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A B S T R A C T

Accurate photovoltaic power forecasting is essential for grid stability and efficient energy management. While 
Deep Learning (DL) and Machine Learning (ML) models are widely used, the extent to which each can be 
effectively leveraged remains an open question. This study thoroughly compares several ML and DL models, 
applied to both short-term (30-minute) and medium-term (3-hour) horizon. The research is built upon real-world 
data from a 53 MW PV plant located in Algeria, offering practical insights under realistic conditions. Another 
critical element of the study is the incorporation of Variational Mode Decomposition (VMD) for feature pro-
cessing, which mainly enhances information extraction. The study also includes a monthly performance analysis 
investigating the climatological variability on forecasting accuracy. Among standalone models, CNN performs 
best with an nMAE of 2.9 %, nRMSE of 5.45 %, and R2 of 0.9678 at 30 min ahead, and nMAE of 3.15 %, RMSE of 
4.15 %, and R2 of 0.9839 at 3 h forecasting. When combined with VMD, ML models, particularly ANN, SVM, and 
Random Forest frequently outperform DL-VMD counterparts. For instance, ANN achieves an nMAE of 1.08 %, 
nRMSE of 1.89 %, and R2 of 0.9961 at 30 min, and maintains excellent accuracy at 3 h with nMAE of 1.1 %, 
nRMSE of 1.4 %, and R2 of 0.9982. Collectively, this research serves as a reference for a multidimensional 
evaluation of forecasting performance. The analysis highlights the importance of selecting appropriate models 
and preprocessing techniques in PV power forecasting, tailored to location and climatological conditions, 
contributing to effectively addressing abrupt fluctuations and facilitating large-scale integration.

Introduction

Over the past few decades, renewable energy sources have become 
increasingly prominent in power supply systems, fueled by the rising 
demand for energy and their environmentally friendly attributes [1]. 
Renewables, particularly solar power, play a crucial role in decarbon-
izing sectors that are difficult to abate [2]. Supported by significant cost 
reductions, solar power has become the cheapest source of carbon-
–neutral energy worldwide [3], with further cost declines are antici-
pated, enabled by continuous technological advancements and the 
realization of economies of scale. [4]. Moreover, renewable energy 
possesses the potential to generate a broad spectrum of employment 
prospects across the entire value and supply chain. These opportunities 

span across procurement and production, sales and distribution, instal-
lation and connection, as well as operation, maintenance, and decom-
missioning [5,6].

Recent advancements in renewable energy utilization have been 
accompanied by improvements in the availability of power system data, 
including large-scale renewable energy generation and aggregate de-
mand. The analysis of this data highlights the substantial repercussions 
of the inherent intermittency of renewable energy sources due to envi-
ronmental conditions [7,8], which leads to various system faults [9] and 
affects multiple aspects of the power supply infrastructure, including 
voltage control, protection systems, frequency and angular stability of 
generators [10,11], harmonic management, and the overarching de-
mands for flexibility and system stability [12,13]. This intermittency 
complicates the task of balancing real-time energy demand with grid 
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production [5,14]. As a result, the effective integration of photovoltaic 
generation into energy systems depends on the ability to accurately 
anticipate and manage fluctuations [13,15,16]. Central to this process 
are accurate load and power forecasting, which are critical components 
of the Energy Management System (EMS). The EMS guides operational 
choices in power grids, ensuring optimal management of energy supply 
and demand between producers and load [17,18]. By enabling such 
precision, effective energy management can reduce electricity costs by 
approximately 20–30 %[19].

The prediction of photovoltaic generation involves estimating the 
future energy output of a specific PV station based on diverse elements, 
including spatial and temporal resolution [20,21], geographic location, 
weather conditions, seasonal changes, solar panel performance, power 
plant surface, and additional data related to photovoltaic energy 
exploration [22]. Predictions are generated by analyzing historical data, 
identifying trends and patterns, specifying correlations, and extrapo-
lating this information to create accurate projections and forecasts. 
Several methods for forecasting PV production are documented in the 
literature. Comprehensive evaluations of the latest advancements in the 
field can be found in various sources [23–29]. Numerous PV power 
prediction models have been introduced, all aiming to achieve better 
forecast accuracy with less computational cost [30]. These models are 
mainly classified based on the predictive model type and architecture, 
which can be categorized into persistence or naïve predictors [31–33], 
physical techniques such as cloud-based models and Numerical Weather 
Predictors [30,34], statistical techniques including empirical methods 
such as ARMA, ARIMA [35,36], SARIMA [36,37] and CARDS [38], 
machine learning-based (ML) and Deep Leaning models (DL) such as 
Artificial Neural Networks [39–44], Support Vector Machine [45–47], 

Genetic Algorithms [48], Random forest [49], Boosted Decision Tree 
[50], c-means, and k-means [51], and Expert Systems [42,51–54]. 
Additionally, there are ensemble or hybrid models that reunite two or 
more predictive models to benefit from the best features of each 
[36,50,55].

Another categorization found in existing literature involves the 
temporal prediction horizon, which delineates the intervals at which 
forecasts are generated. Forecasts for PV energy can span diverse 
timeframes, encompassing long, medium, short, and very short-term 
forecasts. The temporal precision is contingent upon the particular re-
quirements and purposes of the forecast, whether it be optimizing en-
ergy administration or strategizing for grid incorporation. A third 
classification approach is based on data type and category, depending on 
training/testing data variety, which ultimately affects the predictive 
accuracy [30]. For example, the meticulous selection of pertinent and 
accurate input data is imperative to attaining precise outcomes. Erro-
neously selecting pivotal, impactful variables will inevitably increase 
the margin of prediction error, as approved in [47,56]. An overview of 
the classification methodologies is represented in Fig. 1:

Related work

During the last decades, numerous studies have been published on 
forecasting photovoltaic generation that exhibit significant differences, 
mainly due to the varied input datasets they utilize, including photo-
voltaic data, solar irradiation, temperature, air pressure, humidity, wind 
direction, and speed. Furthermore, these approaches vary in their 
forecasting horizons, techniques, and algorithms [57]. Nowadays, 
hybrid methodologies that combine different types of models have 

Nomenclature

ADMM Alternating Direction Method of Multipliers
ARMA AutoRegressive Moving Average
ARIMA AutoRegressive integrated Moving Average
BiLSTM Bidirectional Long Short-Term Memory
BMO Barnacle Mating Optimization
CARDS Coupled AutoRegressive with Dynamic System
CEEMDAN Complete Ensemble Empirical Mode Decomposition 

with Adaptive Noise
CFNN Cascade-Forward Neural Network
CNN Convolutional Neural Networks
ConvLSTM Convolutional LSTM
DL Deep Learning
ELM Extrem Learning Machine
FFNN Feed-Forward Neural Network
EMD Empirical Mode Decomposition
GA Genetic Algorithm
GBR Gradient Boosting Regressor
GHI Global Horizontal Irradiance (W/M2)
GNI Direct Normal Irradiance (W/M2)
GRNN General Regression Neural Network
GRU Gated Regression Unit
GSA Grid Search Algorithm
GSR Global Solar Irradiance (W/M2)
IAMFN Inception-Embedded Attention Memory Fully-Connected 

Network
IEDN Inception Embedded Deep Neural Network
IEDN-RNET Inception Embedded Deep Neural Network with Resnet
IF Terative Filtering Decomposition Method
IMF Intrinsic Mode Functions
LR Linear Regression
LSTM Long Short-Term Memory

LM Levenberg-Marquardt
MAE Mean Absolute Error
ML Machine Learning
MLR Multiple Linear Regression
MWSO Modified White Shark Optimization Algorithm
NARX Non-Linear Autoregressive Neural Network with 

