centred around subspace methods. Since the 1990’s,45

several works explored the asymptotic normality of estimates from subspace algorithms [30–33] and
demonstrated their ability to converge to the expected value under the central limit theorem. The
theoretical basis shown in these works has led to a number of subsequent methods for UQ, exploiting
these results.

In 2007, Pintelon et al. [34] derived expressions for the uncertainty bounds on the estimated modal50

parameters using a combination of őrst-order sensitivity and perturbation techniques. This method
was then shown speciőcally for reference-based SSI by Reynders et al. in [16] where covariances on
the identiőed system matrices were recovered. Later this method was efficiently optimised through
rederivation by Döhler [26] and also extended for multiple-setup measurements in [27]. Further
advancements in SSI-based UQ methods have also been presented since by Reynders [24, 25, 35],55

Döhler [26] and Grés [28, 29].

Other notable works include: El-Kafafy et al. [36], who presented a fast maximum-likelihood identi-
őcation method for obtaining modal parameters with uncertainty intervals, and Mellinger et al. [37]
who employ sensitivity analysis of the auto- and cross-covariance matrices to obtain variances over
the modal parameters.60

Following the development of UQ techniques for OMA, researchers have also begun to explore the
use of uncertainty to address key research problems in OMA. Challenges such as automated modal
identiőcation [38, 39] and model order selection [40]. Despite many advancements in UQ for SSI,
the authors are currently unaware of a Bayesian formulation of SSI in the literature. In contrast
to existing methods, such as perturbation-based approaches, a Bayesian SSI methodology would65

provide a framework for incorporating prior knowledge or permitting hierarchical structures whilst
also recovering a global picture of the uncertainty as posterior distributions. This article seeks to
address this shortcoming.

1.2. Bayesian uncertainty quantification for OMA

This section introduces the current landscape of Bayesian approaches to OMA, highlighting asso-70

ciated merits and limitations of existing methods. The major waypoints here include the popular
frequency-domain method BAYOMA [41] and more recent alternative approaches. These include
Gibbs sampling and variational schemes in the time domain using subspace methods, and a Gibbs
sampling approach based in the frequency domain.

Bayesian approaches to output-only system identiőcation have been developed since the late 1990s75

but the topic continues to be of signiőcant interest to the engineering community. Bayesian ap-
proaches to OMA are more recent, with the earliest works appearing in late 2000s. The most cited
Bayesian approach to OMA follows from the work of Au, whose development of a fast Bayesian Fast
Fourier transform algorithm (fast-BFFTA) for modal identiőcation [20, 21] removed the computa-
tional limitations of the original Bayesian fast Fourier transform algorithm [42, 43] and subsequently80

led to a body of work known as Bayesian OMA or ‘BAYOMA’ [41, 44–47]. BAYOMA can be per-
ceived as the coupling of the fast-BFFTA with a frequency-domain modal analysis technique, such
as FDD [2]. This coupling can be used to recover modal estimates in the form of a most-probable

3



value and a representation of the uncertainty known as the coefficient of variation. These estimates
originate from Laplacian approximations to the uncertainty which are used to obtain Gaussian dis-85

tributions. Since the initial deőnition of BAYOMA, several extensions have emerged in the literature
providing a more general framework to use this methodology, including work on the identiőcation
of closely-spaced modes [48–51].

BAYOMA appears to divide some of the research community in its Bayesian deőnition. In the
construction of the algorithm, a ŕat improper prior is used. Under this assumption, some argue (see90

[24]) the problem fundamentally reduces to a maximum likelihood approach, removing the beneőts
of a Bayesian formulation. Nevertheless, others adopt BAYOMA as their preferred method of choice
[52–55]. Undoubtedly, BAYOMA provides a computationally effective way to perform one form of
UQ on structures of interest but is limited in its approximation of the posterior and improper priors.

In search of Bayesian approaches that empower the user to use proper (and informative) prior95

information, a few alternative Bayesian OMA approaches have been published in recent years. Li
and Der Kiureghian [56] proposed a variational methodology for OMA and stochastic state space
models, where the joint distributions over the state-transition and observation matrices, and the
process noise and measurement error, are calculated analytically. These analytical solutions are
then coupled with a őrst-order Taylor series expansion to recover Gaussian approximations to the100

distributions over the modal properties. This is necessary given the intractability of the posteriors
over the modal properties because of the eigenvalue decomposition involved in their recovery [56].

Another Bayesian approach was also presented by Li et al. [57]. The contribution focused on a
new form of Bayesian OMA for civil structures under small or moderate seismic excitation. A
probabilistic model is őrst deőned, taking advantage of the state space representation of the equations105

of motion, with some unmeasured base motion included in the model as a stochastic process. Proper
and broadly uninformative priors are then introduced into the model, with the Bayesian inference
problem solved using a Gibbs sampling procedure to obtain approximate distributions over the
modal properties. The two aforementioned recent methodologies differ from those described later
in this article, in that they are constructed directly using stochastic state space models and not the110

SSI-Cov algorithm.

Lastly, a fast-collapsed Gibbs sampling approach to OMA was introduced by Dollon et al. [58],
as a new frequency domain approach. This alternative proposal performs inference on the modal
properties using established sampling techniques and the FFT of a system with well-separated
modes. The analysis results in sampled posterior distributions that are characterised by a mean and115

covariance, rather than a most-probable value and coefficient of variation like BAYOMA.

It is clear that there is considerable interest in developing Bayesian methodologies for performing
UQ in OMA. Speciőcally, methods that can incorporate proper and informative prior structures,
permit hierarchical structures, and that ultimately recover posteriors over the modal properties as
distributional estimates with a global picture of the uncertainty. As such, the authors of this paper120

seek to provide a new approach to Bayesian OMA that meets these requirements.

1.3. Contribution

This article presents a new perspective on Bayesian OMA, viewed through the lens of the time-
domain modal analysis method covariance-driven SSI (SSI-Cov). Following on from previous work
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by the authors on a robust probabilistic approach to SSI [59], the proposed approach is implemented125

in a similar way using latent projections in a Bayesian framework, where canonical correlation
analysis (CCA) [60] Ð a fundamental statistical tool at the core of the canonical-variate weighted
SSI-Cov algorithm Ð is replaced with its hierarchical Bayesian formulation [61, 62]. This now
Bayesian SSI algorithm is capable of recovering posterior distributions over the observability and
controllability matrices and, by extension, posteriors over the modal properties.130

Two inference schemes for the proposed Bayesian formulation of SSI are provided. The őrst ap-
proach is a Gibbs sampling scheme that recovers an empirical representation of the posterior, which
asymptotically trends towards the true posterior with an increasing number of samples. The sec-
ond approach is a variational scheme that provides a computationally efficient alternative to Gibbs
sampling but instead recovers surrogate posteriors that approximate the true posterior.135

The remainder of this article is structured as follows. In Section 2 the underlying theory of CCA
is explored (Section 2.1) and relevant prerequisite topics are outlined, including probabilistic CCA
(Section 2.2) and probabilistic SSI (Section 2.3). Section 3 introduces the proposed Bayesian SSI
algorithm. The theory of Bayesian CCA is őrst described, before the Bayesian interpretation of SSI
is established. Methods for the recovery of the posterior distributions over the modal properties140

are then discussed, considering a Gibbs sampling scheme and a variational Bayes approach. A
concise stepwise summary of the proposed Bayesian SSI methodology is provided in Section 3.3.
Section 4 presents the results of a numerical case study. Simulated data were generated and then
analysed using the Bayesian SSI algorithm. Following a description of the priors, results from both
inference schemes are shown and compared, with an exploration of the inŕuence of data length on145

the recovered variance. In Section 5, results from the application of the Bayesian SSI algorithm
to data from the Z24 bridge are presented. This includes results at single model orders, and in the
form of a stabilisation diagram. Finally, conclusions and future work are discussed in Section 6.

2. Theory

2.1. Canonical correlation analysis150

It is beneőcial to brieŕy review the theory of canonical correlations. CCA is a well established
statistical tool developed by Hotelling [60] which forms the mathematical basis of canonical variate-
weighted SSI-Cov [4]. The theory of canonical variate-weighted SSI-Cov is shown in Appendix A.
For the purpose of this paper, the acronym SSI-Cov will refer to the canonical variate-weighted
form. The task of CCA is to analyse the mutual dependency between two multivariate sets of data,155

which can be evaluated by őnding an appropriate set of orthogonal basis vectors, a and b, such
that the correlations of the projected variables aTx and bTy, are maximally correlated. One then
seeks several pairs of vectors that meet the above condition, subject to the constraint that the pairs
of transformed variables are uncorrelated from one another. This can be achieved by the following
maximisation,160

(a′,b′) = arg max
a,b

corr(aTx,bTy) = arg max
a,b

aTΣxyb
√

aTΣxxab
TΣyyb

T

(1)

where Σxy is deőned as the cross covariance between x and y, with Σxy = ΣT

yx, and Σxx and Σyy
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are the auto covariances. This maximisation can be computed by solving the following generalised
eigenvalue problem,

(

0 Σxy

Σyx 0

)(

a

b

)

= λ

(

Σxx 0
0 Σyy

)(

a

b

)

(2)

where a and b are the eigenvectors and λ is the eigenvalue or canonical correlation. In practice, the
set of eigenvalues and eigenvectors are computed using the following singular value decomposition165

(SVD),

Σ
− 1

2

xx ΣxyΣ
−T

2

yy = V1ΛVT

2 . (3)

where V1 and V2 are left and right singular vectors respectively and Λ is the matrix of singular
values.

