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Megapixel camera arrays enable high-resolution
animal tracking in multiwell plates
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Ziwei Liu1,2,5, Maximilian Hofbauer 3, John R. Stowers3, Erik C. Andersen 4, Siyu Serena Ding1,2,6 &

André E. X. Brown 1,2✉

Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in

neuroscience, genetics, disease modelling, and drug discovery. An imaging system with

sufficient throughput and spatiotemporal resolution would be capable of imaging a large

number of animals, estimating their pose, and quantifying detailed behavioural differences at

a scale where hundreds of treatments could be tested simultaneously. Here we report an

array of six 12-megapixel cameras that record all the wells of a 96-well plate with sufficient

resolution to estimate the pose of C. elegans worms and to extract high-dimensional phe-

notypic fingerprints. We use the system to study behavioural variability across wild isolates,

the sensitisation of worms to repeated blue light stimulation, the phenotypes of worm disease

models, and worms’ behavioural responses to drug treatment. Because the system is com-

patible with standard multiwell plates, it makes computational ethological approaches

accessible in existing high-throughput pipelines.
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Recording and quantifying animal behaviour is a core
method in neuroscience, behavioural genetics, disease
modelling, and psychiatric drug discovery. Both the scale of

behaviour experiments and the information that can be extracted
from them have increased dramatically1–4. However, further
increases in throughput are possible and would enable entirely
new kinds of experiments. We therefore sought to build a
system to image freely behaving animals that would maximise
both phenotypic content and experimental throughput. In
terms of phenotypic content, a key parameter is the resolution
of the recording. If there is sufficient spatial and temporal
resolution, then body parts can be identified and tracked, the
animal’s pose can be estimated, and the full suite of computa-
tional ethology methods can be applied to analyse any beha-
viour of interest. Because of its simple morphology, detailed
pose estimation is well-established for the roundworm C.
elegans5–18 and previous work has shown the usefulness of
detailed behavioural phenotyping in several domains including,
for example, classifying mutants5,6,19,20, studying chemotaxis21

and thermotaxis22, quantifying escape responses23–25, and
addressing basic questions in computational ethology and the
physics of behaviour10,26,27. Maintaining sufficient resolution
for pose estimation was therefore the first design constraint we
required. In early worm trackers, maintaining high resolution
required a motorised stage to keep a single worm in the field of
view of a low-resolution camera5,28,29, but the availability of
inexpensive megapixel cameras enabled multiworm tracking
with sufficient resolution to estimate each worms’ pose and
determine its head position12,17. High spatial resolution and
throughput has been demonstrated using flatbed scanners to
quantify worm lifespans30 and behavioural decline with age31.
However, the low temporal resolution (1 frame per 15 min)
precludes the detection of behavioural phenotypes which hap-
pen at shorter time scales.

To maximise experimental throughput, we wanted to use off-
the-shelf multiwell plates so that any behaviour screening
pipeline would still be compatible with existing pipeline ele-
ments, such as liquid and plate-handling robots as well as small
animal sorting machines. Because behaviour occurs over time, a
standard plate-scanning approach in which each well of a
multiwell plate is imaged in turn using a motorised stage limits
throughput regardless of scan speed since each well must be
recorded long enough to observe the behaviour of interest.
Moreover, mechanical arrangements with moving parts intro-
duce higher maintenance costs and have a higher risk of failure
compared to a static camera system. Therefore, our second
design constraint was that the system should be able to image
all of the wells of a multiwell plate simultaneously without
move parts.

Our solution to simultaneously image a large area with high
resolution was to use an array of machine vision cameras that
are small enough to be arranged in close proximity to one
another with partially overlapping fields of view at a resolution
sufficient to track small animal pose. Here we present the
design of an array of six 12-megapixel cameras that uses a near-
infrared light panel for illumination, a set of high-intensity blue
LEDs for photostimulation, and the associated open-source
software for automatically identifying wells and keeping track
of metadata. The software is fully integrated into our existing
Tierpsy Tracker software17, including a graphical user interface
for reviewing tracking data, joining trajectories, and annotating
problematic wells to discard from analysis, as well as a neural
network for distinguishing worms from nonworm objects. We
demonstrate the potential of the new tracking system in neu-
roscience, disease modelling, genetics, and phenotypic drug
screening.

Results
Megapixel camera array design. Based on our previous work
with single-worm tracking13, we set a target resolution of at least
75 pixels/mm and a recording rate of 25 frames per second
in order to accurately estimate worm pose and identify the
head from the tail which requires the measurement of the small
head swinging behaviour that is often referred to as ‘foraging’ in
the worm community. These constraints require a total of
8100 × 5400 pixels, or about 44 megapixels with a 3:2 aspect ratio,
to cover a standard 96-well plate. Single cameras with this reso-
lution that can record at 25 frames per second are not available
commercially. We therefore considered arrays of cameras and
found that six Basler acA4024 cameras (Basler AG, Ahrensburg,
Germany) in a 3 × 2 array equipped with Fujinon HF3520-12M
lenses (Fujifilm Holding Corporation, Tokyo, Japan) was an
optimal solution: This combination of lenses and cameras allowed
mounting the cameras in close proximity, whereas cameras with
higher resolution or larger sensors would have required sig-
nificantly larger lenses. Imaging a multiwell plate with multiple
cameras significantly reduces the blind spots caused by vertical
separators between wells, compared with using a single camera
with a conventional lens. A similar effect could be obtained by
using a single camera with a telecentric lens, but the multi-camera
approach remains a more compact and cost-effective way of
achieving the required resolution. To provide uniform illumina-
tion whilst mitigating light-avoidance response, we used a dedi-
cated light system using 850 nm LEDs (Loopbio GmbH, Vienna,
Austria, see Material and Methods for more details). Blue light
stimulation is provided by a custom LED array (Marine Breeding
Systems, St. Gallen, Switzerland) using four Luminus CBT-90 TE
light-emitting diodes (bin J101, 456 nm peak wavelength, 10.3W
peak radiometric flux each) with user-tunable intensity. The
camera lenses are equipped with long pass filters (Schneider-
Kreuznach IF 092, Schneider-Kreuznach, Germany, and Midopt
LP610, Midwest Optical Systems Inc, Palatine, IL, USA) to block
the photostimulation light while allowing the brightfield IR signal
to reach the camera sensors. A schematic of the imaging system is
shown in Fig. 1a–c. To further increase throughput, we built five
units of the camera arrays which can be operated in parallel
(Kastl-High-Res, Loopbio GmbH, Vienna, Austria).