Exogenous Inputs
NSE Nash-Sutcliffe model efficiency coefficient
nRMSE Normalized Root Mean Square Error
OP Operating System
PCA Principal Component Analysis
PDPP Partial Daily Pattern Prediction
PL Power-Law
PPV Output Power (Kw)
PV Photovoltaic
r Coefficient of correlation
R2 Coefficient of Determination
RBFN Radial Basis Function Neural Network
RBM Restricted Boltzmann Machine
RE Relative Error
Resnet Residual Networks
RNN Recurrent Neural Networks
RMU Ring Main Unit
SAE Stacked Auto Encoders
SARIMA Seasonal ARIMA
Time2Vec Time to vector
TCM Time Correlation Modification
TVF Time Varying Filter
UPS Unit Power System
USPVPS Utility Scale PhotoVoltaic Power Systems
VAEs Variational AutoEncoders
VMD Variational Mode Decomposition
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proven to be effective solutions for improving prediction performance.
In the work of Gang et al. [58] a hybrid forecasting model is devel-

oped for photovoltaic and wind power generation. This model in-
corporates a Time2Vec embedding layer for data preprocessing, a CNN 
With a Wider first layer kernel (WDCNN) for feature extraction, as well 
as a BiLSTM network for predictive modeling. The Time2Vec layer plays 
a pivotal role in simplifying the input data preprocessing by partitioning 
the time series data into both aperiodic and periodic components. The 
study of Feroz Mirza et al. [59] introduced an IEDN-RNET model, 
combining Inception modules with various kernel sizes for capturing 
diverse abstraction levels, ResNet blocks for addressing gradient van-
ishing issues and capturing local and global patterns, Bidirectional 
weighted LSTM and GRU layers for handling sequential data’s long-term 
interrelations and dynamics from past and forthcoming information 
simultaneously, and Time2Vec method for capturing periodic patterns. 
Wang et al. [60] developed an LSTM-RNN-based model for day-ahead 
PV power forecasting to address the issue of PV power fluctuations 
using data from the previous day. Subsequently, the TCM principle is 
used to adjust the LSTM-RNN output model based on trends and regu-
larities observed in historical data from previous years.

Nature-inspired meta-heuristic algorithms exhibit significant poten-
tial for addressing optimization problems. The adaptability of these al-
gorithms is closely linked to their tuning factors. The WSOA has been 
employed as a standard optimization technique, effectively addressing 
control applications without substantial modification to its tuning pa-
rameters. The WS is a top-tier predator and a highly agile navigator, 
possessing a streamlined physique that enables rapid tracking of its 
targets. Numerous attributes underlie the excellence of WS behavior in 
nature as an optimization process, primarily pertaining to its ability to 
track, explore, and search for prey in close proximity. Mansoor et al. 
[61] suggested two new hybrid models using a MWSO-GRNN and 
MWSO-RBFN for short-term wind power forecasting. Seasonal findings 
are systematically analyzed both visually and analytically, employing 

15 min ahead forecasting with four hybrid artificial neural network 
architectures in amalgamation with PSO and BMO stochastic optimi-
zation algorithms that are respectively: PSO-RBFN, PSO-GRNN, BMO- 
RBFN, and BMO-GRNN. Hassan et al. [62], implemented a hybrid 
model grounded on a NARX model and utilized GA for gradient-free 
training. Through an evaluation of the NARX-GA models at various 
time horizons and several Algerian and Australian regions, the study 
found that these models provide highly accurate estimates.

In Algeria, Kedouda et al. [63] explored the utilization of a Feed- 
Forward Neural Network (FFNN) along with two regressive models: 
RPL and PL. The objective was to predict the output of a 160 W PV 
module location in El-Oued, Algeria, trained on a dataset encompassing 
six days of experimental data (172,800 × 7 data points). The study 
identified solar radiation, ambient temperature, and module tempera-
ture as key factors strongly correlated with PV power generation. 
Notably, the LM algorithm delivered the best results for training the 
ANN model. Khelifi et al. [64] analyzed the implementation of a TVF- 
EMD and an ELM model. The developed TVF-EMD-ELM methodology 
has been validated for forecasting up to a maximum horizon of 30 min 
and has been evaluated and verified on four separate Algerian PV power 
datasets with varying climate conditions. Guermoui et al [65] conceived 
a novel integrated structure based on the Recursive Intrinsic Functions 
decomposition technique and ELM. The methodology is adjusted for a 
maximum forecasting horizon of 60 min. PV power data was dis-
assembled into various IMFs functions via the IF method, transitioning 
from higher to lower frequencies. Subsequently, the IMFs are feed to the 
ELM forecasting model to generate the desired PV power output.

Ziane et al. [66], explored the interdependencies between the 
meteorological parameters and the generation of the grid-connected PV 
station of Zawiet Kounta (Adrar). Feature selection and PCA analysis 
were employed as techniques for dimensionality reduction and pre-
processing of input data before training random forest models. VAEs are 
powerful unsupervised generative techniques known for automatically 

Fig. 1. Classification of the forecasting methodologies.
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extracting information from data. They excel at dimensionality reduc-
tion, compressing high-dimensional data effectively. VAEs also 
approximate complex data distributions efficiently through stochastic 
gradient descent. They mitigate overfitting issues through built-in reg-
ularization during training, making them effective for diverse applica-
tions involving complex data. Dairi et al. [67] provided a VAE for single- 
and multi-step-ahead forecasting of a 9 MW grid-connected PV power 
plant in Timimoune. The results highlight the strong performance of 
deep learning techniques in solar power forecasting, with the VAE 
consistently outperforming other methods.

Main contribution

The deployment of ML, DL, and hybrid approaches in PV forecasting 
has been both prolific and innovative in recent years. While this meth-
odological diversity reflects the field’s dynamism, it also introduces 
complexity and ambiguity for grid operators who must select models 
tailored to their operational constraints, regional data availability, and 
unique climatological characteristics. Against this backdrop, the present 
research proposes a structured evaluation of PV power forecasting 
models, designed to provide a decision-support framework and facilitate 
the seamless integration of large-scale PV power into the energy mix. 
The contribution is articulated through several key components, each 
addressing a critical aspect of effective PV forecasting and integration: 

• Real-World Application: The study is grounded in empirical data 
collected from a 53 MW PV power plant located in Djelfa, Algeria; a 
region characterized by a semi-arid climate. This setting provides a 
realistic and practical testbed for evaluating model performance 
under real-world conditions.
• ML and DL Model assessment: To analyze the PV plant data 

effectively, A broad suite of ML and DL models is rigorously evalu-
ated. LSTM and GRU are tailored for capturing long-range de-
pendencies in time-series data, with GRU providing a more 
computationally efficient architecture. Their bidirectional exten-
sions (BiLSTM, BiGRU) enhance temporal representation by incor-
porating both past and future contextual information. ANN is 
employed as a baseline model, underscoring the gains achieved by 
more sophisticated architectures. SVM seeks the optimal hyperplane 
that maximizes margin, ensuring robust generalization in high- 
dimensional feature spaces. RF, as an ensemble technique, im-
proves prediction stability by aggregating multiple decision trees. 
CNNs are leveraged to extract spatial features, capturing local de-
pendencies within the PV dataset. ResNet introduces residual con-
nections that alleviate vanishing gradient issues, facilitating deeper 
and more stable networks. Meanwhile, the Inception architecture 
enriches feature extraction by applying multi-scale convolutions in 
parallel, increasing representational capacity without excessive 
depth.
• Dual Forecasting Horizons: The analysis encompasses two fore-

casting horizons: short-term (30 min ahead) and medium-term (3 h 
ahead), thereby offering insights into both immediate and near- 
future grid operational planning.
• Hybridization with VMD: The research investigates the integration 

of VMD as a preprocessing step to enhance the predictive capabilities 
of ML and DL models, addressing the non-stationary nature of solar 
power signals.
• Monthly Performance Evaluation: A granular, month-by-month 

assessment is conducted to explore the influence of climatological 
variability on model accuracy, thereby emphasizing the seasonal 
dynamics that affect forecast reliability.
• Contextualized Insights: The findings underscore the critical role of 

local weather fluctuations in determining forecasting precision. They 
highlight the necessity of selecting both appropriate predictive 
models and preprocessing strategies that are specifically adapted to 
regional climatic conditions and data characteristics.

Through this multi-faceted approach, the study contributes a robust 
and context-aware framework for PV power forecasting. By aligning 
advanced predictive techniques with local operational realities, it sup-
ports grid operators in navigating the complexities of PV integration, 
ensuring system stability, and ultimately advancing the deployment of 
renewable energy on a larger scale.

