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Learning An Active Inference Model of Driver
Perception and Control: Application to Vehicle

Car-Following
Ran Wei, Alfredo Garcia, Anthony McDonald, Gustav Markkula, Johan Engstrom, Matthew O’Kelly

Abstract— In this paper we introduce a general estima-
tion methodology for learning a model of human perception
and control in a sensorimotor control task based upon a
finite set of demonstrations. The model’s structure consists
of (i) the agent’s internal representation of how the envi-
ronment and associated observations evolve as a result of
control actions and (ii) the agent’s preferences over observ-
able outcomes. We consider a model’s structure specifi-
cation consistent with active inference, a theory of human
perception and behavior from cognitive science. According
to active inference, the agent acts upon the world so as
to minimize surprise defined as a measure of the extent to
which an agent’s current sensory observations differ from
its preferred sensory observations. We propose a bi-level
optimization approach to estimation which relies on a struc-
tural assumption on prior distributions that parameterize
the statistical accuracy of the human agent’s model of the
environment. To illustrate the proposed methodology, we
present the estimation of a model for car-following behav-
ior based upon a naturalistic dataset. Overall, the results
indicate that learning active inference models of human
perception and control from data is a promising alternative
to black-box models of driving.

Index Terms— Human perception and action, Partially
Observable Markov Decision Process, Active inference, in-
verse reinforcement learning.

I. INTRODUCTION

IN many control tasks requiring mind and motor resources

by a human agent, the observation space can be high-

dimensional and complex. Empirical evidence indicates that

humans agents use a simpler, lower dimensional representation

of the environment in sensorimotor control tasks [1], [2].

The Bayesian brain hypothesis [3], [4] posits that the human

brain uses the information provided by sensory data to update

a representation of the world in the form of a conditional

probability distribution. To account for the structure of human

perception and control in a task involving motor and mind

resources, a model must separately describe (i) the agent’s

internal representation of the world as the environment evolves

as a result of control actions and (ii) the agent’s preferences

over observable outcomes. Equipped with data in the form of

demonstrations (i.e. sequences of recorded observation-action

pairs), the learning task is to estimate the agent’s preferences

as well as its internal representations leading to a behavior

policy that best fits data.

In machine learning, this estimation problem is known as

inverse reinforcement learning (IRL) in an off-line setting

This work was supported in part by Army Research Office ARO under
grant W911NF-22-1-0213.

[5]. In contrast to reinforcement learning (wherein the goal

is to identify a control policy based upon reward and state

observations), the goal of IRL is to estimate the reward

function and transition probabilities from observed trajectories

of state-action pairs [6]–[8]. The estimated reward provides an

interpretation of the agent’s behavior and the reward function

can be used to design policies in domains where manual

reward specification is difficult, e.g., in autonomous driving

[9]. There is a significant literature on identification and

estimation of models of human control when the state is

observable [10]–[12]. In contrast, model identification and

estimation when the state is only partially observable (as

in models accounting for human perception) has received

less attention. Notable exceptions include [13]–[16]. However,

the environments considered in these papers are either low

dimensional as in [13], [14], restricted to a linear-quadratic

control [15] or customized for a specific control task [16].

In this paper, we introduce a Bayesian estimation methodol-

ogy for learning a structural model of perception and control

in general control tasks in higher dimensional settings. We use

the formalism of a Partially Observable Markov Decision Pro-

cess (POMDP) in which the agent’s preferences are modeled

by a reward function and the agent’s internal representation

of the environment consists of observation and transition

probabilities. However, a POMDP model of a human agent’s

perception and control policy based solely on demonstrations

is in general non-identifiable, i.e. there may be several different

combinations of reward and internal model of the environ-

ment that rationalize the same demonstrations dataset. This

is because in planning control tasks, different combinations

of reward and internal dynamics model could result in the

same inter-temporal reward trade-offs. To address this issue,

we make a structural assumption on prior distributions that

parameterize the statistical accuracy of the human agent’s

model of the environment. Specifically, we assume (i) the

agent’s preferences and model of the environment are indepen-

dent and (ii) the distribution of the model of the environment

parameters concentrates on values with higher fit to the data

(i.e. higher log-likelihood). In words, this assumption restricts

our estimation to agents with reasonably accurate models of

the environment whose preferences over states of the world

are not determined by their perception of the environment.

This allows us to formulate the Maximum A Posteriori (MAP)

estimator as the solution to a bi-level optimization problem.

The upper-level problem is the maximization of the posterior

distribution and the lower-level problem is the computation

of optimal policy for the given reward and model of the
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environment. We approximate the solution to this bi-level

optimization problem by a stochastic gradient algorithm with

a nested policy optimization step.

To illustrate the proposed methodology, we consider an

application to highway driving using a naturalistic dataset. We

specify the structure of the model in accordance to “active

inference” [17]–[19], a novel framework for modeling human

perception and behavior in sensorimotor control tasks [20].

Active inference is related to the Bayesian Brain hypothesis

that posits prediction as the fundamental task of cognition [21],

[22], i.e. the brain minimizes prediction error by updating

beliefs about the states of the world consistent with data.

Active inference takes a conceptual leap from this view in that

minimizing prediction error can also be attained by both updat-

ing beliefs and acting upon the world to approximately induce

a preferred distribution of the states of the world. The active

inference framework is summarized by a principle of free

energy minimization: forward (action) and backward (belief)

updating processes work in tandem to minimize “surprise”

with respect to a preferred belief distribution about the states

of the world.

Our ultimate goal is to provide a model that is interpretable

–in terms of a cognitive model of perception and action–

and that exhibits a statistical performance that is similar or

arguably superior to other black-box models. To this end,

we compare the learned structural model of perception and

action (with an active inference reward specification) with two

baseline models based on Behavior Cloning (BC), a common

machine learning approach to driving behavior modeling [23]–

[26], and the Intelligent Driver Model (IDM), a class of

rule-based models widely used by traffic simulation software

[27]–[29]. It is important to emphasize that the naturalistic

dataset does not include collisions and only includes rela-

tively few extreme observations (e.g. extremely low relative

distance or high relative velocity). Thus, our model only

provides an account of driver perception and control behavior

in average conditions and our testing of model performance

focuses on aggregate measures. The results indicate that the

active inference-based model outperforms those obtained by

imitation learning-based models from the machine learning

literature. However, the learned model is inaccurate in extreme

scenarios that are poorly covered in the dataset and does

exhibit higher collision rates than IQM when tested online.

This is due to the limitations of the dataset which poorly covers

extreme scenarios so that the learned model does poorly in

extreme scenarios due to distribution shift [30], [31]. Overall,

the results indicate that learning active inference models from

data is a promising alternative to black-box models of driving

as it provides a way to trace driving behaviors back to a human

drivers’ perception and preferences.

The structure of this paper is as follows. In section II, we

start by describing a Partially Observable Markov Decision

Process (POMDP) of perception and control. In section III,

we describe the inverse estimation problem, i.e. based upon

sequences of observations and implemented actions to esti-

mate the primitives of the POMDP model (reward, partially

observable state transition and observation probabilities). In

section IV, we describe the specification of reward function

based upon active inference, a novel framework for cognition

and behavior. In section V, we describe the application of the

proposed estimation algorithm to obtain an active inference

model for car-following behavior by human drivers. We com-

pare the active inference model with Behavior Cloning (BC)

and the Intelligent Driver Model (IDM). Finally, in section

VI, we close with concluding remarks about the promise and

challenges of learning perception & control models based upon

naturalistic datasets.

II. A POMDP MODEL OF PERCEPTION AND CONTROL

We start by providing a description of a partially Observable

Markov Decision Process (POMDP) of perception and control.

This encompasses neuroscience modeling frameworks for hu-

man perception and action in sensorimotor tasks such as active

inference [17] and the expected value of control (EVC) [32].

In the proposed POMDP framework (see Figure 1), the

human agent maintains an internal model of the world (or

representation) so that high-dimensional observations ot ∈
O ⊂ R

n (sensory stimuli) are represented with a lower

dimensional hidden state st ∈ S ⊂ R
m where S is the state

space and m << n. If the hidden state is st and at ∈ A
is implemented, the agent accrues a reward r(st, at). The

agent’s internal representation includes state dynamics, i.e. a

transition to a new state st+1 takes place with probability

T(st+1|st, at) and a new observation ot+1 is obtained with

probability O(ot+1|st+1).
After t > 0 time periods, the observable history of obser-

vations and actions is denoted by

ht := {ot, ..., o0, at−1, ..., a0} ∈ Ht ⊂ Ot+1 ×At.

