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Abstract

We introduce ω-catoids as generalisations of (strict) ω-categories and in particular the 
higher path categories generated by computads or polygraphs in higher-dimensional re-
writing. We also introduce ω-quantales that generalise the ω-Kleene algebras recently 
proposed for algebraic coherence proofs in higher-dimensional rewriting. We then estab-
lish correspondences between ω-catoids and convolution ω-quantales. These are related to 
Jónsson-Tarski-style dualisms between relational structures and lattices with operators. We 
extend these correspondences to (ω, p)-catoids, catoids with a groupoid structure above 
some dimension, and convolution (ω, p)-quantales, using Dedekind quantales above some 
dimension to capture homotopic constructions and proofs in higher-dimensional rewrit-
ing. We also specialise them to finitely decomposable (ω, p)-catoids, an appropriate set-
ting for defining (ω, p)-semirings and (ω, p)-Kleene algebras. These constructions support 
the systematic development and justification of ω-Kleene algebra and ω-quantale axioms, 
improving on the recent approach mentioned, where axioms for ω-Kleene algebras have 
been introduced in an ad hoc fashion.

Keywords Higher catoids · Higher quantales · Multisemigroups · Convolution algebras · 
Categorification · Higher rewriting

Mathematics Subject Classification 18A05 · 18F75 · 06F07 · 18N30 · 68Q42 · 68V15

1 Introduction

Rewriting systems are fundamental models of computation. Their rules generate computa-
tions as sequences or paths of rewriting steps. Computational structure, such as confluence 
or Church–Rosser properties, is modelled geometrically in terms of rewriting diagrams and 
algebraically via inclusions between rewriting relations, which form abstractions of sets 

1 3

https://doi.org/10.1007/s10485-025-09817-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s10485-025-09817-z&domain=pdf&date_stamp=2025-6-26


C. Calk et al.

of rewriting paths [1]. Coherence properties of rewriting systems, like the Church–Rosser 
theorem, Newman’s lemma or normal form theorems, can be derived in algebras that sup-
port reasoning with binary relations: Kleene algebras, quantales or relation algebras [2–5].

Higher-dimensional rewriting generalises and categorifies this approach, using com-
putads or polygraphs as higher-dimensional rewriting systems and the higher-dimensional 
paths they generate instead of rewriting relations, relations between rewriting relations, and 
so forth [6, 7], see also [8] for a recent textbook. This approach has been developed mainly 
in the context of (strict) ω-categories, where higher-dimensional rewriting diagrams have 
globular shape. They are filled with higher-dimensional cells instead of relational inclusions 
(two-cells in Rel) as witnesses for the ∀∃-relationships between the higher-dimensional 
paths that form their faces. In fact, strict (ω, p)-categories, where cells of dimension greater 
than p are invertible, are often used in practice, for instance for showing that all parallel 
reduction cells of a higher-dimensional rewriting system are contractible. Applications of 
higher-dimensional rewriting range from string rewriting [9, 10] to the computational analy-
sis of coherence properties and cofibrant approximations in categorical algebra [11, 12].

It has recently been argued that higher Kleene algebras, which support algebraic reason-
ing about sets of higher-dimensional rewriting paths, can be used for calculating categorical 
coherence proofs in higher-dimensional rewriting [13]—just as Kleene algebras in the clas-
sical case. To capture such properties, their axioms must reflect the shapes of globular cells 
of (ω, p)-categories and their pasting schemes: the relationships between their face maps 
and the interchange laws that relate the cell compositions in different dimensions and direc-
tions. Yet a systematic construction of these algebras and a systematic justification of their 
axioms relative to the underlying (ω, p)-categories and polygraphs has so far been missing.

Drawing from a seemingly unrelated field, we use the correspondences, in the sense 
of modal logic, associated with the Jónsson-Tarski duality between (n + 1)-ary relational 
structures and boolean algebras with n-ary operators—a Stone-type dual equivalence—as a 
guide. In light of this duality, we might consider the multiplication of a Kleene algebra, for 
instance, as a binary modal operator and the fact that an arrow in a category is a composi-
tion of two others as a ternary relation, and look at correspondences between identities that 
hold in these structures, for instance, whether an associativity law on the relational structure 
makes the multiplication of the Kleene algebra associative, and vice versa. Balancing such 
correspondences leads us from ω-categories to ω-catoids, which are isomorphic to ternary-
relational structures with suitable relational laws, and from higher Kleene algebras to ω
-quantales. Imposing axioms on ω-catoids then allows us to derive axioms on ω-quantales 
and vice versa, until balance is achieved. While this could be considered for ω-catoids on 
a set X and ω-quantales on the powerset PX , we generalise this construction to correspon-
dence triangles for ω-catoids C, ω-quantales Q and convolution ω-quantales on function 
spaces QC , and further to (ω, p)-structures.

We briefly outline the simplest case to supply some basic intuition. A powerset quantale 
on a set X is a quantale on PX , that is, the complete lattice (PX, ⊆) and at the same time a 
monoid (PX, ·, 1) such that the binary operator  preserves arbitrary sups in both arguments. 
In every powerset quantale, the multiplication on singleton sets, the atoms in this structure, 
can be arranged into a ternary relation {x} ⊆ {y} · {z}, which satisfies a certain relational 
associativity law and has the elements of the set 1 as relational units (the laws of a monoid 
object in Rel). As each element x ∈ X  has exactly one left and one right relational unit, 
they can be assigned to x by a source map s : X → X  and a target map t : X → X . Using 
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a multioperation ⊙ : X × X → PX  instead of the ternary relation X × X × X → 2, so 
that x ∈ y ⊙ z ⇔ {x} ⊆ {y} · {z}, and emphasising source and target maps instead of unit 
elements, leads to the definition of a catoid [14, 15] as a structure (X, ⊙, s, t) where, for all 
x, y, z ∈ C,

 

∪
{x ⊙ v | v ∈ y ⊙ z} =

∪
{u ⊙ z | u ∈ x ⊙ y},

x ⊙ y ̸= ∅ ⇒ t(x) = s(y), s(x) ⊙ x = {x}, x ⊙ t(x) = {x}.

Powerset quantales on PX  thus give rise to catoids: associativity of ⊙ is derived using 
associativity of . Conversely, starting from a catoid (X, ⊙, s, t), one can construct a quan-
tale on PX  with composition A · B = {c ∈ a ⊙ b | a ∈ A, b ∈ B}. Tying these construc-
tions together yields a dual equivalence between the category of catoids (with suitable 
morphisms) and the category of powerset quantales (with suitable homomorphisms), an 
instance of the Jónsson-Tarski duality mentioned. The multioperation of the catoid is thus 
simply an alternative encoding of a ternary relation, while the multiplication of the powerset 
quantale is seen as binary operator on a boolean algebra. We are, however, not interested in 
such a duality itself, but in the correspondences between equations that are typical for the 
modal logics and algebras associated with it, as illustrated in the example of associativity 
above.

In the above construction, the powerset on X corresponds to a map X → 2 into the 
quantale 2 of booleans, and 2 can be replaced by an arbitrary quantale Q. This leads to 
correspondence triangles between catoids C, value quantales Q and convolution quantales 
QC  on function spaces, as depicted in Fig. 1. In the simplest case, if C is a catoid and Q a 
quantale, then QC  is a quantale; if QC  and Q are quantales, then C is a catoid; and if QC  is 
a quantale and C a catoid, then Q is a quantale [16, 17]. The last two of these two-out-of-
three properties require mild conditions on C or Q explained in Sect. 8. In the construction 
of the convolution quantale QC , if ⊙ : C × C → PC is the multioperation on the catoid C, 
if · : Q × Q → Q is the composition in the value quantale Q and if f, g are maps in C → Q, 
then the quantalic composition ∗ : QC × QC → QC  is the convolution

 

(f ∗ g)(x) =
∨

x∈y⊙z

f(y) · g(z),

where the sup is taken with respect to y and z. Functions δα
x : C → Q, which map y ∈ C 

to α ∈ Q if y = x and to the minimal element ⊥ of the quantale Q otherwise, now replace 
singleton sets as atoms. They allow us to obtain equations in C from those in QC  and Q, as 
well as Q from QC  and C. Units in two of these structures then give rise to a correspond-
ing unit in the third, see [17] and Sect. 8 for details. To construct a convolution or power 

Fig. 1 Basic two-out-of-three correspondence between catoid C, 
quantale Q and convolution quantale QC
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set quantale, it is thus necessary and sufficient to understand the structure of the underlying 
catoid (if the value quantale is fixed).

Our correspondence results for ω-catoids and ω-quantales are based on two extensions 
of this basic triangle. The first is a correspondence triangle between interchange catoids C, 
interchange quantales Q and convolution interchange quantales QC  [17]. Catoids are then 
equipped with two multioperations and quantales with two monoidal structures that interact 
via interchange laws. This first extension helps us to deal with the interchange laws in ω
-catoids which we wish to reflect within ω-quantales.

The second extension is a correspondence triangle between local catoids C, which exhibit 
the typical composition pattern of categories, modal value quantales Q and modal convolu-
tion quantales QC  [15]. Here, correspondences between properties of the source and target 
maps of catoids and the domain and codomain maps of modal quantales extend the basic 
ones. This second extension justifies the laws of modal Kleene algebras [4] and modal quan-
tales [18] relative to the catoid and category axioms. In powerset quantales, for instance, the 
domain and codomain operations in a powerset quantale arise as the direct images of the 
source and target maps of the corresponding catoid, and source and target maps in a catoid 
are obtained by restricting the application of domain and codomain operations of a powerset 
quantale to singleton sets. The second extension thus sets up the correspondence between 
the source and target structure in ω-catoids and the domain and codomain structure on ω
-catoids.

In combination, the correspondence for interchange laws and that for source/target and 
domain/codomain therefore help us to reflect the full structure of strict ω-categories in pow-
erset or convolution algebras, using ω-catoids to balance the equational axioms in the two 
kinds of structures in correspondence proofs.

The correspondence triangles between ω-catoids and ω-quantales, shown in Fig. 2, the 
main technical results in this article, require first of all definitions of these two structures. 
ω-Catoids are introduced in Sect. 6. They are obtained by adding globular shape axioms to 
those of local and interchange catoids and then generalising beyond two dimensions in light 
of previous axiomatisations of (single-set) ω-categories [19–22]. Based on the ω-catoid 
axioms and on previous axioms for globular n-Kleene algebras [13], we then introduce ω
-quantales in Sect. 7 as our main conceptual contribution, and justify their axioms through 
the correspondence proofs in Sect. 8. Results for n-structures can be obtained in the stan-
dard way by truncation; correspondence results for powerset ω-quantales are discussed in 
Sect. 11. In this article, ω-catoids, as simple generalisations of strict ω-categories, are there-
fore merely tools for deriving the ω-quantale axioms and vice versa. They do not constitute 
any attempt towards infinity categories.