Choice of suitable multiwell plate design. Because the fields of
view of the six cameras partially overlap, the imaging system
provides flexibility in selecting a multiwell plate with any number
of wells. For our purposes, 96-well plates with square wells pro-
vided a good balance between imaging area and the number of
wells (Fig. 1d, e). Plates with smaller numbers of wells would
reduce imaging throughput, while 96-well plates with circular
wells would reduce the area available for worms to behave and
increase shadowing around the well edges (Supplementary
Fig. 1a, b). Using square well plates (Whatman 96 well plate with
flat bottom, GE Healthcare, Chicago, IL, USA) significantly
increases the efficiency of the system: in our tests, in plates with
circular wells only 21% of the imaging area is available for cap-
turing useful data, while the rest is outside of any well or lost in
shadows. For square wells, 43% is available for behaviour. This
has important implication for tracking and experimental design,
as not all worms placed in a well will be always visible. For
example, when imaging worms of the N2 control strain, all
worms in a well are simultaneously tracked 40% of the time, and
this figure can depend on the strain, with worms of the wild
isolate strain CB4856 being all visible simultaneously only 9% of
the time (Supplementary Fig. 5). The fraction of the imaging area
available for tracking can be further increased by using custom
plates with thinner wall dividers and shallower wells to reduce the
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shadowing (Supplementary Fig. 1c), but this comes at an
increased cost of manufacture.

The output of the combined system is 30 videos tiling across
the five imaged multiwell plates corresponding to 480 simulta-
neous behaviour assays (Fig. 1d). Expanding the image to the
level of a single well (Fig. 1f) and a single animal (Fig. 1g) shows
that the resolution is sufficient to estimate the pose and identify
the head of single worms, which can reveal detailed trajectory
differences between individuals that are the basis for quantitative
behavioural phenotyping.

High throughput imaging. Due to the high amount of raw image
data produced by USB3 cameras at full bandwidth (6 cameras
recording at 25 fps produce approximately 6.5TB/hour of raw
footage), live compression on a dedicated system was required. To
achieve this, we used a total of 10 Motif Recording Units (Motif—
Video Recording System, Loopbio GmbH, Vienna, Austria)
equipped with Nvidia Quadro P2000 GPUs (Nvidia Corporation,
Santa Clara, CA, USA), each recording from 3 cameras. The two
recording units with cameras from the same system were set up in
a parent-child configuration.

The Motif software acquires and compresses images on the fly
and stores them in the open imgstore format (https://github.com/
loopbio/imgstore) along with timestamps and frame numbers for
each individual frame, as well as continuous and synchronised
recordings of environmental data (for each unit this was: outside
temperature and inside temperature, humidity, and light level).
Recording the time and frame number for each image allows
precise timekeeping over a long recording duration as it removes
temporal drift due to skipped or dropped frames and due to

differences in camera clocks. Additional metadata for each
recording is saved with the imgstore, including the camera serial
numbers, camera and system settings, and any user-defined data.

A single workstation manages all imaging experiments on all
units across the whole system, from experimental parameter
tuning (including the intensity of the photostimuli) to video
collection to data transfer, by accessing the Motif user interfaces
using the web browser of the parent machines. Given the large
number of high-resolution cameras, the control workstation was
connected to a large monitor (we use a 43-inch 4k monitor) to
facilitate camera focussing and sample positioning.

In addition to providing a web-accessible user interface, Motif
allows complete control of the camera arrays and arbitrarily
complex scheduling of data acquisition and photostimulation
programmatically, via an API (https://github.com/loopbio/python-
motifapi). This allows us to run imaging experiments on all camera
arrays by executing a single Python script on the monitoring
workstation. Encoding the parameters of experiments in a script
improves reproducibility by making settings consistent over time
by default.

Updates to Tierpsy Tracker, and companion software, for
multiwell imaging format. In our camera array system, each
camera records multiple wells which complicates metadata
handling since there is no longer a one-to-one correspondence
between a video file and a particular experimental condition. We
have updated Tierpsy Tracker17 to handle videos with multiple
wells: it can automatically identify wells from the video (Fig. 1f),
and return results on a well-by-well basis. In the Viewer, the user
can see the names and boundaries of the wells, and have the
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Fig. 1 Schematic of megapixel camera arrays. a Five identical camera arrays were mounted on an air supported table. The associated workstations to run
the Motif software were arranged in the two server racks underneath. b 3D schematic drawing of a single imaging unit (Kastl–Highres). The six cameras
were mounted on a plate that is connected to the rig frame by three spring-loaded screws, and can be moved along the vertical axis. This allows for
changing the focal plane of all six cameras at once. One of the imaging unit’s side panels is omitted from this view. c Technical drawing (front and side
view) of an imaging unit annotated with dimensions in millimetres. d Using five identical units, 480 wells can be recorded simultaneously. Zooming in to
the (e) camera, (f) well, (g) and worm level shows that this system achieves enough resolution to precisely track the nematodes. Each square well
measures 8 × 8mm.
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option of marking any well as “bad” if necessary. This flag is
propagated to the final tracking results so that the contribution of
“bad” wells can be filtered out for downstream analysis.