We consider randomized or stochastic policies π that are

adapted to the history of the process, i.e. given history ht

action a ∈ A is implemented with probability π(a|ht) ∈
[0, 1], a ∈ A and

∑
a∈A π(a|ht) = 1 for all ht ∈ Ht.

In the proposed POMDP model of perception and action,

the human agent aims to maximize the expected value of

discounted reward net of information processing costs:

Uτ (hτ ) ≜ sup
π∈Π

E

[∑

t≥τ

γt−τ [r(st, at)− c(π(·|ht))]
]

(1)

where γ ∈ (0, 1) is the discount factor, Π is the set of

randomized policies that are adapted to the history process

and c(π(·|ht)) is a per-period information processing cost.

As human agents may differ in their ability to process task-

relevant information or to attend to the task at hand [33]–[37],

the cost c(π(·|ht)) models the fact that low entropy behavioral

policies are consistent with high information processing effort

or attention.

The combination of additive reward structure and Marko-

vian dynamics allows for a recursive characterization of the

optimal policy as follows:

Ut(ht) = max
π(·|ht)

{
∑

at

∑

st

r(st, at)bt(st)π(at|ht)− c(π(·|ht))

+ γ
∑

ot+1

∑

at

P(ot+1|ht, at)π(at|ht)Ut+1(ht+1)

}
.

(2)
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stst−1 st+1

otot−1 ot+1

bt−1 bt bt+1 bt+2

at−1 at at+1

· · ·

· · ·

Observations

Internal Model

Action

Fig. 1: Graphical Model of Perception and Control.

Let bt ∈ ∆S denote the Bayes updated belief distribution

on the state, i.e. bt(s) := P(st = s|ht), where ∆S is the set

of probability distributions on state space S.

Let us denote by σ(ot+1|bt, at) the probability of recording

observation ot+1 when action at is implemented and the

current belief distribution is bt, i.e.

σ(ot+1|bt, at) :=
∑

st+1

∑

st

O(ot+1|st+1)T(st+1|st, at)bt(st)

Using standard POMDP arguments in Proposition 1 below we

show that with no loss of optimality, the search for optimal

policy can be restricted to Markovian policies, say ΠM ⊂
Π that only depend bt, the current Bayes updated belief as

opposed to the whole history ht ∈ Ht.

Proposition 2.1: Let Vt(b) be recursively defined as fol-

lows:

Vt(b) = max
π(·|b)

{∑

s

∑

a

r(s, a)π(a|b)b(s)− c(π(·|b))

+ γ
∑

a

∑

o′

σ(o′|b, a)π(a|b)Vt+1(b
′)
}

where b′(s) = P(st+1 = s|ht∪(a, o′)), i.e. the resulting Bayes

update after action a is implemented and observation o′ are

recorded. Then, the Bayes updated belief bt = P(·|ht) is a

sufficient statistic for solving (2), i.e. Ut(ht) = Vt(bt) for all

ht.

Proof: See Appendix.

We now state and prove the soft Bellman equation for the

value function Vt(b) when the information processing cost

is proportional to the Kullback-Leibler divergence between

the control policy and a default policy π0, i.e. c(π(·|bt)) =
αDKL(π(·|bt)||π0(·|bt)) where:

DKL(π(·|b)||π0(·|b)) :=
∑

a∈A

π(a|b) log π(a|b)
π0(a|b) . (3)

and α > 0.

Let Q be the Banach space of bounded, measurable func-

tions Q : ∆S → R under the supremum norm ||.||. Define the

soft Bellman operator B : Q → Q by

[BQ](b, a) :=
∑

s

r(s, a)b(s) +

γ
∑

o′

σ(o′|b, a)α log
(∑

a′

π0(a′|b′) exp
( 1
α
Q(b′, a′)

))
, (4)

where b′ is the resulting Bayes update after action a and

observation o′ are recorded.

Theorem 2.2: (a) B : Q → Q is a contraction mapping with

modulus γ ∈ (0, 1) with unique fixed point Q∗, i.e.

Q∗(b, a) =
∑

s

r(s, a)b(s)+

γ
∑

o′

σ(o′|b, a)α log
(∑

a′

π0(a′|b′) exp
( 1
α
Q∗(b′, a′)

))
,

(b)

V ∗(b) = max
π̂(·|b)

[∑

a

π̂(a|b)Q∗(b, a)− αDKL

(
π̂(·|b)||π0(·|b)

)]

= α log
∑

a

π0(a|b) exp
( 1
α
Q∗(b, a)

)

(c) the optimal policy is of the form:

π∗(a|b) = π0(a|b) exp
(
1
α
Q∗(b, a)

)
∑

a′∈A π0(a′|b) exp
(
1
α
Q∗(b, a′)

) . (5)

Proof: See Appendix.

Remark 1: Note that as α → +∞, information processing

effort is arbitrarily costly and in the limit, the agent implements

the default policy π∗ → π0. Conversely, as α → 0+, we

recover the optimal solution without information processing

cost since V ∗(b) → maxa∈A Q∗(b, a).

Remark 2: In the remainder of the paper we shall use

α = 1 and the default policy is the uniformly random policy

π0(a|b) = 1
|A| . With these choices the optimal policy takes

the form:

π∗(a|b) = expQ∗(b, a)∑
a′∈A expQ∗(b, a′)

. (6)

Remark 3 (Finite Horizon): It can be easily verified that

Proposition 1 and Theorem 1 continue to hold for the case

in which the controller is solving a finite horizon problem.

Evidently, the results in this case require that the state-action

function Qt and the conditional choice probabilities πt are

time-dependent t. Formally, for a planning horizon of length

H > 0, the optimal policy at time t ∈ {0, 1, . . . , H} is of the

form:

π∗
t,H(a|b) =

expQ∗
t,H(b, a)∑

a′∈A expQ∗
t,H(b, a′)

(7)

and

Q∗
t,H(b, a) =

∑

s

r(s, a)b(s) +
∑

o′

σ(o′|b, a)V ∗
t+1,H(b′) (8)

where b′ is the resulting Bayes update after action a and

observation o′ are recorded and

V ∗
t+1,H(b′) = log

(∑

a′

expQ∗
t+1,H(b′, a′)

)
t ≤ H − 1

(9)

and V ∗
H+1,H = 0.
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III. ESTIMATION METHODOLOGY

Equipped with a model of perception and action as de-

scribed in the previous section, we consider the estimation of

the primitives based upon demonstrations, that is, sequences

of observations and implemented actions of the form τ =
{(o0, a0), (o2, a1), . . . , (oT , aT )}. We shall denote by D the

finite dataset of distinct sequences of observation-action pairs.

The primitives of the perception & control model are

parametrized as follows:

• Perception: We assume the agent’s internal representation

of hidden state dynamics and observation probabilities

is parametrized with θ1 ∈ R
p
1 so that the likelihood

of observation ot+1 given beliefs bt and action at is

σθ1(ot+1|bt, at).
• Preferences: A reward function rθ2(b, a) which is

parametrized by θ2 ∈ R
p
2.

Assuming the data is generated by an agent who uses a

receding horizon plan with horizon H according to (7), the

log-likelihood of a sequence τ ∈ D can be written as

P(τ |θ) =
T∏

t=0

(
π∗
θ(at|bθ1,t)P

(
ot+1|ht ∪ {at}

))

where to alleviate notation we write π∗
θ(·|b) to refer to the

first-period optimal policy with a planning horizon H >
0. P(ot+1|ht ∪ {at}) is the external observation-generating
distribution that is independent of the agent’s internal represen-
tation. Hence, the log-likelihood of dataset D can be written
as:

log P(D|θ) = log
∏

τ∈D

P(τ |θ)

= Eτ∼D

[

T
∑

t=0

log
(

π
∗
θ (at|bθ1,t)P

(

ot+1|ht ∪ {at}
)

)]

|D|

(10)

= Eτ∼D

[

T
∑

t=0

log π∗
θ (at|bθ1,t)

]

|D|+ constant (11)

where the expectation is taken with respect to the empirical

measure P̄(τ) = 1
|D| and

π∗
θ(a|b) =

expQ∗
θ(b, a)∑

a′∈A expQ∗
θ(b, a

′)
(12)

Condition (12) imposes model in the form of the first period

policy of a receding horizon plan.

