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Abstract

Purpose Estimating causal effects of an exposure (e.g., health condition or treatment) on a patient-reported outcome meas-

ure (PROM) can have complications depending on the relationship between the PROM’s indicators and construct(s). Using 

directed acyclic graphs (DAGs) as visual tools, we show how to represent a PROM’s potential internal causal relationship 

between its indicators and latent construct(s), then explain the implications when also accounting for external variables when 

estimating causal effects within observational data.

Methods Measurement theory suggests a PROM’s relationships between its items/indicators and latent construct(s) is reflec-

tive (construct causes the indicators) or formative (indicators cause the construct). We present DAGs under reflective and 

formative model assumptions when the PROM is unidimensional (e.g., Patient Health Questionnaire-9 [PHQ-9] representing 

depression severity) or multidimensional (e.g., EQ-5D representing health-related quality-of-life).

Results Unidimensional PROMs under a reflective model can be analysed like other unidimensional outcomes (e.g., mortal-

ity) to estimate causal effects, thus don’t require additional consideration. In comparison, each indicator of a multidimen-

sional construct under a formative model needs specific consideration to ensure relevant external variables are appropriately 

conditioned to estimate causal effects.

Conclusion Multidimensional outcome constructs formed under a formative model increases the complexity of causal analy-

ses. Despite this, multidimensional measures may particularly aid with a variety of ‘outcome-wide’ studies when assessing 

exposures that may be beneficial for some outcomes but harmful for others. Thus, we have taken important steps to supporting 

such studies in observational settings by showing how PROMs can be incorporated into DAGs to inform such causal analyses.

Keywords Outcome · Measure · Formative · Reflective · Causal · DAG

Introduction

Health-related outcome measures are commonly used 

to assess the comparative effectiveness of interventions, 

explore the determinants of population health, monitor the 

performance of healthcare providers, and guide clinical 

decision-making at individual and group levels [1–5]. Out-

come measures may be completed by patients, i.e., patient-

reported outcome measures (PROMs), by a designated 

expert (e.g., clinician), or a designated proxy (e.g., carer 

or loved one) [6]. The design of such measures depends on 

the latent concept(s) that the instrument is trying to meas-

ure, i.e., the intended ‘construct’ of the measure. As such, 

constructs are the postulated attributes that an investigator 

hopes to capture with an outcome measure [7]. There is an 

assumed relationship between the indicators of a measure 

(e.g., the question items) and the measure’s construct(s), 
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although many indicators may load onto (i.e., be grouped to 

represent) more than one construct [8, 9].

Dimensionality refers to the number of constructs that 

a measure represents: unidimensional measures represent 

a single construct, whereas multidimensional measures 

represent two or more constructs. Some outcome meas-

ures are designed to be unidimensional; for example, the 

Patient Health Questionnaire-9 (PHQ-9) [10, 11]. Although 

the PHQ-9 contains nine items, each item is intended to 

measure the single (unidimensional) construct of depression 

severity. In contrast, some outcome measures are purposely 

designed to be multidimensional, such as the EQ instru-

ments, whereby the EQ-5D represents five health dimen-

sions within a single measure: mobility, self-care, usual 

activities, pain/discomfort, anxiety/depression [2, 12]. The 

EQ-5D is purposely multidimensional, with each EQ-5D 

item representing its own health dimension, but it is also 

suggested that the EQ-5D represents the single higher-level 

construct of health-related quality-of-life (HRQoL) [2, 13].

According to measurement theory, the relationship 

between the items within an outcome measure (i.e., indica-

tors) and the latent construct(s) measured by that measure 

may be either reflective or formative [8, 9]. In a reflective 

model, the construct causes the indicators and are hence 

sometimes called ‘effect indicators’, whereas in a forma-

tive model the indicators cause the construct and are hence 

sometimes called ‘causal indicators’ [8, 9]. The assumed 

relationship between the indicators and the latent construct 

has conceptual and practical implications. For example, in 

a reflective model, the latent construct is thought to exist 

regardless of how and whether we measure it. The indicators 

are hence conceptually interchangeable because it does not 

matter which specific items we use, beyond having enough 

information for accurate measurement. In comparison, form-

ative indicators are not interchangeable because each indica-

tor contributes a specific meaning to the construct: when one 

indicator is changed, this leads to a fundamental change in 

the construct under study. A subsequent implication is that 

to understand and interpret the external relationship between 

an outcome measure and any other variable, e.g., to explore 

determinants of health, hence requires a clear understanding 

of the measure’s internal relationships. Causal graphs can 

aid with this aspect.