Material and methods

Characteristics of weather in Djelfa

Understanding the local climate in Djelfa is essential due to its sig-
nificant impact on performance studies. Located approximately 300 km 
south of Algiers, at coordinates 34◦40′N latitude and 3◦15′E longitude, 
Djelfa sits at an average altitude of 1,110 m above sea level. The region 
covers an area of 542.2 km2 and is characterized by semi-arid condi-
tions, marked by considerable temperature variations, low annual pre-
cipitation, and high solar irradiance levels [68]. Djelfa experiences 
seasonal fluctuations, frequent weather variability, and a predominance 
of clear skies throughout most of the year. These climatic conditions 
provide a unique environment for evaluating the robustness of predic-
tive algorithms.

According to the World Meteorological Organization [69], the tem-
perature extremes in Djelfa exhibits significant variation. Daytime highs 
range dramatically from a relatively cool 9.8 ◦C to a peak of 33.8 ◦C, 
with the highest temperatures typically recorded during the summer 
months. In contrast, the minimum temperatures follow a similar sea-
sonal fluctuation, starting at a chilly 0.1 ◦C in the winter and rising to a 
more temperate 18.3 ◦C during the warmer summer months. Fig. 2 il-
lustrates the variation in daylight hours and temperature patterns 
throughout the year in Djelfa [70]. The duration of daylight fluctuates 
moderately, with solar exposure ranging from 10.1 to 14.5 h per day. 
This variability results in daily sunshine durations ranging from 6.8 to 
12 h, ensuring a substantial amount of sunlight during the year.Fig. 3..

The relative humidity in Djelfa fluctuates between 24 % and 65 %, 
reflecting the region’s semi-arid climate. The city receives annual rain-
fall ranging from 8 mm to 34 mm, with the driest month experiencing 
very minimal precipitation. Wind speeds reach their peak in March, 
averaging 19 km/h, while August is the calmest month, with wind 
speeds decreasing to 12.4 km/h. Cloud cover is most extensive in 
January, reaching 31 %, whereas June experiences the least cloud cover 
at just 11 % [70].

The studied PV systems

This study uses a dataset comprising one grid-connected photovol-
taic (PV) station. The power station modules technology is poly-
crystalline silicon, generating a total capacity of 53 MW and covering an 
area of 120 ha. The schematic diagram and main components of the 
studied power station, as well as its main specifications are represented 
in Fig. 4 and Table 1, respectively. Additional figures and detailed de-
scriptions related to the power station are available in the authors’ 

previous works [71,72].Table 2..

Data analysis

Generally, the evolution of daily photovoltaic generation is charac-
terized by a gradual rise in the morning, a peak during midday, and a 
gradual decrease towards sunset. Although this pattern is a standard 
representation of PV generation behavior, it is only meaningful on sunny 
or clear sky index days. However, highly irregular (intermittent) pat-
terns are observed when other meteorological conditions are identified, 
such as variable clouds, rain, snow, or sandstorms. Fig. 5 provides 
various representations of the daily generation of PV.

Throughout the year, PV power energy fluctuates due to solar radi-
ation variations. These divergences are primarily influenced by the 
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Earth’s elliptical trajectory encircling the Sun, which changes the dis-
tance between the Earth and the Sun, and thereby the tilt of the Sun’s 
rays, known as the solar incidence angle. This variation impacts the 
intensity of solar radiation received and thereby the potential of PV 
generation. Table 3 offers a statistical analysis of the generated power 
for the studied PV farm, showing various values produced over the 
months, with the Spring season remaining the best season for the studied 
PV farm as the maximum produced PV is attained on February, ten at 14 
h:00 (maxPmax = 58.34 MW). Moreover, the maximum value of Pmax is 
recorded during March (meanPmax = 46.42 MW). While a decline in 
maximum production is registered during warm months such as August, 
July, and June. Finally, the minimum value of Pmax is obtained on 
November, 24th at 15 h:00 (minPmax = 7.41 MW).

Investigated predictive models

Long Short-Term memory Networks
The LSTM model, a specialized category of RNN, is distinguished by 

its unique architecture, which includes weighted connections, memory 
retention capabilities, and feedback mechanisms. A central component 
of the LSTM is the memory cell (MC), which serves as persistent storage 
throughout the network’s computations. This memory cell enables the 
transfer and preservation of information across the sequence, with the 
flow of data regulated by a series of gate mechanisms. Unlike traditional 
RNNs, LSTM is adept at retaining important information over long se-
quences, effectively addressing the vanishing gradient problem that 
hampers standard RNNs. [73 74]. LSTM architecture involves adding 
three gate structures: input, output, and forget gates. Forget Gate assists 
in eliminating redundant information and retaining only the relevant 
information to proceed with prediction [75]. The input gate (it) controls 

Fig. 2. Climatic Characteristics of Djelfa Region: Sunshine, Daylight, Max and Min daily Temperatures (1976–2005).

Fig. 3. Climatic Characteristics of Djelfa Region: Cloud Cover, Precipitation, Humidity, and Wind Speed.
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the flow of new information and indicates if, and to what degree new 
information should be incorporated in the current state cell (ct). The 
output gate (ot) regulates the amount of information carried forward 
from the last time step to the forward, in conjunction with the data from 
the current time step [76]. The computed metrics are in the 0 to 1 forget 
gate scale. When the ft is close to 1 and the it is close to 0, LSTM can 
maintain long-term memory. Conversely, when these values differ, the 
network facilitates short-term memory [73,74].

The mathematical formulations used in the LSTM network are the 

following: [74,76–78].
To calculate the gate units 

it = σ(Wixt +Uiht−1 + bi) (1) 

ft = σ
(Wf xt +Uf ht−1 + bf

) (2) 

ot = σ(Woxt +Uoht−1 + bo) (3) 
To update the memory unit 

ct = tanh(Wcxt +Ucht−1) (4) 

ct = fc*ct−1 + it*ct−1 (5) 
To calculate the output of the LSTM unit: 

ht = ot*tanh(ct) (6) 
The cell state of the MC is denoted ct, and the candidate MC is 

expressed as ct, where ct−1 represents the cell state at time t-1. Addi-
tionally, xt denotes the input components, and ht Corresponds to the 
hidden state. Wix, Wfx, Wox, and Wc are the weights for the it, ft, ot, and ct, 

Fig. 4. Schematic diagram and main components of the studied power station.

Table 1 
Main specifications of Djelfa PV plant.

Specifications
Total Capacity 
(MW)

53 Module reference YL250P- 
29b

Module technology Polycrystalline Total N◦ of panels 212212
N◦ subfields 53 N◦ of panels/field 4004
N◦ of transformers 53 N◦ of combiner boxes/ 

field
24

N◦ of inverters 53
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respectively. Wih, Wfh, Woh , and Wcth represent the hidden layer’s 
weight matrices. Subsequently, Wic, Wfc, Woc are weight matrices for the 
candidate cell state. Subsequently, bi, bf, bo, and bg stand for the bias 
vectors associated with the three gates and MC, respectively. The acti-
vation function utilized includes the sigmoid function (σ) and the hy-
perbolic tangent function (tanh). In an NN, the activation function 
serves as a mathematical operation associated with a node (or neuron) 
that is activated when the input value of the node contributes signifi-
cantly to the prediction process. Numerous categories of activation 
functions exist, with hyperbolic tangent, sigmoid, and logistic functions 
being the most utilized [79].

Gated Recurrent Unit
Unlike the LSTM, which uses three gates, the GRU simplifies its 

design by fusing the input and the forget gates into a unified update gate. 
As a result, the GRU relies on just two gates called: the update gate and 
the reset gate. The reset gate controls how much of the previous hidden 
state should be discarded, while the update gate governs how much of 
the new input should be integrated into the hidden state. This hidden 
state is then adjusted based on the reset gate, update gate, and the 
current input. The streamlined GRU architecture enhances convergence 
speed and helps mitigate the gradient issues encountered in RNNs. [80]. 
The inner structure of the GRU is represented by the equations (7–10), 
Where ht− 1 is the transmitted state from the previous cell, xt denotes the 
current node’s input, ht signifies the hidden layer output, rt refers to the 
reset gate, zt represents the update gate, h̃t Is the candidate’s hidden 

state, and (1-) symbolizes the data forwarded by the link as 1-zt. The 
sigmoid function facilitates the transformation of data into a scale be-
tween 0 and 1, thereby serving as a gating mechanism. As rt nears zero, 
the selectivity of the model retains exclusively the present input infor-
mation while discarding previously held hidden information. 
Conversely, as rt approaches to 1, the model preserves historical infor-
mation. The value of zt varies from 0 to 1; higher values of the gated 
signal imply greater retention of information.