We take a Bayesian approach to finding an estimator and

make an additional assumption on the structure of the prior

distribution of parameters denoted by P (θ):
Assumption 1: (a) P (θ) = P (θ1)P (θ2). (b) The distribu-

tion of θ1 is of the form:

P (θ1) ∝ exp
(
λEτ∼D

[ T∑

t=0

log σθ1(ot+1|bθ1,t, at)
]
|D|
)

(13)

for some λ > 0.

Assumption 1(a) restricts our estimation to agents whose

preferences (parameterized by θ2) over states of the world

are not determined by their perception of the environment

(parameterized by θ1). Under assumption 1(b) on the prior dis-

tribution, parameter values θ1 with higher fit to the sequences

of observations in the data are more likely. Increasing values

of λ imply the agent has (a priori) an increasingly accurate

model of the environment.

Assuming a uniform prior P (θ2) on a compact subset Θ2 ⊂
R

p
2, the log of the posterior distribution can be written as:

logP (θ|D) = logP (D|θ) + logP (θ1) + constant

= ED

[

log

T
∑

t=0

π
∗
θ (at|bθ1,t)

]

|D|+

λED

[

T
∑

t=0

log σθ1(ot+1|bθ1,t, at)
]

|D|+ constant

(14)

We are ready to formulate the estimation problem as the

following bi-level optimization problem:

max
(θ1,θ2)

ED

[
log

T∑

t=0

π∗
θ(at|bθ1,t) + λ

T∑

t=0

log σθ1(ot+1|bθ1,t, at)
]

(15)

s.t. π∗
θ = arg max

π∈ΠH

E

[ ∑

h≤H

[rθ(bh, ah)− log π(·|bh)]
]

where here again we write π∗
θ(·|b) to refer to the first-period

optimal policy with a planning horizon H > 0 with initial

belief b. The algorithm for approximating a solution, say θ̂, to

(15) is described in Algorithm 1 below. The estimated model

structure is summarized as follows:

Structural Model of Perception and Control

Perception

Observations O
θ̂1
(ot|st)

Transitions T
θ̂1
(st+1|st, at)

Generative Model σ
θ̂1
(ot+1|bt, at)

Control

Preferences (reward) r
θ̂2
(st, at)

Control Policy π
θ̂
(at|bt) =

expQ∗

θ̂
(bt,at)∑

a′∈A
expQ∗

θ̂
(bt,a′)

Algorithm 1 Bayesian MAP Estimation of Perception &

Control Model

Require: Dataset D = {τ}, perception model σθ1(o
′|b, a),

preference model rθ2(b, a), initial value θ0 = (θ1,0, θ2,0),
hyperparameter λ > 0 and learning rate ρ > 0.

1: for k = 0 : K do

2: Compute the optimal policy π∗
θk

using value-iteration

3: Evaluate the log posterior logP (θk|D) according to

(14).

4: Compute the gradient of ∇θ logP (θk|D)
5: Perform parameter update

θk+1 = θk + ρ∇θ logP (θk|D)

6: end for
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IV. AN ACTIVE INFERENCE SPECIFICATION

In this section we describe a specification of the reward

function consistent with active inference [17]. Active inference

is a novel framework for cognition and behavior according to

which the agent jointly perceives and acts upon the world so as

to maximize the match between perceived vs preferred states

of the world.

The process of matching the perceived vs preferred distri-

bution of the states of the world follows a principle of free

energy minimization: forward (action) and backward (belief)

updating processes work in tandem to minimize a measure

of “surprise” or free energy. For backward (belief) updating,

free energy is minimized when the agent’s belief distribution

bt corresponds to the Bayes updated belief distribution on the

state st. For forward (action) selection processes, surprise is

measured with respect to a preferred distribution P̃ (st+1) over

states of the environment. The immediate “surprise” associated

with action at when current beliefs are bt is quantified by the

expected free energy defined as:

EFE(bt, at) = E
[
DKL

(
bt+1||P̃

)]
+ E

[
H(O(·|st+1))

]

(16)

where the expectation is taken with respect to ot+1 ∼
O(·|st+1), st+1 ∼

∑
s T(·|s, at)bt(s) with

bt+1(s) = P(st+1 = s|ht ∪ {at, ot+1})
and H(O(·|st+1)) is the entropy of the resulting generative

model of observations, i.e.:

H(O(·|st+1)) := −
∑

o′

O(o′|st+1) log
(
O(o′|st+1)

)
.

The first term in (16) quantifies the extent to which the belief

distribution on the states of the world bt+1 (resulting from

implementing action at and recording observation ot+1) differs

from the preferred distribution of the states of the world P̃ (·).
This term is usually referred to as “risk” because of its rela-

tionship to the deviation from an agent’s goal [38]. Selecting

policies that generate preferred observations minimizes risk.

The second term in (16) is a measure of the observation

uncertainty induced by action at. This term is referred to

as “ambiguity” and represents the value of obtaining reliable

information that may help to resolve uncertainty about future

states [18], [38]. Defining ambiguity hinges on having a model

of the world.

In [39] an interpretation of active inference (when the

state is observable) is given in terms of Markov decision

processes. In a similar manner, by setting the reward function

as r(bt, at) := −EFE(bt, at), the active inference model

can be seen as a particular instance of the class of POMDP

models described in section II [40]. However, the ability to

consider trade-offs between the described measures of risk

vs. ambiguity presents an advantage of the active inference

formulation compared to traditional RL/IRL formulations.

V. APPLICATION: LEARNING A MODEL OF PERCEPTION

AND CONTROL IN CAR FOLLOWING BEHAVIOR

In this section, we describe the application of Algorithm

1 to estimate an active inference model for car-following

behavior by human drivers. 1 Computational models of human

performance in such task have been amply studied by traffic

engineers and psychologists, see e.g., [41]–[44]. However, our

goal here is to learn a model that is motivated by cognitive

science (active inference) based upon a naturalistic dataset of

task demonstrations. In this sense, the closest paper to our

work is [16] which assumes the agent’s decisions are based

upon a state estimate (speed, relative speed and distance) and

a predictive model of the lead vehicle. In contrast, in the

proposed POMDP model, the variables speed, relative speed

and distance are observations which are used by the agent

to form current and future beliefs about the states of the

environment which are discrete.2. In addition, the policy in

[16] is deterministic and the model is not based on agent’s

preferences.

We compare the active inference model, referred to as

Active Inference Driving Agent (AIDA), with two baseline

models: Behavior Cloning (BC), a common machine learning

approach to driving behavior modeling [23]–[26], and the

Intelligent Driver Model (IDM), a rule-based model used

by most traffic simulation software [27]–[29]. We begin by

describing the baseline models and the dataset used to estimate

the parameters of the models. We then describe the protocols

for evaluating the models’ ability to replicate human driving

behavior in the dataset. Lastly, we present the model evaluation

results and demonstrate AIDA’s interpretability advantages.

Implementation details are provided in Appendix VII-C.

A. Models and parameterization

Behavior Cloning: BC trains neural networks to map

observations or a history of observations to control actions

in the dataset. The policy parameters, denoted with θ, are

estimated using maximum likelihood estimation of the dataset

actions:

max
θ

L(θ) = ED

[
T∑

t=0

log πθ(at|ht)

]
(17)

We implement two BC approaches in this work, a standard

multi-layer neural network approach (BC-MLP) and a recur-

rent neural network approach (BC-RNN). These approaches

are strong baselines for simulated driving agents. [25], [26],

[46], [47].

Intelligent Driver Model: The IDM [27] accepts obser-

vations of vehicle speed v, relative speed to the lead vehicle

∆v, and distance headway to the lead vehicle d as inputs and

outputs acceleration a (the control action) using the following

rule:

at = amax


1−

(vt
ṽ

)4
−
(

d̃

dt

)2

 (18)

1The source code is available at https://github.com/ran-weii/
interactive_inference.

2In this sense, the generative model in the proposed POMDP model can
be seen as categorical. There is evidence to support the categorical nature of
human perception in psycho-physical experiments [45] that are simpler than
the one considered in this paper
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where ṽ is a desired speed and d̃ is the desired distance

headway defined as:

d̃ = d0 + vtτ − vt∆vt

2
√
amaxb

(19)

The IDM has the following parameters: ṽ the desired

speed, amax the maximum acceleration rate which can be

implemented by the driver, d0 the minimum allowable distance

headway, τ the desired headway time, and b the maximum

deceleration rate. To capture heterogeneity in data, we specify

an “ensemble” of IDM models, i.e. a distribution over actions

given observations. The ensemble model parameters, i.e. mean

and variance of action given observations, are obtained by

maximizing the likelihood of the ensemble model predictions

to the dataset of observed actions subject to the mean action

satisfying (18).