Fig. 2 Correspondences between local ω-catoid C, ω-quantale Q and ω-quantale QC  on the left, and local 
(ω, p)-catoid C, (ω, p)-quantale Q and (ω, p)-quantale QC  on the right
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The ω-catoid axioms depend on rather delicate definedness conditions for compositions, 
captured multioperationally by mapping to non-empty sets. These are sensitive to Eckmann-
Hilton-style collapses, as discussed in Appendix A. They satisfy natural functorial proper-
ties, specialise to ω-category axioms and yield the globular cell structure expected, see 
Sect. 6. The Isabelle/HOL proof assistant with its automated theorem provers and counter-
example generators has allowed us to simplify these structural axioms quite significantly, 
which in turn simplified the development of ω-quantale axioms in Sect. 7 and the proofs of 
correspondence triangles in Sect. 8.

The extended correspondence triangles for (ω, p)-catoids and (ω, p)-quantales in 
Sect. 10, shown in Fig. 2, are compositional with respect to the ω-correspondences and 
those for groupoids and quantales with a suitable notion of involution or converse. These 
are established in Sect. 9, see Fig. 3. They adapt Jónsson and Tarski’s classical duality 
between groupoids and relation algebras [23] and extend it to convolution algebras. Catoids 
specialise automatically to groupoids when the two obvious axioms for inverses are added, 
see Sect. 3. Yet we use Dedekind quantales instead of relation algebras here. These are invo-
lutive quantales [24] equipped with a variant of the Dedekind law from relation algebra, see 
Sect. 5. Apart from the interaction between the converse and the modal structure needed for 
(ω, p)-quantales, we also discuss weaker variants of converse useful for semirings or Kleene 
algebras in this section.

The content of the remaining sections of this paper is summarised as follows. In Sect. 2 
and 4 we recall the basic properties of catoids and modal quantales. In Sect. 12 we develop 
the basic laws for modal box and diamond operators in ω-quantales in preparation for more 
advanced future coherence proofs in higher-dimensional rewriting. In Sect. 13 and 14 we 
specialise the ω- and (ω, p)-quantale axioms to those of ω-semirings and ω-Kleene algebras 
and their (ω, p)-variants. For general convolution algebras, this requires a finite decompo-
sition property on ω- and (ω, p)-catoids. Sections 13 and 14 also contain a detailed com-
parison of the ω-Kleene algebras and (ω, p)-Kleene algebras introduced in this paper with 
previous globular n-Kleene algebras [13] and their slightly different axioms. Overall, ω
-quantales offer greater flexibility when reasoning about higher rewriting diagrams than ω
-Kleene algebras. They admit arbitrary suprema and additional operations such as residuals, 
and they support reasoning with least and greatest fixpoints beyond the Kleene star. Already 
the proof of the classical Newman’s lemma in modal Kleene algebras [5] assumes certain 
suprema that are not present in all Kleene algebras. Nevertheless, convolution semiring and 
Kleene algebras have been widely studied in computer science [25] and their higher variants 
therefore certainly deserve an exploration.

Most results in this paper have been verified with the Isabelle/HOL proof assistant, but 
the development of interactive proof support for higher categories, higher-dimensional 
rewriting and categorical algebra remains part of a larger research programme, which 
requires substantial additions. Our Isabelle components can be found in the Archive of For-

Fig. 3 Correspondence between groupoid C, Dede-
kind quantale Q and convolution Dedekind quantale 
QC , where both quantales are assumed to carry a 
complete Heyting algebra structure
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mal Proofs [26–28]. The components contain specifications and basic libraries for 2-catoids, 
groupoids, 2-quantales and their ω-variants, as well as for Dedekind quantales, and they 
cover the basic properties of these structures that feature in this paper. All extensions to 
powersets have been formalised with Isabelle/HOL, but neither the constructions of convo-
lution algebras nor the full correspondence triangles. In addition to the Isabelle proofs, we 
present the most important proofs for this article in the relevant sections. All other proofs 
can be found in Appendix B or the references given, unless they are trivial.

Finally, Appendix C provides diagrams for the most important structures used in this 
articles and their relationships.

2 Catoids

In preparation for the ω-catoids in Sect. 6 we start with recalling the definitions and basic 
properties of catoids and related structures [15]; see also the Isabelle theories [26] for 
details. General background on multisemigroups can be found in [29] and the references 
given there. All proofs in this section have been checked with Isabelle.

A catoid (C, ⊙, s, t) consists of a set C, a multioperation ⊙ : C × C → PC and source 
and target maps s, t : C → C. These satisfy, for all x, y, z ∈ C,

 

∪
{x ⊙ v | v ∈ y ⊙ z} =

∪
{u ⊙ z | u ∈ x ⊙ y},

x ⊙ y ̸= ∅ ⇒ t(x) = s(y), s(x) ⊙ x = {x}, x ⊙ t(x) = {x}.

The first catoid axiom expresses multirelational associativity. If we extend ⊙ from 
C × C → PC to PC × PC → PC such that, for all X, Y ⊆ C,

 

X ⊙ Y =
∪

x∈X,y∈Y

x ⊙ y,

and write x ⊙ X  for {x} ⊙ X  and likewise, then the associativity axiom simplifies to 
x ⊙ (y ⊙ z) = (x ⊙ y) ⊙ z. A multisemigroup can thus be defined as a set equipped with 
an associative multioperation [29]. From now on, we often write xy instead of x ⊙ y. We 
also write s(X) and t(X) for the direct images of X under s and t, respectively, for instance, 
s(x ⊙ y) or s(xy) as well as t(x ⊙ y) or t(xy).

The second catoid axiom, the weak locality axiom, states that the target t(x) of x and the 
source s(y) of y are equal whenever the composite of x and y is defined, that is, x ⊙ y ̸= ∅. 
We write ∆(x, y) for x ⊙ y ̸= ∅ and call ∆ the domain of definition of ⊙.

The third and fourth catoid axioms are left and right unit axioms and we refer to s(x) and 
t(x) as the left unit and right unit of x, respectively.

A catoid C is functional if x, x′ ∈ yz imply x = x′ for all y, z ∈ C, and local if 
t(x) = s(y) ⇒ xy ̸= ∅ for all x, y ∈ C. A category is then a local functional catoid.

Catoids thus generalise categories beyond locality and functionality. Local functional 
catoids formalise categories in single-set style [30], see also [21, Chapter XII], and with 
arrow composition in diagrammatic order. In functional catoids, composition is a partial 
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operation that maps either to singleton sets or to the empty set. Locality imposes the stan-
dard composition pattern ∆(x, y) ⇔ t(x) = s(y) of arrows in categories.

Composition in a catoid is total if ∆ = C × C. In every total catoid C, there is precisely 
one element which is the source and target element of every element in C. Total multi-
operations are known as hyperoperations. Total operations are therefore total functional 
multioperations.

Remark 2.1 In the definition of catoids and throughout this text, we are using “set” indiffer-
ently for small sets and classes and ignore the well known foundational issues, which do not 
arise in our setting. Distinctions can be made as for standard categories. See, for instance, 
Mac Lane’s book [21] and Example 2.8 for a discussion.

Catoids form a category with respect to several notions of morphism. A catoid mor-

phismf : C → D between catoids C and D must preserve compositions, sources and targets:

 f(x ⊙C y) ⊆ f(x) ⊙D f(y), f ◦ sC = sD ◦ f, f ◦ tC = tD ◦ f,

where, on the left-hand side of the left identity the image of the set x ⊙C y with respect to 
f is taken. A morphism f : C → D is bounded if f(x) ∈ u ⊙D v implies that x ∈ y ⊙C z, 
u = f(y) and v = f(z) for some y, z ∈ C.

Morphisms of categories, as local functional catoids, are functors. The inclusion in the 
definition of morphisms reflects that x ⊙C y = ∅ whenever the composition is undefined. 
Bounded morphisms are widely used in modal and substructural logics.

Example 2.2 Bounded morphisms between catoids need not satisfy 
f(x ⊙C y) = f(x) ⊙D f(y). Consider the discrete catoid on C = {a, b} with s = idC = t 
and

 
xy =

{

{x} if x = y,

∅ otherwise.

The constant map fb : x �→ b on C is clearly a catoid endomorphism. It is bounded 
because every x ∈ C satisfies fb(x) ∈ bb, x ∈ xx and b = fb(x). Nevertheless we have 
fb(ab) = ∅ ̸= {b} = fb(a)fb(b).

The opposite of a catoid is defined as for categories. It is a structure in which s and t are 
exchanged and so are the arguments in ⊙. The opposite of a (local, functional, total) catoid 
is again a (local, functional, total) catoid. Properties of catoids translate through this duality.

Properties of catoids and related structures have been collected in [15] and our Isabelle 
theories [26]. Here we list only some that are structurally interesting or needed in proofs 
below.

Lemma 2.3 In every catoid, 

1. s ◦ s = s, t ◦ t = t, s ◦ t = t and t ◦ s = s,

2. s(x) = x ⇔ x = t(x),
3. s(x)s(x) = {s(x)} and t(x)t(x) = {t(x)},

1 3
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4. s(x)t(y) = t(y)s(x),
5. s(s(x)y) = s(x)s(y) and t(xt(y)) = t(x)t(y).

Note that direct images with respect to s and t are taken in the left-hand sides of the 
identities in (5). According to (2), the set of fixpoints of s equals the set of fixpoints of t. We 
henceforth write C0 for this set.

Lemma 2.4 Let C be a catoid. Then C0 = s(C ) = t(C ).

The proof is immediate from Lemma 2.3(1). Hence C0 consists of the units in C which 
we also call 0-cells, by analogy with categories. Similarly, the elements of C can be viewed 
as 1-cells, the elements of C0 as degenerate 1-cells (s(x) = t(x) holds for all x ∈ C0 by 
Lemma 2.3(2)) and those of C − C0 as proper or non-degenerate 1-cells. Further, units of 
catoids can be seen as orthogonal idempotents.

Lemma 2.5 Let C be a catoid. For all x, y ∈ C0 , ∆(x, y) ⇔ x = y and

 
xy =

{

{x} ifx = y,
∅ otherwise.

The next two lemmas recall an alternative equational characterisation of locality, which 
is important for the correspondence with modal quantales in Sect. 8.

Lemma 2.6 In every catoid, 

1. s(xy) ⊆ s(xs(y)) and t(xy) ⊆ t(t(x)y),
2. ∆(x, y) implies s(xy) = {s(x)} and t(xy) = {t(y)}.

Item (2) of the following lemma features the equational characterisation of locality 
mentioned.

Lemma 2.7 In every catoid C, the following statements are then equivalent: 

1. C is local,
2. s(xy) = s(xs(y)) and t(xy) = t(t(x)y), for all x, y ∈ C,
3. ∆(x, y) ⇔ t(x)s(y) ̸= ∅, for all x, y ∈ C.

Many examples of catoids and related structures are listed in [15]. Here we mention only 
a few. First we summarise the relationship with categories.