Causal directed acyclic graphs (DAGs) are an increas-

ingly popular visual tool for representing the hypothesised 

causal relationships between variables. DAGs are more 

broadly associated with Structural Causal Models (SCMs) 

as a framework for understanding and analysing causal rela-

tionships between variables, particularly when dealing with 

observational data, which have been popularised by experts 

in causal inference including Judea Pearl, James Robins, 

and Miguel Hernan [14–17]. In health research, DAGs are 

commonly used for identifying appropriate variables for 

conditioning when estimating causal effects in observa-

tional studies [18]. However, DAGs may also be used to 

consider a range of analytical concepts and issues. In the 

following, we introduce the practice and implications of 

depicting outcome measures within DAGs, particularly for 

outcome measure users who may be less familiar with causal 

inference and DAGs. We begin by briefly introducing causal 

inference in observational data as a distinct and important 

task, and DAGs as a useful tool for supporting this task. 

We then introduce why this is relevant for outcome measure 

development and use, then discuss how to operationalise 

reflective and formative measurement models within DAGs, 

and the implications for causal inference involving outcome 

measures. For descriptive purposes, our example outcome 

measures within this article are PROMs (i.e., the patient-

reported PHQ-9 and EQ-5D); however, the logic is applica-

ble to any sort of outcome measure and associated use when 

the interest is the causal effect of an exposure on an outcome 

(or outcomes) represented by an outcome measure that has 

a purported construct(s) and related indicators.

Causal inference and its relevance 
to outcome measures: a brief overview

Determining the causal effect of an exposure (e.g., treatment 

or health condition) on a health outcome (e.g., mortality or 

quality of life) is a key aim of applied health research, and 

of value in any health or healthcare setting. In many of these 

research and practical settings, outcome measures will rep-

resent causal outcomes of interest. For example, researchers 

and health and policy practitioners may be interested in the 

effect of providing Cognitive Behavioural Therapy (CBT), 

rather than counselling, on depression severity as quantified 

by the PHQ-9. To estimate this effect, we could conduct a 

randomised controlled trial (RCT) of CBT versus counsel-

ling. However, RCTs are not an option when the exposure 

of interest cannot practically or ethically be experimentally 

assigned. For example, if we wanted to know the causal 

effect of having cancer, compared with not having cancer, 

on HRQoL, then this cannot be studied by experiment since 

we cannot practically or ethically assign people to having 

cancer or not. Consequently, we are often required to esti-

mate causal effects in observational or quasi-experimental 

settings, where the exposure is not under direct control. This 

is notoriously challenging, but in recent years has become 

more formalised with an increasing recognition of causal 

inference as a distinct scientific task that requires distinct 

methods. With a focus on estimating counterfactual scenar-

ios and hypothetical interventions, causal inference differs 

from description (i.e., summarising data features) and pre-

diction (i.e., identifying patterns and forecasting), because 

it requires external knowledge of how the data came into 
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being, known as the data generating process [19]. While 

this external knowledge may be identified and communi-

cated in a variety of ways, DAGs have become a popular 

tool for this purpose because of their relative ease of use 

and transparency.

Directed acyclic graphs (DAGs): overview 
and definitions

Formally, DAGs are non-parametric diagrammatic repre-

sentations of the hypothesised data-generating process for 

a set of variables (and measurements thereof) in a speci-

fied context [18]. More simply put, DAGs provide a sim-

ple and transparent way to identify and demonstrate cur-

rent knowledge, theories, and assumptions about the causal 

relationships between variables [18]. The DAG structure 

can be used to identify which variables must be conditioned 

(e.g., adjusted for within a multivariable regression model) 

to estimate a particular causal effect of interest. Several 

introductory articles about the nature and use of DAGs 

already exist [18, 20, 21]. Although there are other graphi-

cal tools that can help researchers conceptualize and guide 

their research, such as structural equation modelling (SEM) 

diagrams, DAGs have become a key tool for studies that 

are explicitly interested in estimating causal effects [22]. 

As such, we briefly introduce some key DAG features and 

definitions provided by Tennant et al. [18], before focussing 

on some specific considerations relating to outcome meas-

ures as our unique contribution to the existing literature. 

Figure 1 and associated footnote provides a summary of key 

DAG features. Key DAG-related terms are also presented 

and described in Table 1, aspects of which have been influ-

enced by other graphical tools such as SEM diagrams [22].

As described in Table 1 and shown in Fig. 1, variables 

(or measurements thereof) within a DAG are represented 

by nodes, any two of which may be connected by a unidi-

rectional arrow (or ‘arc’) to signify that the first variable 

is thought to cause the second. Arcs form paths between 

variables which may be open (transmitting an association) 

or closed (not transmitting an association). Causal paths are 

paths where all arcs flow in the same direction, while non-

causal paths are those where the arcs do not flow in the same 

direction. Because a DAG is acyclic, no single measure of a 

variable may cause itself.