Active Inference Driving Agent: We parameterized the

state transition probability distributions T
θ̂1
(s′|s, a) as cate-

gorical distributions and the observation probability distribu-

tions O
θ̂1
(o|s) using normalizing flows [48], specifically, a

shared inverse autoregressive flow with a set of Gaussian base

distributions [49]. Thus, observations that have high density

under the conditional distribution of each state represent the

“prototypical” observation for that state. The active inference

preference distribution P̃
θ̂2
(s) is parameterized using a cate-

gorical distribution. We then obtained the finite horizon policy

in (12) by computing the value function in (8) using a finite

number of value iterations steps using the QMDP method

[50]. By optimizing the policy log likelihood (15), both the

preferences and prototypical observations are fitted to explain

actions in the dataset.

B. Dataset

We trained and evaluated AIDA, BC, and IDM using the

INTERACTION dataset [51], a publicly available driving

dataset recorded using drones on fixed road segments in the

USA, Germany, and China. The dataset provides a lanelet2

format map [52] and a set of time-indexed trajectories of the

positions, velocities, and headings of each vehicle in the scene

in the map’s coordinate system at a sampling frequency of 10

Hz, and the vehicle’s length and width for each road segment.

The dataset contains a variety of traffic behaviors, including

car following, free-flow traffic, and merges.

Due to our emphasis on modeling longitudinal control

behavior in car following, we selected a subset of the data

to include car following data from a two-way, seven-lane

highway segment in China with a total distance of 175 m.

We focused on vehicles in the four middle lanes shown in

Figure 2, where the blue west-bound lanes have denser traffic

and more stop-and-go behavior and the orange east-bound

lanes have sparser traffic at higher speed. We further filtered

the remaining vehicles according to two criteria: 1) there

was a lead vehicle with a maximum distance headway of 60

m, and 2) the ego vehicle was not performing a merge or

lane change. This focus facilitates algorithm comparisons by

removing environmental artifacts. We identified merging and

lane change behavior using an automated logistic regression-

based approach and validated the classifications with a manual

Fig. 2: Top-down view of the roadway explored in the analy-

sis. The west-bound lanes (blue) have denser traffic and more

stop-and-go behavior whereas the east-bound lanes (orange)

have sparser traffic and higher speed. We trained the models

to emulate the behavior of the blue cars and evaluated the

models’ ability to predict the behavior of the blue and orange

cars. Grey cars in the merging lanes were excluded.

review of a subset of trajectories. We also removed all trajec-

tories with length shorter than 10 seconds for the dense lanes

and 5 seconds for the sparse lanes, leaving a total of 1,254

trajectories in the dense lanes and 290 trajectories in the sparse

lanes with an average length of 14 seconds. We only used the

dense lane data for training models.

1) Feature Computation: The input features to the IDM

are defined in (18) and (19). For BC and the AIDA, we

used d and ∆v but excluded v to prevent the models from

achieving spuriously high training accuracy by computing

acceleration predictions from past ego velocities, a well-

known phenomenon reported in prior studies [25], [26], [53].

Furthermore, we included an additional feature τ−1 in BC

and AIDA which is a visual estimate of inverse time-to-

collision defined as the rate of change of the visual angle

of the lead vehicle from the ego driver’s seat position divided

by the angle itself [54]. This feature was chosen to account

for speed control and puts the information contained in the

inputs to BC and the AIDA on a similar level to the IDM as

the IDM implicitly accounts for time-to-collision in its desired

distance headway computation in (19). It also makes our model

consistent with recent family of driver models [55]–[57].

We computed all features in the Frenet frame (i.e., lane-

centric coordinates [58]), by first transforming vehicle posi-

tions, velocities, and headings using the current lane center

line as the reference path and then computing the features

from the transformed positions and velocities. We obtained

the drivers’ instantaneous longitudinal control inputs (i.e.,

accelerations) from the dataset by differentiating the Frenet

frame longitudinal velocities. For BC and the AIDA, we

discretized the continuous control inputs into discrete actions

using a Gaussian mixture model of 15 Gaussian components

with mean and variance parameters chosen with the Bayesian

Information Criteria [59].

C. Model Evaluation and Comparison

We evaluated and compared our models’ ability to generate

behavior similar to the human drivers in the dataset using

both open-loop offline predictions and closed-loop online

simulations. In both cases, we evaluated the models (15 seeds

for each model class) on two different held-out testing datasets.

The first dataset includes vehicles from the same dense lanes

as the training dataset. This dataset tests whether the models

can generalize to unseen vehicles in the same traffic condition.
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We obtained this dataset by dividing trajectories in the dense

lanes using a 7-3 train-test ratio. The second dataset includes

vehicles from the sparse lanes. This dataset tests whether

the models can generalize to unseen vehicles in novel traffic

conditions, since the traffic in the east-bound lanes have on

average higher speed and less density.

1) Offline Evaluation: The goal of the offline evaluation was

to assess each model’s ability to predict a driver’s next action

based on the observation-action history recorded in the held-

out testing dataset. This task evaluates the models’ ability to be

used as a short-horizon predictor of other vehicles’ behavior

in an on-board trajectory planner [60]. We measured a model’s

predictive accuracy using Mean Absolute Error (MAE) of the

predicted control inputs (unit=m/s2) on the entire held-out

testing datasets. For the IDM, the predicted control inputs were

given by the IDM rule, i.e., we discarded the variance used

for model fitting. For BC and the AIDA, predicted action is

produced by first sampling a discrete action from the action

distribution predicted by the models and then sampling the

mean of the selected Gaussian component from the Gaussian

mixture model used to perform action discretization. MAE

of each dataset action was calculated as the average of 30

samples.

2) Online Evaluation: Rather than predicting instantaneous

actions, the goal of the online evaluation was to assess

the models’ ability to generate trajectories similar to human

drivers such that they can be used as simulated agents in

automated vehicle training and testing environments [24]. This

is fundamentally different from offline predictions because the

models need to choose actions based on observation-action

history generated by its own actions rather than those stored

in the fixed, offline dataset. This can introduce significant

distribution shift [61] sometimes resulting in situations outside

the model’s training data, which can lead to poor action

selection.

We built a single-agent simulator where the ego vehicle’s

longitudinal acceleration is controlled by the trained models

and its lateral acceleration is controlled by a feedback con-

troller for lane-centering. The lead vehicle simply plays back

the trajectory recorded in the dataset. Other vehicles do not

have any effect on the ego vehicle, given our observation space

does not contain other vehicle related features. We tested the

models on 100 randomly chosen trajectories in each of the

dense-lane and sparse-lane settings.

Following [23], we measured the similarity between the

generated trajectories and the true trajectories using the fol-

lowing metrics:

1) Average deviation error (ADE; unit=m): deviation of the

Frenet Frame position from the dataset averaged over all

time steps in the trajectory.

2) Lead vehicle collision rate (LVCR; unit=%): percentage

of testing trajectories containing collision events with

the lead vehicle. A collision is defined as an overlap

between the ego and lead vehicles’ bounding boxes.

3) Statistical Evaluation: Following the recommendations in

[62], [63] for evaluating learned control policies in stochastic

environments with a finite number of testing runs, we rep-

resented the central tendency of a model’s offline prediction

and online control performance using the interquartile mean

(IQM) of the offline MAEs and online ADEs. The IQMs

are computed by 1) ranking all tested trajectories by their

respective performance metrics and 2) computing the mean of

the performance metrics ranked in the middle 50%. Collision

rates are computed as the percentage of testing runs that

resulted in a collision. It should be noted that IQM makes the

difference between each model’s performance central tendency

more salient at the expense of removing the tails of the

performance distribution. Thus, we also provide the average

performance results in appendix (VII-E). To compare the

central performance difference between the AIDA and baseline

models, we performed two-sided Welch’s t-tests with 5 per-

cent rejection level on the MAE-IQM and ADE-IQM values

computed from different random seeds with the assumption

that the performance distributions between two models may

have different variances [62], [63].

D. Results and Discussion

1) Offline Performance Comparison: Figure 3 shows the

offline evaluation results for each model with the model type

on the x-axis and the IQMs of acceleration prediction MAEs

averaged across the testing dataset on the y-axis. The color

of the points in the figure represents the testing condition and

each point corresponds to the result of a model initialized from

a different random seed. The points are randomly distributed

around each x-axis label for clarity. Dispersion on the y-axis

indicates sensitivity in the model to initial training conditions.