To keep track of the experimental conditions of each well we
have developed an open-source module in Python to automati-
cally handle experimental metadata (github.com/Tierpsy/tierpsy-
tools-python). For each experiment, a series of csv files specifies
the worms and compounds (if applicable) that were added to each
well. This can include information on how a COPAS worm sorter
(Union Biometrica) was used to dispense different strains in the
wells of the imaging plates, which compound source plate was
replicated onto each imaging plate, or any column shuffling
performed by a liquid handling robot. These tables are then
combined to create a mapping between each well in an imaging
plate (identified by a unique ID) and an experimental condition.
For each imaging run, the user needs to log the camera array used
for each imaging plate at the time of the experiment. This
information is then mapped to video file names to create a final
metadata table suitable for subsequent analysis (see Material and
Methods and Supplementary Fig. 3 for more details).

Another key software improvement we incorporated is a
convolutional neural network (CNN) to exclude nonworm
objects from subsequent analysis. While we previously used
contrast-based segmentation and size-based filtering for worm
detection in our analysis17, introducing the CNN into Tierpsy
Tracker improves the quality of the tracking data and the
subsequent analysis results as well as the speed of the analysis
because fewer objects are analysed in subsequent steps (see
Methods for more details).

Tierpsy Tracker does not maintain the identity of the worms
across gaps in tracking which can occur when worms leave the
field of view or cross each other. The number of unique tracks is
thus typically greater than the number of worms. While Tierpsy
initially calculates features on a track-by-track basis, we use a
single averaged feature vector per well because of the uncertainty
in how the tracks map to individual worms. The natural unit of
measurement of sample size with the setup described in this work
is therefore a well, rather than an individual worm.

Rapid assessment of natural variation in behaviour. We tracked
the behaviour of N2 and wild isolates of the divergent set in the C.
elegans Natural Diversity Resource (CeNDR) strain collection
with our system to detect natural variation in behaviour32. To
further increase the dimensionality of the behavioral phenotypes,
we included a blue light stimulation protocol using a set of four
bright blue LEDs. Each tracking experiment is divided into three
parts: 1) a 5-minute pre-stimulus recording, 2) a 6-minute sti-
mulus recording with three 10-second blue light pulses starting at
60, 160, and 260 sec, and 3) a 5-minute post-stimulus recording.
Blue light can elicit an escape response in worms, thus expanding
the range of observable behaviours33,34. Programmable blue light
stimulation is reproducible, compatible with high throughput
assays, and is also useful for optogenetic stimulation.

We tracked on average 20 wells per strain. Given the high
throughput achieved with our new system, this experiment can be
performed within a few hours. The recordings of the camera array
maintain enough resolution to extract the full set of Tierpsy
features35, which describe in detail the morphology, movement,
and posture of the worms, including subdivision by motion mode
(forward, backward, and paused) and body part. We extract a set
of 3076 summary features per well for each recording period (pre-
stimulus, blue light, and post-stimulus), resulting in a total of
9228 features for each well. This allows us to detect fine
differences in the morphology, posture and movement of the
worms which varies in a nonuniform way among wild isolates

(Fig. 2a-c). The neck curvature of wild isolates tends to show
more significant differences to N2 worms than the curvature of
other parts of the body, which might be related to differences in
foraging behaviour between N2 and wild isolates (Fig. 2b).
However, not all strains show the same curvature pattern across
the body indicating natural variation in posture. All the wild
isolates move on average faster than N2 worms but their response
to blue light varies (with some being more and others less
sensitive to blue light), showing that the blue light stimulus
increases the dimensionality of behavioural differences (Fig. 2c).

To assess how well we can predict the worm strain based on its
behavioural fingerprint, we estimated the classification accuracy
using a random forest classifier. We first split the data into a
training/tuning set and a held-out test set. We used the training
set to select features using recursive feature elimination (RFE) and
tune the hyperparameters of the model. Figure 2d shows the
highest cross-validation accuracy achieved for different sizes of
selected feature sets. The accuracy improves when we select
features increasing the samples-to-features ratio, as this helps
control overfitting and, in parallel, reduces the correlation
between features. Combining features from different blue light
conditions (blue curve) increases the dimensionality of the data
and the classification accuracy. Using the best performing features
and hyperparameters, we trained a classifier with the entire
training/tuning set and used it to make predictions in the test set.
The test accuracy we achieved is 66% which is significantly higher
than random (9%).

Temporal response and sensitisation to aversive blue light
stimulation. Having established that blue light stimulation can be
leveraged to improve classification accuracy, we moved to further
investigated the response elicited by blue light in N2 and CB4856
at a higher temporal resolution.

We imaged with blue light stimulation on both the N2 and
CB4856 strains, and observed different behavioural responses
between these two strains. We extracted the same set of 3076
previously defined features35 with a time resolution of 10 sec and
used these to construct the behaviour phenotype space. N2 and
CB4856 have well-known behavioural differences26,36–40 and are
expected to occupy different regions of the phenotype space.
Principal component analysis (PCA) shows that application of
blue light stimulation moves the strains from their already
distinct positions in the plane defined by the first two principal
components (PCs) to new positions, indicating detectable
responses to the stimulus in both strains (Fig. 3a). Blue light-
induced displacement through phenotype space led to better
separation between the two strains (Fig. 3a, right), confirming
that the addition of the stimulus can reveal further behavioural
differences between two strains already known to be distinct.