The average causal effect of a specified exposure (X) on a 

specified outcome (Y) is the combination of all causal paths 

between X and Y. In theory, this may be estimated from the 

conditional association between X and Y, if an appropriate 

set of variables are conditioned so all causal paths are open 

and all non-causal paths are closed; formally this is known 

as the ‘back-door criterion’ for estimating causal effects from 

observed associations [17]. This requires: (1) Conditioning 

on confounders  (C1,  C2), which are intermediate fork nodes 

 (C1) or chain nodes  (C2) on non-causal paths between the 

exposure and outcome due to common causes of X and Y 

(i.e., due to  C1 in X ←  C1 →  C2 → Y); (2) Not condition-

ing on mediators (M), which are intermediate chain nodes 

on causal paths between the exposure and outcome (i.e., 

X → M → Y); (3) Not conditioning on colliders (Z), which 

are any variables caused by two or more other variables, but 

are relevant when they form intermediate collider nodes on 

non-causal paths between the exposure and outcome (e.g., 

X → Z ← Y) [23, 24]. For example, in Fig. 1, to estimate the 

average causal effect (also known as the total causal effect) 

of the exposure (X) on the outcome (Y), we would need 

to condition on at least one of the confounders  (C1 or  C2) 

and we must not condition on the mediator (M) or collider 

(Z). If we wanted to estimate a direct causal effect (e.g., 

the part of the total causal effect that acts through X → Y 

but not through X → M → Y), then these can be estimated 

by conditioning on mediators, further details of which are 

described by Petersen, Sinisi, and van der Laan [25]. In the 

following however we focus exclusively on estimating aver-

age causal effects.

To further illustrate these concepts, consider if in Fig. 1 

we are interested in the causal effect of obesity (expo-

sure, X) on cardiovascular vascular disease (outcome, Y). 

Smoking is negatively correlated with body weight and a 

strong determinant of cardiovascular disease, so can be 

considered a confounder (i.e., common cause) of obesity 

and cardiovascular disease (e.g., smoking could be  C1 in 

Fig. 1, where  C2 would be all the ways that smoking causes 

cardiovascular disease that are unrelated to obesity) [26]. 

Obesity can increase a person’s blood pressure and choles-

terol in turn increasing their cardiovascular disease risk; 

thus, blood pressure can be considered a mediator of obe-

sity on cardiovascular disease (e.g., blood pressure could 

be M in Fig. 1) [27]. Colliders are the more complicated 

variable for consideration: the ‘obesity paradox’, whereby 

there is an association between obesity and reduced mor-

tality (contrary to an expected increased mortality) such 

as in people with coronary heart disease, heart failure, 

and type 2 diabetes, is a famous example partly attributed 

(debatably) to collider stratification bias [28–30]. In Fig. 1, 

such bias might be introduced if we aimed to study people 

with heart failure, the risk of which is influenced by obe-

sity and cardiovascular disease (e.g., heart failure could be 

Z in Fig. 1). By restricting the study to people with heart 

failure, we would be inappropriately conditioning on an 

intermediate collider (Z) on a non-causal path between 

our exposure and outcome (X → Z ← Y) and would thus 

introduce bias. Collider bias most commonly occurs due 

to non-random sampling or participation like this, or when 

we condition on a mediator that is also a collider (e.g., in 

our example, blood pressure would likely be a collider 
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on many other unshown paths between the obesity and 

cardiovascular disease). For further information, we rec-

ommend the article by Tönnies et al. [30] which explains 

collider bias using diabetes as an example collider for the 

obesity-mortality causal relationship when smoking is also 

considered.

In addition to their popular use for identifying appropriate 

variables for conditioning, DAGs are also very useful aids 

for explaining and understanding various different forms of 

error and bias that are less well recognised, such as collider 

bias, selection bias, and other inferential biases involved in 

analyses of composite (e.g., multidimensional) outcome 

variables [31–33]. In the following, we are less focussed on 

the benefits of DAGs for informing appropriate variables 

for conditioning or for understanding specific forms of bias. 

Instead, we focus on the higher-level benefits of clearly com-

municating your assumptions about the nature of the out-

come measure being analysed.