2.2. Probabilistic CCA

In 2005, Bach and Jordan [63] presented an alternative probabilistic formulation of CCA (PCCA),170

constructed using latent projections. At the heart of PCCA lies two observed variables x
(1)
n ∈ R

D1

and x
(2)
n ∈ R

D2 which are believed to be conditioned on a lower-dimensional latent space, described
by the variable zn ∈ R

d, for n = 1, ...., N observations1. It was proposed that the two sets of
observed variables can be modelled by an independent linear mapping W(m) ∈ R

Dm×d of the shared
latent variable to the relevant data spaces, plus some mean offset µ(m) ∈ R

Dm and with covariance175

Σ(m) ∈ R
Dm×Dm , for m = 1, 2. This model is illustrated as the directed probabilistic graphical

model [64] in Figure 1 and described mathematically by Equations (4) - (6).

zn

x
(1)
n x

(2)
n

N

Figure 1: Graphical model for the probabilistic, latent variable interpretation of CCA (PCCA)

1Note a distinction between the notation used here for the data and hidden variables, and that in Appendix A
surrounding the output data and internal states. This is purposeful, to make the definition of the statistical method
of probabilistic and Bayesian CCA clearer to the reader.
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zn ∼ N (0, I) (4)

x(m)
n |zn ∼ N (W(m)zn + µ(m),Σ(m)) (5)

xn|zn ∼ N (Wzn + µ,Σ) (6)

where N (· , ·) corresponds to a Gaussian distribution, xn = [x
(1)
n ;x

(2)
n ], W = [W(1);W(2)], µ =

[µ(1);µ(2)] and Σ is a block-diagonal covariance matrix with Σ(1) and Σ(2) along the diagonal. The
isotropic noise model of the latent space enforces the necessary independence of the variables whilst180

imposing a maximum correlation condition.

Using this model, the maximum likelihood estimates (MLE) of the model parameters can be ob-
tained. In the case of the linear transformations W, the MLE solution conveniently relates to the
components of the SVD (see Equation (3)), such that,

W(1) = Σ
1/2
11 V1Λ

1/2 (7)

W(2) = Σ
1/2
22 V2Λ

1/2 (8)

2.3. Probabilistic SSI185

In previous work by the authors [59], it was shown how SSI-Cov could be reimagined as problem in
probabilistic inference, using the theory of probabilistic projections (i.e. PCCA) to replace classical

CCA in the traditional SSI-Cov algorithm. When the two datasets, X(1) = [x
(1)
1 , . . . ,x

(1)
n ] and

X(2) = [x
(2)
1 , . . . ,x

(2)
n ], are the Hankel matrices of the future Yf and past Yp respectively, the MLE

of the weights W(1) and W(2) are equivalent to the extended observability matrix and controllability190

matrix transposed respectively, with some arbitrary rotational ambiguity R, such that,

Ŵ
(1)

= Σ
1/2
ff V1Λ

1/2R = O (9)

Ŵ
(2)

= Σ1/2
pp V2Λ

1/2R = CT (10)

The assimilation of PCCA and SSI in this way is an important revelation. This now probabilistic SSI
algorithm allows for familiar hierarchical modelling techniques and permits the use of an arbitrary
prior structure, similar to other probabilistic models. The potential of this model was demonstrated
by the authors in [59], where a statistically robust noise model was employed to address the problem195

of misidentiőcation in OMA, brought on by atypical observations (outliers) in measured responses.

3. Bayesian SSI

Given the potential to admit an arbitrary prior structure, naturally a Bayesian formulation of SSI
is possible. It is perhaps worth considering what a Bayesian SSI algorithm might look like. The
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most desirable output from a Bayesian OMA algorithm would constitute posterior distributions200

over the modal properties, given suitably chosen priors that originate from reasonable assumptions
given our knowledge of the classical SSI algorithm. Conveniently, such a model can be achieved
by incorporating a Bayesian approach to CCA. This section presents the details of a Bayesian
formulation of SSI.

Following the introduction of PCCA, Wang [61] and Klami and Kaski [62] presented the natural205

hierarchical extension to the PCCA model and introduced Bayesian CCA. Their model incorporated
priors over the model parameters θ = {W,Σ,µ} and introduced a sparsity inducing prior over the
columns of the transformation matrix. This model was later extended for inter-battery factor analysis
to include local and global latent variables in [65] and for a mixture of robust CCA models in [66].
The sparsity inducing prior present in these works is not included in the Bayesian CCA model210

described in this paper, nor is it included in later derivations. This alternative model, coupled with
the desire for a generalisation of the prior structure (not present in the original works [61, 62]),
motivated the need to redeőne the model of CCA in this work. Figure 2 presents the Bayesian CCA
graphical model, whilst Equations (11) - (14) detail the chosen priors over the model parameters.

zn

x
(1)
n x

(2)
n

W(2)

Σ(2)

µ(2)

W(1)

Σ(1)

µ(1)

N

Figure 2: Graphical model for the Bayesian interpretation of CCA

wi ∼ N
(

µwi
,Σwi

)

(11)

W ∼
d
∏

i=1

p(wi) (12)

µ ∼ N
(

µµ ,Σµ

)

(13)

Σ ∼ IW (K0 , ν0) (14)

where wi denotes an individual column of W where, following on from earlier notation, wi =215

[w
(1)
i ;w

(2)
i ]. The notation p(·) refers to the probability density function in vector or matrix form

dependent on the parameters, and IW (K , ν) corresponds to an inverse Wishart distribution with
scale K and ν degrees of freedom. The precision Ψ can also be deőned as the Wishart distribution
Σ−1 = Ψ ∼ W

(

K−1 , ν
)

.

Considering the model above, the joint can be expressed as,220

p(x, z,W,Σ,µ) = p(x|z,W,Σ,µ)p(z)p(Σ)p(µ)p(W) (15)
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Accounting for the independent columns of W, such that p(wi) describes each column, Equation
(15) becomes,

p(x, z,W,Σ,µ) = p(x|z,W,Σ,µ)p(z)p(Σ)p(µ)
d
∏

i=1

p(wi) (16)

Given the commonality between the desired weights in PCCA and the desired weights in Bayesian
CCA, based on their ability to transform data to the relevant subspace, the posterior distributions
over the weights correspond to posterior distributions over the observability and controllability225

matrices in the context of SSI,

W(1) = O (17)

W(2) = CT (18)

Unlike the previous deőnition in Equations (9) - (10), here the observability and controllability
matrices are now distributional quantities, giving rise to posterior distributions over the modal
parameters of interest.

230

3.1. Priors

It is useful to consider the meaning behind the priors on µ, Σ and W with a view to later selecting
these in the context of Bayesian SSI. The value µ refers to the mean offset of the lagged vectors
of each output channel in the Hankel matrix. For a stationary signal, the mean of the output E [y]
should be constant as N → ∞. Unlike traditional SSI, which requires the data to őrst be zero mean,235

the proposed Bayesian approach is capable of learning this mean.

The block covariance of the data, Σ, describes ones prior belief about the measurement noise on the
different columns of the Hankel matrix. One typically expects this to be small in many engineering
settings. Access to this prior also allows the practitioner to consider known coloured noise or
correlated noise between the sensor channels or in the absence of better information, an isotropic240

white noise assumption, which matches that seen in regular (maximum likelihood equivalent) SSI.

Finally, the prior over the columns of the weight matrix describes ones belief about the correlation
between the parameters in the projection matrix W = [W(1);W(2)]. In this case, setting a diagonal
covariance structure over the columns of W is effectively an L2 regularisation on the parameters,
i.e. it penalises very large values and variance in each column of W. This prior would also imply245

that our initial belief is that all columns of W have a very similar scale of values. In practice
one could use a variety of options for choosing this prior, including a normal zero mean prior with
identity covariance or an empirical prior based on the observability and controllability obtained
from őnite element analysis, models or traditional SSI. The authors would note that while the prior
chosen in this paper coincides with that from standard (maximum likelihood) SSI, exploring a more250

informative prior structure going forward is an interesting avenue of research.
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3.2. Inference schemes

The key aspect of a Bayesian methodology is the recovery of posterior distributions over the quanti-
ties of interest, in this case the modal properties of the structural system. However, as is commonly
the case, these distributions are not available in closed form given the form of the model presented255

above. This intractability of the model arises from inability to compute the integral which deőnes
the normalising constant of the posterior Ð the marginal likelihood. Therefore, to solve Bayesian
inference problems one must turn to approximate or sampling inferential schemes.