The C. elegans escape response is characterised by a combina-
tion of increased forward locomotion and decreased spontaneous
reversals41. The differences in blue light-induced escape response
between the N2 and CB4856 strains can thus also be seen by
simply examining the fraction of the worm population moving
forwards, moving backwards, or remaining stationary. For both
strains, a single photostimulus triggers a sharp and steady increase
in the fraction of worms moving forwards, followed by a
relaxation towards the pre-stimulus level once the stimulus ceases.
The fraction of worms moving backwards has a slight increase at
the beginning of the stimulus, and then decreases without
increasing again until the stimulus is over. Finally, the fraction
of stationary worms declines rapidly during the stimulus and is
restored after the stimulus ends (Fig. 3b). However, while in
CB4856 the rate at which the population fractions return to the
pre-stimulus levels is steady, N2 shows a sharp initial decline in
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forward-moving worms over several seconds (and a correspond-
ing sharp increase in stationary worms and backward-moving
worms) before relaxing steadily. Repeated photostimulation
(twenty pulses of 10 s on, 90 s off) of N2 worms causes
sensitisation, as light pulses trigger a progressively increasing
fraction of worms to move forwards (Fig. 3). Meanwhile, between
light pulses, worms recover to a progressively decreasing baseline

level of forward locomotion (and conversely, progressively
increasing stationary fraction), possibly due to fatigue from
increased activities during the pulse. This reduced forward
locomotion fraction persists in the absence of photostimulation,
with no obvious return towards pre-stimulus levels over a 6.5 min
period after the final pulse (Fig. 3c, e). The combined effect of
sensitisation and fatigue leads to a roughly linearly increasing
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response over multiple light pulses, as illustrated by taking the
difference between the fraction of worms moving forward before
and after stimulation (Fig. 3d).

Photostimulation can thus better distinguish between worm
strains using existing predefined feature sets, as well as create new
features for quantifying the details of the escape behaviour.
Similar experiments on habituation to repeated mechanical
stimulation have been used extensively to study learning in C.
elegans42–44. Aversive blue light stimulation acts through different
sensory neurons and converges on the same motor circuits and so
may provide useful comparative data to investigate the genetics
and neuroscience of learning mechanisms.

The addition of these new and interpretable features increases
the dimensionality of the worm behavioural phenotypic space,
which may be useful for phenotyping applications.

Behavioural phenotypes of ALS disease models in response to
blue light. A previous study generated several Amyotrophic
Lateral Sclerosis (ALS) disease model strains that carry patient
amino acid changes in the C. elegans sod-1 gene45. This study
found that the disease model strains have no obvious behavioural
defects unless they are exposed to oxidative stress by overnight
treatment with paraquat.

We phenotyped these ALS disease model strains on our system
and saw similar results. PCA of a pre-defined set of 256 Tierpsy
features35 under standard imaging conditions (5 min of
spontaneous behaviour) does not show clear differences between
the strains (Fig. 4a). Adding blue light pulses (three 10-second
blue light pulses over six minutes) leads to better separation
between the strains in PC space (Fig. 4b). Although the SOD-
1(+) wild-type control strain (blue) and the SOD-1(A4V) mutant
disease strain (orange) clearly separate into their own clusters,
SOD-1(H71Y), SOD-1(G85R) and SOD-1(0) null strains cluster
together, suggesting that their overall responses to blue light are
similar to each other. The clustering of SOD-1(H71Y), SOD-
1(G85R), and SOD-1(0) strains upon blue light stimulation is
consistent with the previous finding that all three strains have loss
of sod-1 function in glutamatergic neurons. By contrast, the SOD-
1(A4V) strain has overexpression of sod-1 in cholinergic neurons
without affecting glutamatergic neurons45, and this disease strain
forms its own cluster in the blue light PC space (Fig. 4b).

In the previous study and in our results, no difference is
observed in the baseline behaviour of the strains. However,
exposure to aversive conditions, possibly acting through very
different mechanisms, highlights the difference between strains by
exposing an otherwise cryptic phenotype. Upon blue light
stimulation, SOD-1(H71Y), SOD-1(G85R), and SOD-1(0) strains
show significantly bigger increases in forward locomotion
compared to the SOD-1(+) control strain and the SOD-1(A4V)

disease strain (Fig. 4c,d). This increase in forward movement
appears to be primarily at the expense of stationary (Fig. 4e)
rather than backwards locomotion (Supplementary Fig. 2).
Nevertheless, a closer look at reversal frequencies at a finer
temporal resolution reveals decreased reversals in the three sod-1
loss-of-function strains but not the other two strains (Supple-
mentary Fig. 2b).

Phenotypic screen of human-approved drugs. We used a library
of 245 drugs to quantify worms’ responses to human-approved
drugs across multiple behavioural features. 240 drugs were from
the Prestwick C. elegans library, a collection of small-molecule
out-of-patent drugs selected by the supplier (Prestwick Chemical,
Illkirch-Graffenstaden, France) for their chemical structural
diversity and good tolerability in worms. To these, we added a set
of 4 antipsychotics and an insecticide that have a strong pheno-
type that we could use as positive controls and for checking the
automated metadata handling code46. Three worms were added
to each well of 96-well plates and were left on the drug for four
hours before imaging. We processed the videos using Tierpsy
Tracker, extracting 3016 behavioural features35 from each ima-
ging condition (pre-stimulus, blue light stimulus, post-stimulus)
and concatenated the feature vectors so that each well was
represented by a 9048-dimensional feature vector. We used a
linear mixed model to identify compounds that had a significant
effect on behaviour in at least one feature46. The linear mixed
model used the imaging day as a random effect to account for
day-to-day variation in the data. The 153 compounds that had a
detectable effect were kept for further analysis. We restricted the
feature space to a subset of 256 features (Tierpsy256) that we
selected in the previous work35 for each imaging condition, so
that each well was now represented by a 768-dimensional feature
vector. The features were then z-normalised and both features
and samples were hierarchically clustered using complete linkage
and correlation as the similarity measure (Fig. 5a).

