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Abstract

In this paper, we present a method to compute the minimal form factors of diagonal
integrable field theories perturbed by generalized T T̄ perturbations. Building on existing
results by the same authors, these MFFs are constructed in such a way as not to allow for
any free parameters, an issue that plagued previous solutions. The MFFs are derived from
a generalization of the standard integral representation which has been used since the birth
of the form factor bootstrap program. Their asymptotics is characterized by exponential
decay at large rapidities. By computing higher particle form factors, we find that any
natural higher-particle solutions involve the cancellation of parts of the newly found MFF.
We conclude that the assumption that the form factor equations, particularly the kinematic
residue equation, remain unchanged in the presence of T T̄ perturbations, is too strong. There
is a trade-off between having MFFs satisfying desirable analyticity and asymptotic properties
and finding analytic solutions to the form factor equations, which is likely solved by nontrivial
changes to the form factor equations, especially those where locality or semilocality of fields
are essential assumptions.
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1 Introduction

Deformations of 2D quantum field theory (QFT) via irrelevant operators of the T T̄ family [1–4]
have been extensively studied in the literature. They are interesting because, on the one hand,
they preserve integrability, should that be present in the original theory and, on the other hand,
the resulting, still integrable model, has new very interesting properties. For this reason, T T̄
perturbations and their generalisations have been intensely studied in 2D (integrable) quantum
field theory [1,2,5–8], in the context of the ODE/IM correspondence [9,10], via thermodynamic
Bethe ansatz (TBA) [3, 4, 11–16], perturbed CFT [17–24], string theory [25–28], holography
[29–36], quantum gravity [37–42], out-of-equilibrium CFT [43–46], in long-range spin chains
[47–50], and employing the generalised hydrodynamics approach [51–53]. A generalisation of
this family of deformations has also been proposed for quantum-mechanical systems [54–56] and
higher-dimensional field theories [57–59]. The effect of the perturbation has been interpreted in
multiple ways: as coupling the original QFT to two-dimensional topological gravity [37] or to
random geometry [18] and as a state-dependent change of coordinates [6].

Our own interest in this problem is motivated by integrable quantum field theory (IQFT)
where many powerful techniques are at our disposal [1,60,61]. In particular, it is well known that
in IQFT T T̄ -like perturbations modify the exact two-body scattering matrix by a multiplicative
(CDD) factor [62]. Throughout this paper, we will consider theories with a single particle
spectrum. This means that the scattering matrix and scattering phase carry no particle indices.
What follows can be easily generalised to theories with a richer spectrum. Then, the deformed
S-matrix is

Sαpθq “ ΦαpθqSpθq , (1)

where α “ pαsqsPSĂN is a, possibly infinite, vector, Spθq is the two-particle scattering matrix for
a theory with a single particle, and

Φαpθq “ exp

«

´i
ÿ

sPS

αsm
2s sinhpsθq

ff

. (2)

Here m is a fundamental mass scale such that the combination αsm
2s is dimensionless. Here-

after, we will take m “ 1 for simplicity. S is a set of spin values, typically those of local conserved
charges. Notice that S has to be a subset of the odd integers, otherwise the CDD factor does not
satisfy the crossing equation Φαpiπ ´ θq “ Φαpθq. Since Φαpθq is a CDD factor, the theory de-
scribed by this new S-matrix is still integrable and has the same particle spectrum as the original
model. In [63] certain theories of free fields ϕpQ, xq on noncommutative Minkowski spaces with
different noncommutativity parameters Q were studied. These models were proven to satisfy
a weaker form of localization called wedge localization. Interestingly, these models can also be
viewed as non-local (but wedge-local) field theories on a flat Minkowski space with a non-trivial
S-matrix given precisely by the s “ 1 term in (2), i.e. the CDD factor coming from a “pure”
T T̄ -deformation. The existence of non-trivial “local” observables and their characterization is
one of the main open questions in the study of these models.

In our papers [64–66] we tackled the problem of computing matrix elements of “local” op-
erators via the form factor bootstrap program, the natural next step in the study of an IQFT
once the S-matrix is known. Our study led to closed formulae for the form factors of a large
class of fields and theories while also leaving several open questions. One of the most perplexing
issues that we encountered is that the solutions of the form factor equations depend on a large
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number of free parameters (in [64–66] we called those βi) and that there are no obvious physical
requirements that allow us to fix these unambiguously. Another issue is that the factorized solu-
tions that we found contain square roots, hence a degree of non-analyticity which stands at odds
with the usual assumptions of the form factor program. Understanding the limit of validity of
the standard techniques employed in the context of IQFT and their possible extension to these
models is therefore one of the main objectives and challenges of our work.

To recap, let

FO
n pθ1 . . . , θnq :“ x0|Op0q|θ1, . . . θn|0y “ x0|Op0q|Z:pθ1q, . . . , Z:pθnq|0y , (3)

be the n-particle form factor of an operator O between the ground state |0y and a multiparticle
in-state, consisting of n particles of the same species and distinct rapidities θ1 . . . θn. The
particle creation and annihilation operators, Z:pθq and Zpθq, satisfy the Zamolodchikov-Faddeev
algebra [67,68]

Zpθ1qZpθ2q “ Spθ1 ´ θ2qZpθ2qZpθ1q ,
Zpθ1qZ:pθ2q “ Spθ2 ´ θ1qZ:pθ2qZpθ1q ` δpθ1 ´ θ2q , (4)

which generalizes to interacting theories the usual exchange relations of creation/annihilation
operators in free models. As before, Spθq is the two-body scattering matrix of a local IQFT. If the
field is spinless the form factor depends only on rapidity differences. One of the more successful
methods for computing these objects consists of solving a system of consistency equations [69–72]
based on some natural physical assumptions such as unitarity, crossing symmetry, and the
locality property of the field O being considered. These are:

• the braiding property

FO
n pθ1, . . . , θi, θi`1, . . . , θnq “ Spθi ´ θi`1qFO

n pθ1, . . . , θi`1, θi, . . . , θnq , (5)

that descend directly from the exchange property of the Zamolodchikov-Faddeev algebra;

• the monodromy property

FO
n pθ1 ` 2πi, θ2 . . . , θnq “ γOFO

n pθ2, . . . , θn, θ1q , (6)

• the kinematical residue equation

lim
θ̄Ñθ

pθ̄ ´ θqFO
n`2pθ̄ ` iπ, θ, θ1, . . . , θnq “ i

˜

1 ´ γO
n

ź

j“1

Spθ ´ θjq
¸

FO
n pθ1, . . . , θnq . (7)

The factor of local commutativity γO first appeared in [73] and encodes the (semi-)locality
property of the fields. It is defined through the equal-time exchange relation of the operator
Opxq and the field ϕpyq associated with the particle creation operators Z:pθq. That is

ϕpxqOpyq “ γOOpyqϕpxq for x1 ą y1 and x0 “ y0 , (8)

where formally

ϕpxq „
ż

d θ
“

Zpθqe´ip¨x ` Z:pθqeip¨x
‰

. (9)
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As an example, for the order/disorder operators in the Ising field theory, σ and µ, we have
γσ{µ “ ˘1. However, γ can be a more general phase as it happens, for instance, in the Feder-
bush model [74–77]. One can also have exchange relations more complicated than (8), where
fields do not simply pick up a phase but become different fields, such as what happens with the
branch point twist field in [78]. A direct consequence is that equations (6) and (7) cannot be sat-
isfied if this factor is not included. In other words, the locality properties of the observables enter
explicitly into the form factor equations and their understanding is pivotal for the computation
of closed exact expressions for n-particle form factors. If no bound states are present, (5 – 7)
are the only equations involved, and the solution procedure can be summarized in two steps:
first one determines the simplest non-trivial form factor, the two-particle one; subsequently, the
higher particle form factors are obtained by solving the recursive equation (7).

In the case of a deformed model with S-matrix (1), a two-particle form factor should satisfy

FO
2 pθ;αq “ SαpθqFO

2 p´θ;αq “ FO
2 p2πi ´ θ;αq . (10)

Typically there is at least one other requirement, which specifies the residue of the form factor
at the kinematic pole θ “ iπ. However, if we limit our attention to solutions without poles, then
we need to consider only the two equations (10). Entire solutions to these equations are known
as minimal form factors (MFFs) and in the deformed theory we will denote these as Fminpθ;αq.
The same equations with Sαpθq replaced by Spθq are satisfied by the MFF of the undeformed
theory, which we will denote as Fminpθq:

Fminpθq “ SpθqFminp´θq “ Fminp2πi ´ θq . (11)

This means that the MFFs Fminpθ;αq and Fminpθq are proportional to each other through a
function Dαpθq which satisfies

Fminpθ;αq “ DαpθqFminpθq ùñ Dαpθq “ ΦαpθqDαp´θq “ Dαp2πi ´ θq . (12)

Note that each of the first equalities in (10 – 12) define a Riemann-Hilbert problem for the
corresponding functions, with Sαpθq, Spθq and Φαpθq playing the role of “jump functions” [79].
This can be used to explicitly write the solution as an integral representation involving the
logarithm of the jump function. In fact, given the S-matrix of a massive, UV complete IQFT, it
was shown in [70] that the MFF is uniquely fixed by the combined requirements of analyticity
in the physical strip Impθq P r0, πs and (at most) exponential growth for θ large. The integral
representation assumes a particularly simple form in terms of the Fourier transform of the S-
matrix phase:

iδpθq :“ logSpθq “
ż 8

0

d t

t
gptq sinh tθ

iπ
(13)

then

ρpθq :“ logFminpθq “
ż 8

0

d t

t

gptq
sinh t

sin2
tpiπ ´ θq

2π
. (14)

As we shall see below, the challenge for T T̄ -perturbed theories lies precisely on finding convergent
representations of this type.