Two potential solutions commonly arise. The őrst is to approximate the posterior distribution
in a Monte Carlo sense with a number of samples which form an empirical representation of the260

posterior. These samples can be generated sequentially by means of a Markov Chain, leading to the
family of methods known as Markov Chain Monte Carlo (MCMC). Alternatively, the posterior is
approximated by a parametric distribution which is deőned by the user and described in terms of a set
of free parameters. These parameters are then optimised such that the parametric approximation
is as close as possible to the true posterior. When a Kullback-Liebler (KL) divergence from the265

approximate distribution to the true posterior is used, this forms the family of variational inference
(VI) methods and the intractable inference problem is transformed into a simpler optimisation
problem.

Within each of these families, a range of approaches exist. In this work, one example from each will
be shown and compared. For the MCMC problem, a Gibbs sampling approach is adopted given the270

direct access to the full conditionals. Gibbs sampling also has a relatively high efficiency in terms
of its formulation, whereby every sample proposed is a valid sample from the posterior. For the
VI scheme, a coordinate-ascent approach is adopted since the optimisation problem can be solved
efficiently in a manner similar to the expectation maximisation (EM) algorithm [67].

Both inferential schemes have their own set of advantages and disadvantages. Gibbs sampling275

has the very useful property of converging to the true posterior in the limit of increasing number
of samples. However, the computational expense of sampling techniques can be signiőcant when
considering large and complex joint distributions, making it unsuitable for some tasks. Alternatively,
variational methods only provide an approximation to the posterior but demonstrate considerably
better computational performance. Hence, both inference approaches are shown in this paper with280

the results of the inference compared.

3.2.1. Gibbs sampling

Gibbs sampling is a common method of MCMC that can be used to obtain posterior samples
of multiple parameters of interest. The resulting distribution of these samples can then be used to
approximate the posterior. The premise of Gibbs sampling is that, given a multivariate target distri-285

bution, it is much simpler to sample exactly from conditional distributions rather than marginalising
(by integration) over the full joint distribution. For more on Gibbs sampling see e.g. [67] or [68].

Adopting a Gibbs sampling approach, the parameter sampling equations are derived and are provided
in Equations (19) - (22), with the overall algorithm summarised in Algorithm 1. For the interested
reader, the full derivation of these updates is provided in Appendix B, with the omission of the290

sparsity inducing prior present in [62] and with the addition of generic mean and covariance priors.
The required Gibbs sampling updates for the parameters of the model described in Figure 2, are
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given below. The updated parameters below are written in block formation following previously
deőned notation. This allows both sets of parameters to be updated in one step. The superscript
·new refers to the updated sample of each parameter given the updated distribution parameters,295

where ·old would refer to the current parameters. To improve clarity, ·old is omitted here.

Σ update

Σnew ∼ IW (K0 +K , ν0 +N) (19)

where,

K =
N
∑

n=1

(xn − µ−Wzn)(xn − µ−Wzn)
T

µ update

µnew ∼ N
(

µ̂µ , Σ̂µ

)

(20)

where,300

Σ̂µ =
(

NΣ−1 +Σ−1
µ

)−1

and,

µ̂µ = Σ̂µ

(

Σ−1
N
∑

n=1

(xn −Wzn) +Σ−1
µ µµ

)

wi update

wnew
i ∼ N

(

µ̂wi
, Σ̂wi

)

(21)

where,

Σ̂wi
=

(

N
∑

n=1

z2i,nΣ
−1 +Σ−1

wi

)−1

and,

µ̂wi
= Σ̂wi

(Σ−1
N
∑

n=1

zi,nx̃n +Σ−1
wi

µwi
)

given,305

x̃n = xn − µ−w_iz_i,n

such that w_i corresponds to all columns except the ith column of interest and z_i,n corresponds
to all rows of zn except the ith row.
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z update

znewn ∼ N
(

µ̂z , Σ̂z

)

(22)

where,
Σ̂z = (WTΣ−1W + I)−1

and,310

µ̂z = Σ̂zW
TΣ−1xn

Algorithm 1 Bayesian CCA - Gibbs Sampling (MCMC)

initialise: Σ,µ,W, z using the priors given appropriately chosen hyperparameters
for Ns number of samples do

Sample Σnew using Equation (19)
Sample µnew using Equation (20)
for i = 1 . . . , d do

Sample wnew
i using Equation (21)

end for

Sample znewn using Equation (22)
end for

return Samples of Σ,µ,W, z

Following application of Algorithm 1 for a desired number of samples, the resulting samples of W(1)

(i.e. the observability matrix) can be propagated to obtain samples of the state transition matrix
and subsequently propagated further onto the modal properties in the usual way for a linear dynamic
system [4], obtaining sampled posterior distributions.

Despite the useful property of MCMC techniques – guaranteed convergence to the true posterior in315

the limit of the number of samples – such techniques can be inherently slow and computationally
inefficient, especially if the posteriors are highly correlated in Gibbs samplers.

3.2.2. Variational Bayes

VI is a well-known form of Bayesian inference and common alternative to MCMC, used to approx-
imate intractable posterior distributions with analytical approximations (see e.g. [67], [68]). The320

general premise of VI is to select a suitable approximation (surrogate) from a tractable family of dis-
tributions and try to make the approximation as close to the true (intractable) posterior as possible.
This is achieved by minimising the KL divergence KL(q||p) from the surrogate distribution q to the
true posterior distribution p. The minimisation of the KL divergence is equivalent to maximising
the evidence lower bound (ELBO), which is equal to the negative KL divergence up to an additive325

constant. The ELBO can also be deőned as the sum of the expected log of the joint distribution,
and the entropy of the variational distribution.

Assuming the surrogate posterior is determined by some free parameters, then the problem of VI
reduces to a more familiar optimisation problem [67]. Which, for certain cases, can be solved using
coordinate-ascent and conducted efficiently in a manner similar to the expectation maximisation330
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(EM) algorithm [67]. When latent variables zn and the parameters of the model θ are desired, as is
the case in Bayesian CCA, then the method is known as variational Bayes (VB).

An important step in VB is deőning the form of the surrogate posterior. Here the mean-őeld approx-
imation [69] is chosen, where the posterior can be fully factorised in the form q(z) = q(θ)

∏J
j=1 qj(zj).

Adopting a mean őeld approximation, the surrogate posterior for Bayesian CCA takes the following335

factorised form,

q(z,µ,Ψ,W) = q(z)
d
∏

i=1

q(wi)q(µ)q(Ψ) (23)

where

q(zn) ∼ N
(

zn|µ̆z , Σ̆z

)

(24)

q(Ψ) ∼ W
(

Ψ|K̆
−1

, ν̆
)

(25)

q(wi) ∼ N
(

wi|µ̆wi
, Σ̆wi

)

(26)

q(µ) ∼ N
(

µ|µ̆µ , Σ̆µ

)

(27)

Following the VB methodology, the update equations for the model parameters were derived and
are given in Equations (28)-(31). The complete algorithm is summarised in Algorithm 2, whilst the
full derivation of these updates is also provided in Appendix C, with the omission of the sparsity340

inducing prior present in [61] and with generic mean and covariance priors.

The variational update equations for the parameters of the model described in Figure 2, are given
below. In all equations, ⟨·⟩ represents the expected value E [·] of that variable, or a combination
of variables, with respect to the other parameters. Here q⋆(·) refers to the updated surrogate
distribution, with the associated equations for the statistical moments stated in each case.345

zn update

q⋆(zn) ∼ N
(

µ̆z , Σ̆z

)

(28)

where

Σ̆z =
(

⟨WTΨW⟩+ I

)−1

and
µ̆z = Σ̆z⟨W⟩T⟨Ψ⟩(xn − ⟨µ⟩)

wi update

q⋆(wi) ∼ N
(

µ̆wi
, Σ̆wi

)

(29)
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where350

Σ̆wi
=

(

N
∑

n=1

⟨zi,nzi,n⟩⟨Ψ⟩+Σ−1
wi

)−1

and

µ̆wi
= Σ̆wi

(

⟨Ψ⟩
N
∑

n=1

x̃n⟨zi,n⟩+Σ−1
wi

µwi

)

given
x̃n = xn − ⟨µ⟩ − ⟨w_i⟩⟨z_i,n⟩

such that w_i corresponds to all columns except the ith column of interest and z_i,n corresponds
to all rows of zn except the ith row.

Ψ update355

q⋆(Ψ) ∼ W
(

K̆
−1

, ν̆
)

(30)

where 2

K̆ = K0 +
N
∑

n=1

〈

(xn − µ−Wzn)(xn − µ−Wzn)
T

〉

and
ν̆ = ν0 +N

µ update

q⋆(µ) ∼ N
(

µ̆µ , Σ̆µ

)

(31)

where
Σ̆µ = (N⟨Ψ⟩+Σ−1

µ )−1

and360

µ̆µ = Σ̆µ

(

⟨Ψ⟩
N
∑

n=1

(xn − ⟨W⟩⟨zn⟩) +Σ−1
µ µµ

)

2Note the need to expand the following expectation in implementation to include additional terms arising from
the total law of variance.
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Algorithm 2 Bayesian CCA - Coordinate Ascent Variational Inference (CAVI)

initialise: Variational factors q(z,µ,Ψ,W)
while the ELBO has not converged do

Update local variational parameters:
Update q⋆(zn) using Equation (28)

Update global variational parameters:
for i = 1, . . . , d do

Update q⋆(wi) using Equation (29)
end for

Update q⋆(Ψ) using Equation (30)
Update q⋆(µ) using Equation (31)

Compute ELBO(q) = E [ln p(x, z,θ)] + E [ln q(z,θ)]
end while

return Surrogate posterior distributions of Σ,µ,W, z

3.3. Overall methodology

Having explored two different forms of inference for the recovery of the posteriors in Bayesian CCA,
it is perhaps useful to summarise the general procedure in the context of Bayesian SSI. The following
summary gives an overview of the steps needed to conduct Bayesian SSI to a desired dataset.