The compounds in the library are mostly well-characterised
with known modes of action. By examining clusters in detail, we
found several clusters that included multiple compounds from the
same mode of action (Fig. 5b-d). One of the identified clusters
contains several compounds that inhibit muscle contraction and/
or are related to vasodilation (Fig. 5b). The most clearly defined
cluster (Fig. 5c) contains antibiotics, and most of them share the
same mode of action (ribosomal protein synthesis inhibition).
Because the worms were imaged on a lawn of bacterial food, the
most likely cause of these behavioural differences is a change in
the bacterial food lawn that worms sense and respond to, but a
direct effect on the worms is not impossible since C. elegans do
respond to some antibiotics47,48. A third cluster is formed by
compounds used to treat the symptoms of Parkinson’s Disease

Fig. 2 Natural variation in behaviour. a–c Examples of features describing morphology, movement, and posture. Each box shows median, 25th and 75th
percentile (central mark, left and right edge, respectively), while whiskers show the rest of the distribution except for outliers (outside 1.5 times the IQR
above the 75th and below the 25th percentile). Numbers near the boxplots are the p-values indicating statistically significant differences between N2 and
wild isolates at a false discovery rate of 5% using Kruskal-Wallis tests and correcting for multiple comparisons with the Benjamin-Yekutieli method.
P-values are omitted for nonsignificant differences. aMorphological differences were detected between strains. The length and the midbody width varied in
a nonuniform way among strains. b Adequate resolution enabled detailed characterisation of the worm posture and the detection of differences among
strains in multiple dimensions. The curvature at different parts of the body varied in a nonuniform way among strains. The neck curvature showed more
significant differences. The parts of the body are defined following the conventions adopted in Tierpsy Tracker35. c The speed of wild isolates was on
average higher than the speed of N2 worms. The response of wild isolates to blue light stimulus varied; some strains (e.g. EG4725) were more sensitive to
blue light compared to N2, while others showed less obvious escape response (e.g. DL238). This provided additional dimensions to the behavioural
phenotype. d Using the quantitative behavioural phenotypes, strains were classified with significantly higher accuracy than random. Combining features
from different blue light conditions increased the dimensionality of the data and the classification accuracy between strains. eWorm strains were predicted
in a held-out test set with 66% accuracy which is higher than random (9%). Sample size, in wells (3 worms per well): NN2= 34, NJT11398= 21, NMY16= 27,
NEG4725= 29, NJU258= 25, NJU775= 25, NLKC34= 27, NCB4856= 29, NDL238= 16, NED3017= 20, NMY23= 23.
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(anticholinergics). Previous studies have shown that anticholi-
nergic drugs can affect locomotion in C. elegans49,50 and also
induce motor activity in other model animals51,52.

Most of the compounds had a detectable effect on behaviour,
but many of the effects were less obvious than a library of
invertebrate-targeting compounds that we screened recently using
the same method46. A part of the explanation is likely to be a lack
of conservation of some drug targets between humans and
worms, although it should be noted that many are sufficiently
conserved that human-targeted drugs have effects through the
expected receptor class53. Another reason some compounds do
not have a detectable effect is drug uptake which is known to be
an issue for drug screens in worms54, highlighting the continuing

need for improved drug delivery to maximise the usefulness of
worms in drug screening55.

Discussion
We have developed a megapixel camera array system to enable
high throughput, high content imaging of worms in standard
multiwell plates. By partially overlapping the fields of view of six
cameras, we can image an entire multiwell plate at spatial and
temporal resolutions that are sufficient for tracking C. elegans and
extracting high-dimensional phenotypic fingerprints. While the
experiments presented in this work were carried out in 96-well
plates, the imaging system can easily support 24- and 48-well
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plates as well. We have added features to Tierpsy Tracker to make
it compatible with the multiwell imaging format, so that each well
is detected and analysed separately. We incorporated strong blue
LED lights into the camera array system to provide precise and
repeatable photostimulation and found that this leads to better
separation between wild isolates and ALS disease model strains,
in the latter case revealing phenotypes that could not be detected
in standard unstimulated assays. Repeated blue light stimulation
also revealed a novel sensitisation phenotype in N2 worms, in
marked contrast to the habituation in the reversal response
reported in previous experiments on repeated mechanical stimuli
which are used to study learning in worms12,43.

Our imaging hardware and analysis software are designed to
support high throughput phenotypic screening, as the multiwell
format allows for a large number of experiments to be conducted
simultaneously. Furthermore, our experimental pipeline uses
liquid handling robots for dispensing agar, food, drugs, and
worms, in order to streamline the workflow for large-scale phe-
notypic screening. On a typical eight-hour imaging day, a single
experimenter can operate five runs on all five-camera array units,
thus collecting imaging data from 2400 independent wells in a 96-
well plate format. Typical post-acquisition processing time for
this volume of data (assuming the standard 16 min video length
at 25 fps, three worms per well) is 50-85 h using a MacPro
(Processor: 2.7 GHz 12-Core Intel Xeon E5; Memory: 64GB
1866MHz DDR3) or 5–11 h on a local cluster to go from raw
video data to fully extracted behavioural features. Processing time
increases significantly with object number and depends on the
quality of the video (good contrast, lack of debris, etc.).

Multiple cameras have previously been used to record large areas
for worm tracking, but with an emphasis on long time recording at
lower resolution compared to the applications presented here56.
Multicamera imaging systems have also been used to record the
behaviour of other species. When imaging animals in the field, for
example, experimenters have employed multiple cameras to
simultaneously image locations of interest57. The most common
scenario sees the use of multiple cameras pointed at the same
animals for tracking position and pose in three dimensions58–62.
Multiple camera systems have also been used to increase coverage63

and throughput64,65 in Drosophila imaging experiments.
There are several options available to record data from multiple

cameras, from the video acquisition tools and SDK provided by
camera manufacturers to third-party tools like The Recorder
(MultiCamera.Systems LLC, Houston, TX, USA) or the open-
source Micro-Manager. The introduction of the GenICam Stan-
dard, developed by the European Machine Vision Association66,
has provided developers with a common programming interface
that is not strictly coupled to the interface technology of the
different cameras, thus making it easier to develop user interfaces.

Setting up a user-friendly multicamera system from scratch still
requires a considerable investment in terms of time and know-
how. A Motif camera system provides a compact imaging setup
and a computer system with matched specifications and includes
source code in Python, making it more transparent than some
other proprietary systems.