For theories perturbed by T T̄ and its generalizations, it was found that the function Dαpθq,
has the factorised structure [64, 66]

Dαpθq :“ φαpθqCβpθq , (15)
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with

φαpθq “ exp

«

θ ´ iπ

2π

ÿ

sPS

αsm
2s sinhpsθq

ff

, Cβpθq :“ exp

«

ÿ

nPZ`

βnm
2n coshpnθq

ff

. (16)

Here the parameters αs in (16) are those defining the CDD factor Φαpθq (2), while the parameters
βn are, a priori, free and independent of the scattering phase. The existence of this very large
freedom in the choice of the MFF is an ambiguity that was already highlighted in the original
works [64–66] where – arbitrarily and for simplicity – it was chosen to set βn “ 0 for all n. In
a subsequent paper [80] involving two of the present authors, the significance of the parameters
βn was clarified. There, well-known integrable models such as the sinh-Gordon theory were
interpreted as irrelevant perturbations of the Ising field theory involving an infinite set of fine-
tuned1 couplings αs. Then, their MFF obtained from (13), (14) can be rewritten in the form
(15) where the “free” parameters βn are now fixed in terms of the αs. It was then revealed that
the role of the function Cβpθq is to quell the unphysical asymptotic properties of the function
φαpθq, producing a well-defined MFF that satisfies all physical requirements imposed by the
UV-completeness of the theory.

The main result of this paper is a step by step procedure that allows us to fix the parameters
βs for T T̄ -deformed IQFTs in a physically and mathematically justified manner. We propose a
generalisation of the integral representation that gives closed solutions for IQFTs with arbitrary
S-matrices of the form (1), (2), which reduces to the representation found in [80] when the sets
of couplings αs is infinite and fine-tuned to yield a UV-complete theory. The parameters βs
are fixed by analyticity and asymptotic requirements, but also, crucially, by the requirement
that the resulting MFF is a smooth function of the perturbation parameters αs. For any set of
parameters α we find that the function Dαpθq is given by

Dαpθq “ Dαpiπq
ź

sP2Z`´1

»

–´1

2
e

θ´iπ
2

sinhpsθq´
s´1
ř

n“1

coshpnθq
s´m

`cs
ˆ

2i sinh
θ

2

˙´ cosh psθq
fi

fl

αs
π

, (17)

where cs is the constant (68). This formula can be easily generalised to other interesting cases,
such as the branch point twist fields (see (131) in Appendix B) and to the boundary case recently
discussed in [81], where the deformation of the one-particle form factor is given by

a

Dαp2θq.
Note that in (17) and hereafter, we set the mass scale to m “ 1 to lighten the formulas.

This paper is organised as follows: in Section 2 we give a heuristic derivation of our result,
showing how generalised pairs δpθq-ρpθq can be constructed without relying on the existence of
a Fourier transform gptq. In Section 3 we present an alternative but equivalent derivation of the
same result, starting from the standard contour-integral representation of the MFF proposed in
the foundational paper [70] by Karowski and Weisz. In Section 4 we discuss some properties
of the correlation functions that might be obtained building on this new minimal form factor.
We conclude in Section 5. In Appendix A we discuss the construction of higher particle form
factors starting from a factorised ansatz. In Appendix B we generalise our construction of the
MFF to branch point twist fields.

1By fine-tuning here we mean that the resulting S-matrix determines a UV-complete IQFT.
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2 A Heuristic Derivation: MFFs and their Fourier Transforms

In this section, we are going to produce a generalization of the integral representation of MFFs,
capable of accounting for the presence of exponential CDD factors in the S-matrix. In fact,
the representation (14) relies on the possibility of expressing the scattering phase in integral
form (13). This is not possible if the theory we are considering is a T T̄ -deformed IQFT, whose
S-matrix is of the form (1) with (2). Our goal is then to knead (13) and (14) into a new, more
general form. Note that the manipulations we will be performing here are formal and that we
will be quite cavalier about convergence issues. As such, the content of this section is to be
taken as a heuristic derivation of our main results.

2.1 Integral Representation of the Phase Shifts

Let us consider an interacting factorized scattering theory with diagonal S-matrix,

Spθq “ ϵ eiδpθq . (18)

The quantity δpθq is the phase shift and is normalized so that

δp0q “ 1 . (19)

Consequently, the remaining constant ϵ encodes the value of the S-matrix at zero rapidity
difference Sp0q “ ϵ. For ϵ “ ˘1 we have the usual bosonic/fermionic statistics. However, more
general theories exist, such as the Federbush model [74, 75] where Sp0q is a generic phase (in
this example, there are also two particle types). If our factorized scattering theory is a UV
complete IQFT, then the phase shift can be Fourier transformed as in (13). The converse is
however not true. A good counterexample is the “bosonic” sinh-Gordon model studied in [82]
whose S-matrix has a well defined Fourier transform despite the theory lacking UV completion.
More general cases have been discussed in [12]. The meaning of this statement is made clearer
below.

2.2 Asymptotic Behavior of the S-Matrix and Temperedness

We now discuss in more detail the conditions for existence of the Fourier transform of the phase
shift, that is the notion of tempered distribution [83,84]. We show that the possibility of defining
the phase shift as a Fourier transform is related to its nice decaying properties at large rapidities
and that T T̄ -perturbed S-matrices are precisely of the type where this condition is violated.

Let f be a function on R and consider DpRq, the class of test functions on R and D1pRq, the
class of distributions on R, i.e. the set of linear functionals on DpRq. Explicitly, given f : R Ñ R

and φ P DpRq it is possible to define a distribution2

xf, φy “
ż 8

´8
fpxqφpxqdx P D1pRq. (20)

Suppose that δpθq is a smooth function satisfying the asymptotic condition

lim
|θ|Ñ8

δpθq “ 0. (21)

2Note that this symbols D and D
1 have nothing to do with the function Dαpθq defined earlier (15). Similarly,

the symbols S and S
1 around equation (23), are distinct from the set of spins S in (2).
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This means that this function and all its derivatives decay faster than any inverse polynomial,
i.e.,

@n P N, sup
θPR

ˇ

ˇ

ˇ
θkδpnqpθq

ˇ

ˇ

ˇ
ă 8 for all k P N, (22)

Therefore δpθq belongs to the Schwartz class SpRq. This implies that its Fourier transform

gptq :“
ż 8

´8

dθ

2π
eitθδpθq (23)

exists as an ordinary Lebesgue integral and defines a function gptq P S 1pRq Ď D1pRq, the dual
to the Schwartz class, i.e. the class of tempered distributions. In particular, we also have the
inversion formula

δpθq “
ż 8

´8
dt e´itθgptq, (24)

with absolute convergence of the integral due to rapid decay of gptq. In summary, if δpθq P L1pRq,
meaning that its absolute value is Lebesgue-integrable, we can define its Fourier transform, which
will also have nice decaying properties by construction. This is what happens for standard phase
shifts. Now, consider a phase shift coming from a T T̄ -deformation: δpθq „ sinhpsθq. It still
defines a distribution in the sense of D1pRq (class of distributions in R), i.e., for instance, it acts
continuously on test functions with compact support:

φpθq P C8
c pRq ùñ xsinh, φy “

ż 8

´8
sinhpsθqφpθq dθ is finite. (25)

However if we consider the real line, sinhpsθq grows exponentially as |θ| Ñ 8:

| sinhpsθq| „ 1

2
es|θ|, (26)

and therefore it does not satisfy any polynomial bound of the form (22) which is a necessary
condition for tempered distributions. Consequently, δpθq in this case is a distribution, but it
is not tempered; thus, its Fourier transform is not well defined within the classical theory of
tempered distributions. Indeed, the subclass of test functions EpRq Ă DpRq necessary to make an
integral like (25) convergent, can only be of two kinds: the class of test functions with compact
support EpRq “ C8

c pRq as written above or a subclass with a quicker exponential decay than
exp s|θ|:

EspRq :“
"

φ P C8pRq
ˇ

ˇ

ˇ

ˇ

Ds ą 0 such that sup
θPR

ˇ

ˇ

ˇ
φpθqes|θ|

ˇ

ˇ

ˇ
ă 8

*

Ă DpRq . (27)

2.3 The Scattering Phase and its Fourier Transform

Let us now apply these ideas to the integral representation of a generic S-matrix. Consider then
the scattering phase δpθq and suppose it can be written in terms of its Fourier transform as

δpθq “ i

2

ż 8

´8

dt

t
gptqe itθ

π . (28)
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Since the phase shifts are taken to be real functions of the rapidity difference, the function gptq
must be even: gp´tq “ gptq. We can then rewrite the Fourier transform in the form (13)

δpθq “ ´
ż 8

0

dt

t
gptq sin tθ

π
, (29)

which is the representation given earlier (13). In order for this Fourier transform to be a proper
function – rather than a distribution – we must demand that gptq approaches constant values
at the integral bounds

gptq “ gp0q ` Opt2q , lim
|t|Ñ8

gptq “ gp8q ă 8 . (30)

Note that we assumed gptq to be Taylor expandable around t “ 0 and to possess only isolated
singularities. The constants gp0q and gp8q may vanish. We can think of gptq as a function on
the Riemann sphere C Y t8u which means that it must be either a constant or a meromorphic
function. In both cases, we can use a Mittag-Leffler expansion [85] to write

gptq “ gp0q ´
8
ÿ

n“1

t2

πppnq
gpnq

t2 ` ppnq2 , gpnq “ ˘2πi Res
t“˘ippnq

rgptqs , (31)

for some set of poles t˘ippnq |n “ 1, . . . ,8u. We can use the physical properties of the phase
shifts to specify the positions of these poles. In particular, we want δpθq to be 2πi-periodic. We
see that (31) and the residue theorem – which we can use since the integrand of (28) decays as
t´1 as |t| Ñ 8 – imply

δpθq “ const. `
8
ÿ

n“1

gpnq

2ppnqe
´ ppnqθ

π , @ θ ą 0. (32)

If we want this expression to be 2πi-periodic, then we need to fix

ppnq “ nπ . (33)

In conclusion, the function gptq must take the following form

gptq “ gp0q ´
8
ÿ

n“1

t2

nπ2

gpnq

t2 ` n2π2
. (34)

2.4 The Logarithm of the MFF and its Fourier Transform

Given the integral representation (29), we introduce the new function

ρpθq “ ´1

4

8
ż

´8

dt

t

gptq ´ gp0q

sinh t
e

tpiπ´θq
iπ ` gp0q ´ 1 ` ϵ

2
log

ˆ

´i sinh
θ

2

˙

. (35)
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Note that the Fourier integral converges as long as 0 ď Im θ ď 2π. We immediately verify the
identities3

ρpiπ ´ θq “ ρpiπ ` θq , (37a)

ρpθq ´ ρp´θq “ iδpθq ` iπp1 ´ ϵq
2

signpθq . (37b)

Consequently, we can take this function to be the logarithm of the MFF

logFminpθq “ ρpθq ùñ
#

Fminpθq “ Fminp2πi ´ θq ,
Fminpθq “ SpθqFminp´θq .