The units derived from GRU can be computed using the following 
equations [80]: 

• Reset gate
rt = σ(Wrxxt +Wrhht−1+br) (7) 

• Update gate
zt = σ(Wzxxt +Wzhht−1+bz) (8) 

• Candidate hidden state
h̃t = tanh(Whxxt + rt ⊙ (Whhht−1) + bh ) (9) 

• New hidden state
ht = (1− zt) ⊙ ht−1+ zt ⊙ h̃t (10) 

Table 2 
Monthly variation of Maximum and Mean PV power.

Month 01 02 03 04 05 0 07 08 09 10 11 12
Pmax Mean 41.58 40.31 46.42 41.62 41.81 38.78 37.67 40.00 39.9 41.78 39.73 41.99

Max 47.23 58.34 56.50 55.50 47.72 43.24 40.73 48.11 45.4 49.47 48.37 47.14
Date 
Time

01st 
12:30

10 st 
14:00

20 st 
13:00

11 st 
12:30

01 st 
12:00

07 st 
12:30

09 st 
12:30

10 st 
13:30

27 st 
13:30

29 st 
12:30

14 st 
13:00

28 st 
13:30

Min 16.21 14.15 36.1 15.59 29.68 23.27 33.77 12.26 32.08 18.96 7.41 39.72
Date 
Time

19 st 
13:00

08st 16:00 08 st 
14:30

03 st 
17:30

19 st 
12:30

24 st 
12:30

28 st 
12:30

12 st 
14:00

09 st 
13:00

28 st 
13:30

24 st 
15:00

08 st 
14:00

Pmean Mean 16.43 15.44 17.64 18.19 18.23 19.88 18.37 18.17 16.76 16.96 14.90 17.01
Max 20.24 24.01 24.14 24.17 24.16 23.14 20.62 22.50 22.22 22.41 21.58 18.74
Date 23 st 25 st 27 st 05 st 02nd 06 st 30 st 04 st 28 st 18 st 04 st 31 st
Min 4.99 5.23 10.53 3.41 9.78 14.61 15.41 4.38 6.93 4.01 2.05 16.69
Date 19 st 21 st 24 st 17 st 19 st 01 st 08 st 12 st 09 st 16 st 24 st 21 st

Fig. 5. Hourly and daily PV power output.
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Bidirectional Recurrent Networks
In photovoltaic PV power forecasting using time series data, it is 

crucial to carefully account for the influence of both historical and future 
values on the present value to ensure accurate predictions. To this end, 
constructing forward and backward RNN models proves advantageous 
for capturing the complex dependencies between preceding and subse-
quent factors affecting the forecast. Bidirectional Recurrent Neural 
Networks (BiRNNs), such as BiLSTM or BiGRU, contain two hidden 
layers that operate in opposite directions, producing a unified output. 
The data is processed in two temporal sequences: one following the 
traditional forward order and the other in reverse. This bidirectional 
approach allows the model to incorporate information from both prior 
and future time steps at every instance. It is essential to highlight that 
while bidirectional neurons function independently during the forward 
and backward passes, only the weights are updated during training.

{xt-1, xt, xt+1…. xn} are the signal’s input, whereas {ht-1, ht, ht+1…. 
hn} denotes the network’s output. To calculate yt prediction at time t, the 
following activation function is used: [79] 

yt = f
(

Wy
[
ht
→
; ht
←]
+ by

)
(11) 

Wy: is the network’s final transformation weight based on the input 
and volume set. ht

→ and ht
← Represent the forward hidden state and the 

backward hidden state, respectively. 
[
ht
→
; ht
←]

Refers to the concatenated 
hidden state. by The bias vector is associated with the final trans-
formation layer.

Forecasts for PV power frequently span hours, if not days, making the 
method’s adeptness in capturing extended dependencies exceedingly 
valuable. By accounting for both historical and future time increments, 
the model produces dependable forecasts for extended durations. The 
Bidirectional mechanism empowers the model to grasp temporal trends, 
manage periodicity, depict time-based correlations, and enable precise 
long-term predictions. Integration of these temporal features notably 
augments the precision and dependability of PV power prediction, 
thereby fostering progress within the domain [59].

Support vector Regressor Machine
SVMs primarily serve as classification algorithms that distinguish 

data points into two distinct categories using hyperplanes in a higher- 
dimensional space. SVMs aim for optimal separation by choosing the 
hyperplane that maximizes the margin [81], defined as the shortest 
distance between the hyperplane and the closest data points in each 
category. SVR extends SVMs to predict continuous values, maintaining 
the principles of maximizing the margin and the use of the kernel trick. 
[82]. SVR function is defined by [83]: 
f(x) = wT

⋅φ(x)+ b (12) 
Where φ(x) represents the Kernel function, x the feature vector input, 

wT The transpose of the weight vector w. b the bias term or intercept, 
and f(x) being the target output.

In SVR, the kernel function specifies how input data is transformed 
into an elevated-dimensional feature space. This transformation enables 
the capture of nonlinear relationships linking the input features to the 
dependent variable. There are primarily three types of kernel functions 
[82,84,85]; linear, polynomial, and radial basis function (RBF). Thor-
ough a preliminary study, RBF is chosen in this research, whose equation 
is given below: 
k(x, xi) = exp(− γ‖x− xi‖

2) (13) 
γ = 1

2σ2: represents the Kernel coefficient or the regularization 
parameter; smaller values result in a broader neighborhood being 
considered similar, whereas larger values concentrate on points that are 
closer to each other. σ represents the tuning parameter.

Random Forest
RF regression is defined as an ensemble learning technique utilized 

for regression tasks, including forecasting PV power generation. It 
operates by constructing multiple decision trees during training and 
generating the average of each tree. Each final node in a tree is assigned 
a response (Ri) determined by the predominant category for classifica-
tion; otherwise, by the mean value for regression. The prediction Ti(X) is 
given by [86,87]: 
Ti(X) = Ri (14) 

The minimizing algorithm aiming to decrease variance while pre-
serving low bias is given by: 

MSE(D) = 1
|D]

∑

i∈D
(yi − yd)

2 (15) 

Where |D| is the instance number in node D. yi: Is the value of the 
target for instance I. yd: Is the average target value.

Convolutional Neural Networks
CNNs are stimulated by the human brain object identification 

mechanism. Two-dimensional CNNs excel in computer vision tasks such 
as facial recognition, image classification, natural language processing, 
and handwriting applications [88]. Additionally, one-dimensional CNNs 
are also employed in regression applications by exploiting their auto-
matic feature extraction [89,90]. For PV power forecasting, CNNs are 
widely used to obtain the spatial features contained within the PV 
dataset. A basic CNN entails an input, a convolutional, a pooling, and an 
output layer [91]. The convolutional layer of CNN serves as a spatial 
feature extraction layer, which incorporates a novel feature derived 
from the input data for every timestamp by computing the dot products 
between the input and the sliding convolutional kernel across the width 
and height [92]. For multivariate time series, the slide across height is 
insignificant due to fewer connections amidst different variables within 
the same sequence location. Therefore, a 1-D convolution kernel, sliding 
across only the sequence dimension, is used [93], and the output is 
defined by: 

Table 3 
Hyperparameter tuning step.

Model Hyperparameter range Best preferences
ANN Neurons number per layer: [10,20,30]

Hidden layers number: [1–3]
Training algorithm: Levenberg- 
Marquardt 
Architecture: Feed Forward 
Hidden Layer activation function: 
ReLu 
Output layer: Linear

Neurons number = 10; 
Hidden layers number =
1 

SVM Kernel type: RBF 
C values: [0.1, 1, 10] 
Sigma values: [0.1, 1, 10]

C values = 0.1 
Sigma values = 1 

RF Function: Tree Bagger 
Num. of Trees = [100, 200, 300]; 
Min. Leaf Size = [1,5,10]; 
Method: Regression 
k-folds = 5

Num. of Trees = 300; 
Min. Leaf Size = 10; 

LSTM/ 
BiLSTM

Hidden Unit = [50, 100, 150, 200] 
Epochs grid = [50, 100, 200] 
training algorithm: adam 
Dropout: 0.2 
Size of Mini Batch: 64 
Initial Learning Rate: 0.01

Hidden Unit = 200 
Max Epochs: 100 

GRU/BiGRU Hidden Unit = [50, 100, 150, 200] 
Epochs grid = [50, 100, 200] 
training algorithm: adam 
Size of Mini Batch: 64 
Initial Learn Rate: 0.01 
GruLayer: 1
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y = x*w, y[i] =
∑+∞

k=−∞

x[i+ k]w [k] (16) 

With x defined as the input vector, and ω refers to a filter or kernel.
The fundamental idea behind contemporary DL techniques is that 

enhancing the number of convolutional layers leads to better overall 
performance by enriching the high-level feature extraction [94,95]. 
Training deep NNs can present several challenges. One significant issue 
is the vanishing gradient problem, which occurs when gradients back- 
propagate through earlier layers. Furthermore, repeated accumulation 
can lead to gradients diminishing to an exceedingly small value, which 
leads to overfitting and causes network degradation [94,96]. It is within 
this context that Residual and inception modules are introduced to put 
forward to solve this problem.