The plot illustrates that the AIDA had the lowest MAE-IQM

in the sparse-lane tests, followed by BC-RNN, IDM, and BC-

MLP. The corresponding pairwise Welch’s t-test results in

Table V (Appendix VII-F) show that the differences between

AIDA and baseline models are significant. The difference

between IDM and BC-RNN was surprisingly small and BC-

MLP had substantially larger MAE. This was likely because

the IDM rule was well-suited to capture behavior in this traffic

condition, whereas the accuracy of BC-MLP was restricted by

the features it had access to and action discretization. In the

sparse-lane tests, AIDA performed similarly to BC models

with a few seeds substantially better than BC models. IDM

performed substantially worse and also with much higher

variance across different seeds. Given IDM trained from

different initializations converged to similar final parameters,

this result was most likely due to the distribution shift between

training and testing sets and IDM rule’s lack of adaptability to

different traffic conditions. However, the poor performance of

IDM may be specific to the dataset considered in this paper

(see Appendix, Section VII-E).

To understand each model’s actual behavior, Figure 4 com-

pares the predicted actions of each model’s best performing

seed versus the ground truth on a randomly selected trajectory

in the dense-lane (left) and sparse-lane (right) settings, re-

spectively, where shading corresponds to 1 standard deviation

of the predictive distribution represented by 30 samples as

described in section V-C.1. In the dense-lane setting, all

models captured the variation of actions in the dataset, i.e.,

acceleration first decreased and then increased. However, the

acceleration magnitudes predicted by IDM were substantially
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Fig. 3: Offline evaluation MAE-IQM. Each point corresponds

to a random seed used to initialize model training and its color

corresponds to the testing condition of either dense-lane or

sparse-lane.

smaller than the ground truth. In the sparse-lane setting, the

prediction interval of all BC models and AIDA were able to

cover ground truth actions. However, IDM predictions were

substantially lower than the ground truth. These patterns are

consistent with the aggregate measures in Figure 3.

Fig. 4: Example offline predictions in the dense-lane (top) and

sparse-lane (bottom) settings. Each line except for the blue line

represents the mean prediction of the corresponding model.

Shading represents 1 standard deviation of prediction interval.

The prediction intervals for BC and AIDA are computed by

drawing 30 samples from the models’ predictive distributions.

IDM has no prediction interval because it’s deterministic.

2) Online Performance Comparison: Figure 5 shows the

IQM of each model’s ADEs from data set trajectories in

the online evaluations using the same format as the offline

evaluation results. In the dense-lane testing condition, all

models had ADE-IQM values between 1.8 m and 2.8 m, which

is less than the length of a standard sedan (≈ 4.8 m; [64]).

Among all models, BC-MLP achieved the lowest ADE values

for both the dense-lane and sparse-lane conditions, followed by

the AIDA, IDM, and BC-RNN. Furthermore, both the AIDA

and BC models achieved lower ADE-IQM in the sparse lane

settings compared to the dense-lane setting, however the IDM

achieved higher ADE-IQM in the sparse-lane setting. The

Welch’s t-test results in Table VI show that AIDA’s online

test performances are significantly different from all baseline

models in both the dense-lane and sparse-lane settings (P ≤
0.01). These findings confirm that the AIDA and BC models

generalized better to the sparse-lane setting than the IDM and

suggest that the AIDA’s average online trajectory-matching

ability is on average better than IDM and BC-RNN, although

BC-MLP is better than the AIDA. However, it should be noted

that the tail-end behavior of AIDA and BC-RNN can be worse

when evaluated under average ADE (i.e., without IQM; see

Figure 12 in Appendix VII-E) where the worst AIDA seed

performed approximately equal to the worst BC-RNN seed,

both of which would increase online ADE by 1 m.

Fig. 5: Online evaluation ADE-IQM. Each point corresponds

to a random seed used to initialize model training and its color

corresponds to the testing condition of either dense-lane or

sparse-lane.

To understand how trajectory deviations were generated,

Figure 6 shows the ADE of the best seed of each model

averaged over all testing episodes for each time step in

the dense-lane (left) and sparse-lane (right) scenarios. We

truncated the plots at 10 s and 4 s because there are very

few trajectories longer than those horizons making the curves

highly oscillatory. The amount of deviations generated by

different models are consistent with the prior study [46]. The

ranking of model performance is also consistent with the

aggregated measures in Figure 5. In the dense-lane settings

(Figure 6 left), model performance started to differentiate

around 4 s but the differences were not substantial (i.e., up

to 2 m). In contrast, in the sparse-lane setting, IDM generated

substantially larger deviations from the beginning and BC-

MLP and AIDA had nearly matching ADE at all time steps.

Figure 7 shows the lead vehicle collision rates for each

random seed and model using the same format as Figure

5. The figure illustrates that in the dense-lane condition, the

random seeds for BC-MLP, BC-RNN, and the AIDA had more
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Fig. 6: Online evaluation ADE for each time step averaged

over all online testing episodes for the dense-lane (top) and

sparse-lane (bottom) settings by the best seed of each model.

collisions than the IDM (0% collision rate across all seeds). In

particular, BC-RNN and the AIDA had substantial differences

across random seeds compared to the other models. However,

the minimum collision rates for BC-MLP, BC-RNN, and the

AIDA were consistent (less than or equal to 1%). In the sparse-

lane condition, the collision rate was 0% for all four models.

The higher collision rates in the dense-lane data are likely due

to the traffic density and complexity, which were higher in the

dense-lane condition compared to the sparse-lane condition.

This is also due to the way we defined a collision in section

V-C.2 as any overlapping of vehicle bounding boxes. As we

show later in section V-D.5, many collision events were due to

insufficient braking magnitude despite correct braking intent,

part of which can be attributed to discrete belief and action

spaces. This puts ego vehicle’s stopping position slightly ahead

of the no-collision position without generating a large position

deviation as commonly seen in machine-learned driving agents

[46].

3) AIDA Interpretability Analysis: The previous sections sug-

gest that the AIDA can capture driver car following behav-

iorcomparably if not better than baseline models. However,

the findings have yet addressed the interpretability of the

AIDA. Interpretability represents the ability to understand the

relationship between model input and output and is a crucial

element of model deployment success [65]. While there is no

established metric for model interpretability, Räukur et. al. [66]

recommend assessments based on the ease of comprehending

the connection between model input and output and tracing

model predictive errors to internal model dynamics. Given that

Fig. 7: Lead vehicle collision rate in online evaluation. Each

point corresponds to a random seed used to initialize model

training and its color corresponds to the testing condition of

either dense-lane or sparse-lane.

the AIDA’s decisions are emitted from a two-step process, i.e.,

(1) forming beliefs about the environment and (2) selecting

control actions that realized preferred states (i.e., minimize

free energy), the model’s interpretability depends on the two

sub-processes both independently and jointly. Thus, we exam-

ined the learned input-output mechanism by visualizing the

components (i.e., the observation, transition, and preference

distributions) of the best performing AIDA seed and verified

them against expectations guided by driving theory [67]–[69].

We then examined the joint belief-action process by replaying

the AIDA beliefs and diagnosing its predictions of recorded

human drivers in the offline setting and its own decisions in

the online setting.

4) AIDA Component Interpretability: Initial insights into the

model input and output connections can be gained by visu-

alizing the AIDA components, specifically its policy (Figure

8b), observation distribution (Figure 8c), and preference dis-

tribution (Figure 8d). These figures show 200 random “pro-

totypical” samples from the observation distribution O(o|s)
of each state, plotted on each pair of observation modalities.

The top row shows the samples using distance headway (d; x-

axis) by relative velocity to the lead vehicle (∆v; y-axis), the

middle row shows distance headway by τ−1, and the bottom

row shows relative velocity by τ−1. Color is used to highlight

relevant quantities of interest. We further used samples drawn

from the INTERACTION dataset, plotted in Figure 8a and

colored by the recorded accelerations, to facilitate interpreting

the the AIDA samples. The shape of the sampled points

matches the contour of the empirical dataset (Figure 8a),

particularly in the middle and bottom visualizations, which

suggests that the model’s learned observation model aligns

with the recorded observations in the dataset. However, the

learned distributions also showed longer tails at the edge of

the data distribution. This was expected because the dataset

does not contain samples that correspond to these extreme

conditions. Thus the model could not learn accurate kinematics

in these regions. Nevertheless, this does not affect the inter-

pretability analysis.