Given response data, y ∈ R
l×N ′

, with l sensors and N ′ datapoints:365

Step 1. Construct Block Hankel matrices of the future, Yf ∈ R
lj×N , and the past, Yp ∈ R

lj×N ,
where 2j is the number of block row lags in the Hankel matrix construction and N = N ′ − 2j + 1.

Step 2. Apply Algorithm 1 or Algorithm 2 with the inputs x(1) = Yf and x(2) = Yp, given370

appropriately chosen priors and convergence criteria3 to obtain the posteriors over the model pa-
rameters.

Step 3. If Algorithm 1 has been applied, remove a proportion of the initial samples (as burn in)
and continue to Step 4. If Algorithm 2 has been applied, draw Monte Carlo samples from the375

posterior distributions over the columns of the weight matrix and reconstruct the full weight matrix
to provide a sample of the observability, i.e. W(1).

Step 4. Using the samples of the observability matrix, calculate the state transition matrix4 A, the

3The convergence criteria, or desired number of samples, in both algorithms must be selected. The choice and
specification of these in optimisation tasks constitutes its own research field and are therefore not explored in depth.

4There are multiple approaches used to do this step. The authors adopt the balanced truncation algorithm, see
Chapter 8 in Katayama [4]

15



output matrix C, and the modal properties in the usual way for state space models (e.g. Section380

3.3 in [16]), for each sample. Considering all the samples, this provides an approximate posterior
distribution over each modal property.

4. Simulated case study

4.1. Benchmarking the proposed algorithm

The performance of the proposed Bayesian SSI algorithm, outlined in Section 3.3, will be bench-385

marked here by application to simulated data obtained using a numerical model of the four degree-of-
freedom shear frame illustrated in Figure 3. This structure is identical to that described by Reynders
in [25], although a new simulation is used. Using a mass-spring-damper model to represent the dy-
namics of the system, the mass ma assigned to each ŕoor is 2 kg and the stiffness ka applied to the
individual columns (springs) on each ŕoor is 2500 N/m, where a = 1, 2, 3, 4. The damping in each390

column is proportional to the associated stiffness, such that ca = ka/1000. Horizontal forces are
assumed to apply to each ŕoor as the inputs ua(t), whilst the horizontal acceleration of each ŕoor
are the corresponding outputs ya(t).

The equations of motion of the shear frame in continuous time can be deőned as the ordinary
differential equation395

[M]ẍ+ [C]ẋ+ [K]x = f (32)

In OMA, the input is unknown and often assumed to be Gaussian white noise. In this example,
the forcing f is assumed to be represented by a white noise process in continuous time acting
on each ŕoor, formally the derivative of a Brownian motion. This deőnition results in a linear
stochastic differential equation which can be discretised exactly using Van Loan discretisation [70].
The forcing white noise process is chosen with a spectral density of 5× 10−5 (m s−2)2 Hz−1 whilst400

some Gaussian measurement noise is added to each channel output ya(t), sampling from a zero-
mean normal distribution with a standard deviation of 0.05 m s−2. Data are then simulated using
a sampling frequency of 50 Hz with length N = 216.
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Figure 3: Four-story shear building model used to simulate responses given a white noise input on each floor

Based on the model described in Figure 3, the matrix coefficients of Equation (32) are

M =









m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4









, K = 2









k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4 −k4
0 0 −k4 k4









, C = K/1000

4.1.1. Priors405

Before carrying out any inference, attention must őrst be paid towards establishing priors for the
model. Given the general model presented in Section 4.1, the following prior structure was chosen,

w
(m)
i ∼ N

(

0 , σ2
wi
I
)

(33)

µ(m) ∼ N
(

0 , σ2
µ
I
)

(34)

Σ(m) ∼ IW (K0 , ν0) (35)

where the independent columns wi share the same prior deőnition. Although it has been shown
in the literature that the columns of the observability matrix (the singular vectors) are not strictly
independent [71] a posteriori, independent priors on the columns does not necessarily restrict the410

columns of the posterior to be independent. The remaining hyperparameters, σµ = σwi
= 1,

K0 = 1 × 102, ν0 = D + 2, were chosen to be weakly informative and proper, to provide sufficient
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ŕexibility to the model. Samples from the chosen prior over the weight matrices were then used to
generate samples of the observability matrix and subsequently propagated through an eigenvalue
decomposition to obtain estimates for the posterior distributions over the modal properties. The415

prior distributions over the modal properties are presented in Figure 4.

It is useful to brieŕy discuss the general shape of the priors on the modal parameters. Despite Gaus-
sian assumptions in the model, speciőcally on the weight prior, the propagated uncertainty result
in distributions that appear to be non-Gaussian or even multimodal in nature. The authors believe
this is likely caused by the size of the prior variance coupled with the non-linear transformation in420

the eigenvalue decomposition, which is most evident when considering larger variances.
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Figure 4: Prior distributions over the natural frequencies (a), damping ratios (b) and mode shapes (c), obtained using
propagated Monte Carlo samples of the priors as defined by Equations 11 - 14.

19



4.1.2. Posteriors

Assuming the correct number of modes (4 modes – corresponding to a state space dimension of 8),
and 40 time lags in the construction of the Hankel matrix, the Gibbs sampling implementation of
Bayesian SSI (Algorithm 1) was used to recover posterior distributions over the modal properties of425

the simulated structure. 5000 samples were drawn, with the őrst 20% removed as ‘burn in’ to remove
transients in the Markov chain [67]. The posteriors over the modal properties are shown in Figure
5. Similar to the Gibbs sampling case, assuming the correct number of modes, data were analysed
using the VI implementation of Bayesian SSI (Algorithm 2). After the recovery of the closed form
posterior over the observability, 4000 samples were drawn and propagated. The resulting posteriors430

over the modal properties are also presented in Figure 5.

On interpreting Figure 5, one can conclude that the surrogate posteriors over the modal parameters
obtained using VB closely align with the true posteriors obtained through Gibbs sampling. This
closeness is evident from the aligned expected values and the shape of the posteriors, which cor-
respond well. Furthermore, the posterior estimates of both schemes converge towards the SSI-Cov435

result. This convergence is largely expected as, given the use of weakly informative priors and enough
data, the maximum-a-posteriori (MAP) will be close to the MLE, i.e. SSI-Cov. Some minor differ-
ences can be seen. The őrst is in the mean estimates of őrst and second damping ratios compared
to the SSI-Cov result. This misalignment is a consequence of the priors, which cause slight bias in
the posterior, more so than the damping ratio estimates for the third and fourth modes. The second440

difference can be seen in the variance of the third mode shape in Figure 5c. A non-Gaussian pos-
terior recovered from the Gibbs scheme explains this difference. This phenomenon originates from
application of the eigenvalue decomposition to obtain the mode shapes. However, this difference is
more likely a result of an underprediction of the variance using VI. Under or overprediction of the
variance is a common characteristic of VI schemes which can occur when some conditional distribu-445

tions are factorised out of the model during its construction [67]. The omission of these conditionals
is a result of the independence assumptions in the surrogate posterior deőnition. Possible misalign-
ment of the variance is one of several trade-offs that needs to be considered when prioritising the
computational efficiency of variational methods over convergence to the true posterior guaranteed
by MCMC sampling.450
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Figure 5: Identified posterior distributions over the recovered natural frequencies (a), damping ratios (b) and mode
shapes (c), obtained using the Gibbs sampling and VB implementations of Bayesian SSI to response data simulated
from a 4DOF linear dynamic system (see Figure 3).
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4.2. Influence of data length on variance

The inŕuence of data length on the variance of the modal posteriors was also investigated. Using
the same system parameters and priors described in Section 4.1.1, the data length was varied from
217 − 212 in decreasing powers of two, with the range selected solely for demonstrative purposes.
The results for the natural frequencies and the damping ratios are displayed in Figures 6a and 6b,455

respectively. As is perhaps expected, the variance of the posterior estimates of both frequency and
damping ratio reduce given increasing amounts of data, meanwhile the means of the distributions
also converge towards the true values from the model. The inŕuence of data length and perhaps
other factors (lags in the Hankel matrix) on the recovered uncertainty has interesting implications
and could be used to reduce the amount of data collection and storage required in OMA, for a460

desired level of conődence. This poses an interesting question on choosing the right amount of data
for a given decision-making task, which will be considered in future work.
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Figure 6: Identified posterior distributions over the natural frequencies (a) and damping ratio (b) estimates for each
mode, obtained using Bayesian SSI with varying data length N. The true values are represented by - -
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4.3. Posterior variance vs sample variance

In this section, the posterior variance over the natural frequencies recovered using Bayesian SSI465

on a single dataset is compared to the variance from multiple SSI estimates across the same data.
Multiple subsets of the larger dataset in the form of a sliding window, were analysed with SSI to
provide some indication as to the variance in the data. Using an original dataset of length N = 214,
5000 smaller datasets were generated using a sliding window, moving one timestep at a time, such
that each smaller dataset were N = 214 − 5000 in length. The number of lags was chosen to be 40470

with all other hyperparameters reŕecting those shown in Section 4.1.1. Figure 7 shows the Bayesian
posterior from Bayesian SSI, and the sample distribution of the 5000 SSI tests, over the normalised
natural frequencies for all four modes.