A main strength of our camera array system is its scalability.
Screening throughput can be readily expanded with additional
imaging units, as the system is modular and each camera array
has a relatively small physical footprint. On-the-fly compression
of raw videos provided by the software keeps the data volume
manageable. Post-acquisition analysis is easily parallelised since
videos can be analysed independently and processing time can be
decreased linearly by allocating more computational cores to the
task (e.g. by using a high-performance cluster).

The megapixel camera arrays we describe here represent a
natural progression in worm tracking hardware where advances
in the past have come from multiplexing to increase throughput13

and increasing resolution to get more information from multi-
worm trackers12. Our new system will make it possible to do
higher throughput screening with a resolution that enables the
full suite of computational ethology tools to be brought to bear on
phenotyping. We anticipate this will open new directions in large-
scale behaviour quantification with applications in genetics, dis-
ease modelling, and drug screening.

Methods
Worm strains. C. elegans strains used in this work are listed in Supplementary
Table 1. Worms are cultured on Nematode Growth Medium (NGM) agar at 20 °C
and fed with E. coli OP50 following standard procedures18.

Standard phenotyping assay. The standard phenotyping assay was used for most
experiments in this work unless otherwise noted (detailed protocol: https://doi.org/
10.17504/protocols.io.bsicncaw). See Supplementary Table 2 for the detailed pro-
tocols used to collect the data shown in each figure panel.

Briefly, Day 1 adult worms were obtained by bleach-synchronisation (detailed
protocol: https://doi.org/10.17504/protocols.io.2bzgap6) and used for all imaging
experiments. Imaging plates were prepared by filling 96 well plates with 200 μL of
low peptone (0.013% Difco Bacto) NGM agar per well using an Integra VIAFILL
reagent dispenser (INTEGRA Biosciences Ltd, UK) (detailed protocol: https://
doi.org/10.17504/protocols.io.bmxbk7in), and stored at 4 °C until use. On the day
before imaging, plates were placed in a LEEC BC2 drying cabinet (LEEC Ltd,
Nottingham, UK) to lose 3–5% weight (starting weight 59 g without lid, target
weight 56 g, this takes between 2 and 3 h). Each plate was then seeded with 5 μL per
well of 1:10 diluted OP50 using VIAFILL, and stored at room temperature
overnight.

On imaging day, synchronised Day 1 adults were washed in M9 (detailed
protocol: https://doi.org/10.17504/protocols.io.bfqbjmsn) and dispensed into
imaging plate wells using COPAS 500 Flow Pilot worm sorter (detailed protocol:
https://doi.org/10.17504/protocols.io.bfc9jiz6). Three worms were placed into each
well unless noted otherwise. Plates were returned to a 20 °C incubator for 1 h to dry
following liquid handling, and then placed onto the multi-camera tracker for 0.5 h
to acclimatise prior to image acquisition.

Fig. 3 Escape response to photostimulation. a PCA plots of N2 and CB4856 in the 10 sec immediately before (left) and immediately after (right) a 10 s
stimulus showing detectable behavioural responses: both strains moved to new, better separated positions in the phenotype space as a result of
stimulation. Sample size (in wells, two worms per well) is NN2= 377, NCB4856= 115 (left), NN2= 398, NCB4856= 98 (right) b Photostimulation with blue
light elicited similar escape responses in both N2 and CB4856 strains, with the fraction of worms moving forwards increasing during the stimulus and
decreasing after the stimulus. However, post-stimulus recovery appears to occur at two timescales for N2 but not for CB4856. Solid lines are means,
shaded areas show the 95% confidence interval. Sample size (in wells, two worms per well) is NN2= 529, NCB4856= 396. c Repeated photostimulation
triggered increasing aversive response in N2, also leaving a higher fraction of worms stationary after serial stimulation than before (vertical separation
between the two dashed lines to contrast the before and the after levels). N= 144 wells (three worms per well). d The fraction of worms triggered to move
forwards by each stimulus increased throughout the stimulation series, as a decreasing fraction of worms remained stationary across each successive
photostimulus. Each data point was obtained by taking the difference in a 10 s window just before and just after the end of each stimulus. N= 144 wells (3
worms per well). e After repeated photostimulation, a larger fraction of the population than before was stationary. This was quantified by taking the
difference of the population fractions in each motion mode between the final 5 min and the initial 5 min of the experiment (red dashed lines in c). Each box
shows median, 25th and 75th percentile (central mark, lower and upper edge, respectively), while whiskers show the rest of the distribution except for
outliers (outside 1.5 times the IQR above the 75th and below the 25th percentile), plotted individually. N= 144 wells (three worms per well).
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Drug experiments. Drug experiments followed the standard phenotyping assay
workflow, but with a few modifications. A detailed protocol can be found at https://
doi.org/10.17504/protocols.io.bs6znhf6.

Briefly, imaging plates were prepared with drugs the day before imaging and
stored in the dark overnight at 4 °C. Using a COPAS 500 Flow Pilot, three worms
were dispensed into each well of 96-well plates. Following liquid handling, plates
were kept in a 20 °C incubator for an extra 3 hours to allow drug exposure (total
drug exposure time was thus four hours).

Bright field illumination. To prevent light-avoidance response while illuminating
the sample in bright field, we used a dedicated 850 nm light system (Loopbio GmbH,
Vienna, Austria), consisting of a 200 × 200mm edge-lit LED panel. Briefly, the edge-
lit configuration has the LEDs attached to the frame of the panel and shining into a
horizontal light guide plate, which homogenises and diffuses the light. This setup was
characterised to provide a minimum radiance of 15Wm−2 sr−1, a minimum

uniformity of 95 ± 10%, and a half-angle (the angle at which the measured intensity
falls to 50% its maximum value) is 30°.

The panel is significantly larger (200 ×200 mm) than the sample area. This
achieves the double goal of minimising edge effects and thermally insulating the
sample from the LED panel, as this can be placed at a relatively large distance
(65 mm). To further improve light collimation, two computer monitor privacy
filters (3 M, Saint Paul, MN, USA) placed at right angles are inserted between the
LED panel and the sample area.