Example 2.8 The category of local functional catoids with (bounded) morphisms is isomor-
phic to the category of single-set categories á la MacLane [21, Chapter XII] with (bounded) 
morphisms [15, Proposition 3.10]. The elements of single-set categories are arrows or 
1-cells of traditional categories. The objects of 0-cells of traditional categories correspond 
bijectively to identity 1-cells and thus to units of catoids.
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Example 2.9 The free category or path category generated by a given digraph s, t : E → V , 
for a set E of edges or 1-generators and a set V of vertices or 0-generators, is a fortiori a 
catoid. Recall that morphisms of path categories are finite paths between vertices, repre-
sented as alternating sequences of vertices and edges. Source and target maps extend from 
edges to paths, and we write π : v → w for a path π with source v and target w. Paths 
π1 : u → v and π2 : v → w can be composed to the path vw : u → w by gluing their ends. 
Identities are constant paths of length zero such as v : v → v. See [21] for details.

Digraphs themselves can be modelled as single-set structures (X, s, t) satisfying 
s ◦ s = s, t ◦ t = t, s ◦ t = t and t ◦ s = s. These conditions make X0 = s(X) = t(X) the 
set of vertices.

In higher-dimensional rewriting, digraphs are referred to as 1-computads or 1-poly-
graphs; in traditional rewriting, they correspond to abstract rewriting systems. The free cat-
egory generated by a digraph supplies rewriting paths, the main object of study in rewriting 
systems. The recursive construction of higher-dimensional computads or polygraphs has 
two-steps: for any dimension n ≥ 0, assuming that k-generators have been supplied for all 
0 ≤ k ≤ n, form the free n-category on n-generators, then add (n + 1)-generators over this 
free category.

The next example presents a catoid which is not a category and which will recur across 
this text.

Example 2.10 Let Σ∗ be the free monoid generated by the finite set Σ. The shuffle 
catoid(Σ∗, ∥, s, t) on Σ∗ has the total commutative multioperation ∥ : Σ∗ × Σ∗ → PΣ∗ as 
its composition. For all a, b ∈ Σ and v, w ∈ Σ∗, it is defined recursively as

 ε∥v = {v} = v∥ε and (av)∥(bw) = a(v∥(bw)) ∪ b((av)∥w),

where ε denotes the empty word. The source and target structure of the shuffle catoid is 
trivial: s(w) = ε = t(w) for all w ∈ Σ∗. It is local because of totality and triviality of s and 
t. It is obviously not functional and hence not a category.

Remark 2.11 Catoids can be seen as multimonoids, that is, multisemigroups with multiple 
units, which generalise single-set categories with multiple units  [21, Chapter I] to multi-
operations. Multimonoid morphisms are then unit-preserving multisemigroup morphisms, 
which ignore source- and target-preservation. Categories of catoids and multimonoids, both 
with the obvious morphisms, are isomorphic; the functional relationship between elements 
of multimonoids and their left and right units determines source and target maps [14, 15, 
Proposition 3.10]. Categories of local partial multimonoids are therefore isomorphic to cat-
egories. See [14] for the appropriate notion of locality.

Remark 2.12 Multioperations X × X → PX  are isomorphic to ternary relations 
X → X → X → 2. Writing Rx

yz
 for x ∈ y ⊙ z allows us to axiomatise catoids alterna-

tively as relational structures (C, R, s, t) that satisfy the relational associativity axiom 
∃v. R

w

xv ∧ R
v
yz ⇔ ∃u. R

u
xy ∧ R

w

uz
, the weak locality axiom ∃z. R

z

xy
⇒ t(x) = s(z) and 

the relational unit axioms Rx
s(x)x

 and Rx
xt(x). Such relational monoids are, in fact, monoids 

in the monoidal category Rel with the standard tensor [31, 32]. Functionality and locality 

1 3

Page 9 of 67    25 



C. Calk et al.

translate readily to relations. Relational variants of catoids have been studied in [14]. Mor-
phisms and bounded morphisms of ternary relations are standard for modal and substruc-
tural logics [33, 34]; categories of catoids and relational monoids are once again isomorphic 
[15].

Ternary and more generally (n + 1)-ary relations appear as duals of binary and more 
generally n-ary modal operators on boolean algebras in Jónsson and Tarski’s duality theory 
for boolean algebras with operators [23, 33–35].

Remark 2.13 A partial operation ⊙̂ : ∆ → C, where y ⊙̂ z denotes the unique element that 
satisfies y ⊙̂ z ∈ y ⊙ z whenever ∆(y, z), can be defined in any functional catoid. Using 
this partial operation, x ∈ y ⊙ z if and only if ∆(y, z) and x = y ⊙̂ z.

3 Groupoids

Higher-dimensional rewriting usually requires rewriting steps to be invertible above a cer-
tain dimension. This amounts to using groupoids, see [36] for a survey. Particularly relevant 
to us is the work of Jónsson and Tarski [23, Sect. 5] on the correspondence between grou-
poids and relation algebras, which we revisit in the slightly different setting of Dedekind 
quantales in Sect. 9. Several properties that feature in this section are theirs. In Sect. 10, 
catoids are combined with groupoids to (n, p)-catoids and (ω, p)-catoids, which specialise 
to the (n, p)-categories and (ω, p)-categories used in higher-dimensional rewriting. Interest-
ingly, catoids become groupoids and hence categories when the natural axioms for inverses 
are added. All proofs in this section have been checked with Isabelle [26].

A groupoid is a catoid C with an inversion operation (−)− : C → C such that, for all 
x ∈ C,

 xx− = {s(x)} and x−x = {t(x)}.

To justify this definition, we proceed in two steps to derive locality and functionality, show-
ing selected proofs only. The remaining ones can be found in Appendix B.

Lemma 3.1 Let X be a catoid with operation (−)− : C → C  that satisfies s(x) ∈ xx
− and 

t(x) ∈ x
−

x  for all x ∈ C . Then 

1. C is local,
2. s(x−) = t(x) and t(x−) = s(x),
3. xy = {s(x)} implies x− = y and yx = {t(x)} implies x− = y,
4. s(x)− = s(x) and t(x)− = t(x).

Proof For (1), suppose t(x) = s(y). Then {x} = xt(x) = xs(y) = x(yy−) = (xy)y−. 
Hence x = uy− and u ∈ xy hold for some u ∈ C. Thus ∆(x, y) and C is local.  □

For proofs of (2)-(4) see Appendix B.
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Lemma 3.2 In every groupoid, 

1. (x−)− = x,
2. x ∈ yz ⇔ y ∈ xz− ⇔ z ∈ y−x.

See Appendix B for proofs.

Proposition 3.3 Every groupoid (as defined above) is a category.

Proof In light of Lemma 3.1(1) it remains to check functionality. Suppose x, x′ ∈ yz. Then 
z ∈ y−x by Lemma 3.2(2) and x′ ∈ yy−x = s(y)x = s(x)x = {x} using the first assump-
tion and v ∈ xy ⇒ s(v) = s(x), which holds in any catoid by Lemma 2.7, in the second 
step. Thus x′ = x.  □

Lemma 3.4 The following cancellation properties hold in every groupoid: 

1. s(x) = t(z) = s(y) and zx = zy imply x = y,
2. t(x) = s(z) = t(y) and xz = yz imply x = y.

See Appendix B for proofs. The cancellation properties correspond to the fact that every 
morphism in a groupoid is both an epi and a mono.

Lemma 3.5 In every groupoid, 

1. x ⊙̂ x− ⊙̂ x = x,
2. t(x) = s(y) implies x− ⊙̂ x = y− ⊙̂ y,
3. (x ⊙̂ y)− = y− ⊙̂ x−.

The last identity follows from Lemma 3.2(2), the others are straightforward.
The following example is particularly interesting in the context of Dedekind quantales 

in Sect. 5.

Example 3.6 The pair groupoid(X × X, ⊙, s, t, (−)−) on the set X is defined, for all 
a, b, c, d ∈ X , by

 

(a, b) ⊙ (c, d) =
{

{(a, d)} if b = c,
∅ otherwise,

s((a, b)) = (a, a), t((a, b)) = (b, b), (a, b)− = (b, a).

Pair groupoids give rise to algebras of binary relations, see Example 5.5 below.
The final example in this section builds on the path categories from Example 2.9. It is 

relevant for modelling higher homotopies in the context of (n, p)-catoids and (ω, p)-catoids 
and categories.
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Example 3.7 The free groupoid generated by a digraph is obtained by adding formal inverses 
to each edge and considering paths up to simplification. For instance, if a, b, c, d are appro-
priate edges, then abc

−1
cb

−1
d = ad, see also [37, Chapter 4].

4 Modal Quantales

The second ingredient of the convolution algebras in this article are quantales, more specifi-
cally quantales that extend not only the composition and unit structure of catoids, categories 
and groupoids, but also their source and target structure. It has been shown in [15] that 
source and target maps extend to domain and codomain maps on quantales, which further 
allow defining modal diamond and box operators on them. The resulting quantales with 
axioms for domain and codomain operators are therefore known as modal quantales [18]. 
In this section we recall their definition and basic properties. Most of this development has 
been formalised with Isabelle [27].

A quantale(Q, ≤, ·, 1) is a complete lattice (Q, ≤) with an associative composition , 
which preserves all sups in both arguments and has a unit 1. See [38] for an introduction. 
We write 

∨
, ∨, 

∧
 and ∧ for sups, binary sups, infs and binary infs in a quantale, and ⊥ and 

⊤ for the smallest and greatest element, respectively. A subidentity of a quantale Q is an 
element α ∈ Q such that α ≤ 1.

A quantale is distributive if its underlying lattice is distributive and boolean if its under-
lying lattice is a boolean algebra, in which case we write − for boolean complementation.

We henceforth use greek letters for elements of quantales to distinguish them from ele-
ments of catoids, and we often write αβ for α · β.

Example 4.1 We need the quantale of booleans 2, which is a boolean quantale with carrier 
set {0, 1}, order 0 < 1, max as binary sup, min as binary inf and composition, 1 as its unit 
and λx. 1 − x as complementation. It allows constructing powerset quantales over catoids 
and categories, using 2 as a value algebra.

A Kleene star(−)∗ : Q → Q can be defined on any quantale Q, for α0 = 1 and 
αi+1 = ααi, as

 

α∗ =
∨

i≥0

αi
.

A domain quantale [18] is a quantale Q with an operation dom : Q → Q such that, for all 
α, β ∈ Q,

 

α ≤ dom(α)α, dom(αdom(β)) = dom(αβ), dom(α) ≤ 1,

dom(⊥) = ⊥, dom(α ∨ β) = dom(α) ∨ dom(β).