Residual modules: In 2016, Kaiming et al.[97] first introduced the 
fundamental notions of a Residual Network (ResNet). The concept in-
volves implementing a shortcut connection that permits the earlier 
output layer to be directly passed as input to the subsequent layer 
without any modifications. Residual connections between layers 
enhance the flow of information and are used to transmit important 
features to deeper layers. This facilitates the effective combination of 
feature maps, leading to stronger predictions [98]. They can also serve 
to speed up the convergence and shorten the training time [95] The 
shortcut modules utilized in ResNet, encompass two types: the Identity 
block, which lacks a convolution layer in the shortcut and maintains 
equal dimensions for the input and output flow, and the Convolutional 
block, which features a convolution layer with batch normalization 
incorporated into the shortcut. Following the block design, as soon as 
the residual mapping is coming close to zero, the block directly performs 
the identity mapping, as the residual mapping approaches zero, the 
block resorts solely to identity mapping. This approach safeguards the 
original information through establishing a direct shortcut bridge link-
ing the input to the final output. Consequently, this strategy plays a 
crucial role in reducing any decline in network performance [99], and 
the learning difficulties are simplified [94]. In practical implementation, 
the residual mapping is commonly not zero, enabling the block to 
effectively learn and adjust the residuals [94,100]. As a residual form, 
the original mapping may be written as follows: 
f(x) = h(x)− x (17) 

where h(x) is the original mapping, x is the input feature, and f is the 
residual function. Thus, the original mapping can be reformed as F(x) +
x.

Inception modules: The Inception network architecture allows the 
use of filters with different sizes without increasing the network’s depth, 
challenging the typical approach of adding more convolutional layers to 
enhance performance in most CNN variants [95]. The inception module 
is recognized for its capacity to gather features at multiple scales and 
accommodate different sizes of receptive fields, and is it specifically 
selected to complement and improve the performance of CNN. In an 
inception module, the different filters are added parallelly instead of 
being fully connected one after the other [59,95]. The original inception 
block comprises three, each utilizing distinct kernels for feature 
extraction. This configuration block helps to augment robustness and 
significantly enhance feature extraction in time series [101]. In this 
paper, the Inception V1 is applied.

Variational Mode Decomposition
To conduct an in-depth analysis of PV power fluctuations, it is 

essential to decompose the time series data into simpler, more inter-
pretable components [102]. In 2014, Dragomiretskiy and Zosso devel-
oped an innovative method so-called VMD [103], that offers a 
sophisticated approach tailored for analyzing nonstationary and 
nonlinear time series data. VMD leverages an ADMM to enhance the 
decomposition process, thus improving its accuracy and robustness in 
signal analysis. In applying VMD, the time series data f(t) is partitioned 

into (K) intrinsic mode functions u(k). Every k(t) is associated with a 
particular frequency bandwidth [104].

The determination of each IMF bandwidth follows a methodical 
procedure [105,106]. Initially, the Hilbert transform is utilized to derive 
the spectrum of every u(k). This spectrum is subsequently transferred to 
the baseband section by aligning it with an estimated center frequency. 
The final step involves estimating the bandwidth by evaluating the 
Gaussian smoothness of the demodulated signal, which is derived from 
the parametric gradient squared. The primary goal of the VMD meth-
odology is to decrease the calculated bandwidths of the modes while 
guaranteeing that their aggregate accurately reconstructs the original 
signal. This process is framed as a constrained variational problem 
[103], formalized in Equation 18: 

min{uk},{ωk}{
∑

k‖δt

[(
δ(t) + j

πt
)

*uk(t)
]
e−jwk t‖2

2subjectto
∑

kuk(t) = f(t)
(18) 

With t representing the time. ω k: denotes the central frequency of the 
kth mode. f(t) is the input signal, and δ (t) refers to the unit pulse function

To effectively integrate the constraint into the optimization frame-
work, an enhanced Lagrange multiplier λ is employed, which allows for 
a unified representation of the constraint within the objective function L 
[17]. 

L({uk},{ωk},λ)=α
∑

k
‖δt

[(
δ(t) + j

πt
)

*uk(t)
]
e−jwk t‖2

2 +‖f(t)

−
∑

k
uk(t)‖2

2 +

〈
λ(t), f(t) −

∑

k
uk(t)

〉
(19) 

With α denoting a quadratic penalty parameter used to ensure the ac-
curacy of the signal reconstruction [17,107].

The proposed prediction framework

The present research introduces a structured evaluation framework 
for photovoltaic (PV) power forecasting models, incorporating both 
machine learning (ML) and deep learning (DL) techniques, including 
LSTM, BiLSTM, GRU, BiGRU, CNN, Inception, Residual Networks, ANN, 
SVM, and Random Forest. These models are assessed using real-world 
data from a 53 MW grid-connected PV plant in Djelfa, Algeria, span-
ning the period from January 2018 to December 2019. Forecasting 
performance is evaluated across two temporal horizons—30 min and 3 
h—while monthly analyses provide detailed insights into the variability 
of each model’s performance under different climatological conditions. 
As an advanced methodological enhancement, Variational Mode 
Decomposition (VMD) is applied to decompose complex PV power sig-
nals into distinct and interpretable modes, thereby enriching the quality 
of inputs fed into the forecasting models. The proposed framework aims 
to support data-driven decision-making and enable the seamless inte-
gration of large-scale PV power into the energy mix. The study’s 
contribution is articulated through several key components, each tar-
geting a critical aspect of accurate and resilient PV forecasting. The 
detailed steps of the proposed methodology are illustrated in Fig. 6 and 
outlined as follows:

1 Data Collection and Preprocessing: The initial phase of the study 
is focused on detailed data collection and comprehensive processing. 
Essential activities in this stage encompass rectifying missing values, 
identifying and removing anomalies, and excluding non-essential 
nighttime data. Then, data is strategically partitioned into separate 
subsets for training and testing purposes, 80 % and 20 %, respectively.

2 Training and optimizing the predictive models: In this stage, 
the ML and DL modes undergo a rigorous tuning process through a grid 
search methodology that is appropriate for each model. This process 
aimed at identifying the most effective hyper-parameters, ensuring the 
model’s ability to deliver precise and reliable PV power forecasts.
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3 Initial Stand-alone Performance Comparison: After being 
trained and optimized on the same input data, models undertake a 
comparative analysis to assess their baseline forecasting capabilities. 
The evaluation is performed using a range of metrics such as the Mean 
Absolute Error (MAE), Mean Square Error (MSE), normalized Root Mean 
Square Error and (nRMSE), and the determination coefficient (R2), 
whose mathematical expressions are listed below. This analysis is crit-
ical in understanding each model’s advantages and disadvantages in 
real-world scenarios. 

R2(%) = 1−
∑n

i=1
(Ii,measured − Ii,predicted

)2

∑n
i=1

(Ii,measured − Î i,measured
)2 (20) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n
i=1

(
Ii,predicted − Ii,measured

)2

N

√√√√√ (21) 

nRMSE(%) = RMSE
Max(Imeasured) −Min(Imeasured)

*100 (22) 

MAE = 1
n
∑n

i=1

⃒⃒Ipredicted,i− Imeasured,i
⃒⃒ (23) 

nMAE(%) = MAE
Max(Imeasured) −Min(Imeasured)

*100 (24) 

R2 measures the extent to which the predicted values match the actual 
target values by assessing their alignment with the ideal 1:1 line. An 
elevated R2 indicates a stronger model, as the simulated values are 

nearer to the real ones. RMSE is useful for detecting large errors due to 
its sensitivity to outliers; the squaring of errors amplifies the impact of 
extreme values. However, RMSE can be misleading if the data contains 
outliers, as these can disproportionately influence the metric. MAE 
provides a straightforward indicator of the mean forecasting error by 
taking the absolute differences between predicted and actual values. 
Unlike R2 and RMSE, MAE doesn’t allow positive and negative errors to 
cancel each other out, offering a clear view of the typical error magni-
tude [108–112].

