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Abstract: Deepfake video detection has emerged as a critical challenge in the realm of artifi-

cial intelligence, given its implications for misinformation and digital security. This study

evaluates the generalisation capabilities of the CoAtNet model—a hybrid convolution–

transformer architecture—for deepfake detection across diverse datasets. Although CoAt-

Net has shown exceptional performance in several computer vision tasks, its potential for

generalisation in cross-dataset scenarios remains underexplored. Thus, in this study, we

explore CoAtNet’s generalisation ability by conducting an extensive series of experiments

with a focus on discovering features and variations in deepfake videos. These experiments

involve training the model using various input and processing configurations, followed

by evaluating its performance on widely recognised public datasets. To the best of our

knowledge, our proposed approach outperforms state-of-the-art models in terms of intra-

dataset performance, with an AUC between 81.4% and 99.9%. Our model also achieves

outstanding results in cross-dataset evaluations, with an AUC equal to 78%. This study

demonstrates that CoAtNet achieves the best AUC for both intra-dataset and cross-dataset

deepfake video detection, particularly on Celeb-DF, while also showing strong performance

on DFDC.

Keywords: digital multimedia forensics; deepfake; Generative Adversarial Networks

(GANs); computer vision (CV); CoAtNet

1. Introduction

Videos are an extremely common multimedia form that can be conveniently trans-

ferred to different social media platforms, such as WhatsApp, YouTube, Instagram, and

Facebook. Multimedia content, including videos, can be readily modified via modern

editing tools [1]. This is perhaps the start of a slippery slope regarding the “authenticity”

of such content. Modifications may have positive aesthetic or presentational goals, but,

of course, some modifications may be intended to mislead. Where videos are concerned,

such matters took a significant turn in 2017 when a Reddit account called “Deepfake”

posted synthetic pornographic videos generated using a Deep Neural Network (DNN).

The account’s name, combining “Deep” (from deep learning) and “fake”, caught on and

now refers to hyper-realistic images, speech, and videos generated using Generative Ad-

versarial Networks (GANs) that render the identification of their authenticity difficult for

humans [2,3].
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While digitally synthesising faces or manipulating a real face requires a significant

volume of source data, such data are now publicly available. Contemporary deep learning

techniques, such as autoencoders (AEs) and Generative Adversarial Networks (GANs),

eliminate several manual editing processes [4].

Multiple mobile applications, websites, and software programs have been made

publicly available, allowing for the production of high-level synthesised media. These

resources require no prior training. Applications such as FakeApp [5], DFaker [6], Faceswap-

GAN [7], Faceswap [8], and DeepFaceLab [9] have been used to create the deepfakes

contained in deepfake datasets or videos circulated on the Internet that involve celebrities,

such as former president Barack Obama [10] and actor Tom Cruise [11].

Although there is concern regarding deepfake technology, it also has creative and

productive applications [4,12–14]. For example, it can be used in education, criminal

forensics, virtually trying on clothes while shopping, 3D modelling industrial applications,

entertainment [15], acting [16], film production, and video dubbing [17]. In education,

deepfakes can enhance engagement by transforming teachers into familiar characters or

animating historical figures for classroom interaction. In privacy and healthcare, they

can help to de-identify patients in videos while preserving useful visual information and

serve as virtual counsellors, and are especially effective for individuals with social anxiety.

Additionally, AI characters can play roles in preserving culture and history by bringing

historical artworks and figures to life. These technologies can enrich storytelling, therapy,

and cultural preservation efforts [18].

At the same time, deepfakes have raised significant concerns, particularly due to

the potential for their abuse and misuse [2,19,20]. Deepfake videos can misrepresent a

person’s views and actions, which could result in serious political, social, financial, and

legal issues. Deepfakes pose wide-ranging threats if used harmfully: the manipulation

of the stock market, political discourse, or elections; targeting celebrities with revenge

porn; creating fake news and spreading misinformation; financial fraud; and creating fake

social media accounts to incite violence or direct the public to specific perspectives. These

fake multimedia have serious consequences, such as misinforming the public, harming

a personal or business reputation, affecting political perspectives, and being maliciously

used as evidence in court.

Various laws seek to protect individuals against the misuse of deepfake technology.

For example, in the USA, the DEEPFAKES Accountability Act (H.R. 5586) [21] establishes

civil remedies for victims of harmful deepfake content, giving victims the right to initiate

civil actions against individuals who create or distribute deepfake material that causes

harm. This empowers victims to seek damages and injunctive relief, offering a legal avenue

to address and mitigate the impacts of malicious deepfake content. There are also similar

regulations in Canada [22] and China [23].

Deepfake misuse leads to doubts about available videos and concerns about people’s

privacy [24]. Moreover, it poses an issue for security and ethics, as visual media can no

longer be considered trustworthy content [25]. Consequently, there is a great demand for

methods to verify that videos are genuinely what they appear to be.

As the public’s interest in deepfake technology grows, so will the number of relevant

studies. Over the last three years, tremendous progress has been made in developing

detection technologies. The academic community, research groups, and commercial compa-

nies worldwide are undertaking relevant studies to mitigate the negative effects of such a

problem [26].

Most research to date has involved training and evaluating detection models using a

restricted dataset. The training dataset will contain application instances of the same faking

techniques, perhaps in addition to the same real-world environments. Models developed
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in this way often exhibit good generalisation performance on “unseen” examples, but they

can radically underperform when such data instance assumptions are relaxed. For example,

a model trained using a dataset that includes fakes made using three different techniques

may be useless at detecting fakes that are created using a fourth technique. In a sense,

models are developed to carry out generalisations in an intra-dataset manner, but they do

not generalise reliably across datasets (i.e., when applied to different datasets).

In this study, we investigate the generalisation capability of the CoAtNet model

for deepfake video detection across multiple datasets. The CoAtNet model combines

aspects of convolutional networks and specific vision-focused attention networks known

as Vision Transformers. While CoAtNet has demonstrated exceptional performance in

various computer vision tasks, its effectiveness in distinguishing real from manipulated

videos—particularly in cross-dataset scenarios—remains underexplored. Our research

systematically evaluates CoAtNet’s performance using benchmark deepfake datasets,

including FaceForensics++ [27], DFDC [28], Celeb-DF [29], and FaceShifter [30], to assess

its robustness and adaptability to unseen data. The main contributions of this study can be

summarised as follows:

• We evaluate the generalisation ability of the CoAtNet model in deepfake videos for

synthesised faces and discover different features and variations.

• Our study proposes an improved CoAtNet model (CoAtNet16A) that ensures better

generalisation.

• We investigate the detection effect of CoAtNet16A using different frame selection

strategies, including a single middle frame, fifteen random frames, fifteen optical flow

frames, cosine similarity keyframes, and facial landmark keyframes.

Our method—using CoAtNet with a voting-based approach that integrates predic-

tions from single frames, random frames, and optical flow frames—achieved outstanding

performances on the FF++ dataset, with an AUC of 0.9996, surpassing leading methods.

In cross-dataset evaluations, our model demonstrated superior results on the Celeb-DF

dataset with an AUC of 0.76 and on the DFDC dataset with an AUC of 0.68 (the fake images

in these datasets were created using different manipulation techniques).

The remainder of this study is organised as follows: Section 2 reviews related re-

search on deepfake generation and detection, including CNN-based approaches, Vision

Transformer (ViT)-based approaches, and the CoAtNet model. Section 3 illustrates the

two-stage proposed methodology and the details of the experiments. Section 4 outlines the

comparison of performance evaluations for both intra-dataset and cross-dataset contexts.