(38)

With some manipulations4 we can rewrite ρpθq as follows

ρpθq “ ρpiπq `
8
ż

0

dt

t
gptqsin

2
`

t iπ´θ
2π

˘

sinh t
´ 1 ´ ϵ

2
log

ˆ

´i sinh
θ

2

˙

, (39)

where ρpiπq is a constant that can be absorbed into the normalisation of the MFF.

2.5 From Integral to Series Representations

Using the Mittag-Leffler expansion (34) in the integral representation (28), we can write

δpθq “ ´gp0q

8
ż

0

dt

t
sin

tθ

π
`

8
ÿ

n“1

gpnq

nπ

1

2πi

ż 8

´8
dt

t e
itθ
π

t2 ` n2π2

“
«

´πgp0q

2
` 1

2π

8
ÿ

n“1

gpnq

n
e´n|θ|

ff

signpθq .

(40)

Similarly, putting together the integral representation (35) and the expansion (34), we get

ρpθq “ i

2π

8
ÿ

n“1

gpnq

n

1

2πi

8
ż

´8

dt
t

t2 ` n2π2

e
tpiπ´θq

iπ

sinh t
` gp0q ´ 1 ` ϵ

2
log

ˆ

´i sinh
θ

2

˙

. (41)

The integral can be computed by residue theorem, with contributions from a double pole at
t “ iπn and simple poles at t “ iπm with m ‰ n. This gives5

1

2πi

8
ż

´8

dt
t

t2 ` n2π2

e
tpiπ´θq

iπ

sinh t
“
θą0

8
ÿ

m“1

Res
t“imπ

«

t

t2 ` n2π2

e
tpiπ´θq

iπ

sinh t

ff

“ i
2nπ

`

θ´iπ
π

˘

´ 1

4πn
e´nθ ` i

π

8
ÿ

m“1
m‰n

me´mθ

n2 ´ m2
. (42)

3For equation (37b), we can use the known integral
ş8

´8
dt
t
sin tθ

π
“ π signpθq and

logp´i sinh
θ

2
q ´ logpi sinh θ

2
q “ ´iπ signpθq . (36)

4We use another known integral:
ş8

´8
dt
t

sin2ptxq
sinh t

“ 1
2
log coshpπxq.

5Note that this integral needs regularization: we suppose that θ has a vanishingly small imaginary part.
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For generic θ the formula above generalised in a simple way, which can be captured by introducing
the signpθq function in the appropriate place, giving the final result:

ρpθq “ ´ 1

2π2

8
ÿ

n“1

gpnq

n

»

—

–

2nπ signpθq
`

θ´iπ
π

˘

´ 1

4n
e´n|θ| `

8
ÿ

m“1
m‰n

me´m|θ|

n2 ´ m2

fi

ffi

fl

` gp0q ´ 1 ` ϵ

2
log

ˆ

´i sinh
θ

2

˙

.

(43)

Let us compute the difference ρpθq ´ ρp´θq and check that (37b) is satisfied. Thanks to the
relation (36) we have that the last term in (43) produces the first term in (40). Furthermore,
the sum over m in (43) is symmetric under θ Ñ ´θ, so it does not contribute and, finally, the
remaining term in (43) yields the sum over n in (40):

2nπ signpθq
`

θ´iπ
π

˘

´ 1

4n
e´n|θ| ´ 2nπ signp´θq

`

´θ´iπ
π

˘

´ 1

4n
e´n|´θ| “ ´iπ signpθqe´n|θ| . (44)

2.6 Recovering a T T̄ -Like Representation

So far, the contents of this section provide a rederivation of known results. We now come to
the new conceptual step which will allow us to use these results to construct a pair δpθq-ρpθq
which corresponds to IQFTs perturbed by T T̄ . The key observation is that, for the purpose
of the above identities, the only property that matters is the parity of the functions e´n|θ| and
signpθqθe´n|θ|, that is, that the former is even under θ Ñ ´θ, while the latter is odd. This
means that we could replace these functions with others having the same parity properties and
the MFF equations (37) would still hold. We will now exploit this property by investigating
what the most general choices for these functions can be. We perform the substitutions

e´n|θ| signpθq ÝÑ fnpθq , e´n|θ|θ signpθq ÝÑ gnpθq , e´n|θ| ÝÑ hnpθq . (45)

in the series expansions (40) and (43). For simplicity, we will also take gp0q “ 0 and ϵ “ 1 so
that the term logp´i sinh θ

2
q in (43) drops out and we have an S-matrix which is a “pure” T T̄

deformation. We then have

δpθq “ 1

2π

8
ÿ

n“1

gpnq

n
fnpθq ,

ρpθq “ ´ 1

2π2

8
ÿ

n“1

gpnq

n

»

—

–
´πi

2
fnpθq ` 1

2
gnpθq ´ 1

4n
hnpθq `

8
ÿ

m“1
m‰n

m

n2 ´ m2
hmpθq

fi

ffi

fl
.

(46)

We want these two quantities to be, respectively, a phase shift and the logarithm of the corre-
sponding MFF. Clearly, only some functions fnpθq, gnpθq and hnpθq will work. We must have

δpθq ` δp´θq “ 0 , unitarity of the S-matrix ,

δpθq ´ δpiπ ´ θq “ 0 , crossing symmetry of the S-matrix ,

ρpθq ´ ρp´θq “ iδpθq , Watson’s equation ,

ρpiπ ` θq ´ ρpπi ´ θq “ 0 , crossing symmetry of the form factor .

(47)
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We then see immediately that the functions fnpθq have to satisfy the conditions

fnpθ ` iπq “ fnp´θq “ ´fnpθq “ ´fnpθ ´ iπq . (48)

Watson’s equation tells us that gnpθq and hnpθq have to be even

gnp´θq “ gnpθq , hnp´θq “ hnpθq , (49)

and, finally, the crossing symmetry of the form factor yields the following identities6

gnpθ ` iπq ´ gnpθ ´ iπq “ 2πifnpθ ` iπq , hnpθ ` iπq “ hnpθ ´ iπq . (50)

If we require that tfnpθqunPZ` , tgnpθqunPZ` and thnpθqunPZ` each constitute an infinite, count-
able set of independent, smooth functions that satisfy the above requirements, then we can
almost uniquely fix the solution to be

f2n´1pθq “ ´ sinhpp2n´1qθq , g2n´1pθq “ ´θ sinhpp2n´1qθq , hnpθq “ coshpnθq , (51)

and
f2npθq “ 0 , g2npθq “ 0 . (52)

With “almost uniquely” we mean to say that – since the equations (48)-(50) are homogeneous
– we still have the freedom to rescale each of the functions f2n´1pθq, g2n´1pθq and hnpθq by an
arbitrary constant (in θ) factor. For f2n´1pθq and g2n´1pθq this factor has to be the same, due
to the first equation in (49), and it can be reabsorbed into the coefficients gpnq. However for
the functions hnpθq, it is indeed an arbitrary choice. We can even choose it to vanish for any
n. This fact is not surprising: it is the usual indeterminacy of the cosh terms that was already
remarked in previous works [64, 66, 80]. Here, the choice we make (51), (52) is guided by the
requirement that the functions (46) agree, for large |θ|, with (40), (43) when stripped of their
diverging behavior. So, for example, we ask f2n´1pθq „

|θ|Ñ8
signpθqe´p2n´1q|θ| `“diverging terms”

and we see that f2n´1pθq “ ´ sinhpp2n ´ 1qθq fits the bill. Notice that this also means that

gp2nq “ 0 . (53)

Thus, we have found that the following functions (we now add an index α to include the
parameter dependence)

δαpθq “ ´
8
ÿ

n“1

α2n´1 sinhpp2n ´ 1qθq ,

ραpθq “ iπ ´ θ

2π
δpθq `

8
ÿ

n“1

α2n´1

»

—

–

coshpp2n ´ 1qθq
4πp2n ´ 1q ´ 1

π

8
ÿ

m“1
m‰2n´1

m coshpmθq
p2n ´ 1q2 ´ m2

fi

ffi

fl
,

α2n´1 “ 1

2π

gp2n´1q

2n ´ 1
,

(54)

6Here we are assuming that each term in the series – also in the double series – appearing in the equations
(47) has to vanish independently.
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constitute a valid δpθq-ρpθq pair. Notice that the form of the phase shift is exactly that of the T T̄
deformation (2). However, the MFF is different from that found in [64,66], in the sense that the
coefficients of the coshpnθq terms are not arbitrary, but related to the same αn appearing in δpθq.
This form complies instead with the expression for the sinh-Gordon MFF derived in [80]. In fact,
(51) is not the only possible set of smooth functions we could choose. Setting hnpθq “ 0 for all
indices n P Z is also an alternative choice that satisfies all the conditions. This choice reproduces
the results of [64, 66], when all free parameters are set to zero. We argue that the MFF in (54)
is a more natural choice, for at least two reasons. First of all, by construction, it reproduces
the MFFs obtained from the integral representation for UV complete IQFTs. Secondly, as a
function of η “ θ´iπ

π
, the logarithm of the MFF in (54) has more desirable asymptotic properties

than most of the possible solutions found in [64, 66]. Let us look at a simple case to illustrate
this fact.