0.9975 1.0000 1.0025 1.0050
Normalised Frequency

0

200

400

600

P
ro
b
ab

il
it
y

mode 1

0.996 0.998 1.000
Normalised Frequency

0

500

1000

mode 2

0.9975 1.0000 1.0025
Normalised Frequency

0

200

400

600

mode 3

0.995 1.000
Normalised Frequency

0

200

400

mode 4

SSI (sliding window) Bayesian SSI posterior Truth SSI (full dataset)

Figure 7: Plot of the posterior distribution obtained using Bayesian SSI on a single dataset, presented as a histogram of
samples and the SSI result for the same dataset. Also plotted is the sample distribution of results obtained by applying
SSI to 5000 subsets of the data, obtained by applying a one timestep sliding window. The resulting distribution is
also represented by a histogram of the samples.

The results shown in Figure 7 suggest that the variance found through multiple SSI analyses is
broadly similar to that of the Bayesian posterior although not identical, displaying slightly inŕated475

variances. This is largely expected due to the fundamentally different assumptions about the uncer-
tainty. Furthermore, the mean of the posteriors align with the SSI estimates obtained from the full
available data.
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4.4. Variability study480

In this section, the posterior means of the natural frequencies recovered using Bayesian SSI are
compared to estimates recovered using SSI for multiple data generated with different realisations of
the noise to study the variability of each algorithm. Each dataset was chosen to have length N = 214

and similarly, the number of lags was chosen to be 40 with all other hyperparameters reŕecting those
in Section 4.1.1, with the exception of σ2

wi
= 102. Figure 8 shows the posterior means obtained on485

500 datasets using Bayesian SSI, and the equivalent estimates from SSI, for the normalised natural
frequencies at all four modes.
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Figure 8: Scatter plot of the posterior means obtained using Bayesian SSI, and the corresponding SSI estimates, for
500 datasets with different realisations of the noise. Also plotted are the sample means from both cases.

Inspecting the results in Figure 8, it appears that the performance of Bayesian SSI (under weakly
informative priors) is very close to that of classic SSI under sufficient data, with the mean from
multiple realisations of the noise averaging the truth, and with comparable sample variances in each490

case. In the case of low data regimes or lower prior variance, however, one may expect the mean of
the estimates to align closer to the prior, as is the case in Bayesian methods.
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5. Case Study: Z24 bridge

To demonstrate applicability to real world systems, the proposed Bayesian SSI algorithm is used to
analyse vibration data obtained from the Z24, a now decommissioned bridge once located between495

Bern and Zurich, Switzerland. The Z24-Bridge has become a standard benchmark when demonstrat-
ing vibration-based damage diagnosis methods, new system identiőcation and OMA techniques, and
UQ tasks in structural dynamics, making it a sensible choice for this study. For more information
on the testing of the Z24, a full description, initial analysis and subsequent testing, the reader is
directed towards (bwk.kuleuven.be/bwm/z24) [72, 73].500

This purpose of this study was to evaluate the behaviour of the new Bayesian SSI algorithm when
confronted with measured data. Analysis is only conducted using the variational approach, since
the high computation time of Gibbs sampler was deemed impractical. Results at two different single
model orders are shown, followed by a stabilisation diagram to assess the convergence of the modal
properties at different model orders.505

Data, corresponding to acceleration measurements obtained on the 24th December 1997, were used
for processing. This dataset comes from the long-term continuous monitoring test set, and in this
case comprises data from seven accelerometers corresponding to one side of the Z24 bridge. The őrst
segment of the data (8192 data points at fs = 100 Hz) was formulated into a Hankel matrix with
40 lags (corresponding to 20 past lags and 20 future lags). The priors of the Bayesian SSI model510

were left unchanged from those used in the previous numerical simulation (see Section 4.1.1) except
for the precision hyperparameter K0, which was changed to the identity providing some additional
ŕexibility to the model.

5.1. Single model order

Conducting analysis at model orders of 10 and 30, chosen solely for demonstrative purposes, the515

posterior distributions of the modal characteristics were obtained using the variational implementa-
tion of Bayesian SSI. The posteriors over the natural frequencies, represented by histograms of the
samples and overlaid over the sum of the singular valued spectrum spectra from each channel, are
shown in Figures 9 and 10.

It is evident from both Figure 9a and Figure 10a that histograms with means centred around the520

apparent natural frequencies (peaks in the spectrum) demonstrate signiőcantly lower variance than
histograms corresponding to frequencies likely more spurious in nature. This lower variance can be
seen more clearly in the enhanced Figures 9b, 9c, 10b and 10c and is most noticeable around 4 Hz,
5 Hz, 10-11 Hz. In contrast, larger variances are observed in regions where there is typically less
evidence of a natural frequency. Focusing speciőcally on the case where the model order is 30, larger525

variances can be seen at 4.5 Hz, 9.8 Hz and 11.8 Hz. This obvious variability in the variance for
each identiőed frequency suggests that there is a higher probability or belief in some frequencies to
describe the data over others.
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Figure 9: The first singular spectrum of the Z24 data overlaid with the posteriors of the natural frequencies, represented
by histograms of the natural frequency samples recovered using Bayesian SSI at a model order of 10 is given in (a).
Regions of interest are shown in (b) and (c), with axes limits chosen to highlight the differences in the mean and
variance of the histograms in different regions.

5.2. Stabilisation diagram

As the true number of modes is unknown, it is standard practice in OMA to construct a stabilisation530

diagram. Stabilisation diagrams are a tool used by the practitioner to determine the łphysicalž poles
of a system, helping to decide the nature of the identiőed complex eigenvalues i.e. spurious or real in
a physical context. The decision of which is often governed by some heuristic criteria on the stability
or consistency of the modal parameters across a range of model orders.

After conducting Bayesian SSI at multiple model orders, the resulting stabilisation diagram for the535

Z24 is shown in Figure 11. The samples are plotted with transparency such that darker regions
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Figure 10: The first singular spectrum of the Z24 data overlaid with the posteriors of the natural frequencies, repre-
sented by histograms of the natural frequency samples recovered by Bayesian SSI at a model order of 30, is given in
(a). Regions of interest are shown in (b) and (c), with axes limits chosen to highlight the differences in the mean and
variance of the histograms in different regions.

indicate areas with a higher density of samples. A second stabilisation diagram is also provided in
Figure 12, using kernel density estimation (KDE) őts over the samples to visualise the uncertainty.
This provides a plot similar to the histogram representations of the posteriors in Figures 9 and
10, but at multiple model orders. The inclusion of uncertainty in stabilisation diagrams is not an540

entirely new concept having already been presented, and proven beneőcial in assisting model order
selection [39], although no agreed form has been deőned. In this plot, non-conjugate poles have
been removed, however no stability metrics have been applied, purely to observe the raw form of
the stabilisation diagram.
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Figure 11: Stabilisation diagram of the Z24 bridge, constructed using the natural frequency samples obtained using
Bayesian SSI at a range of model orders.

Figure 12: Stabilisation diagram of the Z24 bridge, constructed using the natural frequency samples obtained using
Bayesian SSI at a range of model orders. The kernel density estimation (KDE) of the samples is shown, where each
KDE is fitted using samples for that model order and order of identified mode.

Considering the distributions of the posteriors in Figure 12, one can clearly see that peaks in the545

Welch spectrum, typically indicative of a natural frequency, coincide with the posterior means and
are consistent across multiple model orders. This is true for multiple peaks, most distinctly around
4 Hz, 5 Hz and 10 - 11 Hz. The variance of the distributions in these areas is also low across a broad
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range of model orders, especially when compared to more spurious frequency estimates away from
natural frequencies. Thus indicating a higher level of conődence in the ability of certain frequencies550

to describe the dynamics. Another conspicuous observation is the general increase in variance at
higher model orders, particularly in the more spurious estimates, as moving to higher model orders
grant greater ŕexibility with numerous ways for the model to explain the data.