Image acquisition. All videos were acquired at 25 fps on the trackers in a
temperature-controlled room at 20 °C, with a shutter time of 25 ms, and 12.4 µm
px−1 resolution. For all experiments unless otherwise noted, three sequential videos
were taken, run in series by a script: a 5-minute pre-stimulus video, a 6-minute
blue light recording with 10-second blue light pulses set to 100% intensity at the 60,
160, and 260 s mark, and a 5-minute post-stimulus recording. The timing of
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Fig. 4 Blue light stimulation elicits different responses amongst ALS disease models. a–b Principal component analysis of 256 extracted behavioural
features from standard (a) or blue light (b) imaging conditions. Features were extracted by Tierpsy Tracker. Each datapoint represents one plate average of
the strain, with up to 12 independent wells for each strain in every 96-well plate. Each well contained an average of three worms. The time window
represented in B is also shown in (c). c Overall fraction of forward locomotion under blue-light imaging conditions. A 10 s blue light pulse started at t= 60 s
and feature values were calculated using 10 s windows centred around 5 sec before, 10 s after, and 20 s after the beginning of each blue light pulse. Plate
averages were used to generate the plot for each strain. Each box shows median, 25th and 75th percentile (central mark, lower and upper edge,
respectively), while whiskers show the rest of the distribution except for outliers (outside 1.5 times the IQR above the 75th and below the 25th percentile),
plotted individually. d–e Changes in the overall fraction of forward (d) or paused (e) locomotion upon blue light stimulation. The difference was calculated
by subtracting the average feature values over the t= 50-60 sec pre-stimulus window from those over the t= 65-75 sec blue light pulse window (these
correspond to the first and the second time points in (c). Plate averages were used to generate the plot for each strain. Two sample t-test compared to the
SOD-1(+) control strain (n.s. not significant). Each box shows median, 25th and 75th percentile (central mark, left and right edge, respectively), while
whiskers show the rest of the distribution except for outliers (outside 1.5 times the IQR above the 75th and below the 25th percentile), plotted individually.
Sample size (in wells, three worms per well): Nsod-1(+) = 232, Nsod-1(A4V)= 228, Nsod-1(H71Y)= 211, Nsod-1(G85R)= 165, Nsod-1(0) = 195.
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recordings and photostimulation was controlled using Loopbio’s API for Motif
software [https://github.com/loopbio/python-motifapi] in a script.

For the serial blue light stimulation experiments, the plates were continuously
imaged for 43 min and 20 s in the following stimulation pattern: 5 min off, 20 x
(10 s on at 100% intensity, 90 s off), 5 min off.

Image processing and quality control. Segmentation, tracking, and pose esti-
mation over time was performed using Tierpsy Tracker. Each video was checked
using Tierpsy Tracker’s Viewer, and wells with visible contamination, agar damage,
or excess liquid (from worm sorter, so that worms swim rather than crawl) were
marked as bad and excluded from the analysis.

Convolutional neural network to exclude nonworm objects. We improved
Tierpsy tracking by incorporating a CNN classifier after segmentation to exclude
nonworm objects from being analysed and skewing the results.

In the video compression step at the beginning of the Tierpsy analysis pipeline,
a segmentation algorithm detects putative worm objects according to a set of user-

defined parameters. The pixels in the frame that are further away than a threshold
from any of the putative worms are set to 0, creating a “Masked Video”. The objects
selected by the masking algorithm are tracked throughout the video, but now if
only they pass the filtering step powered by a CNN classifier.

The classifier was trained on a dataset of 43,561 grey-scale “masked” images
measuring 80 × 80 pixels each, collected across several imaging systems in our lab.
All images were manually annotated and objects were marked as either “worm” or
“nonworm” by two independent researchers, so a consensus could be sought. The
annotated dataset was split into training, validation, and test sets containing 80, 10,
and 10% of the images, respectively, while keeping the classes balanced in each set.
All images were pre-processed in two steps. First, the background pixels set to 0 by
the masking algorithm were shifted to the top 95 percentile of the grey values in the
unmasked area. This prevents the artificial edge between the masked and
nonmasked area from disproportionately influencing the classifier. Second, all pixel
values were scaled to the range of 0 to 1 by min-max normalisation, to reduce the
influence of variable illumination and contrast in different imaging setups.

The architecture of the CNN is a shallower adaptation of VGG1667, featuring
eight convolution layers with 3 × 3 filter size and stride 1, each followed by a
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rectified linear activation unit, four max-pool layers (filter size 2 × 2, stride 2)
applied every two convolution layers, and a fully connected layer. Batch
normalisation is applied to the third and seventh convolution layer to accelerate
training by reducing internal covariate shift68, and a Dropout layer is added before
the fully connected layer to prevent overfitting69. In total, the CNN has about 1.78
million trainable parameters.

The CNN classifier was implemented in PyTorch 1.6, and was trained with the
cross-entropy loss function and the Adam optimisation algorithm70 at a learning
rate of 10−4. It achieved an accuracy of 97.68% and F1 score of 97.98% as measured
on the independent test set.

To improve performance at the inference step, we apply the CNN to a subset
(one image per second) of all the images featuring the same putative worm object.
This yields, per snapshot, the probability of the object to be a valid worm. If the
median of this probability over time is higher than 0.5, the object is classified as a
valid worm.

Video processing with multiple wells. Using multiwell plates for imaging sig-
nificantly increased the experimental throughput, but also introduced challenges
for data analysis as each video output contains 16 separate wells. Further software
engineering was thus warranted to process multiwell videos, so that wells are
detected and analysed separately.

To achieve this, we implemented an algorithm in Tierpsy Tracker that
automatically detects multiple wells in a field of view and stores the coordinates of
well boundaries. Briefly, we created a template that approximates the appearances of a
well in the video, and replicated it on a lattice to simulate the grid of wells. The overall
dimensions of the lattice are defined in Tierpsy’s configuration file, but the lattice
spacing parameters were chosen, via SciPy’s differential evolution routine71, to
minimise the differences between the video’s first frame (or its static background, if
Tierpsy was instructed to calculate it) and the simulated grid of wells.