Finally, Section 5 provides the conclusions, limitations, and future research directions.

2. Related Research

In recent years, extensive research has been conducted to address the growing chal-

lenge of deepfake detection, driven by the rapid advancements in deepfake generation

techniques. Early detection methods primarily relied on machine learning techniques and

then on Convolutional Neural Networks (CNNs) due to their strong ability to capture spa-

tial features from images and videos. However, with the emergence of more sophisticated

and realistic deepfakes, researchers have explored advanced architectures such as Vision

Transformers (ViTs), which excel at modelling global dependencies within visual data.

Recently, CNN/ViT hybrid models such as CoAtNet have been introduced. This section

summarises deepfake generation techniques, highlighting the strengths and weaknesses of

both CNNs and ViTs, and explains how the CoAtNet model combines them.
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2.1. Deepfake Generation

There are several techniques to generate hyper-realistic images, videos, and audio.

However, the most used techniques are variations or combinations of deep learning ar-

chitectures, such as Encoder–Decoder networks and Generative Adversarial Networks

(GANs) [31]. Encoder–Decoder (ED) networks consist of an encoder that extracts latent

features from an image and a decoder that reconstructs the image from these features [12].

On the other hand, a GAN comprises two competing neural networks: a generator G and

a discriminator D. G produces fake samples to deceive D, while D learns to distinguish

between real samples and fake samples. The repetition of this scenario results in G devel-

oping better samples (i.e., they increasingly cannot be distinguished from those of the real

samples) [32].

In deepfake generation studies, Lyu [2] categorised the manipulation types into three

categories—head puppetry, face swapping, and lip syncing—as shown in Figure 1. Head

puppetry (also called facial re-enactment [33]) involves changing the target’s entire head

and upper shoulder according to the head of the source person to give the same appearance

as the target. Face swapping is the process where the target’s faces are swapped with

synthesised faces from the source, maintaining facial expressions. Lip syncing creates a

fake video by altering the target’s lips to be consistent with speech chosen by the attacker

(i.e., it “puts words into the target’s mouth”).

 

Figure 1. Deepfake manipulation types: (top) head puppetry, (middle) face swapping, and

(bottom) lip syncing. Source: [2].

2.2. Deepfake Detection

The literature reveals a progression from early heuristic-based techniques to sophis-

ticated architectures designed for the deepfake detection task. This section reviews the

state-of-the-art studies on deepfake detection, highlighting key methodologies, datasets,

and challenges in this evolving threat.

Afchar et al. [34] were the first to detect deepfake videos without using traditional

image forensics techniques. They proposed the MesoNet model, a CNN architecture with

a few layers focusing on the images’ mesoscopic properties (smaller semantic details) to

analyse video frames. Two different types of architecture were used: Meso4 and MesoIn-

ception4. Another study carried out by Nguyen, Yamagishi, and Echizen [35] investigated

the utilisation of Capsule Networks for detecting fake images and videos. Capsule Net-

works, recognised for their proficiency in discerning spatial hierarchies within datasets,
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present a promising alternative to conventional Convolutional Neural Networks (CNNs)

by mitigating their shortcomings in terms of the identification of object poses and deforma-

tions. Their research leveraged the unique capabilities of Capsule Networks to improve

the accuracy and robustness of detection. Dang et al. [36] proposed using an attention

mechanism to produce an improved feature map, which is then used for both fake detection

and predicting associated manipulation regions. Wodajo and Atnafu [37] proposed using a

CNN and Vision Transformer (ViT) hybrid model to learn both local and global features.

The CNN acts as a learnable feature extractor. The features are input into the ViT and

classified using the attention mechanism. Zhao et al. [38] used fine-grained classification,

which gathers local discriminative features to differentiate between categories in order

to solve the deepfake detection problem. This model uses a multi-attentional network

that includes three key components: textural feature enhancement blocks, multiple spatial

attention heads, and textural and semantic features aggregation. Luo et al. [39] suggested

a model for solving the generalisation problem. They found that CNN-based detectors

exhibit biases to fakery method-specific textures. Since high-frequency noises remove

colour textures, they proposed using these types of noise to remove the colour textures,

exposing statistical discrepancies between real and fake images. Wang et al. [40] proposed

a hybrid model that combines both CNN and transformer architectures. This technique

is designed to overcome the shortcomings of current deepfake detection methodologies,

especially regarding their generalisability across diverse datasets. The proposed model

demonstrates improved performance in detecting deepfakes compared to traditional CNN-

based methods—particularly in cross-dataset evaluations—achieving an AUC of 0.98 on

FF++, 0.74 on DFDC, and 0.72 on Celeb-DF.

Although multiple studies have tried to address the generalisation issue for deep-

fake detection, there is still significant room for improvement, and the effect of using an

advanced deep learning model to solve this challenge should be explored.

2.3. CNN-Based Approaches

CNNs are a class of deep learning models that have revolutionised fields such as

computer vision and natural language processing. CNNs are designed to automatically

and adaptively learn spatial hierarchies of features from input images, rendering them

highly effective for tasks such as image classification, object detection, and image denoising.

This capability is achieved through the use of convolutional layers, pooling layers, and

fully connected layers, which together form the architecture of a CNN. The convolutional

layers apply a series of filters to the input data, capturing local patterns, while pooling

layers reduce dimensionality, and fully connected layers integrate the learned features for

classification or regression tasks [41].

Deep learning is the dominant deepfake detection approach, with CNNs being the

most represented specific architecture [42]. CNNs employ a convolution filter that extracts

important edges by filtering the surrounding pixel values, independent of their position [43].

There are two types of features in images that provide different information: local and

global features. Local features describe small groups of pixels (also known as image

“patches”), while global features describe the entire image [44]. Even though CNNs produce

outstanding performance in learning local image information, their limited receptive fields

prevent them from capturing the spatial interdependence of pixels; in other words, CNN

models tend to concentrate only on the activated segment of the face and ignore other parts.

As a result, CNNs cannot determine and leverage the relationships between the different

parts of images; for instance, the model is unable to detect an unnatural relationship

between the mouth and eyes. Additionally, CNNs present an overfitting problem and
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cannot carry out generalisation relative to unseen fake videos during training or diverse

categories of deepfake generation techniques [45].

2.4. ViT-Based Approaches

A transformer (a form of neural network) learns context and meaning across sequential

data. It harnesses the concepts of attention or self-attention to detect the relationships be-

tween elements, even if they are far away. Before the invention of transformers, users were

required to train neural networks using large, labelled datasets. It is acknowledged that

the production of such datasets is resource-intensive. Transformers eliminate this need by

mathematically identifying patterns between elements. Additionally, the implementation

of transformer theory lends itself to the use of parallel processing, allowing these models

to run quickly [46]. Moreover, transformers discover the long-term dependency between

video frames and are scalable to highly complex models on large-scale datasets [47].

Transformers have achieved considerable success in natural language processing (NLP)

tasks. This has inspired their application to computer vision (CV) problems, including ob-

ject detection [48], image recognition [49], video classification [50], image segmentation [51],

image captioning [52], and visual question answering (where the developed model must re-

spond to questions posed about an image) [53]. They have achieved state-of-the-art results.

The Vision Transformer (ViT) model was introduced in 2021 by Google [49]. Their

model applies attention to small “patches” of the image, rather than individual pixels. As

clarified in Figure 2, the ViT model divides an image into fixed-size (16 × 16 pixel) patches,

flattens the patches, and includes positional embedding as an input to the transformer

encoder. The encoder comprises Multi-Head Self-Attention (MSA) and Multi-Layer Percep-

tron (MLP) components. The model is then trained and fine-tuned for image classification.