Figure 8b illustrates the observation samples by the model’s

chosen control actions. Darker green and red colors correspond
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(a) (b) (c) (d)

Fig. 8: Visualizations of the best performing AIDA seed. In

panel (a), we plotted observations sampled from the dataset. In

panels (b), (c), and (d) we illustrate AIDA’s learned policy, ob-

servation model, and preference model via 200 “prototypical”

samples from each state’s conditional observation distribution

O(o|s) and plotted the samples for each pair of observation

feature combinations. The points in each panel are colored by:

(a) accelerations from the dataset, (b) predicted accelerations

upon observing the sampled signals from a uniform prior

belief, (c) state indices (d) log probabilities of the preference

distribution.

to larger acceleration and deceleration magnitudes, respec-

tively, and light yellow color corresponds to near zero control

inputs. The color gradient at different regions in Figure 8b is

consistent with that of the empirical dataset shown in Figure

8a. This shows that the model learned a similar control rule

(i.e., observation to action mapping) as the empirical dataset.

The control rule can be interpreted as the tendency to choose

negative accelerations when the relative speed and τ−1 are

negative and the distance headway is small, and positive

accelerations in the opposite case. Furthermore, the sensitivity

of the red and green color gradients with respect to distance

headway shows that the model tends to accelerate whenever

there is positive relative velocity, regardless of the distance

headway. However, it tends to input smaller deceleration at

large distance headway for the same level of relative speed.

Figure 8c shows the observation samples colored by their

associated discrete states. The juxtaposition of color clusters

in the top panel shows that the AIDA learned to categorize

observations by relative speed and distance headway and its

categorization for relative speed is more fine-grained at small

distance headways and spans a larger range of values. The

middle and bottom panels show that its categorization of

relative speed is highly correlated with τ−1 as the ordering

of colors along the y-axis is approximately the same as in the

top panel. The middle and bottom panels show that the AIDA’s

categorization of high τ1 magnitude states (blue and cyan

clusters) have a larger span than that of low τ−1 magnitude

states. These patterns further establish that the AIDA has

learned a representation of the environment consistent with

the dataset. At the same time, it can be interpreted as a form

of satisficing in that the model represents low urgency large

distance headway states with less granularity [70].

Figure 8d shows the observation samples by the log of

its preference probability, P̃ (o) =
∑

s P̃ (s)O(o|s), where

higher preference probability (i.e., desirability) corresponds

to brighter colors (e.g., yellow) and lower desirability corre-

sponds to darker colors (e.g., purple). The figure shows that

the highest preference probability corresponds to observations

of zero τ−1, zero relative velocity, and a distance headway of

18 m (see the center region of the middle chart, and the yellow

circle at the left-center of the top chart). This aligns with the

task-difficulty homeostasis hypothesis that drivers prefer states

in which the crash risk is manageable [67] and not increasing.

It is also consistent with the observed driver behavior in Figure

8a where drivers tend to maintain low accelerations (light

yellow points) within the same regions.

Overall, these results show a clear mapping between the

AIDA’s perceptual (Figure 8c) and control (Figure 8d and

8b) behavior that is both consistent with the observed data

and straightforwardly illustrated using samples from the fitted

model distributions. This mapping facilitates predictions of the

AIDA’s reaction to observations without querying the model,

which is an important dimension of interpretability in real

world model validation [66].

5) AIDA Decision Diagnostics: While the previous analysis

illustrates the interpretability of individual model components,

the overall model interpretability is also contingent upon

understanding the interaction between components. To address

this, we analyzed two dense-lane scenarios where the AIDA

made sub-optimal decisions in the model testing phase — one

from the offline evaluations where the AIDA’s predictions had

the largest MAE and one from the online evaluations where

the AIDA generated a rear-end collision with the lead vehicle.

We first visualized the AIDA’s beliefs and policies as the

model generated actions and then used those visualizations to

demonstrate how the transparent input-output mechanism in

the AIDA can be used to mitigate the sub-optimal decisions.

The chosen offline evaluation trajectory is visualized in

Figure 9. The left column charts show the data of the three

observation features over time. The right column charts show

the time-varying ground truth action probabilities over time

(top), action probabilities predicted by the AIDA over time

(middle), and environment state probabilities P (s|h) inferred

by the AIDA over time (bottom). In the right-middle and

right-bottom charts, the action and belief state indices are

sorted by the mean acceleration and τ−1 value of each state

to facilitate alignment with the left and top-right charts. We

labeled the actions by the corresponding means but not the

belief states because they represent multi-dimensional obser-

vation categorizations (see Figure 8c). The bottom-right chart

shows that the inferred belief patterns closely followed the

observed relative speed and τ−1 in the left-middle and left-
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bottom charts with high precision, i.e., close to probability

of 1. The predicted action probabilities in the right-middle

chart followed the trend of the ground truth actions, however,

they exhibited substantially higher uncertainty at most time

steps and multi-modality at t = 1 s and t = 12 s, where

one of the predicted modes coincided with the true actions.

Given the inferred beliefs were precise, uncertain and multi-

model actions were likely caused by inter-driver variability in

the dataset, where drivers experienced similar belief states but

selected different actions. Alternatively, this uncertainty may

be caused by actual drivers having highly different beliefs after

experiencing similar observations, In either case, the error in

AIDA predictions can be attributed to inconsistency between

the belief trajectories and action predictions.

Fig. 9: Visualizations of a dense-lane offline evaluation tra-

jectory where the AIDA had the highest prediction MAE.

The charts in the left column show distance headway, relative

speed, and τ−1 signals observed by the model over time.

The binary heat maps in the right column show the ground

truth action probabilities (top), action probabilities predicted

by the AIDA (middle), and the corresponding belief states

(bottom) over time (x-axis), where darker colors correspond

to higher probabilities. The belief state and action indices are

sorted by the mean τ−1 and acceleration value of each state,

respectively.

The chosen online evaluation trajectory which resulted in

a rear-end collision with the lead vehicle is shown in Figure

10 plotted using the same format as Figure 9. The duration of

the crash event is highlighted by the red square in the bottom-

left chart, where the sign of τ−1 values instantly inverted

when overlapping bounding boxes between the ego and lead

vehicle first occurred and eventually ended. The AIDA initially

made the correct and precise decision of braking, however, its

predictions for high magnitude actions became substantially

less precise prior to the collision (t > 1 s; see right middle

chart). This led to the model failing to stop fully before

colliding with the lead vehicle. The belief pattern shows that

the AIDA tracked the initial decreasing values of relative speed

and τ−1 but did not further respond to increasing magnitude of

τ−1 3 seconds prior to the crash (starting at t = 1.6 s). These

findings show that the model exhibited the correct behavior

of being “shocked” by out-of-sample near-crash observations,

however, the learned categorical belief representation was

not able to extrapolate beyond the data from the crash-free

INTERACTION dataset.

The analysis of the near-crash AIDA beliefs suggests that

editing the AIDA’s learned environment dynamics model (i.e.,

Fig. 10: Visualizations of a dense-lane online evaluation tra-

jectory where the AIDA generated a rear-end collision with the

lead vehicle. This figure shares the same format as Figure 9.

The red square in the bottom-left chart represents the duration

of the rear-end crash event where the vehicle controlled by the

AIDA had overlapping bounding box with the lead vehicle.

the transition and observation distributions) to properly recog-

nize near-crash observation signals can likely avoid the current

crash.

The analyses in this section show that the decision making

structure in the AIDA enables modelers to reason about the

training dataset’s effect on the learned model behavior. To the

best of our knowledge, this analysis is not possible with neural

network BC models using existing interpretability tools. Thus

AIDA represents a significant step forward for interpretable

perception and control models of human control behavior.

VI. CONCLUSIONS

We consider the problem of learning a model of human

perception and control based on data in the form of ob-

servations and implemented actions. We posit a POMDP

model and formulated a bi-level optimization formulation of

Maximum A Posteriori (MAP) estimate for the primitives

of the model. To illustrate the estimation methodology we

develop a model of driver behavior (AIDA) with the reward

specification motivated by the active inference framework

from cognitive science. Using car following data, we showed

that the AIDA performed comparably and in certain cases

better than the rule-based IDM and data-driven neural network

benchmarks. Using an interpretability analysis, we showed that

the structure of the AIDA provides superior transparency of

its input-output mechanics than the neural network models.

Future work should focus on training with data from more

diverse driving environments and examining model extensions

that can capture heterogeneity across human agents.

ACKNOWLEDGEMENTS

Support for this research was provided in part by the

U.S. Department of Transportation (DOT), University Trans-

portation Centers Program to the Safety through Disruption

University Transportation Center (451453-19C36) and the UK

Engineering and Physical Sciences Research Council (EPSRC;

EP/S005056/1). Thanks to advisers, J. Engstrom and M.