These domain axioms are known from domain semirings [4], see also Sect. 13. We call the 
first axiom the absorption axiom. The second expresses locality of domain. The third is the 
subidentity axiom, the fourth the bottom axiom and the final the (binary) sup axiom. Most 
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properties of interest translate from domain semirings to domain quantales. An equational 
absorption law dom(α)α = α is derivable.

We define Qdom = {α ∈ Q | dom(α) = α}. As for catoids, Qdom = dom(Q) holds 
because dom ◦ dom = dom is derivable from the domain quantale axioms. Moreover, 
(Qdom, ≤) forms a bounded distributive lattice with ∨ as binary sup,  as binary inf, ⊥ 
as least element and 1 as greatest element. We call Qdom the lattice of domain elements 
or simply domain algebra. In a boolean quantale, Qdom is the set of all subidentities and 
hence a complete boolean algebra.

Quantales are closed under opposition, which exchanges the arguments in compositions. 
A codomain quantale(Q, cod) is then a domain quantale (Qop, dom). Further, a modal 

quantale [18] is a domain and codomain quantale (Q, ≤, ·, 1, dom, cod) that satisfies the 
compatibility axioms

 dom ◦ cod = cod and cod ◦ dom = dom.

These guarantee that Qdom = Qcod, a set which we denote by Q0 by analogy to catoids.

Example 4.2 Let (C, ⊙, s, t) be a local catoid. Then PC can be equipped with a modal 
quantale structure. The monoidal structure is given by the extended composition 
⊙ : PC × PC → PC of the catoid and the set C0. Its lattice structure is given by ⊆, 

∪
 and ∩

. Its domain and codomain structure is given by dom(X) = s(X) and cod(X) = t(X), 
the images of any set X ⊆ C with respect to s and t [18]. As a powerset quantale, that is, a 
quantale on a power set, PC is in fact an atomic boolean quantale. Note that locality of C is 
needed for locality of PC. This result has the following instances, among others. 

1. Every category C extends to a modal quantale on PC.
2. The path category over any digraph, more specifically, extends to a modal quantale at 

powerset level. Domain and codomain elements are sets of vertices, 1 is the set V of 
all vertices of the digraph. In the context of rewriting, such quantales allow reasoning 
about sets of rewriting paths and in particular shapes of rewriting diagrams.

3. Every pair groupoid on the set X extends to a modal quantale of binary relations on X with 
the standard relational domain and codomain maps dom(R) = {(x, x) | ∃y. (x, y) ∈ R} 
and cod(R) = {(y, y) | ∃x. (x, y) ∈ R}, and with ⊙ extended to the relational compo-
sition R · S = {(x, y) | ∃z.(x, z) ∈ R ∧ (z, y) ∈ S}. The quantalic unit is the identity 
relation {(x, x) | x ∈ X}. Quantales of binary relations and similar algebras can be 
used to reason about rewrite relations and once again about shapes of rewrite diagrams 
[2, 3].

4. The shuffle catoid on Σ∗, considered in Example 2.10 extends to the commutative quan-
tale of shuffle languages on Σ, a standard model of interleaving concurrency in comput-
ing. The quantalic composition is the shuffle product X∥Y =

∪
{x∥y | x ∈ X ∧ y ∈ Y } 

of languages, which are subsets of Σ∗. Its monoidal unit is {ε}, the domain/codomain 
structure is therefore trivial.

For further examples of modal quantales and their underlying catoids see Sect. 8 and 
[18].
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Remark 4.3 Locality of catoids in the form x ⊙ y ̸= ∅ ⇔ t(x)s(y) ̸= ∅, as in Lemma 2.7, 
corresponds to

 α · β ̸= ⊥ ⇔ cod(α) · dom(β) ̸= ⊥

in modal quantales. This is a consequence of locality of dom and cod in modal semirings 
[4] and modal quantales. In modal quantales, it is even equivalent to locality of dom and 
cod. Yet the more precise locality property t(x)s(y) ̸= ∅ ⇔ t(x) = s(y) does not hold in 
all modal quantales.

Consider for instance the path category over the digraph v1

e1

←−v2

e2

−→v3

e3

−→v4 
and the sets of paths X = {(v2, e1, v1), (v2, e2, v3)} and Y = {(v3, e3, v4)}. Then 
cod(X) = {v1, v3} ̸= {v3} = dom(Y ) whereas X · Y = {(v2, e2, v3, e3, v4)} ̸= ∅.

Nevertheless, for any local catoid C with elements a and b,

 

cod({a}) ∩ dom({b}) ̸= ∅ ⇔ {t(a)} ∩ {s(b)} ̸= ∅

⇔ {t(a)} = {s(b)}

⇔ cod({a}) = dom({b})

holds at least for the atoms {a} and {b} in the quantale PC.

5 Dedekind Quantales

In the previous section we have seen how catoids and categories give rise to modal quanta-
les at powerset level. One may therefore wonder how the inverse structure of groupoids is 
reflected in quantales. In a slightly different setting, Jónsson and Tarski have already given 
an answer, extending groupoids to (powerset) relation algebras [23] along the lines outlined 
in the previous section, so that the inverse of the groupoid corresponds to the converse of the 
relation algebra. Yet this correspondence ignores the source/target and domain/codomain 
structures. To translate their results to quantales, we consider Dedekind quantales: quanta-
les with an involution that satisfies the Dedekind law from relation algebra. Interestingly, 
domain and codomain operations can be defined explicitly in Dedekind quantales, whereas 
they need to be axiomatised in weaker kinds of quantales. For applications in higher-dimen-
sional rewriting along the lines of [13], quantales are combined with Dedekind quantales in 
Sect. 10. This yields (n, p)-quantales and (ω, p)-quantales, which are related to (n, p)- and 
(n, ω)-catoids via correspondence proofs.

Dedekind quantales are single-object versions of the modular quantaloids studied by 
Rosenthal [39], but much of the material introduced in this section is new. All proofs in this 
section (except for Lemma 5.14) can be found in Appendix B and our Isabelle theories [27] 
(including the proofs for this Lemma). Isabelle has also been instrumental in finding the 
counterexamples in this section.

An involutive quantale [24] is a quantale Q with an operation (−)◦ : Q → Q that satisfies

 
α◦◦ = α, (

∨

A)◦ =
∨

{α◦ | α ∈ A}, (αβ)◦ = β◦α◦.

Involution thus formalises opposition within the language of quantales.
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Remark 5.1 Replacing the first two axioms by α◦ ≤ β ⇔ α ≤ β◦ yields an equivalent axi-
omatisation. Involution is therefore self-adjoint.

Lemma 5.2 In every involutive quantale, the following properties hold: 

1. α ≤ β ⇒ α◦ ≤ β◦,
2. (α ∨ β)◦ = α◦ ∨ β◦,
3. (

∧
A)◦ =

∧
{α◦ | α ∈ A} and (α ∧ β)◦ = α◦ ∧ β◦,

4. ⊥◦ = ⊥, 1◦ = 1 and ⊤◦ = ⊤,
5. α◦ ∧ β = ⊥ ⇔ α ∧ β◦ = ⊥,
6. α∗◦ = α◦∗.

A Dedekind quantale is an involutive quantale in which the Dedekind law

 αβ ∧ γ ≤ (α ∧ γβ◦)(β ∧ α◦γ).

holds. It is standard in relation algebra. Next we present an alternative definition.

Lemma 5.3 An involutive quantale is a Dedekind quantale if and only if the following modu-

lar law holds:

 αβ ∧ γ ≤ (α ∧ γβ◦)β.

The modular law is standard in relation algebra as well.
An extensive list of properties of Dedekind quantales can be found in our Isabelle theo-

ries. Here we only list some structurally important ones.

Lemma 5.4 The following properties hold in every Dedekind quantale: 

1. the strong Gelfand property α ≤ αα◦α,
2. Peirce’s lawαβ ∧ γ◦ = ⊥ ⇔ βγ ∧ α◦ = ⊥,
3. the Schröder lawsαβ ∧ γ = ⊥ ⇔ β ∧ α◦γ = ⊥ ⇔ α ∧ γβ◦ = ⊥.

The strong Gelfand property (the name has been borrowed from [40]) has been used pre-
viously by Ésik and co-workers to axiomatise relational converse in semigroups and Kleene 
algebras, where infs are not available [41, 42]. Similarly, and for the same reason, it appears 
in globular n-Kleene algebras and their applications in higher-dimensional rewriting [13]. 
This is our main reason for including it here and revisiting it in Sect. 14. Peirce’s law and the 
Schröder laws are standard in relation algebra. Indeed, Dedekind quantales bring us close to 
relation algebras [43–45]; but see our more precise comparison below.

Example 5.5 Let G be a groupoid. Then PG forms a relation algebra over G [23]. As a 
powerset algebra, the underlying lattice of PG is complete (even boolean and atomic). 
Hence every groupoid extends to a Dedekind quantale in which dom(X) = G0 ∩ XX◦ 
and cod(X) = G0 ∩ X◦X  for every X ⊆ G. The derivation of the Dedekind law follows 
more or less that of Jónsson and Tarski for relation algebras [23]. It needs neither the bool-
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ean algebra structure present in relation algebras nor the completeness of the lattice of the 
Dedekind quantale. We present a more general derivation of this law in Theorem 9.2 and 
revisit this example more formally in Corollary 11.4.

Again there are interesting instances. 

1. Each free groupoid generated by some digraph extends to a Dedekind quantale on sets 
of paths. The converses in this quantale are sets of formal inverses in the groupoid.

2. The pair groupoid on a set X extends to the Dedekind quantale of binary relations on 
P(X × X) with standard relational converse R◦ = {(y, x) | (x, y) ∈ R} extended 
from the inverse operation on the pair groupoid.

Next we turn to the domain and codomain structure on Dedekind quantales. By contrast 
to general quantales, it can be defined explicitly in involutive quantales using

 dom(α) = 1 ∧ αα◦
and cod(α) = 1 ∧ α◦α,

or alternatively dom(α) = 1 ∧ α⊤ and cod(α) = 1 ∧ ⊤α, as in relation algebra.
But only Dedekind quantales are expressive enough to make these two definitions coin-

cide, derive the natural domain and codomain laws needed for defining suitable modal oper-
ators (as in Sect. 12 below) and establish the correspondence with respect to groupoids in 
Sects. 9 and 11.

Proposition 5.6 Every Dedekind quantale is a modal quantale.

A proof using the explicit definitions of dom and cod can be found in Appendix B. In 
addition, we list some properties that are not available in modal quantales.

Lemma 5.7 In every Dedekind quantale, the following properties hold: 

1. dom(α) = 1 ∧ α⊤,
2. dom(α)⊤ = α⊤,
3. (dom(α))◦ = dom(α),
4. dom(α◦) = cod(α).

Next we present a natural example of a modal quantale that is not Dedekind.