The features are linked by the Multi-Head Self-Attention Layer (MSL), which enables the

information to be globally distributed across the overall image.

 

Figure 2. Vision Transformer (ViT) architecture. Source: [49].

ViTs have two advantages over CNNs. Firstly, they have input-adaptive weighting.

Unlike a convolution kernel, which is static and input-independent, their attention weights

are dynamic and may change according to input. The second advantage is a global receptive

field, which means that a ViT can observe the entire image in one glance (while a CNN

usually does not, as mentioned above) [54].
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However, transformers have some limitations. First, image attention networks often

struggle with translational invariance, meaning that their performance can vary when

objects in an image are shifted or repositioned. Thus, in order to outperform CNNs, ViTs

had to be trained on large datasets comprising hundreds of millions of images [54]. If

the ViT-based models are trained with insufficient data, they perform worse than CNNs

and do not generalise well. Moreover, ViT-based models focus on global features and

underperform CNNs in local features [55].

2.5. CoAtNet Model

Vision Transformers have received increasing interest in computer vision; however,

they have some drawbacks. The same is true for CNNs. CoAtNet [54] seeks to combine

the strengths of both. As clarified in Table 1, CoAtNet (pronounced “coat” net) is the

abbreviation of convolution and self-attention, and it appeared at the end of 2021. It is a

hybrid model built from ViTs and CNNs. It improves the generalisation ability, capacity,

and efficiency of the model. Model generalisation refers to the ability of the model to

maintain a level of performance relative to unseen data that is similar to that relative to

training data. This requires the avoidance of “overfitting”. In comparison, model capacity

refers to a model’s ability to accommodate large training datasets. When training data

are numerous and overfitting is not a concern, the model with the higher capacity will

achieve superior final performance results after an adequate training step. CoAtNets obtain

state-of-the-art performance when applied to the ImageNet dataset under varying resource

constraints [54]. Figure 3 presents the architecture of the CoAtNet model [54].

Table 1. Comparison between CNN, ViT, and CoAtNet based on source [54].

Properties CNN ViT CoAtNet

Translation
Equivariance

✔ ✔

Local Features ✔ ✔

Input-adaptive
Weighting

✔ ✔

Global Features ✔ ✔

 

Figure 3. CoAtNet architecture. Source: [54].

The architecture consists of five stages (S0, S1, S2, S3, and S4), starting with S0 and then

C-C-T-T, where C represents convolution and T represents transformer. S0 is a simple two-

layer convolutional stem, and it is used to lower dimensionality. S1 and S2 are convolution

blocks. They contain Mobile Inverted Bottleneck Convolution (MBConv) blocks, which

employ depth-wise convolution with Squeeze–Excitation (SE) to reduce the spatial size

before being transferred to global attention mechanisms. S3 and S4 are transformer blocks,

and they contain relative self-attention components followed by a Feed-Forward Network

(FFN). Relative self-attention uses the position between patches instead of their absolute
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position. The latter approach is used by the standard ViT. Finally, the CoAtNet ends with

global pooling and a fully connected layer.

3. Proposed Framework for Evaluating the Generalisation of the
CoAtNet Model

The proposed framework is divided into two stages, each of which includes a set

of experiments. In the first stage (Experiment Settings), the experiments explore various

parameters (frame size, using a pre-trained model, data augmentation, and threshold strate-

gies) and features (face alignment and Local Binary Pattern (LBP) features) to identify the

most effective settings. These preliminary experiments serve as a foundation to determine

which settings provide the best performance in the AUC of the CoAtNet model. The second

stage (Performance Improvements) involves adopting these best-performing settings for

the investigation of a variety of frame selection strategies: a single middle-of-video frame,

fifteen random frames, fifteen optical flow frames (essentially consecutive frames allowing

inter-frame relationships to be leveraged), or keyframes using cosine similarity and facial

landmarks.

Figure 4 illustrates the details of the proposed framework for evaluating the gener-

alisation ability of the CoAtNet model. The face images are extracted from video frames

using Dlib [56] to remove non-facial (background) information that is useless for deepfake

detection. In fact, tracking facial information rather than using the complete frame as

input should improve performance. The cropped face images are resized to 224 × 224.

A particular CoAtNet implementation has been selected [57], which was designed for

multiclassification over the CIFAR10 dataset [58].

 

Figure 4. Proposed framework for evaluating the generalisation of the CoAtNet model.
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3.1. Stage 1: Experimental Settings

This section outlines the datasets used, the proposed model, the implementation

details, and the initial experiments for deciding the best combination of settings. In this

stage, all models are trained on a single middle frame from each video in the DeepFakes

category of FF++ instead of using the complete dataset to see the effect of different features

within a reasonable time frame.

3.1.1. Datasets

The FaceForensics++ [59], DFDC [60], Celeb-DF [61], and FaceShifter [59] datasets

were used in this study to ensure robust evaluations across different manipulation tech-

niques and real-world scenarios. They provide diverse datasets with varying difficulty

levels, helping to assess model generalisation for both intra-dataset and cross-dataset per-

formance. Using these datasets also enables direct comparisons with previous studies,

ensuring fair benchmarking and highlighting improvements or limitations in generalisation

across datasets.

1. FaceForensics++ [27]

FaceForensics++ includes four faking algorithms: DeepFakes (DF), Face2Face (F2F),

FaceSwap (FS), and NeuralTextures (NT).

• DF: This fakery approach uses two autoencoders with a shared encoder trained to

reconstruct source and target face images. A face detector crops and aligns images, and

the trained Encoder–Decoder of the source is applied to the target to generate a fake im-

age. The final output is blended using Poisson image editing for seamless integration.

• F2F: This fakery approach reconstructs a 3D face model; tracks expressions, poses, and

lighting; and transfers 76 Blendshape coefficients from the source to the target. The

approach automates keyframe selection and re-enactment manipulation for realistic

facial synthesis.

• FS: This fakery approach is a graphic-based method that transfers a face region from a

source video to a target using detected facial landmarks. It fits a 3D template model

with blended shapes, back-projects it onto the target, and blends the rendered model

with the image, applying colour correction for a seamless result.

• NT: This is a rendering approach that learns a neural texture of the target person from

video data, incorporating a rendering network trained with photometric reconstruction

and adversarial losses. It uses tracked geometry during training and testing, applying

patch-based GAN loss for realistic facial re-enactment.

Figure 5 shows some examples from the FF++ dataset. The first two columns (“Original

1” and “Original 2”) contain unaltered images of individuals. The following four columns

display manipulated versions of the original images using the four faking techniques.

We have selected two examples from the FF++ dataset presented in the first and second

rows of Figure 5. Each row demonstrates how the same person appears under different

manipulation methods. Each method has different visual artefacts that highlight the

challenges of detecting deepfakes, as some methods seem more realistic than others.
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Figure 5. FaceForensics++ dataset examples. Source: [59].