Depicting PROMs with DAGs using reflective 
and formative models

Here we introduce the practice and implications of depict-

ing unidimensional and multidimensional outcome meas-

ures within DAGs, assuming reflective and formative 

models. We use the unidimensional PHQ-9 and multidi-

mensional EQ-5D as examples. Although these measures 

are PROMs, the logic and suggestions are relevant to any 

given outcome measure. Table 2 provides summarised 

Fig. 1  Simple illustration showing the main features of a directed 

acyclic graph. Footnote: variables within a directed acyclic graph 

(DAG) are represented by nodes. A unidirectional arrow (or ‘arc’) 

path signifies the first variable (i.e., parent node) is thought to cause 

the second (i.e., child node). Paths may be open (transmitting an asso-

ciation) or closed (not transmitting an association). Causal paths flow 

in the same direction, while non-causal paths do not. Because a DAG 

is acyclic, no single measure of a variable may cause itself. The aver-

age causal effect of a specified exposure (X) on a specified outcome 

(Y) is the combination of all causal paths between X and Y. In theory, 

this may be estimated from the conditional association between X 

and Y, if an appropriate set of variables are conditioned so all causal 

paths are open and all non-causal paths are closed. This requires con-

ditioning on confounders  (C1,  C2), but not conditioning on mediators 

(M) or colliders (Z). Conditioning can be done using methods such 

as multivariable regression; conditioning in Figure is depicted using 

[Conditioned node], e.g.,  [C1] closes a non-causal path, whereas [M] 

closes a causal path and [Z] opens a non-causal path



Quality of Life Research 

Table 1  Key DAG-related terms with visual representation and a brief description

Key term Visual representation Brief description

Node Nodes represent variables (or measurements thereof) within a DAG

Individual variable An individual variable represents a single measurement of a variable. Using 

SEM notation these variables are typically depicted as single-outlined rectan-

gles

Composite variable A composite variable is a single variable created by combining two or more 

individual variables. These variables are depicted as double-outlined rectan-

gles, as recommended by Berrie et al. [32]

Latent variable A latent variable is a variable that cannot be directly observed but can be 

inferred from other, directly observable variables. Using SEM notation these 

are typically depicted as ellipses

Conditioned variable A conditioned variable is a variable that has been conditioned on, e.g. which 

has been restricted to a single value, stratified over or adjusted for, by includ-

ing as a covariate within a regression model. A conditioned variable is often 

depicted by adding a box around a node, but this is not compatible with SEM 

notation where it is common to use darker shading. Thus, we depict condi-

tioning both with darker shading and by adding square parenthesis around the 

name of the variable within the node

Arrow (aka., arc) Nodes may be connected by a unidirectional arrow (or 'arc') to signify that the 

first variable is thought to cause the second, with the hypothesised direction 

of causality represented by the direction that the arrow is pointing. All arrows 

are unidirectional within a DAG (i.e., directed and acyclic), meaning that no 

measure of a variable can cause itself

Probabilistic Probabilistic refers to a connection between variables where the outcome is not 

fully explained, meaning that knowledge of the value of all the causes of the 

outcome is not sufficient to know the value of the outcome with certainty. 

Depicted as a single lined arrow

Deterministic Deterministic refers to a connection between variables where the outcome is 

fully explained, meaning that knowledge of the value of all the causes of the 

outcome is sufficient to know the value of the outcome with certainty. These 

arrows are depicted as double-lined arrows, as recommended by Berrie et al. 

[32]

Paths Paths are connections between variables made up of one of more arrows

Causal path Causal paths are paths where all arrows flow in the same direction. To estimate 

the average causal effect of an exposure on an outcome from an association 

using the back door criterion, all causal paths should be left open

Non-causal path Non-causal paths are paths where the arrows do not all flow in the same direc-

tion; they include confounding paths (or back door paths) and collider paths. 

To estimate the average causal effect of an exposure on an outcome from 

an association using the back door criterion, all non-causal paths should be 

closed

Kinship terminology The relationship between variables within a DAG is often described using kin-

ship terminology. For a particular variable, all upstream causes are referred to 

as ancestors and all downstream consequences are referred to as descendants

Child A direct descendent of a particular variable is known as a ‘child’ of that vari-

able. This terminology can be extended over longer causal paths to produce 

‘grandchild’ nodes and even ‘great grandchild’ nodes

Parent A direct ancestor of a particular variable is known as a ‘parent’ of that vari-

able. This terminology can be extended over longer causal paths to produce 

‘grandparent’ nodes and even ‘great grandparent’ nodes

Variable roles The role of a particular variable is defined in relation to the causal estimand 

of interest. These include the exposure of interest (e.g., the treatment), the 

outcome of interest (e.g., patient reported outcome measure), and other 

variables that are connected to the exposure and outcome (e.g., confounders, 

mediators, and colliders)

Exposure The event or state whose causal effect is of interest (e.g., health condition or 

treatment). Commonly referred to by the letter ‘X’ or ‘A’, although any dis-

tinct and explicit labelling is acceptable (e.g., ‘Exposure (X)’)
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descriptions of four key conceptual differences between 

reflective and formative models, based on our descrip-

tions within this article and as inspired by a similar table 

by Coltman, Devinney, Midgley, and Venaik [34].

We have drawn our DAGs using Microsoft PowerPoint, 

but there are many free-to-use software options available, 

such as DAGitty: https:// dagit ty. net/. Other open source 

software for producing DAGs are described by Pitts and 

Fowler [35].