Example 5.8 The law (1) fails in the modal path quantales from Example 4.2, where formal 
inverses are not assumed in the underlying catoid. Recall that, in this model, 1 is the set V 
of all vertices of the digraph. Thus V ∩ P⊤ = ∅ unless the set P of paths contains a path of 
length one and dom(P ) = ∅ if and only if P = ∅.

The next lemma shows more directly that Dedekind quantales are more expressive than 
involutive quantales
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Lemma 5.9 Neither the strong Gelfand property nor the modular law holds in all involutive 

quantales.

Proof In the involutive quantale ⊥ < a < ⊤ = 1 with multiplication aa = ⊥( the rest 
being fixed) and (−)◦ = id, the strong Gelfand property fails because aa

◦
a = ⊥ < a. The 

modular and (Dedekind law) fail in this involutive quantale because

 (1 ∧ aa)a(1 ∧ aa)(a ∧ 1a) = 0 < 1a ∧ a = a.

 □  

The following example refines this result.

Example 5.10 Adding the strong Gelfand property to the involutive quantale axioms does 
not imply the modular law. The involutive quantale defined by

and (−)◦ = id satisfies the strong Gelfand property, but

 1a ∧ ⊤ = a > ⊥ = (1 ∧ ⊤a)a.

The domain and codomain operations of modal semirings, even finite ones, need not be 
uniquely determined [4, Lemma 6.4]. A modal semiring can therefore carry several domain/
codomain structures. Yet they are uniquely determined in modal semirings over boolean 
algebras. Finite modal semirings and finite modal quantales are the same. One may there-
fore ask whether there can be other domain/codomain structures on Dedekind quantales than 
that given by the explicit definitions above. The answer is the same as for modal semirings.

For the sake of this argument, we call modal Dedekind quantale a Dedekind quantale 
that is also a modal quantale, that is, it is equipped with a map δ−( domain) and a map δ+( 
codomain) that satisfy axioms from Sect. 4. We start with a technical lemma.

Lemma 5.11 In every modal Dedekind quantale,

 δ−(α)◦ = δ−(α) and δ+(α)◦ = δ+(α).

Lemma 5.12 There is a modal distributive Dedekind quantale in which δ− ̸= dom and 

δ+ ̸= cod .
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Proof In the modal distributive Dedekind quantale with ⊥ < a < ⊤ = 1, multiplication aa = a, 
δ−(a) = 1 = δ+(a) and (−)◦ = id, we have δ−(a) = δ+(a) = ⊤ ̸= a = 1 ∧ aa◦ = 1 ∧ a◦a. 
 □

Remark 5.13 In any boolean modal quantale Q, the set Q0 equals the boolean subalgebra 
of all subidentities, and domain and codomain are uniquely defined. The proof for modal 
semirings [4, proof of Theorem 6.12] translates directly. Thus, in any boolean modal Dede-
kind quantale, δ−(α) = 1 ∧ αα◦ = dom(x) and δ+(α) = 1 ∧ α◦α = cod(x).

Boolean Dedekind quantales are strongly related to relation algebras.

Lemma 5.14 In any boolean Dedekind quantale, (−α)◦ = −(α◦) and the residual 

lawα◦
− (αβ) ≤ −β is derivable.

A residual law appears in Tarski’s original axiomatisation of relation algebra [43]. A 
boolean Dedekind quantale is thus a relation algebra over a complete lattice, and a relation 
algebra a boolean Dedekind quantale in which only finitary sups and infs are required to 
exist. Relation algebras are formed over boolean algebras that need not be complete.

Finally we relate the explicit definition of dom and cod in Dedekind quantales with a 
definition previously used in higher-dimensional rewriting in a Kleene-algebraic structure 
where infs are not available.

Remark 5.15 The conditions dom(α) ≤ αα◦ and cod(α) ≤ α◦α have been used for 
higher-dimensional rewriting with globular 2-Kleene algebras [46], see also Sect. 14. They 
are consequences of the explicit definition of domain and codomain in Dedekind quan-
tales. In involutive modal quantales, each of them implies the strong Gelfand property, 
dom(α) ≤ αα◦ is equivalent to dom(α) = 1 ∧ αα◦ and cod(α) = 1 ∧ α◦α is equivalent to 
cod(α) ≤ α◦α. Yet none of these laws need to hold in such quantales: in the modal distribu-
tive Dedekind quantale used in the proof of Lemma 5.12, 

 dom(a) = cod(a) = ⊤ > a = aa
◦ = a

◦
a.

6 Higher Catoids

In this section we present our first conceptual contribution: axioms for n-catoids and ω
-catoids that generalise definitions of strict n-categories and ω-categories. These are the 
structures from which we develop axioms for higher quantales in Sect. 7, using the proofs 
in Sect. 8. Mac Lane has outlined axiomatisations of single-set 2-categories, n-categories 
and ω-categories, imposing a 2-category structure on each pair of single-set categories Ci 
and Cj  for 0 ≤ i < j < ω  [21, Chapter XII]. Here, ω-category means strict globular ∞
-category. Similar single-set approaches appear, for instance, in [19, 20, 22]. We adapt 
MacLane’s axioms to catoids. We start from a uniform axiomatisation that includes the case 
of n or ω, but then focus mainly on ω-catoids. As previously, most of the material in this sec-
tion has been formalised with Isabelle [28], and Isabelle has been instrumental in analysing 
and reducing this axiomatisation.
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For an ordinal α ∈ {0, 1, . . . , ω}, an α-catoid is a structure (C, ⊙i, si, ti)0≤i<α such that 
each (C, ⊙i, si, ti) is a catoid and these structures interact as follows:

 ● for all i ̸= j, 

 

si ◦ sj = sj ◦ si, si ◦ tj = tj ◦ si, ti ◦ tj = tj ◦ ti,

si(x ⊙j y) ⊆ si(x) ⊙j si(y), ti(x ⊙j y) ⊆ ti(x) ⊙j ti(y),

 ● and for all i < j, 

 

(w ⊙j x) ⊙i (y ⊙j z) ⊆ (w ⊙i y) ⊙j (x ⊙i z),

sj ◦ si = si, sj ◦ ti = ti, tj ◦ si = si, tj ◦ ti = ti.

An α-category is a local functional α-catoid, that is, each (C, ⊙i, si, ti) is local and 
functional.

As the (C, ⊙i, si, ti) are catoids, si(C) = ti(C) for each i < α by Lemma 2.4. We write 
Ci for this set of i-cells of C. We also write ∆i for the domain of definition of ⊙i and refer 
to the source and target cells of cells as (lower and upper) faces.

The axioms after the first bullet point impose that source and target maps at each dimen-
sion i are catoid (endo)morphisms of the catoid (C, ⊙j , sj , tj) at each dimension j ̸= i. In 
the local functional case of α-categories, these morphisms become functors, as expected. 
(In the ω-category of globular sets, the axioms in the first line are known as globular laws.)

The interchange axioms in the first line of the second bullet point ensure that ⊙i is a 
catoid bi-morphism with respect to ⊙j , for all i < j.

The whisker axioms in the second line of this bullet point, together with the catoid laws 
in Lemma 2.3(1), imply that sj(x) = tj(x) = x for all x ∈ Ci, and thus x ∈ Cj  for all 
j ≥ i. Lower dimensional cells thus remain units in higher dimensions and

 C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ C.

We may thus regard i-cells as degenerate cells or whiskers in which sources and targets 
at each dimension greater than i − 1 coincide. Further, Lemma 2.5 implies that all lower 
dimensional cells are orthogonal idempotents with respect to higher compositions. For all 
i, j ≤ k,

 
si(x) ⊙k sj(y) =

{

{si(x)} if si(x) = sj(y),
∅ otherwise.

All higher-dimensional compositions of lower dimensional cells are therefore trivial. The 
structure of units across dimensions can be seen in Example 6.6 below.

We now turn to ω-catoids and mention n-catoids only occasionally. In this context, 
one often adds an axiom guaranteeing that for all x ∈ C there exists and i, ω such that 
si(x) = x = ti(x), that is all cells in C have finite dimension. In the special case of strict 
ω-categories, for instance, Steiner [22], adds such an axiom, whereas Street [20] and Mac 
Lane [21] do not feature this condition and Brown and Higgins mention both variants [19]. 
Our ω-categories, as local functional ω-catoids, are therefore the same as ω-categories in the 
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sense of Street and Mac Lane. We need the above condition in the following construction, 
but not beyond this paragraph. Because of the whisker axioms and the catoid axioms, the 
chain C0 →֒ C1 →֒ C2 →֒ · · · →֒ C is a filtration of ω-catoids (when α = ω). Catoid C is 
the (co)limit of an increasing chain of sub-ω-catoids Cn, which themselves are n-catoids. 
See [22, Proposition 2.3] for a related discussion on ω-categories.

ω-Catoids, form a category in several ways. Their morphisms are catoid morphisms that 
preserve all source and target maps si and ti and all compositions ⊙i at each dimension 
i < ω. These kind of categories are also categories with respect to bounded morphisms.

As in the one-dimensional case, ω-catoids and n-catoids generalise ω-categories and 
n-categories to multioperational compositions, and beyond functionality and locality. Yet 
the underlying ω-graphs or n-graphs, where compositions are forgotten, are the same for 
both. The globular cell shape of strict higher categories is therefore present in the corre-
sponding catoids, too.

Lemma 6.1 In every ω-catoid, the globular laws hold. For all 0 ≤ i < j < ω,

 si ◦ sj = si, si ◦ tj = si, ti ◦ tj = ti, ti ◦ sj = ti.

The proofs are immediate from the globular and whisker axioms.

Example 6.2 The globular cell shape of ω-catoids can be visualised, in two dimensions, as

The relationships between 0-cells and 1-cells in this diagram can be calculated using 
Lemma 6.1.

In light of Example 2.2, the morphism laws of ω-categories are rather strong.

Lemma 6.3 In every ω-category, for 0 ≤ i < j < ω, the following strong morphism laws 

hold:

 sj(x ⊙i y) = sj(x) ⊙i sj(y) and tj(x ⊙i y) = tj(x) ⊙i tj(y).

Proof First we derive the law for sj . Suppose the right-hand side is equal to ∅. Then 
sj(x ⊙i y) = sj(x) ⊙i sj(y), using the morphism axiom sj(x ⊙i y) ⊆ sj(x) ⊙i si(y). 
Otherwise, if ∆i(sj(x), sj(y)), then ti(sj(x)) = si(sj(x)) and therefore ti(x) = si(y) by 
Lemma 6.1. Locality then implies that ∆i(x, y), and sj(x ⊙i y) = sj(x) ⊙i sj(y) follows 
from the morphism axiom for sj  and functionality. The proof for tj  follows by opposition. 
 □

By contrast to the other morphism axioms, which require that if left-hand sides are 
defined, then so are right-hand sides, the strong morphism laws state that one side is defined 
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if and only if the other is. Accordingly, an ω-catoid is strong if it satisfies the strong mor-
phism laws.