2. DFDC [28]

The DFDC dataset contains instances created using eight faking methods: Deepfake

Autoencoder (DFAE), which used two input/output resolutions of 128 × 128 (DF-128) and

256 × 256 (DF-256); Morphable Model/Neural Network (MM/NN); Neural Talking Head

(NTH); FaceSwapGAN (FSGAN); StyleGAN; Refinement; and AudioSwap (Audio). The

faking techniques can be integrated with one another:

• Deepfake Autoencoder (DFAE): This is a convolutional autoencoder with a shared

encoder and two separately trained decoders for each identity in a face swap. It extends

the shared encoder beyond the bottleneck and uses PixelShuffle for upscaling. This

design helps the encoder learn common features while the decoders capture identity-

specific details, enabling realistic face swaps during inference. Two resolutions are

used: 128 × 128 (DF-128) and 256 × 256 (DF-256).

• Morphable Model/Neural Network (MM/NN): This method uses a frame-based

morphable-mask model to perform face swaps. It aligns source and target facial land-

marks, morphs source pixels to match the target, and blends the eyes and mouth from

the original video. Spherical harmonics adjust illumination, and a nearest-neighbour

approach selects the best source–target face pair based on expression similarity.

• Neural Talking Head (NTH): This generates realistic talking heads using few-shot

and one-shot learning. The process encompasses two phases: meta-learning, which

facilitates the conversion of landmarks into authentic facial representations, and fine-

tuning, wherein a pre-trained model rapidly adapts to new faces. It is fine-tuned

on DFDC video pairs by extracting landmarks from a driving video and generating

images with the target person’s appearance.

• FaceSwapGAN (FSGAN): FSGAN uses GANs for face swapping and re-enactment,

adapting to pose and expression changes. It employs adversarial loss for re-enactment

and inpainting, with additional generators for face segmentation and Poisson blending.

• StyleGAN: StyleGAN performs face swaps by projecting a fixed identity descriptor

onto the latent face space for each video frame, ensuring consistent identity transfer

throughout the video.

• Refinement: In the final step of fake generation, a randomly selected set of videos

underwent post-processing. Applying a basic sharpening filter to the blended faces

significantly enhanced the visual quality of the final video, with almost no additional

computational cost.

• AudioSwap (Audio): Some video clips underwent audio swapping using the TTS

Skins voice conversion method [62]. TTS Skins can perform multi-voice Text-to-Speech

(TTS) by converting a TTS-generated voice into various target voices.
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Figure 6 presents some examples from the DFDC dataset. The left column (“Orig-

inal”) contains unaltered images of individuals, while the right one (“Fake”) contains

deepfake-altered versions of the same individuals. Two examples from the DFDC dataset

are presented in the first and second rows. As illustrated in Figure 6, deepfake manip-

ulations are subtle. They may be difficult to detect with the naked eye, and automated

detection may need to be more sophisticated.

Figure 6. DFDC dataset examples. Source: [60].

3. Celeb-DF [29]

Here, the standard DeepFake generation method is refined using multiple methods

to address specific visual artefacts present in existing datasets. Figure 7 presents two

examples of the Celeb-DF dataset. The “Original 1” and “Original 2” columns contain

unaltered images of individuals, while the next one (“Fake”) contains a fake version

generated by applying face swapping between the two original individuals. Two examples

are shown. It is clear that some deepfakes appear highly realistic, making detection

difficult without advanced models. In the Celeb-DF dataset, there is version 1 (V1), which

includes 795 videos, and version 2 (V2), which includes 5639 videos. In this study, we used

Celeb-DF V2.

Figure 7. Celeb-DF dataset examples. Source: [61].
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4. FaceShifter (FSh) [30]

FaceShifter includes a single faking method that consists of a two-stage face-swapping

algorithm. Figure 8 shows two examples of the FaceShifter dataset in the first and second

rows. It produces realistic deepfake data, which challenge the deepfake detection process.

Figure 8. FaceShifter dataset examples. Source: [59].

Table 2 summarises the specifications of the well-known datasets. As clarified above,

each dataset was created using different deepfake techniques, which implies a significant

challenge in deepfake detection due to the diversity of manipulation methods and their

unique artefacts. Each technique introduces distinct visual and temporal inconsistencies,

rendering it difficult for a single model to carry out generalisation effectively across all

types [31]. Table 3 shows the overlap between the datasets in the used faking algorithms.

Although some common techniques exist, each dataset used an improved version to

generate the fake data.

Table 2. Well-known public datasets.

Dataset
Published

Date
Images/Videos Real Videos Fake Videos

Number of
Faking Methods

Faking Algorithm
Type(s)

Visual/Audio/
Both

FF++ Jan-19 Videos 1000 4000 4 DF, F2F, FS, NT Visual

Celeb-DF (v2) Nov-19 Videos 590 5639 1
Improved DeepFake
synthesis algorithm

Visual

FSh Jun-20 Videos 1000 1000 1
Two-stage FaceShifter

face-swapping
Visual

DFDC Jun-20 Videos 23,954 104,500 8

DF-128, DF-256,
MM/NN, NTH,

FSGAN, StyleGAN,
Refinement, and

AudioSwaps

Both

Table 3. Overlapping of deepfake datasets.

Faking Type FF++ Celeb-DF FSh DFDC

Face Swap
Yes (DeepFakes,

FaceSwap)
Yes (improved

version)
Yes (improved

version)
Yes (DFAE, MM/NN,

StyleGAN)

Head Puppetry
Yes (Face2Face,

NeuralTextures)
No No Yes (FSGAN, NTH)

Lip Syncing No No No Yes (AudioSwap)
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The datasets were split into training, validation, and testing sets with ratios of 70%,

15%, and 15% for the FF++, Celeb-DF, and FaceShifter datasets. The DFDC dataset comes

pre-packaged with training, validation, and testing sets, and the research of others has

respected this split. We calculated the adopted split as 93%, 3%, and 4%. The datasets are

not balanced; thus, balancing was applied using oversampling for the training, validation,

and testing sets.

3.1.2. Proposed Model: CoAtNet16A

In this study, we introduce CoAtNet16A, a hybrid architecture that combines the

convolutional–transformer design of CoAtNet with transfer learning from VGG16 weights,

further enhanced by a tailored augmentation strategy. This architecture is motivated by

two observations: (1) CoAtNet effectively merges the strengths of CNNs and transformers,

and (2) VGG16 pretraining, while traditionally used in CNNs, has not been systemat-

ically integrated into hybrid transformer-based models such as CoAtNet for deepfake

detection tasks.

To evaluate the contribution of this innovative methodology, we performed a com-

parative analysis involving three model configurations: (i) a CoAtNet model trained from

scratch, (ii) CoAtNet pre-trained on ImageNet [63], and (iii) CoAtNet pre-trained using

VGG16 weights [64], referred to as CoAtNet16. To further improve CoAtNet16, we applied

several data augmentation strategies [65–67]. The configuration with the augmentation

method from [67] is denoted as CoAtNet16A. The details of the experiment result are found

in Section 3.1.3.

3.1.3. Parameter Settings

In this section, we describe the parameter settings applied in our experiments, and we

explain the different experiments used to explore and evaluate features and variations in

deepfake video detection. The batch size that was used is 16, and the initial learning rate

is 1 × 10−3. Moreover, the AdamW optimiser was used to train the model for 50 epochs.

The code was run on an NVIDIA A100 Tensor Core GPU, which is supported by the Aziz

Supercomputer operated by the Center of Excellence in High-Performance Computing [68].

The base model was trained with three frame sizes: 32 × 32, 128 × 128, and 224 × 224.

According to the results in Table 4, using a frame size of 224 × 224 produced better AUC

performances. In the following subsections, we present the results of three experiments for

deepfake video detection. These experiments aim to determine the effectiveness of transfer

learning, image transformation, and texture-based features in enhancing detection accuracy

across various manipulation methods and datasets. We conducted extensive experiments;

however, for the sake of clarity in the manuscript, we present the best experimental results

for the following:

• Training from scratch vs. the pre-trained model.