2.7 The T T̄ -Deformed Ising Field Theory

Let us take the simplest possible factorized scattering theory, a massive free fermion, with S-
matrix Spθq “ ´1. Let us perform a basic T T̄ deformation of this theory. Then the scattering
phase becomes

δIsingα pθq “ ´α sinh θ , ϵ ” Sp0q “ ´1 . (55)

From the general formula (54), we find the logarithm of the MFF to be

ρIsingα pθq “ log

ˆ

´i sinh
θ

2

˙

´ iπ ´ θ

2π
α sinh θ ` α

4π
cosh θ ´ α

π

8
ÿ

m“2

m coshpmθq
1 ´ m2

“ log

ˆ

´i sinh
θ

2

˙

´ iπ ´ θ

2π
α sinh θ ´ α

2π
´ α

2π
cosh θ logp´4 sinh2

θ

2
q

“ log
´

cosh
πη

2

¯

´ α

2π

”

1 ` πη sinhpπηq ´ coshpπηq log
´

4 cosh2
πη

2

¯ı

,

(56)

where we now reinstated the “Ising term”7 log
`

´i sinh θ
2

˘

, since ϵ “ ´1. We introduced the

variable η “ θ´iπ
π

. This function decays nicely for |θ| Ñ 8 in the whole strip 0 ď Im θ ď 2π, for
both α positive and negative, as can be seen in Figure 1. Figures 2 and 3 show a comparison
of the MFF obtained from (56) with that derived in [64, 66], for, respectively, Imθ “ iπ and
Imθ “ 0. We notice how the MFF we obtained here preserves the large-rapidity behavior of
the unperturbed (α “ 0) theory, while the one obtained in [64, 66] agrees with the α “ 0
situation only in the vicinity of θ “ 0. This difference in the behaviour of the deformation of
the MFF is more profound than appears at a cursory glance. The expression found in [64, 66]
cannot be considered a small deformation of the massive free fermion MFF! This was already
remarked in [64,66], where it was observed how the deformation leads to a radical difference in
the correlation functions compared to the undeformed theory. In contrast, the expression (56),
can be rightfully considered a well-behaved 1-parameter (α) deformation of the massive free

fermion MFF. This is immediately clear from the plot of eρ
Ising
α pθq in Figure 2. From the plot in

Figure 3, we see that something peculiar happens for α ą 0: the minimal form factor seems to
change its θ „ 0 behaviour when α crosses the value αc “ π. In fact, a more careful analysis

7Notice that, thanks to this term, the minimal form factor F
Ising
min pθ;αq “ exp ρIsingα diverges as Reθ Ñ ˘8.

This is a characteristic behaviour of the massive free fermion. In non-free theories, this diverging behaviour will
be tempered by the presence of interactions.
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(a) MFF for T T̄ -perturbed massive free fermion with the inclusion of the cosh
terms, with α “ 2π.

(b) MFF for T T̄ -perturbed massive free fermion with the inclusion of the cosh
terms, with α “ ´2π.

Figure 1: Comparison of MFFs with the inclusion of cosh terms, for α positive and negative, on
different lines Imη “ 0,´1

4
,´1

2
,´3

4
,´1.
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(a) MFF for T T̄ -perturbed massive free fermion with the inclusion of the cosh
terms, as a function of η P R

(b) MFF for T T̄ -perturbed massive free fermion without the inclusion of the cosh
terms (see [64, 66]), as a function of η P R

Figure 2: Comparison of MFFs with and without the inclusion of cosh terms on the line η P R

(i.e. Imθ “ iπ).
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(a) MFF for T T̄ -perturbed massive free fermion with the inclusion of the cosh
terms, as a function of θ P R

(b) MFF for T T̄ -perturbed massive free fermion without the inclusion of the cosh
terms (see [64, 66]), as a function of θ P R

Figure 3: Comparison of MFFs with and without the inclusion of cosh terms on the line θ P R.
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Figure 4: Plots of the MFF obtained from (56) as a function of θ P R for various values of α ą 0.

confirms this observation. Let us consider the behaviour of the MFF F
Ising
min pθ;αq :“ eρ

Ising
α pθq in

the vicinity of η “ 0 and θ “ 0.

F
Ising
min pθ;αq „

ηÑ0
e´αp1´2 log 2q

2π ` Opη2q ,

F
Ising
min pθ;αq „

θÑ0

1

2
p´θ2q 1

2
´ α

2π e´ α
2π

”

1 ` α

2
p´θ2q 1

2 ` Opθ2q
ı

.

(57)

We immediately see that the behaviour at η Ñ 0 is qualitatively the same for any value of
α: the MFF is a finite, α-dependent constant. On the other hand, we see that at θ “ 0, the
behaviour of the MFF radically depends on the value of α: if α ă π, it vanishes (as happens
for the undeformed case), while for α ą π it diverges (reaching a constant in the limit case
α “ αc “ π). The situation is portrayed in Figure 4. Further discussion of this behaviour in the
context of correlation functions is given in Section 4.

Notice that the critical value αc “ π is theory-dependent. In this case, it results from the fact
that the MFF of the Ising field theory is ´i sinh θ

2
, as we see for instance in equation (56). The

general statement is that if the leading asymptotic behaviour of the MFF of the unperturbed
theory is:

Fminpθq „
θÑ0

θκ , (58)

for some constant κ P R, then, the MFF of the T T̄ -perturbed theory will have the leading
asymptotics

Fminpθ;αq „
θÑ0

θκ´α
π , (59)

so that there is a critical value αc “ κπ above which the MFF develops a pole of order α
π

´ κ at
θ “ 0. In the Ising field theory we simply have κ “ 1.

15



2.8 The T T̄ 2n´1-Deformed Ising Field Theory

Let us now consider a generalisation of the computation in the previous subsection, to the case
when the perturbation is a single spin-2n ´ 1 irrelevant perturbation. That is:

δIsingα2n´1
pθq “ ´α2n´1 sinhpp2n ´ 1qθq , ϵ ” Sp0q “ ´1 . (60)

From the general formula (54), we find the logarithm of the MFF to be

ρIsingα2n´1
pθq “ log

ˆ

´i sinh
θ

2

˙

` θ ´ iπ

2π
α2n´1 sinhpp2n ´ 1qθq ` α2n´1

4πp2n ´ 1q coshpp2n ´ 1qθq

´α2n´1

π

8
ÿ

m“1
m‰2n´1

m coshpmθq
p2n ´ 1q2 ´ m2

, (61)

The sum above can be computed as follows:

8
ÿ

m“1
m‰s

m coshpmθq
s2 ´ m2

“
s´1
ÿ

m“1

m coshpmθq
s2 ´ m2

`
8
ÿ

m“s`1

m coshpmθq
s2 ´ m2

, (62)

where the infinite sum is given by

8
ÿ

m“s`1

m coshpmθq
s2 ´ m2

“ 1

2s
` 1

4s
coshpsθq `

s´1
ÿ

m“1

s coshpmθq
s2 ´ m2

` 1

2
coshpsθq log

ˆ

´4 sinh2
θ

2

˙

, (63)

so that

8
ÿ

m“1
m‰s

m

s2 ´ m2
coshpmθq “ 1

2s
` 1

4s
coshpsθq`

s´1
ÿ

m“1

coshpmθq
s ´ m

` 1

2
coshpsθq log

ˆ

´4 sinh2
θ

2

˙

. (64)

Putting everything together we have that the logarithm of the minimal form factor is

ρIsingα2n´1
pθq “ log

ˆ

´i sinh
θ

2

˙

` θ ´ iπ

2π
α2n´1 sinhpp2n ´ 1qθq ´ α2n´1

2πp2n ´ 1q

´α2n´1

π

2n´2
ÿ

m“1

coshpmθq
2n ´ 1 ´ m

´ α2n´1

2π
coshpp2n ´ 1qθq log

ˆ

´4 sinh2
θ

2

˙

. (65)

For the purpose of studying the asymptotic properties of the minimal form factor, it is useful
to rewrite the function above in terms of the variable η, as in the previous subsection

ρIsingα2n´1
pθq “ log

´

cosh
πη

2

¯

´ α2n´1

2π

„

1

2n ´ 1
` πη sinhpp2n ´ 1qπηq

ȷ

´ α2n´1

π

2n´2
ÿ

m“1

p´1qm coshpmπηq
2n ´ 1 ´ m

` α2n´1

2π
coshpp2n ´ 1qπηq log

´

4 cosh2
πη

2

¯

.(66)

We then find that

F
Ising
min pθ;α2n´1q „

ηÑ0
e

´
α2n´1p1´p2n´1q2plog 2`c2n´1qq

2πp2n´1q ` Opη2q ,

F
Ising
min pθ;α2n´1q „

θÑ0
θ1´

α2n´1
π e

´
α2n´1p1`2p2n´1qĉ2n´1qq

2πp2n´1q

„

1 ´ iα2n´1θ

2
` Opθ2q

ȷ

,

(67)
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where

c2n´1 “
2n´2
ÿ

m“1

p´1qm`1

m
and ĉ2n´1 “

2n´2
ÿ

m“1

1

m
, (68)

which are very similar behaviours as found for the n “ 1 case in (59). In particular, we find
again that there is a stark change in the θ Ñ 0 asymptotics depending on whether α2n´1 is
greater or smaller than π. It is also easy to see that in the presence of several perturbations the
critical value will correspond to solutions to πκ ´ ř

sPS αs “ 0 where κ is the value in (59).