Corollary 6.4 In every ω-category, ∆i(x, y) ⇔ ∆i(sj(x), sj(y)) ⇔ ∆i(tj(x), tj(y)) for all 

0 ≤ i < j < ω.

Example 6.5 The strong morphism laws of ω-categories can be explained diagrammati-
cally for 2-categories and in particular in Cat, the category of all small categories, where 
⊙1 is the vertical composition of 2-cells or natural transformations, and ⊙0 the horizontal 
one. Lemma 6.3, Corollary 6.4 and locality imply that the horizontal composition x ⊙0 y 
is defined if and only if the horizontal compositions s1(x) ⊙0 s1(y) and t1(x) ⊙0 t1(y) are 
defined. In all cases, this means that t0(x) = s0(y).

The morphism axioms s1(x ⊙0 y) ⊆ s1(x) ⊙0 s1(y) and t1(x ⊙0 y) ⊆ t1(x) ⊙0 t1(y) then 
become strong because the compositions x ⊙0 y, s1(x) ⊙0 s1(y) and t1(x) ⊙0 t1(y) are 
functional, each yields at most a single cell. The upper and lower faces s1(x ⊙0 y) and 
t1(x ⊙0 y) of x ⊙0 y must thus be equal to s1(x) ⊙0 s1(y) and t1(x) ⊙0 t1(y), respectively.

The next two examples explain the weak morphism laws in the absence of locality or 
functionality.

Example 6.6 In the local 2-catoid on the set {a, b, c} with

 

s0 t0 s1 t1

a b b a a
b b b b b
c b b a a

⊙0 a b c
a {a, b} {a} {c}
b {a} {b} {c}
c {c} {c} {c}

⊙1 a b c
a {a} ∅ {c}
b ∅ {b} ∅
c {c} ∅ {c}

we have s1(a ⊙0 c) = s1({c}) = {a} ⊂ {a, b} = {a} ⊙0 {a} = s1(a) ⊙0 s1(a) and the 
same inequality holds for t1 because s1 = t1. In this example, c is a non-degenerate 2-cell 
with 1-faces a and 0-faces b, while a is a non-degenerate 1-cell with 0-faces b and b is a 
0-cell. So the strong morphism laws fail because ⊙0 may map to more than one cell. This 
degenerate situation can be depicted as

This 2-catoid is functional with respect to ⊙1, but not with respect to ⊙0.
It is also worth considering the unit structure given by the source and target maps and 

the whisker axioms, and its effect on ⊙0 and ⊙1. They determine all compositions except 
a ⊙0 a, c ⊙0 c and c ⊙1 c. The composition ⊙1 is trivial because of the whisker axioms.

Example 6.7 In the functional 2-catoid on the set {a, b} with
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s0 t0 s1 t1

a b b b b

b b b b b

⊙0 a b

a ∅ {a}
b {a} {b}

⊙1 a b

a {a} {a}
b {a} {b}

we have s1(a ⊙0 a) = s1(∅) = ∅ ⊂ {b} = {b} ⊙0 {b} = s1(a) ⊙ s1(a). The correspond-
ing inequality holds for t1 because s1 = t1. This example is a monoid as a category with 
respect to ⊙1, and a “broken monoid”, hence simply a graph, with respect to ⊙0, as a ⊙0 a 
is undefined. Now, the strong morphism laws fail because the broken monoid is not local: 
s0(a) = b = t0(a), but a ⊙0 a = ∅. So x ⊙0 y and therefore s1(x ⊙0 y) may be ∅, whereas 
s1(x) ⊙0 s1(y) or t1(x) ⊙0 t1(y) are not.

Next we explain the weakness of the remaining morphism axioms. First, we need a 
lemma.

Lemma 6.8 In every ω-catoid, for all 0 ≤ i < j < ω, if ∆j(x, y), then

 si(x ⊙j y) = {si(x)} = {si(y)} and ti(x ⊙j y) = {ti(x)} = {ti(y)}.

A proof can be found in Appendix B.

Example 6.9 In 2-catoids, for instance, weakness of s0(x ⊙1 y) ⊆ s0(x) ⊙1 s0(y) and 
t0(x ⊙1 y) ⊆ t0(x) ⊙1 t0(y) allows x ⊙1 y to be undefined while both s0(x) ⊙1 s0(y) or 
t0(x) ⊙1 t0(y) are defined. The last two compositions are defined if s0(x) is equal to s0(y), 
and t0(x) is equal to t0(y), respectively. For the first one, t1(x) must be equal to s1(y), from 
which s0(x) = s0(t1(x)) = s0(s1(y)) = s0(y) and t0(x) = t0(t1(x)) = t0(s1(y)) = t0(y) 
follow using the globular laws in Lemma 6.1. The left diagram below shows a situation 
where s0(x ⊙1 y) ⊂ s0(x) ⊙1 s0(y) because s0(x) = s0(y) whereas t1(x) ̸= s1(y). The 
right diagram shows the opposite situation were t0(x ⊙1 y) ⊂ t0(x) ⊙1 t0(y) because 
t0(x) = t0(y) whereas t1(x) ̸= s1(y). The middle diagram shows a situation where both 
sides are defined because t1(x) = s1(y). The globular structure is imposed by Lemma 6.8.

The weak morphism axioms are thus consistent with vertical compositions of globes.

Example 6.10 In 2-catoids, weakness of (w ⊙1 x) ⊙0 (y ⊙1 z) ⊆ (w ⊙0 y) ⊙1 (x ⊙0 z) 
allows the right-hand side of the interchange axiom to be defined while the left-hand 
side is undefined. The right-hand side is defined if t1(w ⊙0 y) is equal to s1(x ⊙0 z) and 
both sets are nonempty. The globular laws in Lemma 6.1 and Lemma 2.6 then imply that 
s0(w) = s0(w ⊙0 y) = s0(t1(w ⊙0 y)) = s0(s1(x ⊙0 z)) = s0(x ⊙0 z) = s0(x), and 
t0(y) = t0(z) holds for similar reasons. The left-hand side is defined if t0(w ⊙1 x) is 
equal to s0(y ⊙1 z) and both sets are nonempty. Therefore s0(w) = s0(w ⊙1 x) = s0(x) 
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and t0(y) = t0(y ⊙1 z) = t0(z), but also t0(w) = t0(w ⊙1 x) = t0(x) 
and s0(y) = s0(y ⊙1 z) = s0(y) by Lemma 6.8. Thus in particular 
t0(w) = t0(x) = s0(y) = s0(z). The right diagram below shows a situation where 
(w ⊙1 x) ⊙0 (y ⊙1 z) ⊂ (w ⊙0 y) ⊙1 (x ⊙0 z), because all compositions on the right are 
defined, but t0(w) = s0(y) ̸= t0(x) = s0(z). The left diagram below shows a situation 
where both sides are defined.

The interchange axiom is thus consistent with horizontal and vertical compositions of 
globes. The difference to the standard equational interchange laws of category theory is 
that, using multioperations, we express partiality by mapping to the empty set.

The following example confirms that the interchange axiom and the morphism axioms 
for s0 and t0 remain inclusions in ω-categories.

Example 6.11 Consider the 2-category with X = {a, b} and

 

s0 t0 s1 t1

a b b a a

b b b b b

⊙0 a b

a {b} {a}
b {a} {b}

⊙1 a b

a {a} ∅
b ∅ {b}

It is actually a monoid as a category with 1-cell a, 0-cell b, and composition 
a ⊙0 a = b, where b is seen as a unit arrow. Further, ⊙1 is trivial because of the whisker 
axioms. Because of this, (b ⊙1 a) ⊙0 (b ⊙1 a) = ∅ ⊂ {b} = (b ⊙0 b) ⊙1 (a ⊙0 a) as well 
as s0(a ⊙1 b) = ∅ ⊂ {b} = s0(a) ⊙1 s0(b) and t0(a ⊙1 b) = ∅ ⊂ {b} = t0(a) ⊙1 t0(b).

Remark 6.12 The inclusions in the morphism axioms for si and ti cannot be strengthened 
to equations. We show in Appendix A that this would collapse the entire structure. A similar 
collapse happens with an equational interchange law.

The α-catoid axioms contain redundancy. We have used Isabelle’s SAT-solvers and auto-
mated theorem provers to analyse them. For irredundancy of a formula ϕ with respect to 
a set X of formulas, we ask the SAT-solvers for a model of X ∪ {¬ϕ}. For redundancy, 
we ask the automated theorem provers for a proof of X ⊢ ϕ. This proofs-and-refutations 
game often succeeds in practice. Because of the set-up of ω-catoids as pairs of 2-catoids, an 
analysis of 2-catoids suffices.

Proposition 6.13 The following α-catoid axioms are irredundant and imply the other α

-catoid axioms from the beginning of this section. For all 0 ≤ i < j ≤ α,
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sj(x ⊙i y) ⊆ sj(x) ⊙i sj(y), tj(x ⊙i y) ⊆ tj(x) ⊙i tj(y),

(w ⊙j x) ⊙i (y ⊙j z) ⊆ (w ⊙i y) ⊙j (x ⊙i z).

A proof can be found in Appendix B. This reduction is convenient for relating structures, 
and it streamlines our correspondence proofs below. More generally, the single-set approach 
makes n-categories accessible to SMT-solvers and first-order automated theorem provers, 
using ∆ and ⊙̂ in specifications like in Sect. 2.

Remark 6.14 We cannot replace the morphism laws for sj  and tj  by those for si and ti in 
the reduced axiomatisation for α-catoids. Otherwise the first morphism laws would no lon-
ger be derivable: Isabelle produces counterexamples. Likewise, if we use only the whisker 
axioms and the morphism axioms in the first line of the non-reduced axiomatisation that 
commute source and target maps, we can neither derive the interchange axiom nor the mor-
phism axioms for s1 and t1 in the special case of 2-categories. Isabelle produces once again 
counterexamples. Coincidentally, the morphism laws for s0 and t0 are derivable; proofs can 
be found in our Isabelle theories.

Example 6.15 Let (Σ∗, ⊙0, ε) denote the free monoid generated by the finite alphabet Σ, 
with word concatenation ⊙0 modelled as a multirelation and the empty word ε. It can be 
viewed as a category with s0(w) = ε = t0(w) for all w ∈ Σ∗. Further, let (Σ∗⊙1, ε) be the 
shuffle multimonoid on Σ∗ from Example 2.10 with ⊙1 = ∥. Then (Σ∗, ⊙0, ⊙1, {ε}) forms 
a 2-catoid. It has one single 0-cell, {ε}, which is also the only 1-cell. The source/target 
structure is therefore trivial, but an interchange law between word concatenation and word 
shuffle holds.