4 Variational Mode Decomposition: After the initial comparison, 
VMD is employed to decompose and extract features from the non- 
stationary characteristics of the PV generation signal. This technique 
decomposes the signal into a series of IMFs, each representing distinct 
frequency components within a limited bandwidth.

5 Second VMD Performance-based Comparison: VMD generates 
IMFs signals that are fed into all ML and DL models. A comparison is 
performed here the investigate the influence of VMD on the performance 
of each model. Interesting insights are then derived.

6. Seasonal and Monthly Analysis: The next step is to delve deeper 
into understanding the model’s patterns within the data, particularly 
during specific times of the year, and to analyze their seasonal varia-
tions. This involves not only recognizing recurring trends but also 
identifying the underlying factors driving these fluctuations across 
different months. Such an approach offers a clearer and more practical 
representation of the model’s temporal dynamics and response patterns.

Fig. 6. Flow chart of the Methodology.
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Results and discussion

Data collection, preprocessing, and splitting

This research utilizes a dataset comprising 21,046 measurements of 
PV generation, recorded from 2018 to 2019 at the Djelfa PV plant. The 
data recording spans from 6 a.m. to 8p.m., with recordings taken every 
30 min. Recognizing the importance of power supply systems in intraday 
forecasting, the temporal resolution was altered from 30-minute to 3- 
hour intervals, as demonstrated in Fig. 7. This adjustment is consid-
ered a more practical approach for evaluating the Djelfa PV plant’s 
intraday capacity and optimizing grid coordination. To provide a 
comprehensive analysis, the study examines both 30-minute and 3-hour 
forecasting intervals. For all simulations, the dataset is partitioned into 
two complementary subsets: the training set, accounting for 80 %, and 
the testing set comprising the remaining 20 % of the whole dataset.

The constructed model may inherently exhibit biases due to anom-
alies or outliers that are present within the dataset, and sometimes due 
to variations in the scale of input data, which arise from differing 
maximum ranges across their different nature. To tackle these issues, the 
process of data normalization is essential to mitigate the influence of 
outliers and ensure that all features are standardized to a uniform scale. 
In this study, the Min-Max standardization method is applied, as 
detailed in equation (7) [113]: 

Xi =
Xi − Xmin

Xmin − Xmax
(7) 

Where Xi represents the normalized data, Xi Denotes the original 
data. Xmin , Xmax Refers to minimal and maximal values contained in the 
dataset.

Another important consideration in the preprocessing step is related 

to the requirements of the CNN. Although the model performs 1D con-
volutions, the input data must be reshaped into a 3D format to meet the 
input requirements of the CNN. In this context, the three dimensions 
correspond to the number of samples, the number of features (which 
represent historical time steps or delay points), and the number of 
channels (typically set to 1 for 1D CNNs, indicating a single data 
channel). This reshaping is essential because CNNs, regardless of per-
forming 1D convolutions, are designed to process data in a 3D structure, 
allowing them to efficiently learn spatial or temporal patterns within the 
sequences. The transformation ensures that each input sequence is 
processed correctly and aligned with the model’s expectations, enabling 
it to effectively learn from the data during both the training and testing 
phases of the forecasting task.

Hardware and software requirements

The development of the model is carried out in the MATLAB R2018b 
environment, and all modeling scenarios were executed on a portable 
computer with hardware specifications including a 64-bit OS, 16.00 GB 
RAM, and an Intel(R) Core processor (TM) i7-9850H CPU @ 2.60 GHz.

The model’s parameters

The accuracy of predictive models is affected by several factors, such 
as the volume of training data, hyperparameters, network architecture, 
and optimizer algorithms used for weight and bias optimization [45]. 
Recognizing the impact of these factors, an initial step of hyper-
parameter tuning was undertaken by exploring various combinations of 
hyperparameters to identify the most effective setup for each model, 
ensuring they are well-calibrated and capable of delivering high accu-
racy. This involves adjusting factors such as learning rates, batch sizes, 

Fig. 7. The temporal resolution conversion.

F.E. Robrini et al.                                                                                                                                                                                                                               Energy Conversion and Management: X 27 (2025) 101108 

11 



layer numbers, and units within the network, among others. Once the 
optimal hyperparameters were identified, they were employed during 
the aggregation phase, where models were compared and combined to 
build the global model. This step is crucial for harnessing the advantages 
of each model and achieving a robust and reliable global predictive al-
gorithm. Table 3 elucidates the hyperparameters tested for each algo-
rithm during the grid search procedure.

Results and discussion

Stand-alone results
In all simulations conducted, a fixed time delay of four is applied. 

This implies that each prediction is generated by utilizing the latest four 
historical input data points, thereby guaranteeing that each model is 
based on a consistent and recent historical context, which is crucial for 
accurate forecasting. For each algorithm, two models are built: one for 
the short-term horizon (30 min) and another for the medium-term ho-
rizon (3 h). This approach allows for assessing the impact of training 
data volume on model effectiveness and evaluating the models’ 

robustness across different time scales. The performance of each model, 
assessed based on the selected statistical indicators, is systematically 
presented in Table 4. All indicators are computed using normalized data 
to enable equitable comparisons across datasets from diverse power 
plants, regions, or capacity scales (e.g., kW, MW, GW). This standard-
ized approach ensures a rigorous performance analysis, offering valu-
able insights to the scientific community and interested researchers.

For the 30-minute ahead forecasting horizon, the results show that 
the CNN model provides the most accurate predictions and the least 
error among the models tested, with an R2 of 0.9678, the lowest RMSE 
(0.0471), and the lowest nRMSE (0.0545). These findings demonstrate 
the superior ability of CNN to automatically extract and learn complex 
spatial patterns from the input data through its convolutional layers, 
which effectively capture localized features and correlations within the 
PV power signals, that are crucial for modeling intricate temporal dy-
namics [114,115]. The BiLSTM model, with an R2 of 0.9631, also 
demonstrates strong performance, leveraging its bidirectional architec-
ture to analyze input sequences in both forward and backward di-
rections. This enables BiLSTM to capture contextual dependencies and 
intricate temporal patterns within the PV power signals, enhancing its 
ability to predict future values with high accuracy [116]. Similarly, the 
inception module performs well, achieving an R2 of 0.9523. Its strength 
lies in its ability to process multi-scale features simultaneously by 
combining different filter sizes within its architecture [59,95]. This al-
lows the inception module to capture a wide range of patterns, from 
localized fluctuations to broader trends, making it particularly effective 
for complex and diverse forecasting tasks [117]. The residual module, 
with an R2 of 0.9182, exhibits its effectiveness by utilizing skip 

connections to address the vanishing gradient problem and maintain the 
integrity of feature propagation. This architecture enhances its ability to 
model long-term dependencies and subtle variations in PV power sig-
nals, contributing to its competitive performance [118,119]. In contrast, 
traditional machine learning algorithms such as ANN, SVM, and RF 
show comparatively lower performance, with R2 values of 0.8656, 
0.8726, and 0.8302, respectively. Among these, SVR has the lowest R2 

(0.8302), indicating its limited capacity to generalize and adapt to the 
complexities of PV power forecasting.