Automatic extraction of behavioural features was then performed on a per-worm
basis, before worms were sorted into their respective wells based on their (x, y)
coordinates in order to obtain well-averaged behavioural features.

Data provenance. Tracking multiwell plates complicates the handling of metadata,
since there isn’t a unique mapping between videos and experimental conditions.
When well shuffling is performed using the liquid handling robot, the well contents
in the imaging plate also needs to be tracked. To handle experimental metadata for
imaging with the camera arrays, the records that need to be compiled manually
during the experiments was standardised and an open-source module in Python
(https://github.com/Tierpsy/tierpsy-tools-python/hydra) was developed to com-
bine the experimental records to create a full metadata table with the experimental
conditions for each well (Supplementary Fig. 3).

The experimental records are typically compiled in the form of csv files. In each
tracking day, the experimenter needs to record: i) information about the media type
and the bacterial food present on the imaging plates, and the worm strains that were
dispensed into the wells of the plates (this is recorded in a summarized way in the
wormsorter.csv file), ii) information about the experimental runs, including the unique
IDs of the imaging plates, the instrument name where each plate was imaged, and the
environmental conditions (manual_metadata.csv), iii) if applicable, information about
the contents of the compound source plates (sourceplate.csv) and the mapping
between imaging plates and source plates (if the liquid handling robot was used for
column shuffling, this mapping will be recorded automatically in the robotlog.csv; if
there was no shuffling, this will be recorded in imaging2source.csv).

Using the functions in the hydra module, firstly a plate metadata table is created
to contain all the well-specific experimental conditions for every well of each
unique imaging plate, including the compound contents if applicable. Then, the
information about the experimental runs is merged with the plate metadata to
create a final metadata table with the complete experimental conditions for every
recording of every well. At this stage, the video filenames are also matched to the
sample based on the camera array instrument ID. For example, scripts showing
metadata handling, see https://github.com/Tierpsy/tierpsy-tools-python/tree/
master/examples/hydra_metadata.

Statistics and reproducibility. Each well contains multiple worms (either 2 or 3,
indicated in relevant captions) but worm identity is not necessarily maintained
across the duration of tracking. We therefore use the number of wells as the sample
size for statistical analysis rather than the number of worms. All experiments were
repeated across at least three independent tracking days. Feature data and analysis
scripts are available on Zenodo72.

Analysis of time-resolved response to photostimulation. Tierpsy Tracker17 was
used to calculate a set of 3076 summary features for each well for each non-
overlapping 10 s interval of the 6-minute stimulus recording (with three 10-second
blue light pulses starting at 60, 160, and 260 sec). Samples where more than 40% of
the features failed to be calculated were excluded from the analysis, and so was any
feature that failed to be calculated for more than 20% of the samples in any of the
10 s intervals. Missing values were then imputed by averaging the valid values
within each time interval. The feature matrix (all wells, in all time intervals) was
then scaled by applying z-normalisation. Principal Components were then

calculated using the whole feature matrix. Figure 3a shows a density plot of the
measurements collected in the 10 s immediately before (left) and immediately after
(right) a 10-second stimulus, projected onto the plane defined by the first two
principal components.

To investigate the response to photostimulation with higher temporal
resolution, Tierpsy Tracker17 was used to detect the motion mode (forwards,
backwards, stationary) of each worm over time. To calculate the fraction of worms
in each motion mode over time (Fig. 3b), the number of worms in each motion
mode at each time point in each well was divided by the total number of tracked
worms at each time point in each well. This gave the fraction of worms in each
motion mode, at each time point, for each well, so that an average could be taken
across all wells. The 95% confidence interval for the average was obtained by
nonparametric bootstrap (n= 1000 resamplings, with replacement).

For the longer experiments in Fig. 3c-e, the motion mode detected by Tierpsy
Tracker for each worm overtime was first down-sampled to 0.5 Hz by dividing the
video into nonoverlapping two seconds intervals and taking the prevalent motion
mode in each interval. The fraction of the worm population in each motion mode
over time was calculated by counting the number of worms in each motion mode
and then dividing by the total number of worms detected at each time point. The
95% confidence interval was calculated via nonparametric bootstrap by the seaborn
Python library.

Classification of wild isolates. For the classification of the divergent set we used a
random forest classifier as implemented in scikit-learn73. For feature selection, we
used recursive feature elimination with a random forest estimator (RFE), as
implemented in scikit-learn73. We started by splitting the data randomly in a
training/tuning set and a test set, with 20% of the data from each strain assigned to
the test set. We used the training/tuning set for feature selection. We tried specific
candidate feature set sizes {2i, for i= 7:11}. For each size, we performed cross-
validation and: i) used each training fold to select N features and train a classifier
with the selected features; ii) used each test fold to estimate the classification
accuracy. We repeated the process 20 times to get statistical estimates of the mean
cross-validation accuracy for each size and selected the best performing size Nbest.
We then selected Nbest features using the entire training/tuning set and used this set
for downstream analysis. At a second stage, we tuned the hyperparameters of the
random forest classifier using grid search with cross-validation as implemented in
scikit-learn73 with the grid shown in Table 1. The best-performing parameters are
reported in Table 1. Finally, we trained a classifier on the entire training set using
the selected features and hyperparameters and used it to make predictions on the
test set.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets (Tierpsy features, tracking data, and metadata) produced in this study are
available on Zenodo: https://doi.org/10.5281/zenodo.512152172. Any remaining
information can be obtained from the corresponding author upon reasonable request.

Code availability
General tools used for analysis and statistical tests are available on GitHub (github.com/
Tierpsy/tierpsy-tools-python). Tracking software and source code is available at https://
github.com/Tierpsy/tierpsy-tracker. The API for Motif is available at https://github.com/
loopbio/python-motifapi and for the image store format at https://github.com/loopbio/
imgstore.
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