Unidimensional PHQ‑9

Figure 2 presents the PHQ-9's indicators and construct 

within a DAG, under reflective and formative models. The 

PHQ-9 is traditionally conceptualised as reflective, i.e., 

the latent construct causes the indicators. However, we 

will examine the implications of the internal relationships 

being reflective or formative.

Table 1  (continued)

Key term Visual representation Brief description

Outcome The event or state whose determination is of interest (e.g., depression or death). 

Commonly defined by the letter ‘Y’, although any distinct and explicit label-

ling is acceptable (e.g., ‘Outcome (Y)’)

Confounder A confounder is a variable on a confounding path between the exposure and 

outcome, which when perfectly conditioned on would close that confound-

ing path. This primarily includes variables that cause both the exposure and 

outcome, where the confounder may be known as a fork node. Commonly 

referred to by the letter ‘C’, ‘Z’, or ‘L’, although any distinct and explicit 

labelling is acceptable (e.g., ‘Confounder (C)’)

Mediator A mediator is an intermediate event or state on a causal path between the expo-

sure and outcome. Commonly referred to by the letter ‘M’ or ‘I’, although 

any distinct and explicit labelling is acceptable (e.g., ‘Mediator (M)’)

Collider A collider is any variable that is caused by two or more other variables, the 

most important of which are those sitting on a non-causal path between 

the exposure and outcome. There is no convention for referring to colliders 

although the letter ‘S’ is common when the collider is related to selection 

into the study sample. We have used the letter ‘Z’ to reduce confusion with 

confounders (e.g., ‘Collider (Z)’)

C confounder; DAG directed acyclic graph; M mediator; SEM structural equation modelling; X exposure; Y outcome; Z collider

Table 2  Summarised descriptions of conceptual differences between reflective and formative models

This table is inspired by a similar table titled “A framework for assessing reflective and formative models: theoretical and empirical considera-

tions” by Coltman et al. [34]

Reflective Formative

Nature of the construct The latent construct pre-exists independent on the 

measure(s) used

The latent construct is probabilistically reflected by the 

indicators of a relevant measure

The construct is deterministically formed by the indica-

tors within a given measure

The specific construct(s) exist due to the combination of 

the indicators

Direction of causality Construct causes the indicators.

Changes in the construct is hypothesised to be reflected 

by changes in the indicators, i.e., there is a probabilis-

tic relationship from the construct to the indicators

Indicators cause the construct.

Changes in the indicators deterministically leads to 

changes in the construct

Characteristics of indicators Indicators are usually highly correlated given they 

reflect the same underlying latent construct

Dropping an indicator does not change the construct, 

but it may change our accuracy to capture (changes 

in) the latent construct

Indicators need not share a common theme/be correlated

Dropping or changing a given indicator changes the 

specific construct

Indicator interchangeability Indicators are interchangeable

All indicators reflect the same underlying latent con-

struct

Indicators are not interchangeable.

Each indicator captures a unique component of the 

composite construct

https://dagitty.net/
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The reflective model (Fig. 2a) assumes that, although we 

cannot directly measure it, the construct (depression) exists 

in an absolute sense and manifests over time in symptoms 

or characteristics that are captured by the PHQ-9’s indica-

tors (e.g., little interest/pleasure, feeling down/depressed/

hopeless, tired/little energy, trouble concentrating). This 

is implied visually by the ordering of variables within the 

DAG, with an exogenous but latent depression variable 

occurring first and causing the symptoms later in time. In 

theory, any of these items, and others besides, could be used 

to estimate the degree of depression severity, and the exact 

mix of items does not alter the concept being measured, only 

the accuracy of our estimate.

The formative model (Fig. 2b) assumes that the con-

cept of depression does not exist in absolute terms, but 

is a useful way to summarise a particular pattern of 

symptoms or characteristics. It assumes that a person 

develops a pattern and severity of symptoms, and these 

different patterns can be labelled as different levels of 

depression severity. This model makes the most sense 

if we conceptualise the symptoms as defining the con-

dition, rather than being caused by it. For example, if 

tiredness and limited energy arise from other means (e.g., 

due to aging), but come together in a pattern that we call 

depression. Again, this is implied visually by the ordering 

of variables within the DAG, with the symptoms aris-

ing first and collectively determining depression. Unlike 

with the reflective model, the exact items that we measure 

and combine in a formative model determine the spe-

cific composite construct of depression that we generate. 

Thus, if we removed or changed some of the items in 

the PHQ-9, we would be measuring a different construct 

than the one captured by the standard PHQ-9. In Fig. 2b, 

this is represented using deterministic variable notation 

[32]. Because the depression variable is a double-outlined 

node, this means it is mathematically defined by its deter-

mining variables and does not exist without them.