6. Conclusion

In this work, a new Bayesian perspective on OMA has been presented. Using the probabilistic555

interpretation of SSI-Cov, it has been shown that prior knowledge can be incorporated over the
model parameters to form a Bayesian SSI algorithm capable of recovering posterior distributions
over modal characteristics of interest. This new approach was presented with two possible methods
of inference: Markov chain Monte Carlo and variational Bayes. These two forms of Bayesian SSI were
then benchmarked using a simulated case study. The prior distributions over the modal parameters560

were shown, followed by the recovered posteriors; which demonstrated good agreement with one
another and convergence of the posterior mean towards the conventional SSI result. The effects of
data length on the recovered posteriors was also brieŕy explored. It was shown that, with increasing
data length, the posterior mean trends towards the truth whilst the variance decreases as expected.
Finally, the practicality and applicability of the algorithm was then illustrated using data obtained565

from an in-service structure, the Z24 bridge. Recovery of the modal parameters and associated
posterior uncertainty was shown at single model orders and in a stabilisation diagram using the
natural frequencies estimates. The results showed that posteriors with means centred around the
apparent natural frequencies display much lower variance when compared to more spurious frequency
estimates, further away from the natural frequencies.570

As is typical with Bayesian UQ, the choice and appropriate speciőcation of the priors is an important
task. In the case of Bayesian SSI, prior distributions are not placed over the modal properties but
instead over the columns of the weight matrices (the observability and controllability). This choice
of prior setting remains unchanged from the initial deőnition of Bayesian CCA [61, 62] but may not
be the most suitable for this chosen application. It is interesting to imagine if priors over the modal575

properties could be chosen and embedded, such that estimates are constrained to be physically
meaningful. This possible prior speciőcation is to be explored in future work.

It is believed that the methods introduced in this work will enable researchers to tackle existing
OMA research challenges and explore the many capabilities of this now Bayesian SSI algorithm.
The availability of a Bayesian form and access to the posterior uncertainty may assist in the solution580

of other important research challenges in OMA, such as model order selection, automatic OMA
and sensor placement. In SHM frameworks, one could foresee the inclusion of modal posterior
uncertainties as a valuable addition to damage assessment and decision-making; providing new
information for decision-theoretic problems. Going forward, the authors would promote the Bayesian
SSI technique presented in this work as a powerful building block for use in uncertainty-driven modal585

analysis and beyond.
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Appendix A. Canonical-variate weighted, covariance-driven stochastic subspace iden-

tification

For the reader’s beneőt, a concise description of canonical-variate weighted SSI-Cov algorithm for
an output-only case is given here. This derivation follows descriptions for the balanced (canonical-600

variate weighted) algorithm given in Katayama [4] and Van Overschee and De Moor [3]. The reader
is directed towards the aforementioned texts for a complete exposition.

Consider an rth order discrete state space model of a linear dynamic system, equivalent to a me-
chanical system with ndof degrees of freedom, such that r = 2ndof , in the form,

xk+1 = Axk + wk

yk = Cxk + vk
, E

[[

wq

vq

]

[

wT
s vTs

]

]

=

[

Q S

ST R

]

δqs (A.1)

where yk ∈ R
l is the output vector at discrete time step k, xk ∈ R

p is the internal state vector,605

A ∈ R
p×p is the discrete state matrix such that A = expm(Ac∆t) where Ac is the continuous state

matrix, ∆t is the sampling time and C is the output matrix. The terms wk ∈ R
p and vk ∈ R

l are
samples of the process noise and measurement noise respectively, E[·] denotes the expectation and
δqs is the Kronecker delta for any two samples in time q and s. The process and measurement noise
are both assumed to be stationary, white noise Gaussian with zero mean and some covariance given610

by the second part of Eq.(A.1).

Given output measurements from this stationary process, based on l measurement channels, the
data can be arranged into a block Hankel matrix H ∈ R

2lj×N to form,

H = Y0|2j−1 =

[

Y0|j−1

Yj|2j−1

]

=

[

Yp

Yf

]

(A.2)
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with 2j block rows and N columns, with a block consisting of l rows and where j > 0 and N is
sufficiently large (i.e. much larger than 2lj) and where j > r and the number of columns of block615

matrices is N . The resultant cross-covariance matrix of the future Yf with the past Yp is therefore
given by,

Σ̃ =
1

N

[

Yp

Yf

]

[

YT

p YT

f

]

=

[

Σpp Σpf

Σfp Σff

]

(A.3)

where Σpf and Σfp are block cross-covariance matrices, and Σff , Σpp are block auto-covariance
matrices respectively. The canonical correlations Λ = diag(λ1, · · · , λr) between the future and past
are the singular values [4], obtained through the SVD of the following matrix,620

Σ
−1/2
ff ΣfpΣ

−T/2
pp = V1ΛVT

2 ⋍ V̆1Λ̆V̆
T

2 (A.4)

where Σ
1/2
ff Σ

T/2
ff = Σff , such that,

Σfp ⋍ Σ
1/2
ff V̆1Λ̆V̆

T

2Σ
T/2
pp (A.5)

where V1 and V2 are the left and right singular vectors, respectively and Λ̆ neglects sufficiently small
singular values (or canonical correlations) in Λ such that the resultant state vector has the dimension
d = dim(Λ̆). The cross-covariance matrix, Σpf , can be decomposed into the corresponding extended
observability (O) and controllability (C) matrices using Σfp = OC such that,625

O = Σ
1/2
ff V̆1Λ̆

1/2
, C = Λ̆

1/2
V̆

T

2Σ
T/2
pp (A.6)

with rank(O) = rank(C) = d. Note in the context of output only SSI, the controllability has little
meaning. The extended observability and controllability matrices can then be used to recover the
state A and output C matrices, and consequently the modal properties, in the usual manner for
operational modal analysis (see Section 3.3 in [16] and also [74]). The method described here for
recovering the system matrices is one of many. See stochastic balanced realisation algorithm B,630

Chapter 8 in Katayama [4].
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Appendix B. Bayesian CCA - Gibbs Sampler Derivation

This appendix provides a full derivation for the update equations provided in Algorithm 1, aligning
with the Bayesian CCA formulation presented in Klami and Kaski [62] but without the sparsity
prior and with the inclusion of generic priors.635

Given the model deőned in Figure 2, the joint can be written as,

J = p(x, z,W,Σ,µ) = p(x|z,W,Σ,µ)p(z)p(Σ)p(µ)p(W) (B.1)

Assuming independent columns of W, the joint can also be deőned as,

J = p(x|z,W,Σ,µ)p(z)p(Σ)p(µ)

d
∏

i=1

p(wi) (B.2)

Taking the natural log of the joint, the individual components of the log joint are given by,

lnJp(x|z,W,Σ,µ) ∝ −
N

2
ln |Σ| −

1

2

N
∑

n=1

(xn − (Wzn + µ))TΣ−1(xn − (Wzn + µ)) + const (B.3)

lnJp(z) ∝ −
N

2
ln |I| −

1

2

N
∑

n=1

(zn − 0)TI−1(zn − 0) = −
1

2

N
∑

n=1

zTnzn + const (B.4)

lnJΣ ∝
ν0
2
ln |K0| −

ν0D

2
ln(2)− ln

(

Γ
(ν0
2

))

−
ν0 +D + 1

2
ln |Σ| −

1

2
Tr
(

K0Σ
−1
)

+ const (B.5)

lnJp(µ) ∝ −
1

2
ln |Σµ| −

1

2

N
∑

n=1

(µ− µµ)
TΣ−1

µ (µ− µµ) + const (B.6)

lnJp(wi) ∝ −
1

2
ln |Σwi

| −
1

2

N
∑

n=1

(wi − µwi
)TΣ−1

wi
(wi − µwi

) + const (B.7)

where,
d
∏

i=1

p(wi) = exp

{

d
∑

i=1

ln p(wi)

}

(B.8)

Using the standard theory of Gibbs MCMC sampling the update equations for the model parameters640

can be constructed. The premise of Gibbs sampling is to sample each variable in turn, conditioned
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on the values of the other variables in the joint distribution to obtain a sample from the conditional
distribution that is sought. This can be achieved by considering the log of the joint with respect to
the parameter of interest, establishing the new conditional distribution, and evaluating that function
given the current estimates for all the necessary model parameters.645

The following subsections summarise the derivation of the individual updates. Even though a spec-
iőed order is given in Algorithm 1, the nature of Gibbs sampling means that sampling from the
conditionals can be conducted in any order. As such, the equations here are written without speci-
fying which parameters are current or previous estimates, to simplify notation for clarity.