3 Alternative Construction from the Karowski-Weiss Approach

3.1 The Original work

Let us go back to our original equations (11). We consider once more the problem of finding
general solutions with desirable asymptotic properties to these equations for T T̄ -perturbed the-
ories. An alternative way to approach this problem is suggested by the original construction of
Karowski and Weisz which leads also to an integral representation of the MFFs, albeit written
in a slightly different way. In this subsection we summarise their original work. We start by
writing

B
Bθ logFminpθq “ 1

8πi

ż

C

logFminpzq
sinh2 1

2
pz ´ θq

dz . (69)

Here C is a contour enclosing the strip 0 ď Impθq ď 2π as shown in Fig. 5.

Figure 5: The contour C in equation (69).

The denominator sinh2 1
2
pz ´ θq has double poles at z “ θ ` 2πi n (n P N). For θ ą 0 only

the pole at z “ θ falls within the contour. Then, by Cauchy’s residue theorem, we obtain the
derivative on the l.h.s. Let us examine this construction better. Because of the equations (11),
we have certain asymptotic properties the form factor must satisfy. If the S-matrix tends to
a constant in the high energy limit θ Ñ 8, as is expected in UV-complete theories, then we
must have Fminpθq “ Opexp exp |θ|q for Repθq Ñ 8. This is very important when computing
the integral along the contour above. We can divide the contour C in in four pieces: C “
C1 ` C2 ` C3 ` C4. Given z “ x ` iy we have:
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• two horizontal segments: C1 “ tx : ´R ď x ď Ru and C3 “ tx ` 2iπ : ´R ď x ď Ru;

• two vertical segments: C2 “ tR ` iy : 0 ď y ď 2πu and C4 “ t´R ` iy : 0 ď y ď 2πu;

with C oriented counterclockwise. So, our integral can be written also as

ż

C

dz wpzq “
ż R

´R

dxwpxq `
ż ´R

R

dxwpx`2πiq ` i

ż 2π

0

dy wpR` iyq ` i

ż 0

2π

dy wp´R` iyq , (70)

with

wpzq “ logFminpzq
8πi sinh2 1

2
pz ´ θq

. (71)

The idea is that, if wpzq decays fast enough for large R, we can discard the vertical contributions.
That is by the estimation lemma we can write

ˇ

ˇ

ˇ

ˇ

ż

C2

dz wpzq
ˇ

ˇ

ˇ

ˇ

ď
ż 2π

0

dy |wpR ` iyq| Ñ
RÑ8

0 (72)

and similarly for the integral along C4. For our function wpzq we have that
ˇ

ˇ

ˇ

ˇ

ˇ

logFminpR ` iyq
sinh2 1

2
pR ´ θ ` iyq

ˇ

ˇ

ˇ

ˇ

ˇ

„ Ope|R|q
e|R|

Ñ
RÑ8

0 , (73)

because the MFF has the asymptotic behaviour described above. Therefore, the integral is given
by the sum of the horizontal contributions. These contributions are related to each other by the
form factor equations (11) giving

1

8πi

ż

C

logFminpzq
sinh2 1

2
pz ´ θq

dz “ 1

8πi

ż 8

´8

dx

sinh2 1
2
px ´ θq

log
Fminpxq

Fminpx ` 2πiq

“ 1

8πi

ż 8

´8

logSpxq
sinh2 1

2
px ´ θq

dx , (74)

which therefore provides a representation of the derivative of the MFF in terms of the scattering
matrix. If the S-matrix admits a Fourier series such as (13), then a representation of the type
(14) follows immediately.

3.2 Challenges Posed by T T̄ -Deformations

Consider now an S-matrix of the type (1) with a CDD factor of the T T̄ type as in (2). Let
Dαpθq be the deformation of the corresponding MFF8, as defined by the equations (12) whose
general solution we wrote in (15). The main property of the CDD factor Φαpθq is that, at large
rapidities it does not tend to a constant. Therefore in general we have Dαpθq „ exp pexp s˚|θ|q
for Repθq Ñ 8 and s˚ the largest spin in the sum (2). This means that if we follow again the
Karowski-Weisz construction we find the following asymptotics of wpR ` iyq

ˇ

ˇ

ˇ

ˇ

ˇ

logDαpR ` iyq
sinh2 1

2
pR ´ θ ` iyq

ˇ

ˇ

ˇ

ˇ

ˇ

„ es
˚|R|

e|R|
Ñ

RÑ8
eps˚´1q|R| . (75)

8In (15) and (16) we wrote the most general solution to these equations, namely Dαpθq “ φαpθqCβpθq.
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So we can no longer argue that the vertical contributions to the integral are vanishing. We can
think of two ways, possibly related to each other, of solving this problem: the first consists in
finding an appropriate choice of contour such that the exponential growth of the function on
the real axis can be mitigated. The second comes from the freedom given by the equations in
(10) regarding the choice of the MFF. As noticed in the introduction, we can always multiply a
given solution by some function Cβpθq given by (16). Let us call this modified solution D̃αpθq.
An appropriate choice of this function, which means a choice of the parameters β, will ensure
that

ˇ

ˇ

ˇ

ˇ

ˇ

log D̃αpR ` iyq
sinh2 1

2
pR ´ θ ` iyq

ˇ

ˇ

ˇ

ˇ

ˇ

„ Ope|R|q
e|R|

Ñ
RÑ8

0 . (76)

The additional parameters β, if chosen wisely, can enforce the double-exponential asymptotics
of the MFF [80]. The idea is therefore to regularise the usual integral representation by imposing
this asymptotics.

We end this section with an observation. In general, given an integrand Ipz, θq “ logSpzq

sinh2 1
2

pz´θq

over a contour such that logpSpzqq is analytic everywhere inside and on the contour and zn is a
pole of the denominator, we have that the residue at the pole is given by

Res pIpz, θq, znq “ 4Bz rlogSpzqsz“zn
. (77)

As observed previously, the poles are exactly at zn “ θ`2πin, for n “ 0, 1, 2, . . . . If we consider
again the contour C above, including the pole at z0 “ θ we get

¿

C

dz Ipz, θq “ 4Bz rlogSpzqsz0 . (78)

Instead of deforming the contour we will see in the next section that imposing the asymptotics
above is sufficient to find a closed solution that fixes the MFF completely. Not coincidentally
the term that regularises the integral representation is proportional to contributions of the form
(78).

3.3 A Solution

The main problem in defining a complete MFF for a generalized T T̄ -deformation comes from
the distinct properties of the CDD-factors. We cannot expand them in terms of a Fourier series,
therefore we need to start from an integral representation of the type (74). In practice, it is
more convenient to start from an equivalent representation which involves logSpzq explicitly.
This kind of representation appears in [86]:

ρpθq “ 1

iπ
cosh2

θ

2

ż 8

0

dt
tanh t

2
lnSptq

cosh t ´ cosh θ
, for 0 ď Impθq ď 2π . (79)

The integrand reproduces exactly the same pole structure of (69) but it can also be shown to
be equivalent to (14) once we invert the Fourier transform. Let us consider Φαpθq as defined in
(2). We have

logDαpθq “ 1

iπ
cosh2

θ

2

ż 8

0

dt
tanh t

2
lnΦαptq

cosh t ´ cosh θ
“ ´ 1

π
cosh2

θ

2

ÿ

sPS

ż 8

0

dt
αs tanh

t
2
sinh st

cosh t ´ cosh θ
. (80)
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This integral is not convergent because of the asymptotics of the sinhpstq function, however it
can be easily regularised by replacing sinhpstq by ´e´st. This amounts to the regularisation
prescription

logDαpθq “ 1

iπ
cosh2

θ

2

ż 8

0

dt
tanh t

2

cosh t ´ cosh θ

´

lnΦαptq ´ Bt ln Φ̂αptq
¯

, (81)

where
ln Φ̂αpθq “ ´i

ÿ

sP2Z`´1

αs

s
sinhpsθq . (82)

Let us see explicitly how this prescription leads to the same formulae found in the previous
section. For |Repθq| ă Reptq the integrand can be expanded as a long-wave expansion in θ [86,87]
giving

cosh2 θ
2
tanh t

2

cosh t ´ cosh θ
“

8
ÿ

m“1

“

coshpmθq ` p´1qm`1
‰

e´mt . (83)

Consider next the case of a single perturbation of spin s. We get then

logDαspθq “ ´αs

π

8
ÿ

m“1

“

cosh kθ ` p´1qm`1
‰

ż 8

0

dte´mt sinh st . (84)

We are left with the computation of a simple integral

ż 8

0

dte´mt sinh st “ s

m2 ´ s2
, (85)

which is only well defined away from the simple pole at m ą s. This means that we need to
regularise the infinite sum in k of (83) by subtracting the pole. We can do this by modifying
(85) to

s

m2 ´ s2
´ m

m2 ´ s2
“ ´ 1

m ` s
, (86)

which is equivalent to the prescription (81) for each term in the sum in s. The regularised
version reads

logDαspθq “ αs

π

8
ÿ

m“1

coshpmθq ` p´1qm`1

m ` s
. (87)

Let us consider carefully the various contributions to this sum, taking care to compare them to
the result of Subsection 2.8. First, we have the constant