O’Kelly, from Waymo, who helped set the technical direction,

identified relevant published research, and advised on the

scope and structuring of this publication, independent of the

support this research received from USDOT.



12

REFERENCES

[1] D. Badre, A. Bhandari, H. Keglovits, and A. Kikumoto, “The dimen-
sionality of neural representations for control,” Current Opinion in

Behavioral Sciences, vol. 38, pp. 20–28, 2021.

[2] H. Op de Beeck, J. Wagemans, and R. Vogels, “Inferotemporal neurons
represent low-dimensional configurations of parameterized shapes,” Na-

ture neuroscience, vol. 4, pp. 1244–52, 01 2002.

[3] D. C. Knill and A. Pouget, “The Bayesian brain: the role of uncertainty
in neural coding and computation,” Trends in Neurosciences, vol. 27,
no. 12, pp. 712–719, 2004.

[4] K. Friston, “The history of the future of the Bayesian brain,” NeuroIm-

age, vol. 62, no. 2, pp. 1230–1233, 2012.

[5] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters,
An Algorithmic Perspective on Imitation Learning, vol. 7 of Foundations

and Trends in Robotics. 2018.

[6] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement
learning.,” in Icml, vol. 1, p. 2, 2000.

[7] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters,
et al., “An algorithmic perspective on imitation learning,” Foundations

and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[8] N. Ab Azar, A. Shahmansoorian, and M. Davoudi, “From inverse
optimal control to inverse reinforcement learning: A historical review,”
Annual Reviews in Control, vol. 50, pp. 119–138, 2020.

[9] T. Phan-Minh, F. Howington, T.-S. Chu, M. S. Tomov, R. E. Beaudoin,
S. U. Lee, N. Li, C. Dicle, S. Findler, F. Suarez-Ruiz, B. Yang, S. Omari,
and E. M. Wolff, “Driveirl: Drive in real life with inverse reinforcement
learning,” in 2023 IEEE International Conference on Robotics and

Automation (ICRA), pp. 1544–1550, 2023.

[10] E. Boer and R. Kenyon, “Estimation of time-varying delay time in
nonstationary linear systems: an approach to monitor human operator
adaptation in manual tracking tasks,” IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, vol. 28, no. 1,
pp. 89–99, 1998.

[11] K. van der El, D. M. Pool, H. J. Damveld, M. R. M. van Paassen, and
M. Mulder, “An empirical human controller model for preview tracking
tasks,” IEEE Transactions on Cybernetics, vol. 46, no. 11, pp. 2609–
2621, 2016.

[12] F. M. Drop, D. M. Pool, M. R. M. van Paassen, M. Mulder, and H. H.
Bülthoff, “Objective model selection for identifying the human feedfor-
ward response in manual control,” IEEE Transactions on Cybernetics,
vol. 48, no. 1, pp. 2–15, 2018.

[13] C. Baker, J. Jara-Ettinger, R. Saxe, and J. Tenenbaum, “Rational quanti-
tative attribution of beliefs, desires and percepts in human mentalizing,”
Nature: Human Behavior, no. 4, pp. 1–10, 2017.

[14] Y. Chang, A. Garcia, Z. Wang, and L. Sun, “Structural Estimation of
Partially Observable Markov Decision Processes,” IEEE Transactions

on Automatic Control, vol. 68, no. 8, pp. 5135–5141, 2023.

[15] D. Straub and C. A. Rothkopf, “Putting perception into action with
inverse optimal control for continuous psychophysics,” eLife, vol. 11,
p. e76635, sep 2022.

[16] J. Pekkanen, O. Lappi, P. Rinkkala, S. Tuhkanen, R. Frantsi, and
H. Summala, “A computational model for driver’s cognitive state, visual
perception and intermittent attention in a distracted car following task,”
Royal Society Open Science, vol. 5, no. 9, p. 180194, 2018.

[17] K. Friston, “The free-energy principle: a unified brain theory?,” Nature

reviews neuroscience, vol. 11, no. 2, pp. 127–138, 2010.

[18] T. Parr, G. Pezzulo, and K. Friston, Active Inference: The Free Energy

Principle in Mind, Brain, and Behavior. MIT Press, 2022.

[19] D. Maisto, F. Donnarumma, and G. Pezzulo, “Interactive Inference: A
Multi-Agent Model of Cooperative Joint Actions,” IEEE Transactions

on Systems, Man, and Cybernetics: Systems, pp. 1–12, 2023.

[20] J. Engström, R. Wei, A. D. McDonald, A. Garcia, M. O’Kelly, and
L. Johnson, “Resolving uncertainty on the fly: modeling adaptive driving
behavior as active inference,” Frontiers in Neurorobotics, vol. 18, 2024.

[21] A. Clark, Surfing Uncertainty: Prediction, Action, and the Embodied

Mind. Oxford University Press, 2015.

[22] J. Hohwy, The Predictive Mind. Oxford University Press, 2015.

[23] S. Suo, S. Regalado, S. Casas, and R. Urtasun, “Trafficsim: Learning
to simulate realistic multi-agent behaviors,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10400–10409, 2021.

[24] M. Igl, D. Kim, A. Kuefler, P. Mougin, P. Shah, K. Shiarlis, D. Anguelov,
M. Palatucci, B. White, and S. Whiteson, “Symphony: Learning realistic
and diverse agents for autonomous driving simulation,” arXiv preprint

arXiv:2205.03195, 2022.
[25] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the
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VII. APPENDIX

A. Proofs

1) Proof of Proposition 1: Proof: The proof is by

induction. Assume Ut+1(ht+1) = Vt+1(bt+1), then

Ut(ht) = max
π(·|ht)

{
∑

a

∑

s

r(s, a)P(st = s|ht)π(a|ht)− c((π(·|ht))

+ γ
∑

a

∑

ot+1

P(ot+1|ht, a)π(a|ht)Vt+1(bt+1)

}

= max
π(·|bt)

{
∑

a

r(s, a)bt(s)π(a|bt)− c((π(·|bt))

+ γ
∑

a

∑

ot+1

σ(ot+1|st, a)π(a|bt)Vt+1(bt+1)

}

= Vt(bt)

where bt+1(s) = P (st+1 = s|ht ∪ {a, ot+1}) and the second

equality follows from

P(ot+1|ht, a) =
∑

st

∑

st+1

O(ot+1|st+1)T(st+1|st, a)bt(st)

= σ(ot+1|bt, a)
B. Proof of Theorem 1

To prove (a), let Q1, Q2 ∈ Q and ϵ = ∥Q1 −Q2∥. Then

log

(
∑

a

π0(a|b) exp
( 1
α
Q1(b, a)

)
)

≤ log

(
∑

a

π0(a|b) exp
( 1
α
Q2(b, a) + ϵ

)
)

= log

(
exp(ϵ)

∑

a

π0(a|b) exp
( 1
α
Q2(b, a)

)
)

= ϵ+ log

(
∑

a

π0(a|b) exp
( 1
α
Q2(b, a)

)
)

Similarly, we have

log

(
∑

a

π0(a|b) exp
( 1
α
Q1(b, a)

)
)

≥ −ϵ+ log

(
∑

a

π0(a|b) exp
( 1
α
Q2(b, a)

)
)

Hence, we obtain that

∥BQ1 − BQ2∥ ≤ γ∥Q1 −Q2∥ = γϵ.

To prove (b), consider the policy of the form:

π∗(a|b) = π0(a|b) exp
(
1
α
Q∗(b, a)

)
∑

a′∈A π0(a′|b) exp
(
1
α
Q∗(b, a′)

) .



14

where Q∗ is the unique fixed point of B. We first note that

log π∗(a|b) = log π0(a|b) + 1

α
Q∗(b, a)

− log
∑

a′

π0(a′|b) exp
( 1
α
Q∗(b, a′)

)

Thus,

1

α

[∑

a

Q∗(b, a)π∗(a|b)− αDKL(π
∗(·|b)||π0(·|b))

]

=
∑

a

π∗(a|b)
[
log
∑

a′

π0(a′|b) exp
( 1
α
Q∗(b, a′)

)
+ log

π∗(a|b)
π0(a|b)

]

−DKL(π
∗(·|b)||π0(·|b))

= log
∑

a′

π0(a′|b) exp
( 1
α
Q∗(b, a′)

)
.