In summary, the key difference between the reflective 

and formative model, while reflecting on the PHQ-9 in 

Fig. 2 and key terms in Tables 1 and 2, are:

Fig. 2  The PHQ-9 depicted within a DAG under a (a) reflective 

model or (b) formative model. Footnote: Under the reflective model 

(Panel A), depression is depicted as a latent variable by drawing the 

node as an ellipse; it is shown to probabilistically cause the indicators 

variables using ordinary arcs. Under a formative model (Panel B), 

depression is depicted as a composite derived variable by drawing the 

node as a double-outlined rectangle; it is shown to be mathematically 

determined by its parent items using double-lined arcs
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 i. Reflective model: depression is depicted as a latent 

variable for which the PHQ-9’s indictors are its proba-

bilistic children;

 ii. Formative model: depression is depicted as a compos-

ite variable which is the deterministic child to each of 

the PHQ-9 indictors.

While the choice between a reflective and formative 

model might seem rather obvious in the case of depression, 

both perspectives are ultimately just competing hypoth-

esises. Presenting the hypothesized model within a DAG 

hence offers a simple way to demonstrate which perspective 

is believed to be most plausible. This becomes particularly 

useful when there is less certainty whether a formative or 

reflective model is more plausible.

Multidimensional EQ‑5D

Figure 3 presents the EQ-5D’s indicators and construct 

within a DAG, under reflective and formative models. Unlike 

the PHQ-9, the EQ-5D is designed to be multidimensional, 

with each item considered to be its own health-related 

dimension which together form a collective construct known 

variously as ‘generic health status’, a ‘health status profile’, 

or ‘health-related quality of life (HRQoL)’. Previous authors 

have debated whether the EQ-5D collective construct is 

best operationalised as reflective, formative, or a mix of the 

two (i.e., with some items best understood as reflective and 

some items best understood as formative) [36, 37]. However, 

such arguments are often based on data-driven rather than 

theoretical arguments. As with the PHQ-9, both perspectives 

represent competing assumptions that can be transparently 

shared using DAGs, preferably based on theory or mental 

experiment rather than compatibility with a particular data-

set [38].

Figure 3a depicts the EQ-5D as a reflective model, with 

the collective construct, HRQoL, causing the five dimen-

sions. This model assumes that HRQoL exists in absolute 

terms, regardless of how we measure it, and manifests over 

time through measurable variables such as mobility, self-

care, usual activities, pain/discomfort, and anxiety/depres-

sion. It is assumed that HRQoL arises and causes each 

downstream health dimension, such that increasing HRQoL 

would increase the level of mobility, for example. As with 

the PHQ-9, this is implied visually within the DAG, with an 

exogenous but latent HRQoL variable occurring first and 

causing the other health domains later in time. In theory, we 

could remove or replace any of these health domains and still 

measure the same concept of HRQoL.

Figure 3b alternatively depicts the EQ-5D as a formative 

model, with the five health dimensions determining HRQoL. 

This model assumes that HRQoL does not exist in absolute 

terms, but is a useful way to summarise the other health 

dimensions. It is assumed that each health dimension arises 

and they collectively cause HRQoL, such that increasing the 

level of mobility would increase overall HRQoL. Again, this 

is implied visually within the DAG, with the health domains 

arising first and collectively determining HRQoL. Unlike 

with the reflective model, the exact items that we measure 

and combine determine our specific composite measure of 

Fig. 3  The EQ-5D depicted within a DAG under reflective model (A) 

and formative model (B). Footnote: Under the reflective model (Panel 

A), health-related quality-of-life (HRQoL) is depicted as a latent vari-

able by drawing the node as an ellipse; it is shown to probabilistically 

cause the indicators variables using ordinary arcs. Under a formative 

model (Panel B), HRQoL is depicted as a composite derived variable 

by drawing the node as a double-outlined rectangle; it is shown to be 

mathematically determined by its parent items using double-lined 

arcs
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HRQoL. Thus, if we removed mobility and self-care, for 

example, the resulting version of HRQoL would represent 

a different construct to the one captured by the standard 

EQ-5D. We represent this again using deterministic variable 

notation, with the HRQoL being a double-outlined node that 

is mathematically determined by the five defining variables.

In summary, the key difference between the reflective and 

formative model, while reflecting on the EQ-5D in Fig. 3 

and key terms/descriptions in Tables 1 and 2, are:

 i. Reflective model: HRQoL is depicted as a latent vari-

able for which the EQ-5D’s indictors are its probabil-

istic children;

 ii. Formative model: HRQoL is depicted as a composite 

variable which is the deterministic child to each of the 

EQ-5D indictors.