In the 3-hour ahead forecasting scenario, CNN continues to outper-
form all other models, with an R2 of 0.9839 and the lowest RMSE 
(0.0371). Other deep learning models, particularly BiLSTM, Inception, 
and residual modules, also show strong results compared to ML. Inter-
estingly, machine learning models (ANN, RF, SVR) improve their per-
formance in this longer horizon, particularly RF, which achieves an R2 of 
0.9138. The enhanced performance of RF, in particular, may be attrib-
uted to its ensemble-based architecture, which combines multiple de-
cision trees to effectively generalize and capture important features over 
a larger prediction window. The ANN model benefits from its flexible 
architecture, which allows it to capture generalized patterns and adapt 
to longer prediction sequences where the temporal dynamics may be less 
intricate. This adaptability likely contributes to its enhanced perfor-
mance over longer horizons. Similarly, SVR demonstrates better accu-
racy potentially due to its reliance on kernel-based methods, which 
enable it to model broader trends effectively when the need for detailed 
temporal resolution is reduced. This improvement suggests that ML 
models may be more effective when less historical data is available. 
These findings highlight the importance of evaluating multiple models 
to uncover varying data dynamics, providing deeper insights into the 
unique strengths of each algorithm and supporting more informed 
decision-making, ultimately leading to improved prediction accuracy.

Variational model decomposition results
As discussed in the previous sections, VMD is utilized to decompose 

the time series signal into IMFs. In this study, the PV power signal is 
decomposed into five distinct IMFs, as illustrated in Fig. 8. These IMFs 
are then used as inputs to the various models for forecasting. The per-
formance results of these models, based on the decomposed IMFs, are 
comprehensively detailed in Table 5.

Applying VMD for the 30-minute ahead forecasting horizon, the 
hybrid models exhibit significant performance improvements compared 
to the standalone models discussed previously (see Table 5). In this case, 
models are better equipped to isolate relevant information and analyze 
the intrinsic components of the data, enabling them to capture complex 
patterns and dynamics that may otherwise remain undetected in the raw 
data. This enhanced processing of the data contributes to more accurate 
predictions, underscoring the effectiveness of VMD as a preprocessing 

Table 4 
Stand-alone results.
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technique for improving forecasting performance.
Although deep learning algorithms outperformed machine learning 

models in the initial experiment, the ANN, a ML model, excelled when 
paired with VMD preprocessing, securing the top position with an R2 

value of 0.9961, followed by VMD-BiGRU and VMD-GRU, with R2 values 
of 0.9927 and 0.9909, respectively. The error metrics; RMSE, nRMSE, 
MAE, and nMAE, also showed substantial reductions with VMD-based 
models. This improvement is particularly pronounced in machine 
learning techniques, while deep learning models showed only slight 
enhancements. These findings suggest that ML models benefit more 
from effective feature engineering, which enhances their performance. 
In the case of the ANN, decomposing the original PV signal into a finite 
set of IMFs, each representing distinct oscillatory modes at different 
frequency bands enables the model to focus on the most informative 
data by providing clearer, noise-reduced inputs, which enhances its 
ability to generalize. While deep learning models like BiGRU and GRU 
are effective at capturing temporal dependencies, the VMD- 
preprocessed ANN benefits from a simpler architecture that can learn 
and predict more efficiently, achieving superior performance with less 

complexity and computational demand. In summary, the application of 
VMD preprocessing allows ML models to achieve more accurate pre-
dictions with fewer data and less complexity, while DL models, which 
rely more on automatic feature extraction, show only marginal im-
provements. Therefore, careful data preprocessing and thoughtful 
model selection are essential for accurate feature understanding, 
extraction, and tuning, as well as for precise PV power forecasting. The 
scatter plot of these results is illustrated in Fig. 9.

The performance of the models significantly improves when using 
the 3-hour ahead forecasting horizon, which is based on a smaller 
dataset of 725 samples, compared to the 30-minute horizon, which 
utilizes a larger dataset of 5,288 samples. The impact of smaller datasets 
on model performance is noteworthy. While larger datasets are typically 
expected to improve model accuracy, in this case, the smaller dataset 
leads to better performance. Larger datasets can introduce noise, irrel-
evant features, or overfitting, which can complicate the learning process 
and increase error rates. In contrast, the smaller dataset, when pre-
processed with VMD, provides cleaner and more relevant data, allowing 
the models to focus on the most important features and generalize 

Fig. 8. The segments produced through VMD.

Table 5 
VMD based results.
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better. Thus, the smaller dataset, combined with VMD, reduces model 
complexity and computational demands, while simultaneously 
enhancing prediction accuracy. This further confirms the value of VMD 
preprocessing in improving forecasting performance. The scatter for the 
3-hour ahead horizon, as shown in Fig. 10, reinforce the effectiveness of 
VMD-based preprocessing, with even better performance than observed 
in the 30-minute horizon. The R2 values are exceptionally high for the 3- 
hour ahead forecasts, with the VMD-ANN model nearly perfect at 
0.9982. The DL models, particularly GRU, BiGRU, LSTM, BiLSTM, and 
CNN, maintain strong R2 values (0.9944, 0.9939, and 0.9942, 0.9822, 
and 0.9822 respectively), demonstrating their robustness across longer 
forecasting horizons when combined with VMD. RMSE and nRMSE 
continue to decrease, reflecting improved accuracy. The VMD-ANN 
model once again performs exceptionally well, with RMSE dropping to 
0.0125 and nRMSE to 0.0140. The consistency in low error metrics 
across all models indicates that VMD preprocessing enhances model 
performance by effectively decomposing the input data into modes that 
are easier for these models to learn from. The results suggest that 
incorporating VMD as a preprocessing step significantly improves the 
performance of both DL and ML models.

Fig. 11 presents the boxplots of the absolute errors for both stand-
alone and VMD-based models, corresponding to 30-minute and 3-hour 
ahead forecasting, respectively. As seen in these figures, VMD decom-
position significantly reduces error values, with a clear shift toward 
smaller errors. This reduction is especially noticeable in the 3-hour 
horizon, where the smaller dataset, coupled with VMD preprocessing, 

leads to more accurate predictions. The boxplots reveal narrower 
interquartile ranges and lower median values for VMD-based models, 
indicating greater consistency and reliability compared to standalone 
models. The reduction in error values demonstrates that VMD enhances 
model performance by decomposing input data into more manageable 
components. This process allows the models to focus on the most rele-
vant patterns, improving both accuracy and generalization. The sub-
stantial improvement in forecasting accuracy across both horizons 
further emphasizes the effectiveness of VMD preprocessing in opti-
mizing model performance.

Given the widespread adoption of photovoltaic (PV) power fore-
casting, it is both appropriate and necessary to evaluate the performance 
of the proposed model in relation to existing studies. Nevertheless, it is 
crucial to recognize the inherent challenges in such comparisons, pri-
marily due to significant variations in key aspects such as the types of 
forecasting algorithms employed, the nature of the datasets used (typi-
cally originating from distinct climatological regions) and the differing 
temporal forecasting horizons. These factors collectively influence 
model behavior and performance, often leading to disparities across case 
studies and rendering direct comparisons potentially inequitable. 
Despite these limitations, we have carefully selected and cited studies in 
Table 6 that, in our judgment, share sufficient methodological or 
contextual commonalities with our work to serve as a meaningful basis 
for comparative analysis.

Fig. 9. Scatter plot for 30 min ahead.
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Monthly assessment results
The monthly variation in forecasting performances, as depicted in 

Figs. 12–17 highlights the performance of VMD-based models in PV 
power forecasting for both short-term (30 min) and medium-term (3 h) 
forecasting horizons. The VMD-based model exhibits remarkable 
robustness across different months, maintaining high accuracy and low 
error metrics regardless of seasonal variations. This suggests that VMD 
effectively handles the inherent variability in PV power generation data 
throughout the year. Analyzing the results in terms of the best and 
worst-predicted months reveals interesting insights into the perfor-
mance of the forecasting models. June stands out as the best-predicted 
month across both the 3-hour and 30-minute forecasting horizons, 
particularly for the VMD-based models. During the 3-hour ahead fore-
cast, the VMD-based model achieves an R2 varying from 0.9990 to 
0.9834, for all tested models, which is one of the highest across all 
months, indicating near-perfect predictive ability. The RMSE is ranging 
from 0.0084 to 0.0342, and the MAE is minimized to (0.0057–0.0253). 
When a 30-minute ahead forecast is applied, the VMD-based model also 
shows excellent performance, with an R2 ranging from 0.9850 to 
0.9990, which is the highest among all months. The RMSE and MAE 
values range also from 0.0298 to 0.0077 and from 0.0239 to 0.044, 

respectively, which are the lowest, confirming June as the best- 
predicted month. This superiority could be attributed to more stable 
weather patterns and consistent solar radiation, making it easier for the 
models to predict PV power generation accurately.