7 Higher Quantales

As our main conceptual contribution, we now define the quantalic structures that match 
higher catoids in Jónsson-Tarski-type correspondences. We start with an axiomatisation of 
α-quantales, which correspond to α-catoids, but then turn our attention mainly to ω-quanta-
les. Once again we have checked all proofs in this section with Isabelle [28].

An α-quantale is a structure (Q, ≤, ·i, 1i, domi, codi)0≤i<α, for an ordinal 
α ∈ {0, 1, . . . , ω}, such that each (Q, ≤, ·i, 1i, domi, codi) is a modal quantale and the 
structures interact as follows:

 ● for all i ̸= j, 

 domi(α ·j β) ≤ domi(α) ·j domi(β) and codi(α ·j β) ≤ codi(α) ·j codi(β),

 ● and for all i < j

 (α ·j β) ·i (γ ·j δ) ≤ (α ·i γ) ·j (β ·i δ) and domj(domi(α)) = domi(α).

An α-quantale is strong if for all i < j,
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 domj(α ·i β) = domj(α) ·i domj(β) and codj(α ·i β) = codj(α) ·i codj(β).

These axiom systems are already reduced and irredundant in the sense of Sect. 6.

Example 7.1 In the double modal quantale on ⊥ < a < ⊤ with ·0 = ·1 = ∧, 10 = 11 = ⊤, 
dom0 = id and dom1(a) = ⊤ = cod1(a)( the rest being fixed), the first five globular 2-quan-
tale axioms hold, but the last one does not: dom1(dom0(a)) = ⊤ ̸= a = dom0(a).

Irredundancy of the two weak morphism laws is established using similar counterex-
amples with 5-elements found by Isabelle. Their particular form is of little interest.

Remark 7.2 The strong resemblance of the α-quantale axioms and the α-catoid ones is 
caused by correspondences that are developed in the following sections. Nevertheless, there 
is a mismatch: domj ◦ domi = domi is an α-quantale axiom while sj ◦ si = si is deriv-
able in α-catoids and the same holds for the two morphism axioms of α-quantales. For 
domj ◦ domi = domi with i < j, this can be explained as follows. Our proof of sj ◦ si = si 
relies on ∆k(x, y) ⇒ tk(x) = sk(y), but Remark 4.3 shows that the corresponding property is 
not available for quantales. The related properties α ·k β ̸= ⊥ ⇒ codk(α) ∧ domk(β) ̸= ⊥

are available, but too weak to translate the proof of sj ◦ si = si to quantales. Any formal 
proof is of course ruled out by Example 7.1.

We now turn to ω-quantales.

Lemma 7.3 In every ω-quantale Q, for 0 ≤ i < j < ω, 

1. domj ◦ codi = codi, codj ◦ domi = domi and codj ◦ codi = codi,
2. 1j ≤ 1j ·i 1j , 1j ·i 1j = 1j  if Q is strong, and 1i ·j 1i = 1i,
3. 1i ≤ 1j ,
4. domj(1i) = 1i, domi(1j) = 1j , codj(1i) = 1i and codi(1j) = 1j ,
5. domi ◦ domj = domj ◦ domi, domi ◦ codj = codj ◦ domi, 

codi ◦ domj = domj ◦ codi and codi ◦ codj = codj ◦ codi,
6. domi(α ·j β) = domi(α ·j domj(β)) and codi(α ·j β) = codi(codj(α) ·j β).

A proof can be found in Appendix B. By (1), the sets Qi = Qdomi
 form a chain: 

Q0 ⊆ Q1 ⊆ Q2 ⊆ · · · ⊆ Q. Each Qi is a complete distributive lattice with + as binary sup 
and ⊙i as binary inf according to the properties of domain quantales recalled in Sect. 4. 
Similarly to the situation for ω-catoids in Sect. 6, the elements of Qi remain domain ele-
ments in all higher dimensions, hence each Qi is a distributive sublattice of Qj  for all j ≥ i 
and of Q. We have

 

domi(x) ⊙k domj(y) = domi(x) ∧ domj(y),

codi(x) ⊙k codj(y) = codi(x) ∧ codj(y)

for all i, j ≤ k. At the same time, all truncations Qi of Q are i-quantales, so that the chain 
of the Qi is a filtration of ω-quantales. The ω-quantale Q is the union of the quantales 
Qi if we add an axiom guaranteeing that for all x ∈ Q there exists and i ≤ ω such that 
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domi(x) = x = codi(x). As for ω-catoids, we keep this optional and do not require this 
property in the considerations that follow. The same results hold for strong ω-quantales.

Remark 7.4 An interchange law (α ·1 β) ·0 (γ ·1 δ) ≤ (α ·0 γ) ·1 (β ·0 δ) features in concur-
rent semirings [47] and concurrent Kleene algebras and quantales [48]. It has often been 
contrasted with the seemingly equational interchange laws of category theory. Yet this 
ignores the weak nature of equality in categories, which may depend on definedness condi-
tions of terms, and which is captured explicitly and precisely by the multioperational lan-
guage. Example 6.11 shows that the interchange laws of ω-categories are as weak as those 
of ω-quantales and ω-Kleene algebras (defined below), of which concurrent quantales and 
Kleene algebras are special cases. See Appendix A for pitfalls of strong interchange laws 
and related morphisms.

Example 7.5 The identity 1i = 1j  need not hold for i < j in strong ω-quantales. There is 
a strong 2-quantale on 0 < 10 < 11 in which 11 ·0 11 = 11 and 10 ·1 11 = 11( the rest is 
fixed), and dom0(11) = 10 = cod0(11) and dom1(10) = 10 = cod1(10)( the rest is again 
fixed). This makes strong 2-quantales different from the original concurrent quantales men-
tioned and prevents smaller interchange laws with two or three variables. See [17] for a 
discussion of how the condition 10 = 11 leads to a partial Eckmann-Hilton-style collapse.

Next we consider the interactions of the Kleene stars with the ω-structure.

Lemma 7.6 In every ω-quantale Q, for 0 ≤ i < j < ω, 

1. domi(α) ·i β∗j ≤ (domi(α) ·i β)∗j  and α∗j ·i codi(β) ≤ (α ·i codi(β))∗j ,
2. domj(α) ·i β∗j ≤ (domj(α) ·i β)∗j  and α∗j ·i codj(β) ≤ (α ·i codj(β))∗j  if Q is 

strong,
3. (α ·j β)∗i ≤ α∗i ·j β∗i .

See Appendix B for proofs. The properties in (1) and (2) feature as axioms of globular 
n-Kleene algebras in [13]. In sum, all axioms of these n-Kleene algebras have now been 
derived from our smaller, but slightly different set of axioms for ω-quantales and n-quanta-
les. However, these quantales presuppose that arbitrary joins and meets exist, while globular 
n-Kleene algebras are based on globular n-semirings, where only finite sups are assumed to 
exist and meets are not part of the language. See Sects. 13 and 14 for a detailed discussion. 
We summarise this discussion as follows.

Proposition 7.7 Every strong ω-quantale is a globular ω-Kleene algebra á la [13, Defini-
tion 3.2.7] with Kleene stars α∗j =

∨
i≥0

αij .

Strictly speaking, only globular n-Kleene algebras are considered in [13], but the axioms 
for ω are the same.

Finally we list further properties of domains and codomains that are useful below.

Lemma 7.8 In every ω-quantale, for 0 ≤ i < j < ω, the following properties hold: 
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1. domi(α) ·j domi(α) = domi(α) and codi(α) ·j codi(α) = codi(α),
2. domi(α ·j β) = domi(α ·j domj(β)) and codi(α ·j β) = codi(codj(α) ·j β),
3. domi(α ·j β) = domi(codj(α) ·j β) and codi(α ·j β) = codi(α ·j domj(β)),
4. domi(α ·i β) = domi(α ·i domj(β)) and codi(α ·i β) = codi(codj(α) ·i β),
5. domi(α ·i β) ≤ domi(codj(α) ·i β) and codi(α ·i β) ≤ codi(α ·i domj(β)), and 

equalities hold if Q is strong,

6.  
domi(α) ·i (β ·j γ) ≤ (domi(α) ·i β) ·j (domiα) ·i γ),

(α ·j β) ·i domi(γ) ≤ (α ·i domi(γ)) ·j (β ·i domi(γ)),

7. domi(domj(α) ·j β) ≤ domi(α) ·j domi(β) and 
codi(α ·j codj(β)) ≤ codi(α) ·j codi(β),

8. domj(domi(α) ·j β) = domi(α) ·j domj(β) and 
codj(α ·j codi(β)) = codi(α) ·i codj(β),

9. domi(α) ·j domi(β) = domi(α) ·i domi(β) and 
codi(α) ·j codi(β) = codi(α) ·i codi(β),

10.  
(domi(α) ·j domi(β)) ·i (domi(γ) ·j domi(δ))

= (domi(α) ·i domi(γ)) ·j (domi(β) ·i domi(δ)),
(codi(α) ·j codi(β)) ·i (codi(γ) ·j codi(δ)) = (codi(α) ·i codi(γ)) ·j (codi(β) ·i codi(δ)).

See again Appendix B for proofs. The laws in (2)-(5) are extended locality laws, those in (6) 
are weak distributivity laws for compositions, those in (7) and (8) extended export laws. Note 
that export laws dom(dom(α)β) = dom(α)dom(β) and cod(αcod(β)) = cod(α)cod(β) 
hold in any modal semiring and quantale. Finally, the laws in (9) are useful for proving the 
strong interchange laws in (10).

Example 7.9 The shuffle 2-catoid on Σ in Example 6.15 extends to the shuffle language 
2-quantale on Σ under the standard language product

 XY = {vw | v ∈ X, w ∈ Y }

and the shuffle product of languages discussed in Example 4.2. The domain/codomain struc-
tures are trivial, as the empty word language {ε} is the joint identity of the two underlying 
quantales, but an interchange law (W∥X) · (Y ∥Z) ⊆ (W · Y )∥(X · Z) at language level 
can be derived. 2-Quantales satisfying such more restrictive conditions are known as inter-

change quantales [17].

8 Higher Convolution Quantales and their Correspondences

We can now extend the correspondence triangles between local catoids C, modal quantales 
Q and modal convolution quantales QC  [15] as well as those for interchange multimonoids, 
interchange quantales and interchange convolution quantales [17], which we mentioned 
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briefly in the introduction, to local ω-catoids, ω-quantales and convolution ω-quantales, as 
well as their truncations at dimension n. These constitute the main technical contribution in 
this article. In Sect. 11 we specialise these results to modal powerset ω-quantales, which, at 
dimension n, have applications in higher-dimensional rewriting [13]. We start with a formal 
summary of the 1-dimensional and 2-dimensional cases considered in [15, 17].