Appendix B.1. Sample Σ650

Collecting the terms of the log joint pertaining to Σ

ln p(Σnew) ∝ −
N

2
ln |Σ| −

1

2

N
∑

n=1

(xn − (Wzn + µ))TΣ−1(xn − (Wzn + µ))

−
ν0 +D + 1

2
ln |Σ| −

1

2
Tr
(

K0Σ
−1
)

(B.9)

Using xTAx = trace(AxxT),

ln p(Σnew) ∝ −
N

2
ln |Σ| −

1

2
Tr

(

Σ−1
N
∑

n=1

(xn − µ−Wzn)(xn − µ−Wzn)
T

)

−
ν0 +D + 1

2
ln |Σ| −

1

2
Tr
(

K0Σ
−1
)

(B.10)

Combining terms, the familiar inverse Wishart form can be obtained.

ln p(Σnew) ∝ −
ν0 +N +D + 1

2
ln |Σ|−

1

2
Tr

((

K0 +

N
∑

n=1

(xn − µ−Wzn)(xn − µ−Wzn)
T

)

Σ−1

)

(B.11)

Therefore, a new sample of Σ can be drawn from the found conditional distribution,

Σnew ∼ IW (K0 +K , ν0 +N) (B.12)

where,655

K =
N
∑

n=1

(xn − µ−Wzn)(xn − µ−Wzn)
T (B.13)
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Appendix B.2. Sample µ

Collecting the terms of the log joint pertaining to µ, one obtains,

ln p(µnew) ∝ −
1

2

N
∑

n=1

{

(xn − (Wzn + µ))TΣ−1(xn − (Wzn + µ))
}

−
1

2
(µ− µµ)

TΣ−1
µ (µ− µµ)

(B.14)

Expanding and ignoring terms not containing µ gives,

ln p(µnew) ∝ −
1

2

N
∑

n=1

{

µTΣ−1µ− µTΣ−1(xn −Wzn)− (xn −Wzn)
TΣ−1µ

}

−
1

2
(µTΣ−1

µ µ− µT

µΣ
−1
µ µ− µTΣ−1

µ µµ) (B.15)

setting Σ̂
−1
µ = NΣ−1+Σ−1

µ , and in the knowledge that I = Σ̂
−1
µ Σ̂µ, the log form of a Gaussian can

be reached:660

ln p(µnew) ∝ −
1

2

{

µTΣ̂
−1
µ µ− µTΣ̂

−1
µ Σ̂µ(Σ

−1
N
∑

n=1

(xn −Wzn) +Σ−1
µ µµ)

−

(

N
∑

n=1

(xn −Wzn)
TΣ−1 + µµΣ

−1
µ

)

µT

}

(B.16)

Therefore, a new sample of µ can be drawn from the conditional distribution deőned by,

µnew ∼ N
(

µ̂µ , Σ̂µ

)

(B.17)

where,
Σ̂µ = (NΣ−1 +Σ−1

µ )−1 (B.18)

and,

µ̂µ = Σ̂µ(Σ
−1

N
∑

n=1

(xn −Wzn) +Σ−1
µ µµ) (B.19)

Appendix B.3. Sample wi

Collecting the terms of the log joint pertaining to W665
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ln p(wnew
i ) ∝ −

1

2

N
∑

n=1

{

(xn − (Wzn + µ))TΣ−1(xn − (Wzn + µ))
}

−
1

2

d
∑

i=1

{

(wi − µwi
)TΣ−1

wi
(wi − µwi

)
}

(B.20)

As the intention is to update only one column of W at a time, i.e. the independent column wi, the
above equation can be separated as follows,

ln p(wnew
i ) ∝ −

1

2

N
∑

n=1

{

(xn − µ−w_iz_i,n −wizi,n)
TΣ−1(xn − µ−w_iz_i,n −wizi,n)

}

−
1

2
(wi − µwi

)TΣ−1
wi

(wi − µwi
) (B.21)

where the negative indices notation, ·_i, refers to every column/row of except the one speciőed.
Although one column is updated at a time, as per the prior construction, all columns are used in
the calculation of the likelihood. Therefore, correlation between the columns may be seen in the670

posteriors if there is sufficient evidence in the data for this. Letting x̃n = xn − µ −w_iz_i,n, this
equation can be simpliőed to,

ln p(wnew
i ) ∝ −

1

2

N
∑

n=1

{

(x̃n −wizi,n)
TΣ−1(x̃n −wizi,n)

}

−
1

2
(wi − µwi

)TΣ−1
wi

(wi − µwi
) (B.22)

and expanded to give,

ln p(wnew
i ) ∝ −

1

2

N
∑

n=1

{

x̃T

nΣ
−1x̃n − (wizi,n)

TΣ−1x̃n − x̃T

nΣ
−1wizi,n + (wizi,n)

TΣ−1wizi,n

}

−
1

2
(wT

i Σ
−1
wi

wi −wT

i Σ
−1
wi

µwi
− µT

wi
Σ−1

wi
wi + µT

wi
Σ−1

wi
µwi

) (B.23)

As zi,n is a scalar, it can be manipulated as such, rearranging to give,

ln p(wnew
i ) ∝ −

1

2

{

N
∑

n=1

{zi,nzi,n}w
T

i Σ
−1wi −wT

i Σ
−1
wi

wi −
N
∑

n=1

zi,nw
T

i Σ
−1x̃n −

N
∑

n=1

zi,nx̃
T

nΣ
−1wi

−wT

i Σ
−1
wi

µwi
− µT

wi
Σ−1

wi
wi

}

(B.24)
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setting Σ̂
−1
wi

=
∑N

n=1{zi,nzi,n}Σ
−1−Σ−1

wi
, and in the knowledge that I = Σ̂

−1
wi

Σ̂wi
, the following log675

normal form can be reached:

ln p(wnew
i ) ∝ −

1

2

{

wT

i Σ̂
−1
wi

−wT

i Σ̂
−1
wi

Σ̂wi

(

N
∑

n=1

zi,nΣ
−1x̃n +Σ−1

wi
µwi

)

−

(

N
∑

n=1

zi,nx̃
T

nΣ
−1 + µT

wi
Σ−1

wi

)

Σ̂wi
Σ̂

−1
wi

wi

}

(B.25)

Therefore, a new sample of wi can be drawn from the conditional distribution deőned by,

wnew
i ∼ N

(

µ̂wi
, Σ̂wi

)

(B.26)

where,

Σ̂wi
=

(

N
∑

n=1

{zi,nzi,n}Σ
−1 +Σ−1

wi

)−1

(B.27)

and,

µ̂wi
= Σ̂wi

(Σ−1
N
∑

n=1

zi,nx̃n +Σ−1
wi

µwi
) (B.28)

Since each column of W is sampled independently, two methods of sampling can be used. Either:680

new columns are used in the following column updates, or the columns of the weight matrix are all
sampled using the previous value for W before őnally updating the full matrix.

Appendix B.4. Sample z

Collecting the terms of the log joint pertaining to z,

ln p(znewn ) ∝ −
1

2

N
∑

n=1

{

(xn − (Wzn + µ))TΣ−1(xn − (Wzn + µ))
}

−
1

2

N
∑

n=1

zTnzn (B.29)

which can also be written as,685

ln p(znewn ) ∝ −
1

2

N
∑

n=1

{

(xn − µ−Wzn)
TΣ−1(xn − µ−Wzn) + zTnIzn

}

(B.30)

Expanding and ignoring any terms not containing zn gives,
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ln p(znewn ) ∝ −
1

2

N
∑

n=1

{

−xT

nΣ
−1Wzn + µTΣ−1Wzn − zTnW

TΣ−1xn + zTnW
TΣ−1µ

+zTnW
TΣ−1Wzn + zTnIzn

}

(B.31)

Letting Σ̂
−1
z = (WTΣ−1W+ I), and in the knowledge that I = Σ̂

−1
z Σ̂z, the log form of a Gaussian

can be reached:

ln p(znewn ) ∝ −
1

2

N
∑

n=1

{

zTnΣ̂zzn − (xn − µ)TΣ−1WΣ̂zΣ̂
−1
z zn − zTnΣ̂

−1
z Σ̂zW

TΣ−1(xn − µ)
}

(B.32)

Therefore, a new sample of z can be drawn from the conditional distribution deőned by,

znewn ∼ N
(

µ̂z , Σ̂z

)

(B.33)

where,690

Σ̂z = (WTΣ−1W + I)−1 (B.34)

and,
µ̂z = Σ̂zW

TΣ−1xn (B.35)
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Appendix C. Bayesian CCA - Variational Bayes Derivation

This appendix provides a full derivation for the update equations provided in Algorithm 2. These
update equations differ with those presented by Wang [61] in that these equations assume indepen-
dent columns of W, matching the deőnition in [62], rather than independent rows. Either deőnition695

(row or column) is suitable but one common approach was chosen here. Unlike [61], this derivation
also includes generic priors on the model parameters.

Given the model deőned in Figure 2, the joint of the Bayesian CCA model can be deőned as,

p(x, z,W,Σ,µ) = p(x|z,W,Σ,µ)p(z)p(Σ)p(µ)p(W) (C.1)

Assuming independent columns of W, as stated in the model, and using precision Ψ, the joint can
be written as:700

p(x|z,W,Ψ,µ)p(z)p(Ψ)p(µ)
d
∏

i=1

p(wi) (C.2)

with the log of the joint having the same components as those shown in Section Appendix B.

The general premise of VI is to select a suitable approximation from a tractable family of distributions
and try to make the approximation as close to the true (intractable) posterior as possible, usually
by minimising the KL divergence. Assuming the surrogate posterior is determined by some free
parameters, this problem reduces the inference to an optimisation problem.705

The following subsections summarise the derivation of the individual parameter updates needed to
perform this optimisation. Even though a speciőed order is given in Algorithm 2, the VI scheme
means updating the parameters can be conducted in any order, as long as the order remains őxed.