• Image adjustment using face alignment.

• Training on Local Binary Pattern (LBP) features.

Table 4. Model performance (AUC) with different frame sizes. The models were trained on Deep-

Fakes.

Frame
Size

DF F2F FS NT DFDC Celeb-DF FSh
AVG
AUC

32 × 32 0.9281 0.6163 0.7138 0.6245 0.6399 0.632 0.6987 0.6933
128 × 128 0.9836 0.8639 0.5168 0.8787 0.5931 0.6243 0.7262 0.7409
224 × 224 0.9977 0.9846 0.5952 0.9827 0.5423 0.4901 0.9824 0.7964
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1. Results of Training from Scratch vs. Pre-trained Model

The decision to use pre-trained models in this experiment stems from the potential

benefits they offer in terms of generalisation ability and performance. Training a deep

learning model from scratch often requires substantial amounts of data and computational

resources. However, leveraging pre-trained models is a more efficient approach, allowing

knowledge learned from large-scale datasets to be transferred to a new task. This process,

known as transfer learning, significantly reduces the time and resources required for

training while enhancing the model’s ability to generalise across unseen data. While such

pre-trained models may not have been trained for the purposes of the machine learning

task at hand (in our case, fake detection), they might still be expected to usefully capture

important image features (e.g., edges, textures, and some elements of facial shapes). A

comparative analysis was conducted, involving three configurations: a model without

pretraining, one pre-trained on CoAtNet on ImageNet [63], and a model pre-trained on

VGG16 [64] (referred to as CoAtNet16).

As presented in Table 5, the pre-trained CoAtNet using VGG16 weights yielded the

highest average AUC across all datasets, demonstrating its superior performance relative

to the other models. In addition, several augmentation methods [65–67] were tested to

improve the performance of the selected model. As observed in Table 5, CoAtNet16, with

the augmentation method provided in [67] (CoAtNet16A), exhibits the highest performance

among the others.

Table 5. Comparison of average AUC scores across different pre-trained models. The models were

trained on DeepFakes.

Type DF F2F FS NT DFDC Celeb-DF FSh AVG AUC

No
Pretraining

0.9940 0.9482 0.4490 0.8886 0.5137 0.4563 0.7468 0.7138

Pre-trained
CoAtNet

0.9944 0.9515 0.4847 0.9170 0.4858 0.4596 0.7658 0.7227

CoAtNet16 0.9974 0.9470 0.4917 0.9068 0.5010 0.4886 0.7325 0.7236
CoAtNet16A 0.9977 0.9846 0.5952 0.9827 0.5423 0.4901 0.9824 0.7964

A classification threshold represents a specific value that indicates the manner in

which a predictive model allocates class labels according to the output probabilities. In the

context of binary classification, models frequently yield a probability score that reflects the

likelihood of an instance being categorised as part of the positive class. The classification

threshold serves as the cutoff point beyond which the instance is considered positive;

conversely, instances falling below this threshold are classified as negative [69]. In this

experiment, the performance of using a fixed threshold (=0.5) when calculating the accuracy

for CoAtNet16A is compared with using a dynamic threshold during the training epochs.

As observed in Table 6, using a static threshold produces better AUC results by about 3%.

In deepfake detection, where fake and real classes often have overlapping probability distri-

butions, dynamically adjusting the threshold results in the more frequent misclassification

of borderline cases.

Table 6. Model performance (AUC) with static threshold (STh) and dynamic threshold (DTh). The

model is trained on DeepFakes.

Threshold Type DF F2F FS NT DFDC Celeb-DF FSh AVG AUC

CoAtNet16A with STh 0.9977 0.9846 0.5952 0.9827 0.5423 0.4901 0.9824 0.7964
CoAtNet16A with DTh 0.9973 0.9686 0.5444 0.9669 0.5165 0.4867 0.8997 0.7686
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2. Results with and without Face Alignment

Facial alignment encompasses the identification of specified reference points on the

face, including the centres of the eyes, the corners of the mouth, and the tip of the nose. A

geometric transformation is calculated utilising these reference points to guarantee that

the identified facial features are positioned consistently throughout all images within the

dataset [70].

This experiment is applied to verify the importance of using facial alignment with

CoATtNet16A. As clarified in Table 7, adding facial alignment decreases the performance

slightly by about 4%. The alignment process typically includes resizing, warping, or pixel

interpolation, which can smooth out key visual inconsistencies that the model could use

for classification.

Table 7. Model performance (AUC) with and without facial alignment. The model is trained

on DeepFakes.

Face Alignment Status DF F2F FS NT DFDC Celeb-DF FSh AVG AUC

CoAtNet16A without
Face Alignment

0.9977 0.9846 0.5952 0.9827 0.5423 0.4901 0.9824 0.7964

CoAtNet16A with Face
Alignment

0.9986 0.9270 0.4793 0.9342 0.5691 0.5921 0.8093 0.7585

3. Results using Local Binary Pattern (LBP) features.

As LBP is well known for capturing texture details, it was employed to observe its

effect in deepfake detection. As depicted in Table 8, using LBP almost does not affect

deepfake detection when also using CoAtNet16A.

Table 8. Model performance (AUC) with and without Local Binary Pattern (LBP) features. The

models were trained on DeepFakes.

Using LBP Status DF F2F FS NT DFDC Celeb-DF FSh AVG AUC

CoAtNet16A without LBP 0.9977 0.9846 0.5952 0.9827 0.5423 0.4901 0.9824 0.7964
CoAtNet16A with LBP 0.9997 0.9805 0.7316 0.9819 0.5003 0.5620 0.8518 0.8011

Using LBP with CoAtNet16A results in approximately the same performance as

without LBP because CoAtNet already learns strong local and global features; in this

context, LBP becomes redundant, and there is no need to use LBP features.

As a result of Stage 1, all features and parameters with the best performance in all

cases were selected and used in the next experiments (Stage 2). The selected features and

parameters are as follows: frame size: 224 × 224; using a CoAtNet model pre-trained on

VGG16 with augmentation (CoAtNet16A); using a static threshold for accuracy; without

using face alignment; and without using LBP features. These features and parameters are

summarised in Table 9.

Table 9. Selected features and parameters with CoAtNet16A.

Frame Size Transfer Learning Thresholding Image Transformation Texture-Based Features

224 × 224

CoAtNet16A (CoAtNet
model pre-trained on

VGG16 with
augmentation)

Static No No

3.2. Stage 2: Performance Improvements

In the second stage of the experiments, the best model settings obtained from Stage 1

(Table 9) were used to apply multiple variations to improve the model’s performance. As
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depicted in Figure 9, the variations related to the selected frames for training and testing

are either a single frame for training and testing or a single frame for training and multiple

frames for testing. Finally, voting is applied to the results of the best approaches.

 

Figure 9. Frame selection approaches for performance improvements.

Frame selection is a critical step in deepfake detection. The rationale for using frame

selection instead of processing all frames in a video relates to computational efficiency and

avoiding redundant information. Processing every frame in a video significantly increases

the computational cost and storage requirements without necessarily providing additional

benefits for classification performance. This approach strikes a balance between efficiency

and effectiveness, enabling the evaluation of large datasets within reasonable resource

constraints [71].