8
ÿ

m“1

p´1qm`1

m ` s
“ ´

8
ÿ

m“s`1

p´1qm`1

m
“ ´

8
ÿ

k“1

p´1qm`1

m
`

s
ÿ

m“1

p´1qm`1

m
“ ´ log 2 ` 1

s
` cs , (88)

where cs is the constant we defined earlier (68) and s is odd.
Then we have the sum involving coshpmθq. It is useful to consider the two terms in (86)

separately and exclude the problematic value m “ s. We compute

8
ÿ

m“1
m‰s

s coshpmθq
m2 ´ s2

“
s´1
ÿ

m“1

s coshpmθq
m2 ´ s2

`
8
ÿ

m“s`1

s coshpmθq
m2 ´ s2

. (89)
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The infinite sum can be computed to

8
ÿ

m“s`1

s coshpmθq
m2 ´ s2

“ ´
s´1
ÿ

m“1

s coshpmθq
m2 ´ s2

` 1

2s
` coshpsθq

4s
´ θ ´ iπ

2
sinhpsθq , (90)

so that
8
ÿ

m“1
m‰s

s coshpmθq
m2 ´ s2

“ 1

2s
` coshpsθq

4s
´ θ ´ iπ

2
sinhpsθq . (91)

The other sum in (86) was computed in (64). In addition, we have the m “ s term coming

from the coshpmθq sum in (87) which is simply ´ coshpsθq
2s

and cancels with contributions from
the sums above. Putting everything together with s “ 2n ´ 1 we get

logDα2n´1
pθq “ θ ´ iπ

2π
α2n´1 sinhpp2n ´ 1qθq ` α2n´1

π
p´ log 2 ` c2n´1q (92)

´α2n´1

π

2n´2
ÿ

m“1

coshpmθq
2n ´ 1 ´ m

´ α2n´1

2π
coshpp2n ´ 1qθq log

ˆ

´4 sinh2
θ

2

˙

.

Compared to the solution (65) without the Ising term, we see that they are identical up to
normalisation constants. These are not important in applications, since the MFF is ultimately
normalised by its value at iπ. Generalising to any number of T T̄ perturbations and employing
the standard normalisation we can write the general formula (17). If we compare this solution
to the general formula we wrote in [64, 66], we have that the β-dependent part in (16) is now
fully fixed to

Cβpθq “ Cβpiπq
ź

sP2Z`´1

»

–´1

2
e
cs´

s´1
ř

m“1

coshpmθq
s´m

ˆ

2i sinh
θ

2

˙´ cosh psθq
fi

fl

αs
π

. (93)

and φαpθq is the same function as in (16). This construction can be easily extended to branch
point twist fields, which satisfy slightly different form factor equations [65, 78]. We discuss this
generalisation in Appendix B.

4 Correlation Functions and their Asymptotic Properties

One of the main uses of the form factor program is for the computation of correlation functions
of local fields in the ground state. Such correlators can be expanded in terms of integrals of the
absolute value squared of the form factors. In our papers [64,66] we argued that the correlation

functions resulting from a MFF where the function Dαpθq is chosen as Dαpθq “ e
θ´iπ
2π

α sinh θ will
contain integrals whose integrand contains the absolute value of this function squared, that is,

e
αθ
π

sinh θ. This function grows extremely rapidly for |θ| large and α ą 0 and decays extremely
rapidly if α ă 0. Therefore, there are very different physical properties in these two regimes, a
feature that is (qualitatively) in line with what is expected from the TBA analysis [2].

Consider instead the new function (17). For simplicity, let us take s “ 1 and α1 “ α so
that we have a single T T̄ perturbation and a single perturbation parameter. The absolute value
squared gives

|Dαpθq|2 “ |Dαpiπq|2
«

1

4
eθ sinh θ

ˆ

2 sinh
θ

2

˙´2 cosh θ
ffα

π

, (94)
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and for |θ| large we have

|Dαpθq|2 „ |Dαpiπq|2
„

1

4
e

θ
2
eθe´ θ

2
eθ

ȷα
π

“ |Dαpiπq|24´α
π , (95)

which is a constant. This is a radically different asymptotics compared to what we described
above. This means that the leading asymptotics of the MFF is dictated by the asymptotics of
the MFF of the unperturbed theory, and little can be said about the short-distance scaling of
correlators if we do not know the full two-particle form factor. However, from the asymptotics
we no longer expect to see a marked difference between the α positive and negative cases.

There is, however, an important difference in the behaviour of the minimal form factor
depending on whether α ą π or α ă π. In particular, if we consider a T T̄ perturbation of the
Ising field theory so that

|F Ising
min pθ;αq|2 “ |F Ising

min piπ;αq|2 sinh2 θ
2

«

1

4
eθ sinh θ

ˇ

ˇ

ˇ

ˇ

2 sinh
θ

2

ˇ

ˇ

ˇ

ˇ

´2 cosh θ
ffα

π

“ |Fminpiπ;αq|24´α
π e

αθ
π

sinh θ

ˇ

ˇ

ˇ

ˇ

2 sinh
θ

2

ˇ

ˇ

ˇ

ˇ

2p1´α
π
cosh θq

, (96)

we see that for α ă π the function has a zero at θ “ 0 while for α ą π it has an (unphysical)
pole at θ “ 0. We see these properties numerically in Fig. 4. The presence of a zero at θ “ 0
is common with many other IQFTs such as the Ising and sinh-Gordon models. However, the
presence of a pole is unphysical and is an indication that the critical value αc “ π represents a
transition point between two quite different theories. As noted before, we expect a critical value
to arise in interacting models as well. Since in general the MFF is also the full two-particle form
factor of the trace of the stress-energy tensor, this means that for α ą αc this form factor will
have a pole in the physical strip for which we have no physical interpretation. Furthermore,
since the MFF is the building block for the form factors of all fields, this pole may be present
for other fields as well, although this will depend on the details of the field and theory.

5 Conclusion and Outlook

In this paper we revisited the problem of computing the two-particle minimal form factor of
an integrable quantum field theory perturbed by T T̄ . Although the basic structure of this
MFF has been identified in previous work [64–66, 81] for various types of fields and theories,
uniqueness of the solution had not been established. The main result of the present work is to
propose two distinct procedures by which the MFF may be fixed unambiguously. We find that
the MFF of an IQFT perturbed by T T̄ can be uniquely determined by requiring a convergent
integral representation, which may be expressed as a regularized version of the usual integral
representation. The expression that emerges from this construction has a smooth behaviour
in the limit when the perturbation parameter(s) tend to zero and reproduces to the MFF of
standard IQFTs (such as the sinh-Gordon model) when the number of irrelevant perturbations is
infinite and the couplings are suitably chosen (see Appendix A where the sinh-Gordon example
is considered). The formula is

Fminpθ;αq “ FminpθqDαpθq , (97)
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where Fminpθq is the MFF of the unperturbed theory and Dαpθq is the function (17), which is
generalised to (131) for branch point twist fields [65,78,88] and to

a

Dαp2θq for the one-particle
MFF of boundary IQFTs [81].

A special feature of our solution is that, in the simple case of a single perturbation, say by
T T̄ , there exists a critical value α “ αc above which the MFF develops a pole of order α

π
´ κ

at θ “ 0, where κ is a property of the unperturbed MFF. The existence of a “transition” in the
physical properties of the model is reminiscent of what is observed in the thermodynamic Bethe
ansatz analysis (see e.g. [2, 15]), in particular the emergence of a Hagedorn transition at finite
temperature. However, there are notable differences between the two situations and we cannot
claim that they are in any way related. For one, the Hagedorn transition occurs for any negative
value of α (with our prescriptions), whereas for our MFF the “transition” happens at a specific,
positive value of α. Secondly, it is well known that the Hagedorn transition is particular to
the pure T T̄ perturbation and absent for higher spins (unless one modifies the driving term of
the TBA and considers specific generalized Gibbs ensembles, as discussed in [46]). In our case,
however, the critical point is present for any finite number of perturbations.

Although our analysis provides a way to fix the MFF which is reminiscent of the traditional
construction of Karowski-Weisz [70], it does not make the construction of higher particle so-
lutions any easier. In fact, the correct prescription for computing such solutions is still not
fully understood. Solving by employing a factorised ansatz leads to formulae which are plagued
by square-root factors (thus, points of nonanalyticity), as we found in [64, 66]. This factorised
ansatz, where the form factor is a product of the unperturbed solution times a function of the
perturbation parameter, is extremely natural for T T̄ -perturbed theories but is easily shown not
to produce the correct solutions when considering more standard IQFTs, that is, when consid-
ering the case of infinitely many irrelevant perturbations. We have checked this explicitly for
the sinh-Gordon model, where a factorized ansatz gives solutions that are distinct from those
known in the literature [89–91] and also contain square roots (see Appendix A).