We believe the formative model is more plausible for 

HRQoL than the reflective model, in which HRQoL operates 

as a summary measure of health across multiple domains 

rather than as an independent determinant of health and 

functioning. As with the PHQ-9, this assumption can be 

clearly communicated within a DAG. However, the ben-

efits of considering the internal relationships within a DAG 

extend beyond simply communicating assumptions to iden-

tifying and estimating causal effects.

A PROM’s internal and external causal pathways: 
implications for causal inference

Figures 2 and 3 demonstrate how simple DAGs can be used 

to visually present an outcome measure’s hypothesised inter-

nal causal relationship between its indicators and construct 

under a reflective or formative model. Sects."Unidimensional 

PHQ-9" and "Multidimensional EQ-5D" similarly describe 

the implications for the design and interpretation of the 

measure; however, whether the measure is assumed to fol-

low a reflective or formative model also has broader implica-

tions for causal inference. To explain, we consider the sim-

ple case where the outcome measure represents the causal 

outcome(s) of interest.

First, let us consider a reflective model, using the example 

of depression severity measured by the PHQ-9. In Fig. 4, we 

assume the PHQ-9 is a unidimensional measure of depres-

sion. The nine indicators, which each have a Likert score 

from 0 (not at all) to 3 (nearly every day), thus combine to 

a produce a single summary score between 0 (best state) 

and 27 (worst state) that represents depression severity [10]. 

Fig. 4  Illustrative DAG showing the relationship between CBT and 

depression measured using the PHQ-9 under a reflective model. Foot-
note: Under a reflective model, the items that we use to measure the 

outcome are assumed to be downstream of it. Although essential for 

measuring the outcome, in this case depression, the items are hence 

rather incidental to the DAG and can arguably be omitted entirely
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Suppose we are interested in the average causal effect of 

receiving CBT, instead of counselling, on depression sever-

ity using observational data. For illustrative purposes we 

assume sex and socio-economic position act as confounders. 

Since the PHQ-9 indicators are downstream of the latent 

depression outcome, the DAG can be drawn relatively sim-

ply, with the effect of interest represented by the direct arc 

between CBT and latent depression. An accurate estimate 

of this effect (technically the ‘latent treatment effect’ [39]) 

can be obtained from the association between CBT and the 

summary PHQ-9 score, conditioning on (e.g., by including 

within a regression model) sex and socio-economic posi-

tion provided certain assumptions are met. These include 

the universal assumptions of exchangeability (no residual 

confounding or collider bias) [14], positivity (all levels of 

treatments are possible in all confounding subgroups) [40], 

consistency (any variations in the treatment are irrelevant to 

the outcome) [41], no interference (one individual’s treat-

ment does not affect anyone else's depression) [42], and 

that appropriate analytical methods are used, as well as an 

additional assumption for latent variable outcomes known 

as exclusion restriction [39]. This final assumption requires 

that the treatment must not have any effect on the indicators 

other than through the latent outcome [39]. This would be 

violated if, for example, CBT had no effect on depression, 

but independently led to lower overeating, leading to a lower 

score on the PHQ-9 appetite item and thus a lower overall 

score even if the ‘true’ level of depression severity was not 

affected. The scope for such violations is related to the speci-

ficity of a scale’s indicators to the construct being measured, 

where items that represent multiple constructs offer a greater 

scope for violation. Many PHQ-9 items are so specific to 

depression (e.g., having little interest/pleasure, feeling down/

hopeless, feeling bad/a failure, and having thoughts of self-

harm), that it is difficult to imagine how they could change 

‘independently’ of the true depression severity.

Second, let us consider a formative model, using the 

example of HRQoL measured by the EQ-5D. In Fig. 5, 

we assume the EQ-5D is a multidimensional measure of 

HRQoL, but the final form of the DAG depends on whether 

we believe the items arise in parallel (Fig. 5a) or serially in 

time (Fig. 5b). Regardless, the five dimensions are rated on 

3-point or 5-point scale (depending on the EQ-5D version) 

which generates a health state profile score (e.g., 12321); 

subsequently one of the more common ways to use the 

EQ-5D is that a utility-based (aka. preference-based) value 

set is assigned, with each health state profile being assigned 

a utility value which is considered to represent HRQoL [2, 

13]. Suppose we were interested in the average causal effect 

of CBT, instead of counselling, on HRQoL using routine 

data. Again, we assume sex and socio-economic position 

act as confounders. Since the EQ-5D indicators are upstream 

of the composite outcome, the DAG is now more difficult 

to draw, since the effect of interest is a combination of the 

causal effects on all five dimensions. This brings a few 

well-known limitations, not least the potential to obscure 

potentially important effects for particular components [43]. 