Five approaches were evaluated for frame selection: a single middle frame, fifteen

random frames, fifteen optical flow frames, cosine similarity keyframes, and facial landmark

keyframes. For the single middle frame, the middle frame in each video was selected

regardless of the video’s length. If the middle frame did not contain a face, then a search

of the adjacent frames was carried out until a face was found. For fifteen random frames,

fifteen random points were selected to select the frames at these points, ensuring that

the selected frames cover various positions. This method aims to capture a diverse and

potentially representative subset of frames. The third approach involved generating the

optical flow, which is used to estimate the movement of objects between consecutive frames

using Gunnar Farneback’s algorithm [72]. It works by analysing image intensity patterns

at the pixel level. This method provides dense flow computations for each pixel, capturing

both the direction and magnitude of motion. For this study, sixteen consecutive frames

were extracted with a randomly selected initial frame, and OpenCV was utilised to calculate

fifteen optical flow frames [73]. The flow is displayed in RGB channels to indicate the

direction and magnitude of motion [74]. The other method for frame selection comprises

the use of cosine similarity, which aims to select representative frames that summarise a

video’s content, ensuring temporal and semantic diversity while reducing redundancy.

This technique exploits the mathematical characteristics inherent in cosine similarity to
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quantify the degree of similarity among frames, thus facilitating the identification of frames

that are most distinctive of the video sequence and thereby using limited representative

frames instead of the entire video [75]. Finally, the last method is the extraction of facial

landmark keyframes. It encompasses the identification and selection of frames from a video

that exhibit prominent facial characteristics. This methodology employs facial landmark

extraction techniques to ascertain critical reference points on the human face, including the

eyes, nose, and mouth, which are essential for the recognition of individuals [76].

Figure 10 shows the different frame selection approaches used in this study.

 

Figure 10. Used frame selection approaches. Frames are extracted from Celeb-DF dataset.

The extracted frames using different approaches are used in training and testing via

different methods, as explained in the following subsections.

3.2.1. Using a Single Middle Frame for Training and Testing

In this experiment, the CoAtNet16A model was evaluated on multiple deepfake

detection datasets using a single middle frame from each video. The goal was to assess the

performance of CoAtNet16A when limited to only one representative frame per video, and

to determine its effectiveness in detecting deepfakes under such constraints. According to
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Table 10, the model demonstrates varied performances across datasets, ranging from 0.63

to a maximum of 0.85 when trained on FF++.

Table 10. Performance (AUC) of the CoAtNet16A model on various deepfake detection datasets

using a single middle frame per video.

Trained on/
Tested on

DF F2F FS NT DFDC Celeb-DF FSh
AVG AUC

FF++
AVG AUC

All DS

DF 0.9977 0.9846 0.5952 0.9827 0.5423 0.4901 0.9824 0.8901 0.7964
F2F 0.9653 0.9966 0.877 0.9489 0.4975 0.5401 0.9695 0.9470 0.8278
FS 0.5558 0.8503 0.9812 0.461 0.5046 0.5339 0.5425 0.7121 0.6328
NT 0.995 0.992 0.6493 0.9952 0.4912 0.5001 0.948 0.9079 0.7958

DFDC 0.9497 0.7101 0.79 0.7059 0.8135 0.7473 0.6953 0.7889 0.7731
Celeb-DF 0.8244 0.6577 0.4463 0.6683 0.6107 0.9439 0.5395 0.6492 0.6701

FSh 0.8227 0.7855 0.5564 0.7984 0.5187 0.5243 0.9963 0.7408 0.7146
FF++ 0.998 0.9976 0.9971 0.9973 0.4757 0.4924 0.9948 0.9975 0.8504

3.2.2. Using a Single Frame for Training and Multiple Frames for Testing

This part of the experiment aims to verify the effect of using multiple frames with

different types. The following cases were examined: fifteen random frames, fifteen optical

flow frames, cosine similarity keyframes, and finally, facial landmark keyframes. In all cases,

the model was trained on single frames and tested using the voting of multiple frames.

1. Fifteen Random Frames

This experiment involved extracting fifteen random frames from each video training

process as single-frame inputs and testing the voting of the fifteen random frames. As

demonstrated in Table 11, training on FF++ yields the highest average AUC (0.8605).

Conversely, training on datasets such as FaceShifter results in the lowest average AUC

(0.5187), highlighting challenges in generalising to other datasets.

Table 11. Model performance (AUC) with training on a single frame and testing for fifteen

random frames.

Trained on/
Tested on

DF F2F FS NT DFDC Celeb-DF FSh
AVG AUC

FF++
AVG AUC

All DS

DF 0.9998 0.8401 0.3345 0.9261 0.562 0.6735 0.7744 0.7751 0.7301
F2F 0.7055 0.9864 0.5841 0.6165 0.5029 0.5639 0.5573 0.7231 0.6452
FS 0.395423 0.798824 0.996293 0.320276 0.503374 0.561768 0.409333 0.6277 0.5766
NT 0.9685 0.8567 0.4213 0.9637 0.4723 0.4839 0.7488 0.8026 0.7022

DFDC 0.9401 0.6765 0.8128 0.6732 0.8492 0.8455 0.6207 0.7757 0.774
Celeb-DF 0.8126 0.6224 0.4396 0.6321 0.6362 0.9733 0.5571 0.6267 0.6676

FSh 0.4729 0.4476 0.303 0.4257 0.5109 0.476 0.9948 0.4123 0.5187
FF++ 0.9988 0.996 0.9955 0.9957 0.5547 0.5167 0.9664 0.9965 0.8605

2. Fifteen Optical Flow Frames.

In this experiment, the model was trained on a single-frame optical flow extracted and

then evaluated using the majority for fifteen optical flow frames. The highest average AUC

is 0.8346, as illustrated in Table 12.

3. Cosine Similarity Keyframes.

This experiment investigated deepfake detection using keyframes selected based on

cosine similarity. The model was trained on FF++ categories and evaluated across all

datasets. The highest average AUC was about 0.85 on the FF++ dataset, as observed in

Table 13.
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Table 12. Model performance (AUC) with training on a single optical flow frame and testing for

fifteen optical flow frames.

Trained on/
Tested on

DF F2F FS NT DFDC Celeb-DF FSh
AVG AUC

FF++
AVG AUC

All DS

DF 0.9978 0.7838 0.5803 0.8272 0.5407 0.7352 0.6975 0.7973 0.7375
F2F 0.8013 0.9422 0.4324 0.7725 0.4647 0.5601 0.4161 0.7371 0.6270
FS 0.8513 0.6492 0.9912 0.6743 0.5460 0.6564 0.5339 0.7915 0.7003
NT 0.9015 0.8372 0.5272 0.9363 0.5014 0.6183 0.7031 0.8006 0.7179

FF++ 0.9846 0.9537 0.9787 0.9292 0.5445 0.7488 0.7029 0.9615 0.8346

Table 13. Model performance (AUC) with cosine similarity keyframes.

Trained on/
Tested on

DF F2F FS NT DFDC Celeb-DF FSh
AVG AUC

FF++
AVG AUC

All DS

DF 0.9990 0.9239 0.3514 0.9358 0.5279 0.5850 0.6865 0.8025 0.7157
F2F 0.9275 0.9997 0.4729 0.7106 0.4705 0.5541 0.5501 0.7777 0.6693
FS 0.5743 0.6947 0.9993 0.5862 0.4810 0.5206 0.5883 0.7136 0.6349
NT 0.9899 0.9348 0.4623 0.9812 0.5166 0.5338 0.8150 0.8420 0.7477

FF++ 0.9968 0.9930 0.9889 0.9853 0.5592 0.5486 0.8769 0.9910 0.8498

4. Facial Landmark-Based Key Frame Selection.

Facial landmark-based key frame selection is a technique used in video analysis to

identify the most informative frames in a video based on facial landmark movements [76].