On the other hand, November appears to be the worst-predicted 
month. For the 3-hour ahead forecast, November records the lowest 
R2 value ranging from 0.7716 to 0.997, for all models, indicating the 
least accurate predictions. The RMSE and MAE values are also relatively 
high and vary from 0.042 to 0.1351 and from 0.0312 to 0.100, respec-
tively, reflecting greater prediction errors. For the 30-minute ahead 
forecast, the stand-alone models show the lowest R2 varying from 
0.7483 to 0.9622, along with higher RMSE (0.0520––0.1341) and MAE 
(0.0303–0.1018) compared to other months, making it the least accurate 
month in short-term forecasts as well. Even with VMD preprocessing, 
while performance improves significantly, November still ranks lower 
compared to other months, with higher RMSE and MAE values (Figs. 13 
and 14). This could be due to the increased variability in solar conditions 
during November, possibly because of more frequent cloud cover, lower 
solar angles, and shorter daylight hours, which introduce additional 
challenges for accurate forecasting.

To offer a clearer view of daily forecasting performance under 

Fig. 10. Scatter plot for 3 h ahead forecasting.
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various weather conditions for the 30-minute-ahead horizon, Fig. 18
presents four representative days with distinct weather patterns. The 
CNN model, identified as the best-performing standalone approach, 
effectively follows the general trends of the actual data. On the other 
hand, VMD-ANN, the top-performing model among the hybrid ap-
proaches, not only preserves this trend-following ability but also ach-
ieves higher precision and accuracy, particularly during periods of rapid 
variation. This demonstrates the benefit of integrating VMD as a pre-
processing step to enhance the model’s responsiveness to dynamic 
weather conditions.

Conclusion and recommendations

This research thoroughly evaluates the performance of various ma-
chine learning, and deep learning models, including LSTM, BiLSTM, 
GRU, CNN, Inception, Residual modules, ANN, SVM, and Random For-
est, for photovoltaic power forecasting. Models were developed for both 
30-minute and 3-hour forecasting horizons, with a comprehensive 
assessment based on monthly performance metrics such as RMSE and 
MAE. A crucial aspect of the study was the incorporation of Variational 
Mode Decomposition for feature extraction, followed by seasonal anal-
ysis to explore recurring trends and model interactions. The findings 
challenge the prevailing assumption that deep learning always out-
performs machine learning in PV forecasting. Results indicate that ML 

Fig. 11. Boxplot of the absolute errors for: (a): Standalone model (30 min ahead), (b) VMD-based models (30 min ahead) (c): the standalone model (3 h), (d) VMD- 
based models (3 h ahead).

Table 6 
Comparison of Model Performance with Previous Studies.

Region Method Horizon Metrics
Iran [120] GBR Not 

mentioned
R2 = 98 %

China [59] IEDN-RNET Short/ 
medium

nMAE = 16.9 %, nRMSE =
4.51 %, R2 = 0.98052

USA [60] TCM- LSTM- 
RNN

1 day RMSE = 6.29 %, MAE = 2.78 
% 
r = 96.19 %

Turkey, 
Malaysia [61]

MWSO- 
RBFN

15 min NSE = 0.979

Australia, 
Algeria [47]

NARX 5, 15, 30, 60 
min

10 % < rRMSE < 20 % 
0.919 < R2 

< 0.971
Algeria [63] ANN Not 

mentioned
MAE = 1.998, R2 = 0.997,

Algeria [121] TVF-EMD- 
ELM

30 min nMAE = 1.58, nRMSE =
2.27, r = 99.94

This work 
(Algeria)

CNN 30 min nMAE = 2.9 %, nRMSE =
5.45 %, R2 = 0.9678

3 h nMAE = 3.15 %, nRMSE =
4.15 %, R2 = 0.9839

VMD-ANN 30 min nMAE = 1.08 %, nRMSE =
1.89 %, R2 = 0.9961

3 h nMAE = 1.1 %, nRMSE = 1.4 
%, R2 = 0.9982
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models, particularly ANN, RF, and SVM, benefit more from VMD pre-
processing than DL models, often achieving superior accuracy across 
various conditions. This suggests that the synergy between ML models 
and advanced signal decomposition techniques can be more effective 
than complex DL architectures alone, especially for certain forecasting 
horizons and seasonal variations. These insights highlight the impor-
tance of selecting the right combination of models and preprocessing 
techniques to maximize forecasting accuracy, leading to better grid 
integration, improved decision-making, and enhanced energy manage-
ment. These advancements are essential for the broader renewable en-
ergy sector, particularly photovoltaic energy, playing a key role in 
advancing the global energy transition and supporting sustainable en-
ergy systems worldwide. The results yield several key conclusions 
related to the Djelfa case study that should be taken into account by 
practitioners and decision-makers, including the following: 

• In case of standalone model, it is important to prioritize the use of 
deep learning models, particularly CNN, as they consistently 
outperform all standalone models for both the 30-minute and 3-hour 
forecasting horizons, demonstrating their capacity to efficiently 
capture complex data patterns and dynamics for this region.
• Adopt Inception and Residual modules in model design to improve 

forecasting performance. The strength of inception modules lies in its 
ability to process multi-scale features simultaneously by combining 
different filter sizes within its architecture, enabling the capture of 
wide range of patterns, from localized fluctuations to broader trends, 
making it particularly effective for complex and diverse forecasting 
tasks. The residual module exhibits its effectiveness by utilizing skip 
connections to address the vanishing gradient problem and maintain 
the integrity of feature propagation
• Utilize machine learning models such as ANN, Random Forest, and 

SVR for longer forecasting horizons, especially when historical data 

Fig. 12. Monthly variation of R-squared the developed models (30 min ahead).

Fig. 13. Monthly variation of RMSE for the developed models (30 min ahead).
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is limited. These models have shown higher effectiveness in such 
contexts, whereas deep learning models should be leveraged when 
larger datasets are available due to their superior ability to model 
complex data relationships.
• Incorporate Variational Mode Decomposition (VMD) as a pre-

processing step to enhance model accuracy. VMD preprocessing 
significantly enhances model performance, especially for machine 
learning models, which benefit more from effective feature engi-
neering. While deep learning models leverage automatic feature 
extraction, VMD aids both ML and DL models by decomposing input 
data into cleaner, more relevant components, improving general-
ization and accuracy.
• Take seasonal variability into account during model training and 

evaluation, as VMD-based models demonstrate variable accuracy 

across different months. For instance, June shows the highest pre-
diction accuracy while November performs the worst. This seasonal 
variability highlights the influence of environmental and temporal 
factors on forecasting accuracy, further emphasizing the importance 
of meticulous data preprocessing and model tuning.
• To further advance the effectiveness and applicability of the pro-

posed forecasting framework, the following extensions can be 
considered:
• Investigating alternative decomposition and signal processing 

techniques such as Empirical Mode Decomposition (EMD) and 
Wavelet Transform (WT), is recommended to extract more detailed 
signal characteristics. These approaches have the potential to 
enhance forecasting performance by capturing intricate temporal 
patterns in the data.

Fig. 14. Monthly variation of MAE for the developed models (30 min ahead).

Fig. 15. Monthly variation of R-squared the developed models (3 h ahead).
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• Including further meteorological parameters such as ambient 
temperature, relative humidity, wind speed, and atmospheric pres-
sure may improve model accuracy by accounting for key environ-
mental factors that influence PV system behavior.
• Implementing the forecasting algorithm within a Smart Moni-

toring Device (SMD) would provide a portable, real-time, and user- 
friendly tool for monitoring PV power generation. Such a device 
would be particularly valuable for the Djelfa PV power plant, espe-
cially in the context of grid integration and operational management.
• Deploying the Smart Monitoring Device in neighboring regions 

of Djelfa and in residential environments can support the optimal 
utilization of rooftop PV systems. The device may also be used in 
newly installed PV systems with limited historical data, where 
transfer learning techniques could enable the forecasting model to 
adapt effectively to the new environment.

• Applying the model in various geographic locations beyond 
Djelfa is essential for assessing its generalizability and adaptability to 
diverse climatic and environmental conditions. This step is critical 
for verifying the scalability and practical relevance of the proposed 
forecasting framework.

Taken together, these recommendations offer a promising pathway 
for expanding the utility, robustness, and real-world deployment po-
tential of PV forecasting models in support of broader renewable energy 
goals.
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