The identifiability assumptions must now also be met for all 

the constituent dimensions, meaning that, in our example, 

all sources of confounding and collider bias must now be 

identified and closed for all five dimensions. If the items 

arise serially in time (Fig. 5b), then the DAG becomes more 

difficult to draw and the effect potentially more difficult to 

identify because the exposure will need to clearly precede all 

components of the outcome to avoid reverse causality bias 

(e.g., instead of X causing Y, Y causes X).

Inherently, the ability to estimate causal effects relies on 

various assumptions and conditions to be met; however, the 

main intention of this section is to show that key aspects for 

consideration (i.e., hypothesised causal and non-causal path-

ways) can be drawn visually using DAGs, then appropriate 

structural or analytical methods chosen to support estimat-

ing such causal effects, which has specific considerations 

when the outcome is represented by an outcome measure 

like a PROM.

Discussion

PROMs are an essential way to measure important health-

related outcomes and are thus of huge interest to health 

researchers and practitioners. Even where a PROM is not 

intended for causal inference, understanding the inter-

nal causal relationship between the items and intended 

construct(s) of interest can have important implications for 

both the measure’s development and use. However, in prac-

tice, many routine health and healthcare research questions 

are likely to be causal and hence would benefit from using 

methods that have been explicitly developed for considering 

and estimating causal effect [44].

In this article, we have provided a brief introduction to 

causal DAGs as a popular aid to estimating causal effects 

in observational data, but also a visually compelling means 

to identify and communicate assumptions about the nature 

of a PROM. We also explored the philosophical differences 

between PROMs that are assumed to follow reflective and 

formative models, then considered the implications for iden-

tifying and estimating causal effects. As such, we have also 

visually shown that multidimensional outcome constructs 

formed under a formative model increases the complexity 

of causal analyses, which may seem off-putting for some 

researchers interested in causal inference. Despite this com-

plexity, multidimensional measures are widely used, such as 

for clinical outcome assessment, and may aid with a range 

of outcome studies, such as ‘outcome-wide’ epidemiology 
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when assessing if an exposure may be beneficial for some 

outcomes but harmful for others [45, 46].

Outcome-wide epidemiology has become popular and 

may be benefited by using PROMs, whereby you seek to 

assess the causal effect of a single exposure on multiple 

outcomes [45]. VanderWeele [45] stressed the public 

health importance of outcome-wide epidemiology, despite 

challenges in confounding control which is related to the 

challenges we presented for estimating causal effects on 

a multidimensional outcome construct formed under a 

formative model. Outside epidemiology, outcome-wide 

studies are, in a more general sense, relevant to a range of 

observational settings (i.e., outside the context of RCTs) 

where PROMs could have a role as a causal outcome of 

interest; for example related to non-trial-based clinical out-

come assessment, routine care monitoring, health service 

evaluation, health technology assessment, outcomes-based 

commissioning, value-based pricing, health economics 

and outcomes research, and more generalised population/

public health research [46–51]. Thus, our article may also 

aid with bridging a gap between the disciplines of epide-

miology and other observational research across a range 

of disciplines, within which causal inference and PROMs 

are potentially of key importance.

Fig. 5  Illustrative DAGs showing the relationship between CBT and 

HRQoL, as measured using the EQ-5D under a formative model. 

Footnote: In Panel A, the items are assumed to occur in parallel while 

in Panel B they are assumed to occur serially, i.e., with each item 

arising in turn and potentially influenced by previous items. As such, 

in Panel A after controlling for the confounders (i.e., sex and socio-

economic position), the remaining total causal effect on health-related 

quality-of-life (HRQoL) is assumed to only be attributable to ‘direct’ 

causal effects, i.e., directly from the exposure (cognitive behavioural 

therapy [CBT] or counselling) to the EQ-5D dimensions which deter-

mines the level of HRQoL. In comparison, in Panel B after control-

ling for the confounders, the remaining total causal effect on HRQoL 

is assumed to be a combination of ‘direct’ causal effects (i.e., directly 

from the exposure) and ‘indirect’ causal effects (i.e., mediated via 

specific EQ-5D domains having a causal effect on another EQ-5D 

domain, e.g., anxiety/depression→ usual activities→ self-care→ pain/

discomfort→ mobility). Depending on your causal effect of interest 

(e.g., total or only direct causal effects), Panel A may represent a sim-

pler variable relationship network than Panel B for causal analysis
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Conclusion

Many studies using PROMs have causal aims, even if these 

are not explicit. Using causal inference methods, including 

DAGs, will hopefully help to make these aims more explicit. 

The use of DAGs can aid in any study when there is an inter-

est in the effect of an exposure on outcome(s) which may be 

represented by a PROM. By explicitly depicting PROMs 

within DAGs, these methods promise to help PROM users 

to think more deeply about the nature of their measure, and 

the interpretation of analyses that rely on these instruments.
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