This experiment explored the effect of using facial landmarks as keyframes. The model was

trained on FF++ categories and evaluated across all datasets. The highest average AUC

was about 0.84 on the FF++ dataset, as observed in Table 14.

Table 14. Model performance (AUC) with facial landmark keyframes.

Trained on/
Tested on

DF F2F FS NT DFDC Celeb-DF FSh
AVG AUC

FF++
AVG AUC

All DS

DF 0.9991 0.8903 0.3779 0.9382 0.5137 0.4941 0.8462 0.8014 0.7228
F2F 0.9601 0.9983 0.5467 0.8545 0.5217 0.5140 0.6242 0.8399 0.7171
FS 0.6011 0.5760 0.9979 0.5714 0.5149 0.4813 0.5287 0.6866 0.6102
NT 0.9976 0.9627 0.4518 0.9944 0.5096 0.4058 0.9525 0.8516 0.7535

FF++ 0.9994 0.9987 0.9988 0.9960 0.5083 0.4277 0.9331 0.9982 0.8374

Among the different types of multiple frames, the best average AUC result was

obtained using fifteen random frames on the FF++ dataset, which equals approximately

0.86, as shown in Table 11.

3.2.3. Using Voting for the Best Results

Among the different experiments that were applied using various settings and frame

selection, the best ones were selected in order to apply the average voting technique. Our

voting strategy is applied by obtaining the prediction for each item in the dataset based

on the result of a specific trained model. Then, the average for different model predictions

for each item is calculated. If the average is greater than or equal to 0.5, then the item is

considered label 1; otherwise, it is considered label 0.

For each voting process, three models were selected, which were trained on a single

middle frame, fifteen random frames, and fifteen optical flow frames; these were trained

either on FF++ or only on part of FF++, called DeepFakes. As we used three trained models,

there are four different combinations of voting, which comprise voting on all three models;

voting on fifteen random frames and fifteen optical flow frames; voting on a single middle

frame and fifteen random frames; and finally, voting on a single middle frame and fifteen

optical flow frames. As depicted in Table 15, the best performance for FF++ is obtained
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using voting for all (single frame, fifteen random frames, and fifteen optical flow frames),

which equals 0.9996; in contrast, using voting of all when trained on the DeepFakes dataset

provides the best AUC for DFDC, which equals 0.5705, and for Celeb-DF, the best AUC

equals 0.7624, which was obtained when using the voting of fifteen random frames and

fifteen optical flow frames.

Table 15. Voting performance on the CoAtNet16A model (ACC: accuracy; AUC: area under

the curve).

Frames Type Trained On

Testing Datasets

FF++ DFDC Celeb-DF

ACC AUC ACC AUC ACC AUC

Single Frame

FF++

98.1618 0.9975 49.5386 0.4757 49.4681 0.4924
15 Random Frames 97.5262 0.9965 53.3404 0.5547 70.5822 0.5167

15 Optical Flow Frames 90.4332 0.9615 51.6337 0.5445 33.0604 0.7488
Voting of All 99.0584 0.9996 50.9055 0.5373 52.9621 0.6531

Voting of 15 Random Frames and 15 Optical Flow 98.1227 0.9943 52.1201 0.5655 61.8483 0.6664
Voting of Single Frame and 15 Random Frames 98.5581 0.9996 * 50.5080 0.5229 48.5782 0.5032

Voting of Single Frame and 15 Optical Flow Frames 98.6209 0.9990 50.3754 0.5123 51.0071 0.7233

Single Frame

DF

83.5784 0.8901 52.6426 0.5423 49.5272 0.4901
15 Random Frames 75.4671 0.7751 50.3095 0.5620 17.8754 0.6735

15 Optical Flow Frames 69.5274 0.7973 49.9667 0.5407 15.6602 0.7352
Voting of All 71.8410 0.8867 50.4196 0.5705 * 50.5332 0.7033

Voting of 15 Random Frames and 15 Optical Flow 68.4662 0.8353 50.2650 0.5529 50.7701 0.7624 *
Voting of Single Frame and 15 Random Frames 78.1067 0.8658 50.9717 0.5674 51.1848 0.6005

Voting of Single Frame and 15 Optical Flow Frames 79.3635 0.8965 50.5300 0.5643 50.2962 0.6782

* Bold indicates highest AUC result.

4. Performance Evaluation Comparison

In the experimental evaluation, various state-of-the-art methods were compared with

our proposed CoAtNet models on the selected datasets—including FF++, DFDC Preview,

and Celeb-DF—to assess their effectiveness in deepfake detection. The DFDC Preview

dataset, a publicly available subset of the larger DFDC dataset, comprises over 5000 labelled

videos, including both real and fake videos [77]. As the results of the state-of-the-art studies

reported in [40] were applied to DFDC Preview and not DFDC, we adopted the same

dataset to ensure comparability and the fair evaluation of our model against previously

published research. The comparative performance of baseline methods and proposed

CoAtNet variations is summarised in Section 4.3.

4.1. Intra-Dataset Comparison (Performance on FF++ Dataset)

Our proposed model, leveraging voting of all (single frame, fifteen random frames,

and fifteen optical flow frames), achieved an exceptional AUC of 0.9996, outperforming

all baseline methods. For example, Xception [78] and the Deep Convolutional Pooling

Transformer [40] produced AUC scores of 0.9651 and 0.9766, respectively. This improve-

ment suggests that the use of voting for all is highly effective for intra-dataset training and

testing scenarios.

4.2. Assessment of Generalisation Through Cross-Dataset Comparison

To evaluate the generalisability of our proposed models beyond the training dataset,

we conducted cross-dataset evaluations by training on FF++ and testing on two unseen

datasets: DFDC Preview and Celeb-DF. This process simulates real-world scenarios where a

model may encounter manipulated videos that differ in synthesis techniques from the train-

ing data. The results are organised into three subsections: the first delineating performance

metrics on the DFDC dataset, the second addressing the Celeb-DF dataset, and the third

one measuring the generalisation gap, followed by a comprehensive analytical summary.
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4.2.1. Generalisation to the DFDC Dataset

On the DFDC dataset, the performance of our model produced an AUC of 0.6781,

which is the third-highest performance. In fact, this result aligns with other methods,

which also exhibited performance drops when tested on DFDC. For instance, the authors

of [40] achieved an AUC of 0.7368, while the authors of [78] achieved an AUC of 0.6695.

These results indicate that generalisation to cross-dataset scenarios remains challenging,

especially for the DFDC dataset, even for high-performing models on FF++. The reason for

this is related to the different faking types, as explained in Section 3.1.1.

4.2.2. Generalisation on the Celeb-DF Dataset

Our model achieved the highest performance on Celeb-DF, with an AUC of 0.7624.

Simultaneously, methods such as Capsule Networks [35] and the Deep Convolutional

Pooling Transformer [40] achieved AUC values of 0.6586 and 0.7243, respectively.

4.2.3. Overall Generalisation

To assess the generalisation gap between the intra-dataset and cross-dataset, the

following formula is used:

Generalisation Gap = (performance on intra-dataset − performance on cross-dataset) × 100

For comparison with prior studies, we selected only models that achieved over 80% in

both accuracy and AUC. Table 16 presents a comparison of the generalisation gap between

our model (CoAtNet16A, trained on DF and using voting from 15 random RGB frames

and 15 optical flow frames) and the selected methods. As shown in Figure 11, our model

achieves the lowest generalisation gap in accuracy for both the DFDC and Celeb-DF

datasets, with gaps of 19% and 17.7%, respectively. For the AUC, our method yields a

gap of 25.6% on the DFDC dataset and achieves the best performance on Celeb-DF, with a

minimal gap of 7.3%—significantly outperforming the other methods.