Regarding future work, there are at least two avenues opened to us: it may be that there
are non-factorized solutions that we have just not been able to construct by the usual methods,
would probably be highly non-trivial, and are still to be found, or, the standard form factor
program and in particular the kinematic residue equation, is not valid in its usual form for
T T̄ -perturbed theories. The latter is a very plausible suggestion since giving up the notion of
UV completion and locality does away with two of the basic underlying principles of the form
factor program as originally formulated. Finding an independent way to obtain the form factors
would be ideal in order to gain some insights into this important open question.
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A Revisiting the Sinh-Gordon Model

A.1 Factorizing the Kinematical Pole

The sinh-Gordon model is the simplest IQFT which is also interacting, hence has a non-trivial
scattering matrix [92–94]. The two-body scattering matrix takes the simple form

Sαpθq “ tanh 1
2

`

θ ´ iπB
2

˘

tanh 1
2

`

θ ` iπB
2

˘ , (98)

where B is a coupling constant that takes values between 0 and 2. The value B “ 1 is known
as the self-dual point. Following the notation in our introduction we have called this S-matrix
Sαpθq. The reason for this is that there is an alternative way of thinking about this function,
namely as an S-matrix of the type (1) where Spθq “ ´1, corresponding to the Ising field theory
(Majorana fermion) and

ΦshG
α pθq “ ´tanh 1

2

`

θ ´ iπB
2

˘

tanh 1
2

`

θ ` iπB
2

˘ “ sinh θ ´ i cos bπ
2

sinh θ ` i cos bπ
2

“ exp

«

´4i
ÿ

s P 2Z`´1

is`1 cos
sπb
2

s
sinhpsθq

ff

, (99)

where b :“ B ´ 1. This means in particular that

α2n´1 “ 4p´1qn
2n ´ 1

cos
p2n ´ 1qπb

2
, (100)

and plugging these values into (17) provides yet another way to represent the MFF of the
sinh-Gordon theory:

F shG
min pθ;αq

F shG
min piπ;αq “ ´i sinh

θ

2
(101)

ˆ
ź

nPZ`

»

–´1

2
e

θ´iπ
2

sinhpp2n´1qθq´
2n´2

ř

m“1

coshpmθq
2n´1´m

` c2n´1

„

2i sinh
θ

2

ȷ´ cosh pp2n´1qθq
fi

fl

4p´1qn cos
p2n´1qπb

2
πp2n´1q

.

Employing this representation of the sinh-Gordon scattering matrix, it is possible to show that
its MFF [80] admits a representation of the type (15) where all values of α and β are fixed by
the requirements of analyticity and asymptotics. The exact formula for the function CshG

β pθq
was obtained in [80]. The explicit form of this function is not needed for our current purposes.
An important property of the MFF of sinh-Gordon is that

F shG
min pθ;αqF shG

min pθ ` iπ;αq “ sinh θ

sinh θ ` i cos πb
2

. (102)

Our aim is to find higher-particle form factors of the sinh-Gordon model by employing a fac-
torised ansatz. We will start by separating the Ising, α and βpαq parts, using F

Ising
min pθq “
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´i sinh θ
2
and9

CshG
β pθqCshG

β pθ ` iπq “ 2
b

sinh2 θ ` cos2 πb
2

“ ´ 2i
a

ΨshGpθqΨshGp´θq
, (103)

φshG
α pθqφshG

α pθ ` iπq “
b

ΦshG
α pθq “

d

´sinh θ ´ i cos πb
2

sinh θ ` i cos πb
2

, (104)

where

ΨshGpθq “ sinh θ ` i cos
πb

2
, (105)

with
ΨshGpθqΦshG

α pθq “ ΨshGp´θq . (106)

It is well known that the formula (102) plays a critical role in determining the higher-particle form
factors. Writing it in the factorised form above allows us to separate the contributions related
to the α parameters, β “ βpαq parameters and the unperturbed theory, parameters which are
inherited from the representation (16). We will now “track” these separate contributions into
the structure of higher-particle form factors and investigate what they reveal about the form
factors of T T̄ -perturbed theories.

A.2 T T̄ -Like Solution of the sinh-Gordon Model

Typically, the form factors of a field O, defined in (3) have the structure

FO
n pθ1, . . . , θn;αq “ HO

n pαqQO
n pθ1, . . . , θn;αq

ź

iăj

Fminpθij ;αq
eθi ` eθj

, (107)

where

QO
n`2pθ ` iπ, θ, θ1, . . . , θn;αq “ Gnpθ, θ1, . . . , θn;α,βqQO

n pθ1, . . . , θn;αq . (108)

In the sinh-Gordon case we have the structure (normalisation constants can be absorved into
the equation for the constants HO

n pαq)

Gnpθ, θ1, . . . , θn;αq :“ inepn`1qθ
n

ź

j“1

eθj

˜

n
ź

j“1

b

ΨshGpθ ´ θjqΨshGpθj ´ θq
¸

ˆ
«

n
ź

j“1

ΦshG
α pθ ´ θjq´ 1

2 ´ γOp´1qn
n

ź

j“1

ΦshG
α pθ ´ θjq

1
2

ff

. (109)

Employing the property (106) and the fact that Φαpθq “ pΦαp´θqq´1 (by unitarity) we can
rewrite

Gnpθ, θ1, . . . , θn;α,βq “ inepn`1qθ
n

ź

j“1

eθj

«

n
ź

j“1

ΨshGpθ ´ θjq ´ γOp´1qn
n

ź

j“1

ΨshGpθj ´ θq
ff

.(110)

9From [80] it is interesting to note that only the terms involving βs with s even contribute to obtaining the
property (102). This excludes all terms involving dilogarithm functions. Note also that compared to [80] we
included an extra multiplicative factor

?
2 into the definition of CshG

β pθq.
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These equations are equivalent to those presented in [89] and [90]. Proceeding in this way allows
us also to see how the square roots present in the form (109) are absent when combining the α

and β factors together in the sinh-Gordon model case. If we stick with the representation (109)
though we have a neat separation into three different contributions: the factor epn`1qθ

śn
j“1 e

θj

is the contribution from the Ising field theory, the next factor incorporates the β dependence and
the factor in the second line incorporates the α dependence and, as expected, is of exactly the
type found for generalised T T̄ -perturbed theories [64,65]. Mixing the α and β factors together
with the Ising factors gives the standard solutions for the sinh-Gordon operator content. We
will see in the following that instead, imposing factorization we end up with different solutions
even though the S-matrix is still the sinh-Gordon one.

A.3 A Factorized Solution

Therefore, it is natural to try to find solutions to these equations using the same methodology
as in [64, 65]. We make a solution ansatz stating that the sinh-Gordon form factors of some
”local” field factorize as the form factors of an Ising field theory times a α-dependent part.
Furthermore, contrary to our treatment in [64,65] where we considered the case with all βi “ 0,
in the sinh-Gordon model we have parameters βi entering the MFF, so we need a more general
ansatz. Again, we assume further factorisation into an α-dependent and β-dependent part. We
write

QO
n pθ1, . . . , θn;αq “ QO

n pθ1, . . . , θnqΘO
n pθ1, . . . , θn;αqΞO

n pθ1, . . . , θn;βpαqq , (111)

Where

QO
n`2pθ ` iπ, θ, θ1, . . . , θnq “ epn`1qθ

«

n
ź

j“1

eθj

ff

Qnpθ1, . . . , θnq , (112)

which (up to normalisation) is the equation for the Ising form factors of the order field µ (for n
even) and for the disorder field σ (for n odd) [73]. The solution to this equation, or rather, the full

form factors are very simple and proportional to he product
ś

iăj tanh
θij
2

which automatically

incorporates the denominator eθi ` eθj in (107). The next equation of interest is

ΘO
n`2pθ`iπ, θ, θ1, . . . , θn;αq “

«

n
ź

j“1

Φαpθ ´ θjq´ 1
2 ´ γOp´1qn

n
ź

j“1

Φαpθ ´ θjq
1
2

ff

ΘO
n pθ1, . . . , θn;αq ,

(113)
which satisfies the generalised T T̄ form factor equation discussed and solved in [64, 65]. The
general solution reads

ΘO
n pθ1, . . . , θn;αq “

n
ź

i“1

g

f

f

f

f

f

f

e

n
ś

j“1

Sαpθijq1{2 ´ γO
n

ś

j“1

Sαpθijq´1{2

n
ś

j“1

Spθijq1{2 ´ γO
n

ś

j“1

Spθijq´1{2

, (114)

as shown in [66]. The β-dependent recursive equation instead reads

ΞO
n`2pθ ` iπ, θ, θ1, . . . , θn;βpαqq “ in

«

n
ź

j“1

b

ΨshGpθ ´ θjqΨshGpθj ´ θq
ff

ΞO
n pθ1, . . . , θn;βpαqq .

(115)
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Like in the Ising model and in its deformed version, we expect to have different sectors dictated
by the Z2 symmetry: either “even” fields such as the order field µ and the energy field ε and
“odd” fields, such as σ. Their counterparts in the sinh-Gordon model, which also possesses this
symmetry, should at least be in the same symmetry sector, with the fundamental sinh-Gordon
field ϕ in the “odd” sector and the trace of the stress-energy tensor in the “even” sector. Anyway,
we notice that the factor of local commutativity do not enters equation (115). A solution to this
equation is relatively easy to find, namely

ΞO
n pθ1, . . . , θn;βpαqq “ vn

n
ź

i“1

n
ź

j“1

4

b

ΨshGpθijq , (116)

where vn is a normalisation constant which satisfies

vn`2 “ cos
πb

2
vn , (117)

which, depending on whether n is even or odd gives solutions

v2k “
ˆ

cos
πb

2

˙k

v0 and v2k`1 “
ˆ

cos
πb

2

˙k´1

v1 . (118)

In addition to this, if we specialise to n “ 2k ` 1 odd and γO “ 1, we get for the α-dependent
part

ΘO
2k`1pθ1, . . . , θ2k`1;αq “ 1

2k
?
2

2k`1
ź

i“1

g

f

f

e

2k`1
ź

j“1

ΦshG
α pθijq1{2 `

2k`1
ź

j“1

ΦshG
α pθijq´1{2 , (119)

and similarly for n even and γO “ ´1. This expression is rather complicated and there
is no immediately obvious way to simplify it. In our example, we have in addition that
ΦshG
α pθqΦshG

α p´θq “ 1 so we can rewrite the formula in several equivalent ways. For exam-
ple,

n
ź

i“1

g

f

f

e

n
ź

j“1

ΦshG
α pθijq1{2 `

n
ź

j“1

ΦshG
α pθjiq1{2 “

n
ź

i“1

g

f

f

e1 `
n

ź

j“1

ΦshG
α pθjiq . (120)

It seems therefore that it is possible to consistently solve the form factor equations by assuming
factorisation, but the resulting solutions are distinct from those previously found and contain
square roots.