(20)

Moreover, for any policy π ̸= π∗, it holds that

1

α

[∑

a

Q∗(b, a)π(a|b)− αDKL(π(·|b)||π0(·|b))
]

=
∑

a

π(a|b)[ 1
α
Q∗(b, a)− log

π(a|b)
π0(a|b) ]

=
∑

a

π(a|b)[log π∗(a|b)
π0(a|b)

+ log
∑

a′

π0(a′|b) exp
( 1
α
Q∗(b, a′)

)
− log

π(a|b)
π0(a|b) ]

= −DKL(π(·|b)||π∗(·|b)) + log
∑

a′

π0(a′|b) exp
( 1
α
Q∗(b, a′)

)

(21)

Since DKL(π(·|b)||π∗(·|b)) ≥ 0 we conclude from (20) and

(21) that

α log
∑

a′

π0(a′|b) exp
( 1
α
Q∗(b, a′)

)

=
∑

a

Q∗(b, a)π∗(a|b)− αDKL(π
∗(·|b)||π0(·|b))

= max
π(·|b)

[
∑

a

Q∗(b, a)π(a|b)− αDKL(π(·|b)||π0(·|b))] = V ∗(b)

To prove (c), we apply (20) and (21) to π to conclude that

V ∗(b) = max
π(·|b)

[
∑

a

Q∗(b, a)π(a|b)− αDKL(π(·|b)||π0(·|b))]

= max
π(·|b)

[
∑

a

∑

s

r(s, a)b(s)π(a|b)− αDKL(π(·|b)||π0(·|b)))

+γ
∑

a

∑

o′

σ(o′|b, a)π(a|b)V ∗(b′)]

where b′ is the updated Bayes belief distribution after action

a is implemented and observation o′ is recorded and the

optimality of π∗ follows from Proposition 1.

C. Implementation details

The source code is available at https://github.com/

ran-weii/interactive_inference.

1) BC Implementation: For BC-MLP, we used a two-layer

MLP network with ReLU activation and 40 hidden units in

each layer. For BC-RNN, we used a two-layer MLP network

on top of a single-layer GRU network with ReLU activation

and 30 hidden units in each layer. The GRU layer only

takes in past observations but not past actions. We found that

larger number of hidden units in the BC-RNN model led to

significant overfitting. Both BC-MLP and BC-RNN receive 3

input observations and output probability distributions over 15

discrete actions.

2) AIDA Implementation: The AIDA implementation fol-

lows the value-iteration network and QMDP network [71],

[72] to enable end-to-end training in Pytorch [73]. We used a

state dimension of 20, action dimension of 15, and a planning

horizon of 30 steps (3 seconds). Discrete state transition

probabilities are parameterized using categorical distributions.

The continuous observation distributions are parameterized

using a set of Gaussian distributions, one for each discrete

state, and a shared noramlizing flow network to transform

the base Gaussian distributions into more flexible density

estimators. Specifically, we use inverse autoregressive flow

[49] parameterized by a two-layer MLP network with ReLU

activation and 30 hidden units in each layer.

For each mini-batch of observation-action sequences, we

first computed the likelihood of the observations at all time

steps and compute the belief at each time step as:

b(st) =
P (ot|st)

∑
st−1

P (st|st−1, at−1)b(st−1)∑
st
P (ot|st)

∑
st−1

P (st|st−1, at−1)b(st−1)
. (22)

We then computed the value function (8) for the EFE reward

and the resulting optimal policy in (7) for each inferred belief

using the QMDP approximation method [50]. The QMDP

method assumes the belief-action value can be approximated

as a weighted-average of the state-action value:

Q∗(bt, at) =
∑

st

bt(st)Q∗(st, at), (23)

where

Q∗(st, at) = r(st, at) + log π(at|st)+
+
∑

st+1

P (st+1|st, at)V ∗(st+1), (24)

r(st, at) = EFE(st, at) = DKL(P (st+1|st, at)||P̃ (st+1))

+ EP (st+1|st,at)[H(P (ot+1|st+1))]. (25)

and ∀s ∈ S, Q∗(st+H+1) = 0. We further approximate the

observation entropy using the entropy of the Gaussian base

distributions of the normalizing flows which can be computed

in closed form.

The combination of QMDP approximation and computing

the observation entropy in (25) using the Gaussian base

distributions reduced the model’s ability to evaluate state

uncertainty. However, given the low state uncertainty shown

in Figure 9 and Figure 10 (i.e., the nearly deterministic belief

states in the lower right charts), these approximations do not

significantly impact the current results while providing the

benefit of computational tractability.
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3) Training and hyperparameters: We trained all models

using the Adam optimizer for a fixed number of epochs which

are selected upon visual inspection of convergence, i.e., the

loss function no longer changes significantly. For all models,

we use a batch size of 100. For AIDA, we use a smaller

learning rate of 0.001 for the normalizing flow network than

the rest of the model because of its sensitivity to large learning

rates. Additional hyperparameters are reported in table I.

TABLE I: Training hyperparameters

Hyperparameter IDM BC-MLP BC-RNN AIDA

Learning rate 0.005 0.001 0.001 0.01
Training epochs 300 500 500 500

TABLE II: Model input features

Feature IDM BC-MLP BC-RNN AIDA

Distance headway (d) Yes Yes Yes Yes
Relative speed (∆v) Yes Yes Yes Yes
Speed (v) Yes No No No

τ−1 No Yes Yes Yes

TABLE III: Model parameter counts

IDM BC-MLP BC-RNN AIDA

Count 6 4125 6465 7670

TABLE IV: Fitted IDM parameters: mean and standard devia-

tions across 15 seeds.

ṽ τ d0

12.2 ± 0.2 0.83 ± 0.03 1.07 ± 0.07

amax b σ

0.21 ± 0.006 2.68 ± 0.19 0.46 ± 0.004

TABLE V: Two-sided Welch’s t-test results of offline MAE-

IQM against baseline models. Asterisks indicate statistical

significance with α = 0.05.

Baseline Comparison t(df=14) p-value

IDM dense-lane t=16.38 p<0.001*
BC-MLP dense-lane t=29.74 p<0.001*
BC-RNN dense-lane t=16.03 p<0.001*
IDM sparse-lane t=29.11 p<0.001*
BC-MLP sparse-lane t=0.44 p=0.66
BC-RNN sparse-lane t=-0.04 p=0.97

TABLE VI: Two-sided Welch’s t-test results of online ADE-

IQM against baseline models. Asterisks indicate statistical

significance with α = 0.05.

Baseline Comparison t(df=14) p-value

IDM dense-lane t=3.05 p<0.01*
BC-MLP dense-lane t=-5.46 p<0.001*
BC-RNN dense-lane t=8.73 p<0.001*
IDM sparse-lane t=58.18 p<0.001*
BC-MLP sparse-lane t=-3.77 p<0.001*
BC-RNN sparse-lane t = 6.87 p<0.001*

D. Simulation platform

We built a single-agent simulator for online evaluation of

the trained models. The simulator plays back lead vehicle

trajectories from the dataset which is converted into the Frenet

frame to compute LV related observations for the ego vehicle.

We model the effect of ego control actions on its own position

and velocity in the Frenet frame using linear dynamics:



x′

y′

v′x
v′y


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
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0 0 1 0
0 0 0 1


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
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
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0.5∆t2 0
0 0.5∆t2

∆t 0
0 ∆t



[
ax
ay

]

(26)

Since the models only control longitudinal action ax, we

used a simple feedback controller for lateral actions with

position and velocity gain [−0.01,−0.2].

Fig. 11: Comparison of offline MAE by each model with IQM

(top) and without IQM (bottom).

E. Comparison of average metrics and IQM

This section compares model offline (Figure 11) and online

(Figure 12) evaluation performance with and without IQM. In

the offline evaluation setting, IQM did not substantially affect

model performance, e.g., the IDM MAE in the sparse-lane

setting was only reduced by 0.1 m/s2. In the online evaluation

setting, IQM reduced the average ADE of BC-RNN and AIDA

by 1 m and substantially reduced the upper tail of AIDA seeds.

However, IDM also increased the difference between IDM’s

ADE in the dense-lane and sparse-lane settings, which is

consistent with IDM having worse offline prediction accuracy

in the sparse-lane setting as shown in Figure 3. Overall, IQM

did not change the ranking of models. It should be noted that
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Fig. 12: Comparison of online ADE of each model with IQM

(top) and without IQM (bottom).

in the estimated IDM model, the parameter estimate amax is

significantly lower than that reported in [74].

F. Statistical testing results

Statistical tests using the two-sided Welch’s t-test with 5

percent rejection level are shown in Table V and VI for offline

and online evaluations, respectively.
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