Table 16. Comparison of generalisation gap between CoAtNet16A and other studies.

Method
Accuracy AUC

DFDC Celeb-DF DFDC Celeb-DF

FFD [36] 22.85 36.10 23.01 26.62

CViT [37] 22.29 29.79 23.65 27.48

MAT [38] 24.34 42.72 25.29 37.65

SRM [39] 28.24 35.22 30.13 34.03

Xception [78] 31.31 35.84 29.56 30.65

Deep Convolutional
Pooling Transformer [40]

26.35 28.84 23.98 25.23

CoAtNet16A-Voting of
15 Random Frames-15

Optical Flow
19.00 17.70 25.56 7.29
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Figure 11. CoAtNet16A’s performance generalisation gap for cross-dataset evaluation.

4.3. Comparative Analysis

Among all methods, the performance of our model stands out on the FF++ dataset,

with an AUC of 0.9996, as in Table 17. The performance of different methods in the

cross-dataset evaluations reveals, in general, a drop in both accuracy and AUC values.

This observation highlights the generalisation gap in existing methods. Meanwhile, our

suggested method produced the best results for the Celeb-DF dataset and the third-best

result for the DFDC dataset.

Table 17. ACC and AUC performance comparisons on each testing set after training on the FF++

dataset and the results of previous studies reported in [40].

Method Trained on FF++ DFDC Preview Celeb-DF
ACC AUC ACC AUC ACC AUC

MesoNet [34] FF++ 61.03 0.5813 50.02 0.5016 36.73 0.5001
Capsule [35] FF++ 76.4 0.8344 51.3 0.5616 61.96 0.5993

FFD [36] FF++ 82.29 0.8248 59.44 0.5947 46.19 0.5586
CViT [37] FF++ 83.05 0.9108 60.76 0.6743 53.26 0.636
MAT [38] FF++ 87.5 0.9485 63.16 0.6956 44.78 0.572
SRM [39] FF++ 88.17 0.9493 59.93 0.648 52.95 0.609

Xception [78] FF++ 90.08 0.9651 58.77 0.6695 54.24 0.6586
Deep Convolutional Pooling

Transformer [40]
FF++ 92.11 0.9766 65.76 0.7368 * 63.27 0.7243

CoAtNet16A—Voting of All FF++ 99.0584 0.9996 * 51.6129 0.6781 52.9621 0.6531
CoAtNet16A—Voting of
15 Random Frames and
15 Optical Flow Frames

FF++ 98.1227 0.9943 53.4946 0.6515 61.8483 0.6664

CoAtNet16A—Voting of All DF 71.8410 0.8867 49.7312 0.5530 50.5332 0.7033
CoAtNet16A—Voting of
15 Random Frames and

15 Optical Flow
DF 68.4662 0.8353 49.4624 0.5797 50.7701 0.7624 *

* Bold indicates highest AUC result.

The performance comparison between the proposed CoAtNet16A model and existing

baseline methods across multiple datasets is illustrated in Figure 12.
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Figure 12. AUC scores of CoAtNet16A model variants compared to state-of-the-art deepfake detectors.

5. Discussion and Limitations

The performance evaluation results presented in this study demonstrate that our

proposed model, CoAtNet16A—particularly the “Voting of All” variant—achieves superior

accuracy and AUC scores on the FF++ dataset, outperforming state-of-the-art methods such

as Xception [78] and the Deep Convolutional Pooling Transformer [40]. This performance

underscores the strength of multi-frame and multi-modal voting strategies for intra-dataset

detection tasks.

In cross-dataset evaluations, the performance of our models exhibited a noticeable

decline, particularly relative to the DFDC dataset. Despite being among the top-performing

models, our best AUC was 0.6781. This reflects a trend in deepfake detection research,

where generalisation across datasets remains a significant challenge due to variations in

deepfake generation techniques. Conversely, the model performed relatively well on the

Celeb-DF dataset, achieving an AUC of 0.7624 and outperforming notable baselines such

as Xception [78] and the Deep Convolutional Pooling Transformer [40].

These findings highlight two key contributions of this study: first, an ensemble voting

strategy with CoAtNet16A that enhances performance in intra-dataset contexts and, second,

the best performance on Celeb-DF, suggesting that our model captures subtle, generalisable

deepfake characteristics better than some existing methods.

However, this study also has several limitations:

• Cross-dataset generalisation: Despite improvements, our model, similarly to others,

exhibits performance degradation when applied to datasets on which it was not

trained. This underscores the need for models capable of learning more generalised

deepfake features that are invariant across datasets.

• Computational complexity: The ensemble approach, while effective, increases compu-

tational requirements due to the processing of multiple frames and modalities. This

may hinder its applicability for real-time detection or on resource-constrained devices.
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6. Conclusions

This study assessed the generalisation ability of the CoAtNet model in deepfake

video detection using both intra-dataset and cross-dataset evaluations. Our strongest

finding is that CoAtNet16A achieved an AUC of 0.9996 on the FaceForensics++ dataset,

outperforming existing state-of-the-art models such as Xception (0.9651) and the Deep

Convolutional Pooling Transformer (0.9766). For the cross-dataset scenario, our model

attained the highest AUC of 0.7624 on the Celeb-DF dataset and a third-highest AUC of

0.6781 on the DFDC Preview dataset, demonstrating superior generalisation across different

manipulation techniques and source distributions.

The media and content verification sector, especially in the context of journalism, law

enforcement, and social media platforms, is poised to gain the most significant advantages

from implementing advanced deepfake detection solutions. Automated and precise detec-

tion instruments, such as CoAtNet16A, can contribute to the preservation of public trust by

identifying synthetic or manipulated content before it goes viral.

The most vulnerable sectors encompass politics, finance, and public safety, where

deepfakes can be exploited for misinformation, impersonation, and fraudulent activities.

Esteemed individuals, organisations, and platforms may encounter both reputational and

legal risks. To mitigate the potential for such exploitation, it is imperative to implement a

comprehensive defence strategy that incorporates advanced deepfake detection systems,

user awareness initiatives, and transparent content origin verification.

Future research should explore the common features of various faking techniques that

can be used to enhance the detection model. These developments are essential for creating

trustworthy deepfake detection algorithms that can handle the quickly changing synthetic

media ecosystem and guarantee their effectiveness in real-world applications.
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CV Computer Vision

DNN Deep Neural Network

AE Autoencoder

CNN Convolutional Neural Network



J. Imaging 2025, 11, 194 25 of 28

ViT Vision Transformer

ED Encoder–Decoder

NLP Natural Language Processing

MSA Multi-Headed Self-Attention

MLP Multi-Layer Perceptron

FFN Feed-Forward Network

LBP Local Binary Pattern

FF++ FaceForensics++

DF DeepFakes

F2F Face2Face

FS FaceSwap

NT NeuralTextures

DFDC DeepFake Detection Challenge

DFAE Deepfake Autoencoder

MM/NN Morphable Model/Neural Network

NTH Neural Talking Head

FSGAN FaceSwapGAN

TTS Text-to-Speech

FSh FaceShifter

AUC Area Under the Curve
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