A.4 Another Solution

We could instead assume factorisation but separate only the Ising part from the rest. That is,
instead of (111) we now have

QO
n pθ1, . . . , θn;αq “ QO

n pθ1, . . . , θnqΓO
n pθ1, . . . , θn;αq , (121)

If we specialise to the sector γµ “ ´1 and with a sum over even particle numbers, we get

Γµ
2n`2pθ ` iπ, θ, θ1, . . . , θ2n;αq “

«

2n
ź

j“1

ΨshGpθ ´ θjq `
2n
ź

j“1

ΨshGpθj ´ θq
ff

Γµ
2npθ1, . . . , θ2n;αq .

(122)
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To solve this equation, we just need the property ΨshGpθij ` iπq “ ΨshGpθjiq and we find the
solution

Γµ
2npθ1, . . . , θ2n;αq “ C2n

ś2n
i“1

b

ś2n
j“1Ψ

shGpθijq ` ś2n
j“1Ψ

shGpθjiq
ś

iăj
4
a

ΨshGpθijqΨshGpθjiq
. (123)

with C2n a constant. Once more the solution involves roots which do not cancel out and therefore
it is distinct from the usual solutions for the sinh-Gordon model. It seems clear that the Ising
part of the MFF and the rest must be considered together in order to solve the kinematic residue
equation.

B Generalisation to Branch Point Twist Fields

In this Appendix we present a generalisation of the results of Subsection 3.3 to the case of branch
point twist fields [65, 78]. For our purposes, the starting point is the integral representation

logFminpθ;nq “ 1

iπn
cosh2

θ

2n

ż 8

0

dt
tanh t

2n
lnSptq

cosh t
n

´ cosh θ
n

, for 0 ď Impθq ď 2πn , (124)

which reduces to (79) for n “ 1. Again, we can obtain this representation by inverting the
Fourier transform of the S-matrix, that is, by expressing the kernel gptq in terms of the Fourier
transform of lnSptq in the usual representation (see [78]). As we did earlier, let us consider the
deformation of the MFF resulting from a generalised T T̄ perturbation in its regularised form

logDαpθ;nq “ 1

iπn
cosh2

θ

2n

ż 8

0

dt
tanh t

2n

cosh t
n

´ cosh θ
n

´

lnΦαptq ´ Bt ln Φ̂αpθq
¯

, (125)

where Φ̂αpθq is the function defined in (82). Expanding for small |θ| we can write

cosh2 θ
2n

tanh t
2n

cosh t
n

´ cosh θ
n

“
8
ÿ

m“1

„

cosh
kθ

n
` p´1qm`1

ȷ

e´m t
n , (126)

which when substituting in (125) gives the simple integral

ż 8

0

dte´tpm
n

`sq “ ´ 1
m
n

` s
. (127)

The resulting contribution for a given spin s is

logDαspθ;nq “ αs

π

8
ÿ

m“1

cosh mθ
n

` p´1qm`1

m ` s n
. (128)

The sum can be performed as before and it gives a solution, with the structure found in [65,88],
namely

8
ÿ

m“1

cosh mθ
n

m ` sn
“ θ ´ iπn

2n
sinhpsθq ´ 1

2
log

ˆ

´4 sinh2
θ

2n

˙

coshpsθq ´
ns´1
ÿ

m“0

1

ns ´ m
cosh

mθ

n
,(129)
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and the constant is

8
ÿ

m“1

p´1qm`1

m ` sn
“

8
ÿ

m“sn`1

p´1qm`sn`1

m
“ p´1qsn

8
ÿ

m“1

p´1qm`1

m
` 1

sn
´ p´1qsncsn

“ p´sqsn log 2 ` 1

sn
´ p´1qsncsn . (130)

where csn is the constant defined in (68). In summary, normalising Dαpθ;nq by its value at
θ “ iπn we can write

Dαpθ;nq
Dαpiπn;nq “

ź

sP2Z`´1

»

–´ 1

2p´1qsn
e

θ´iπn
2n

sinhpsθq´
ns´1

ř

m“1

cosh mθ
n

ns´m
`p´1qnscsn

ˆ

2i sinh
θ

2n

˙´ cosh psθq
fi

fl

αs
π

.

(131)
Setting n “ 1 we recover the solution (17). The formulae above can be easily generalized to
real n (as opposed to n integer) by introducing integer part symbols in some of the summation
limits.
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[53] B. Doyon, F. Hübner and T. Yoshimura, Generalised T T̄ -deformations of classical free
particles, 2312.14855.

[54] D. J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, TT in AdS2 and Quantum
Mechanics, Phys. Rev. D 101 (2020), no. 2 026011 [1907.04873].

[55] D. J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, Hamiltonian deformations in
quantum mechanics, T T̄ , and the SYK model, Phys. Rev. D 102 (2020), no. 4 046019
[1912.06132].

[56] F. Giordano, S. Negro and R. Tateo, The generalized Born oscillator and the
Berry-Keating Hamiltonian, JHEP 10 (2023) 099 [2307.15025].

[57] G. Bonelli, N. Doroud and M. Zhu, T T̄ -deformations in closed form, JHEP 06 (2018) 149
[1804.10967].

[58] M. Taylor, TT deformations in general dimensions, 1805.10287.

[59] R. Conti, J. Romano and R. Tateo, Metric approach to a TT-like deformation in arbitrary
dimensions, JHEP 09 (2022) 085 [2206.03415].

[60] A. B. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. Pure
Math. 19 (1989) 641–674.

[61] S. Negro, Integrable structures in quantum field theory, J. Phys. A 49 (2016), no. 32
323006 [1606.02952].

[62] L. Castillejo, R. H. Dalitz and F. J. Dyson, Low’s scattering equation for the charged and
neutral scalar theories, Phys. Rev. 101 (1956) 453–458.

32

http://arXiv.org/abs/2405.06564
http://arXiv.org/abs/0807.5081
http://arXiv.org/abs/0902.0956
http://arXiv.org/abs/1911.11118
http://arXiv.org/abs/1911.12315
http://arXiv.org/abs/2105.03326
http://arXiv.org/abs/2010.15733
http://arXiv.org/abs/2312.14855
http://arXiv.org/abs/1907.04873
http://arXiv.org/abs/1912.06132
http://arXiv.org/abs/2307.15025
http://arXiv.org/abs/1804.10967
http://arXiv.org/abs/1805.10287
http://arXiv.org/abs/2206.03415
http://arXiv.org/abs/1606.02952


[63] H. Grosse and G. Lechner, Wedge-Local Quantum Fields and Noncommutative Minkowski
Space, JHEP 11 (2007) 012 [0706.3992].

[64] O. A. Castro-Alvaredo, S. Negro and F. Sailis, Form factors and correlation functions of
TT-deformed integrable quantum field theories, JHEP 09 (2023) 048 [2306.01640].

[65] O. A. Castro-Alvaredo, S. Negro and F. Sailis, Entanglement entropy from form factors in
TT-deformed integrable quantum field theories, JHEP 11 (2023) 129 [2306.11064].

[66] O. A. Castro-Alvaredo, S. Negro and F. Sailis, Completing the bootstrap program for
TT-deformed massive integrable quantum field theories, J. Phys. A 57 (2024), no. 26
265401 [2305.17068].

[67] A. B. Zamolodchikov and A. B. Zamolodchikov, Factorized s Matrices in Two-Dimensions
as the Exact Solutions of Certain Relativistic Quantum Field Models, Annals Phys. 120
(1979) 253–291.

[68] L. D. Faddeev, Quantum completely integral models of field theory, Sov. Sci. Rev. C1

(1980) 107–155.

[69] P. Weisz, Exact quantum sine-gordon soliton form factors, Physics Letters B 67 (1977),
no. 2 179–182.

[70] M. Karowski and P. Weisz, Exact Form-Factors in (1+1)-Dimensional Field Theoretic
Models with Soliton Behavior, Nucl. Phys. B 139 (1978) 455–476.

[71] M. Karowski, Exact S matrices and form-factors in (1+1)-dimensional field theoretic
models with soliton behaviour, Phys. Rept. 49 (1979) 229–237.

[72] F. Smirnov, Form factors in completely integrable models of quantum field theory, Adv.
Series in Math. Phys. 14 (1992) World Scientific, Singapore.

[73] V. P. Yurov and A. B. Zamolodchikov, Correlation functions of integrable 2-D models of
relativistic field theory. Ising model, Int. J. Mod. Phys. A 6 (1991) 3419–3440.

[74] P. Federbush, A two-dimensional relativistic field theory, Phys. Rev. 121 (Feb, 1961)
1247–1249.

[75] P. G. Federbush, Operator equations in two field theory models, Progress of Theoretical
Physics 26 (07, 1961) 148–150.

[76] O. Castro-Alvaredo and A. Fring, Mutually local fields from form factors, International
Journal of Modern Physics B 16 (June, 2002) 1915–1924.

[77] O. Castro-Alvaredo and A. Fring, Form factors from free fermionic fock fields, the
federbush model, Nucl. Phys. B 618 (Dec., 2001) 437–464.

[78] J. L. Cardy, O. A. Castro-Alvaredo and B. Doyon, Form factors of branch-point twist
fields in quantum integrable models and entanglement entropy, J. Stat. Phys. 130 (2008)
129–168.

[79] F. D. Gakhov, Boundary value problems. Dover Publications Inc. (New York), 2014.

33

http://arXiv.org/abs/0706.3992
http://arXiv.org/abs/2306.01640
http://arXiv.org/abs/2306.11064
http://arXiv.org/abs/2305.17068


[80] O. A. Castro-Alvaredo, S. Negro and I. M. Szécsényi, On the representation of minimal
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