Using a mean őeld approximation, the surrogate posterior is assumed to take the following factorised
form710

q(z,W,Ψ,µ) = q(z)q(Ψ)q(µ)
d
∏

i=1

q(wi) (C.3)

where,

q(zn) ∼ N
(

zn|µ̆z , Σ̆z

)

(C.4)

q(Ψ) ∼ W
(

Ψ|K̆
−1

, ν̆
)

(C.5)

q(wi) ∼ N
(

wi|µ̆wi
, Σ̆wi

)

(C.6)

q(µ) ∼ N
(

µ|µ̆µ , Σ̆µ

)

(C.7)

Given this factorised form, coordinate ascent VI (CAVI) [67] updates for the parameters of the model
can be found using,
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q⋆(φk) = Eϕ_ [p(x, z,θ)] (C.8)

where φ = {z,θ}, θ = {Ψ,µ,W}, φ_ denotes all elements of φ except the kth element being
updated and q⋆(φk) refers to the updated surrogate posterior.715

Working with the log of the joint, this can also be expressed as,

ln q⋆(φk) = Eϕ_ [ln p(x, z,θ)] + const (C.9)

Appendix C.1. Update z

Collecting the terms of the log joint pertaining to z and substituting into Equation (C.9),

ln q⋆(zn) ∝ Eϕ_

[

−
1

2

N
∑

n=1

{

(xn − (Wzn + µ))TΨ(xn − (Wzn + µ))
}

−
1

2

N
∑

n=1

zTnzn

]

(C.10)

The expectation Eϕ_ [•] is rewritten using ⟨•⟩ϕ_, such that,

ln q⋆(zn) ∝

〈

−
1

2

N
∑

n=1

{

(xn − (Wzn + µ))TΨ(xn − (Wzn + µ)) + zTnzn

}

〉

W, µ, Ψ

(C.11)

The subscript notation for the expectation is written once at the start of each update derivation720

with the relevant parameters and then omitted for clarity.

Expanding and ignoring terms not containing zn, similar to the Gibbs sampling derivation, this
reduces to,

ln q⋆(zn) ∝

〈

−
1

2

N
∑

n=1

{

zTn

(

WTΨW + I

)

zn − (xn − µ)TΨWzn − zTnW
TΨ(xn − µ)

}

〉

(C.12)

Setting Σ̆
−1
z = ⟨WTΨW⟩+ I, and given I = Σ̆

−1
z Σ̆z, the log form of a Gaussian can be reached,

ln q⋆(zn) ∝ −
1

2

N
∑

n=1

{

zTnΣ̆zzn − (xn − ⟨µ⟩)T⟨Ψ⟩⟨W⟩Σ̆zΣ̆
−1
z zn − zTnΣ̆

−1
z Σ̆z⟨W⟩T⟨Ψ⟩(xn − ⟨µ⟩)

}

(C.13)

Exponentiating, the surrogate posterior of z therefore has the following Gaussian form:725

q⋆(zn) ∼ N
(

µ̆z , Σ̆z

)

(C.14)
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where,

Σ̆z =
(

⟨WTΨW⟩+ I

)−1
(C.15)

and,
µ̆z = Σ̆z⟨W⟩T⟨Ψ⟩(xn − ⟨µ⟩) (C.16)

Update Ψ

Collecting the terms of the log joint pertaining to Ψ and substituting into Equation (C.9),

ln q⋆(Ψ) ∝

〈

−
1

2

N
∑

n=1

{

ln(|Ψ|−1) + (x− (Wzn + µ))TΨ(x− (Wzn + µ))
}

+
ν0 −D + 1

2
ln |Ψ| −

1

2
tr(ΨK0)

〉

W, µ, zn

(C.17)

Simplifying and rearranging terms, the log Wishart form can be reached such that,730

ln q⋆(Ψ) ∝ −
1

2
tr

(

Ψ

(

K0 +

N
∑

n=1

〈

(x− (Wzn + µ))(x− (Wzn + µ))T
〉

))

+
ν0 −D + 1 +N

2
ln |Ψ| (C.18)

Exponentiating, the surrogate posterior of Ψ is then deőned by,

q⋆(Ψ) ∼ W
(

K̆
−1

, ν̆
)

(C.19)

where,

K̆ = K0 +

N
∑

n=1

〈

(xn − µ−Wzn)(xn − µ−Wzn)
T

〉

(C.20)

and,
ν̆ = ν0 +N (C.21)

Update µ

Collecting the terms of the log joint pertaining to µ and substituting into Equation (C.9),735
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ln q⋆(µ) ∝

〈

−
1

2

N
∑

n=1

{

(x− (Wzn + µ))TΨ(x− (Wzn + µ))
}

−
1

2
µTΣ−1

µ
µ

−
1

2
µT

µ
Σ−1

µ
µ−

1

2
µTΣ−1

µ
µµ

〉

W, zn, Ψ

(C.22)

Simplifying,

ln q⋆(µ) ∝ −
1

2

{

µT(N ⟨Ψ⟩+Σ−1
µ

)µ− µT

N
∑

n=1

⟨Ψ⟩ (xn − ⟨W⟩ ⟨zn⟩)

−
N
∑

n=1

(xn − ⟨W⟩ ⟨zn⟩)
T ⟨Ψ⟩µ+ µT

µ
Σ−1

µ
µ+ µTΣ−1

µ
µµ

}

(C.23)

letting Σ̆
−1
µ = N ⟨Ψ⟩+Σ−1

µ
, and given I = Σ̆

−1
µ Σ̆µ,

ln q⋆(µ) ∝ −
1

2

{

µTΣ̆
−1
µ µ− µTΣ̆

−1
µ Σ̆µ

(

N
∑

n=1

⟨Ψ⟩ (xn − ⟨W⟩ ⟨zn⟩) +Σ−1
µ

µµ

)

−

(

N
∑

n=1

(xn − ⟨W⟩ ⟨zn⟩)
T ⟨Ψ⟩+ µT

µ
Σ−1

µ

)

Σ̆µΣ̆
−1
µ µ

}

(C.24)

Exponentiating, the surrogate posterior of µ thus has the following form:

q⋆(µ) ∼ N
(

µ̆µ , Σ̆µ

)

(C.25)

where,
Σ̆µ = (N⟨Ψ⟩+Σ−1

µ )−1 (C.26)

and,740

µ̆µ = Σ̆µ

(

⟨Ψ⟩
N
∑

n=1

(xn − ⟨W⟩⟨zn⟩) +Σ−1
µ µµ

)

(C.27)

Update wi

Collecting the terms of the log joint pertaining to wi and substituting into Equation (C.9),
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ln q⋆(wi) ∝

〈

−
1

2

N
∑

n=1

{

(x− (Wzn + µ))TΨ(x− (Wzn + µ))
}

−
1

2
wT

i Σ
−1
wi

wi

−
1

2
µT

wi
Σ−1

wi
wi −

1

2
wT

i Σ
−1
wi

µwi

〉

µ, zn, Ψ

(C.28)

To construct the update for a single column, the full weight matrix must be separated into the
column of interest and the remaining columns. This is achieved by deőning,

x̃n = xn − µ−w_iz_i,n (C.29)

where w_i corresponds to all columns except the ith column of interest and z_i,n corresponds to all745

rows of zn except the ith row. Using this deőnition, Equation (C.28) becomes,

ln q⋆(wi) ∝

〈

−
1

2

N
∑

n=1

{

(x̃n −wizi,n)
TΨ(x̃n −wizi,n)

}

−
1

2
wT

i Σ
−1
wi

wi

−
1

2
µT

wi
Σ−1

wi
wi −

1

2
wT

i Σ
−1
wi

µwi

〉

(C.30)

As zi,n is scalar, it can be manipulated as one. Rearranging and combining terms, this gives,

ln q⋆(wi) ∝ −
1

2

〈

wT

i

(

Σ−1
wi

+

N
∑

n=1

zi,nzi,nΨ

)

wi −wT

i

(

N
∑

n=1

zi,nΨx̃n +Σ−1
wi

µwi

)

−

(

N
∑

n=1

x̃T

nΨzi,n + µT

wi
Σ−1

wi

)

wi

〉

(C.31)

Considering the expectations,

ln q⋆(wi) ∝ −
1

2

{

wT

i

(

Σ−1
wi

+

N
∑

n=1

⟨zi,nzi,n⟩ ⟨Ψ⟩

)

wi −wT

i

(

N
∑

n=1

⟨zi,n⟩ ⟨Ψ⟩ x̃n +Σ−1
wi

µwi

)

−

(

N
∑

n=1

x̃T

n ⟨Ψ⟩ ⟨zi,n⟩+ µT

wi
Σ−1

wi

)

wi

}

(C.32)

letting Σ̆
−1
wi

=
(

Σ−1
wi

+
∑N

n=1 ⟨zi,nzi,n⟩ ⟨Ψ⟩
)

, and as I = Σ̆
−1
wi

Σ̆wi
,

q⋆(wi) ∼ N
(

µ̆wi
, Σ̆wi

)

(C.33)
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where,750

Σ̆wi
= (

N
∑

n=1

⟨zi,nzi,n⟩⟨Ψ⟩+Σ−1
wi

)−1 (C.34)

and,

µ̆wi
= Σ̆wi

(

⟨Ψ⟩
N
∑

n=1

x̃n⟨z
T

n,i⟩) +Σ−1
wi

µwi

)

(C.35)
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