Let C be a catoid and Q a quantale, henceforth called value or weight quantale. We write 
QC  for the set of functions from C to Q. We define, for f, g : C → Q, the convolution 

operation∗ : QC × QC → QC  as

 

(f ∗ g)(x) =
∨

x∈y⊙z

f(y) · g(z)

and the unit functionid0 : C → Q as

 
id0(x) =

{

1 if x ∈ Q0,
⊥ otherwise.

We define 
∨

F : C → Q by pointwise extension, (
∨

F )(x) =
∨

{f(x) | f ∈ F} for 
F ⊆ QC , and in particular ⊥ : C → Q by ⊥(x) = ⊥ for all x ∈ C, overloading notation. 
We also extend the order on Q pointwise to a relation on QC . It is consistent with the stan-
dard order on the lattice C → Q.

Following [15, 17] we introduce further notation. For any predicate P we define

 
[P ] =

{

1 if P,
⊥ otherwise,

and then δx(y) = [x = y]. Any f : C → Q can now be written as

 

f =
∨

x∈C

f(x) · δx,

where  is a module-style action between the “scalars” f(x) ∈ Q and functions δx ∈ QC . 
More generally, we often write δα

x  for α · δx. Then

 

idQ0
= [e ∈ Q0] =

∨

e∈Q0

δe,

∨

F =
∨

x∈C

∨

{f(x) | f ∈ F} · δx,

f ∨ g =
∨

x∈C

(f(x) ∨ g(x)) · δx.

Also, for convolution,
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(f ∗ g)(x) =
∨

y,z∈C

f(y) · g(z) · [x ∈ y ⊙ z],

f ∗ g =
∨

x,y,z∈C

f(y) · g(z) · [x ∈ y ⊙ z] · δx.

Finally, whenever Q is a modal quantale, we define Dom, Cod : QC → QC  as

 

Dom(f) =
∨

x∈C

dom(f(x)) · δs(x),

Cod(f) =
∨

x∈C

cod(f(x)) · δt(x).

Correspondence triangles for relational monoids and quantales as well as relational inter-
change monoids and interchange quantales are already known [17]. They have been 
extended to local catoids and modal quantales [15]. The resulting 2-out-of-3 laws between 
catoids C, value algebras Q and convolution algebras QC  require mild non-degeneracy con-
ditions on C or Q. They have previously been given at a fine level of granularity to explain 
correspondences between individual laws in C, Q and QC . Here we only summarise those 
results relevant to higher-dimensional extensions.

The following fact translates results for relational monoids and related structures to the 
setting of catoids.

Theorem 8.1 [ [16, Theorem 4.8], [17, Proposition 16, Corollary 21]]  

1. Let C be a catoid and Q a quantale. Then QC  is a quantale with the convolution and unit 
structure defined above.

2. Let X be a set, let QX  and Q be quantales such that ⊥ ̸= 1 and α · (β · γ) ̸= ⊥ for some 
α, β, γ ∈ Q. Then X can be equipped with a catoid structure.

3. Let Q be a complete lattice equipped with a multiplication that preserves arbi-
trary sups and has a unit. Let QC  be a quantale and C a catoid such that C0 ̸= ∅ and 
w ∈ (x ⊙ y) ⊙ z for some w, x, y, z ∈ C. Then Q is a quantale.

We henceforth refer to quantales on function spaces, such as QC , as convolution quan-

tales. The two-out-of-three correspondence in Theorem 8.1 is illustrated in Fig. 1 in the 
introduction.

In the following lemma, double catoid refers to a set equipped with two catoid structures 
that do not interact. Likewise, double quantale refers to a complete lattice equipped with 
two monoidal structures that do not interact. In particular, there are no interchange laws.

Theorem 8.2 [ [17, p, 934]] Let (C , ·0 , s0 , t0 , ·1 , s1 , t1 ) be a double catoid, and further let 

(Q, ≤, ·0 , 10 , ·1 , 11 ) be a double quantale. Let (QC , ≤, ∗0 , id0 , ∗1 , id1 ) be the associated 

double convolution quantale. 

1. The interchange law holds in QC  if it holds in C and Q.
2. The interchange law holds in C if it holds in Q and QC , and if (α ·1 β) ·0 (γ ·1 δ) ̸= ⊥ 

for some α, β, γ, δ ∈ Q.
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3. The interchange law holds in Q if it holds in C and QC , and if y ∈ u ⊙1 v, z ∈ w ⊙1 x 
and ∆(y, z) hold for some u, v, w, x, y, z ∈ C.

Once again we have translated the original statement in [17] from relational monoids 
to catoids along the isomorphism between these structures. This two-out-of-three corre-
spondence is illustrated in Fig. 4. Double quantales in which the interchange law holds 
are known as interchange quantales. The results in [17] establish in fact correspondences 
between 2-catoids and interchange quantales, but only the interchange law of the double 
catoid contributes to the interchange law in the double quantale and vice versa.

Theorem 8.3 [ [15, Theorems 7.1, 8.4, 8.5]] Let (C , ⊙, s, t) be a catoid and (Q, ≤, ·, 1 ) be 

a quantale. Let (QC , ≤, ∗, id0 ) be the associated convolution quantale. 

1. QC  is modal if C is local and Q modal.
2. C is local if Q and QC  are modal, and if 1 ̸= ⊥ in Q.
3. Q is modal if C is local and QC  modal, and if ∆(ℓ(x), r(y)) and ∆(z, w) for some 

w, x, y, z ∈ C.

This two-out-of-three correspondence is illustrated in Fig. 5.

Example 8.4 ( [15, 17]) Theorems 8.2 and 8.3 have the following instances that generalise 
Example 4.2. Let Q be a modal value quantale. 

1. Every category C extends to a modal convolution quantale QC . It is similar to a cat-
egory algebra, using a quantale as value algebra instead of a ring or field and extending 
the source and target structure of the category, which category algebras ignore.

2. The modal powerset quantales from Example 4.2 are convolution quantales with Q = 2.
3. Every path category over a digraph extends to a modal convolution quantale of Q-val-

ued paths.
4. Every pair groupoid extends to a modal convolution quantale of Q-valued relation.

Fig. 5 Correspondence between local catoid C, 
modal quantale Q and modal convolution quantale 
QC

 

Fig. 4 Correspondence between inter-
change catoid C, interchange quantale 
Q and interchange quantale QC  from 
[17]
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5. Every shuffle 2-catoid extends to a convolution 2-quantale of Q-weighted shuffle lan-
guages if Q is a 2-quantale.

We now extend the constructions in the proofs of Theorems 8.2 and 8.3 to proofs of 
2-out-of-3 correspondence triangles between ω-catoids and ω-quantales, as shown in the 
diagram on the left of Fig. 2. Given the proofs in these theorems it remains to consider the 
globular structure. Theorem 8.2 guarantees a 2-out-of-3 correspondence between the inter-
change laws in ω-catoids and ω-quantales, while Theorem 8.3 supplies such a correspon-
dence between the source and target structure in ω-catoids and the domain and codomain 
structure in ω-quantales in each dimension. Locality of ω-catoids, in particular, is needed to 
reflect locality of the domain and codomain structure. This, in turn, is needed for defining 
modal operators as actions in Sect. 12.

In the ω-setting, our notation for [P] or δ-functions requires dimension indices, strictly 
speaking. But in practice, we can always pick and swap such indices. Hence we usually sup-
press them, as will become clear in the proofs below.

Theorem 8.5 Let C be a local ω-catoid and Q an ω-quantale. Then QC  is an ω-quantale.

Proof In light of the proof of Theorems 8.2 and 8.3 it remains to extend the morphism axi-
oms as well as the axiom Domj ◦ Domi = Domi for 0 ≤ i < j < ω. Although the proof 
of the interchange law is covered, for 2-catoids and 2-quantales, by Theorem 8.2, we state 
it explicitly for the case of ω. We omit indices related to square brackets as mentioned. For 
0 ≤ i < j < ω,

 

((f ∗j g) ∗i (h ∗j k))(x)

=
∨

y,z

(f ∗j g)(y) ·i (h ∗j k)(z) · [x ∈ y ⊙i z]

=
∨

y,z

(

∨

t,u

f(t) ·j g(u) · [y ∈ t ⊙j u]

)

·i

(

∨

v,w

h(v) ·j k(w) · [z ∈ v ⊙j w]

)

· [x ∈ y ⊙i z]

=
∨

t,u,v,w

(f(t) ·j g(u)) ·i (h(v) ·j k(w)) · [x ∈ (t ⊙j u) ⊙i (v ⊙j w)]

≤

∨

t,u,v,w

(f(t) ·i h(v)) ·j (g(u) ·i k(w)) · [x ∈ (t ⊙i v) ⊙j (u ⊙i w)]

=
∨

y,z

(

∨

t,v

f(t) ·i h(v) · [y ∈ t ⊙i v]

)

·j

(

∨

u,w

g(u) ·i k(w) · [z ∈ u ⊙i w]

)

· [x ∈ y ⊙j z]

= ((f ∗i h) ∗j (g ∗i k))(x).

For the morphism axiom Domj(f ∗i g) ≤ Domj(f) ∗i Domj(g),
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Domj(f ∗i g)(x)

=
∨

u

domj

(

∨

v,w

f(v) ·i g(w)) · [u ∈ v ⊙i w]

)

· δsj(u)(x)

= domj

(

∨

v,w

f(v) ·i g(w)

)

· [x ∈ sj(v ⊙i w)]

=
∨

v,w

domj(f(v) ·i g(w)) · [x ∈ sj(v ⊙i w)]

≤

∨

v,w

domj(f(v)) ·i domj(g(w)) · [x ∈ sj(v) ⊙i sj(w)]

=
∨

t,u

(

∨

v

domj(f(v)) ·j δsj(v)(t)

)

·i

(

∨

w

domj(g(w)) ·j δsj(w)(u)

)

· [x ∈ t ⊙i u]

= (Domj(f) ∗i Domj(g))(x).

The proof of Codj(f ∗i g) ≤ Codj(f) ∗i Codj(g) follows by opposition.
The proofs of

 

Domi(f ∗j g) ≤ Domi(f) ∗j Domi(g),

Codi(f ∗j g) ≤ Codi(f) ∗j Codi(g)

are obtained by re-indexing these proofs.
Finally, for Domj ◦ Domi = Domi,

 

Domj(Domi(f)) =
∨

u

domj

(

∨

v

domi(f(v)) · δsi(v)(u)

)

· δsj(u)

=
∨

v

domj(domi(f(v))) · δsj(si(v))

=
∨

v

domi(f(v)) · δsi(v)

= Domi(f).

 □

For strong ω-catoids, and hence ω-categories, we obtain a stronger result.

Corollary 8.6 Let C be a strong local ω-catoid and Q a strong ω-quantale. Then QC  is a 

strong ω-quantale.

Proof It suffices to replay the proofs for the two strong morphism laws for Domj  and Codj  
with an equality step in the fourth proof step for Domj  above. The proof for Codj  follows 
by opposition.  □

For the following two theorems we tacitly assume the non-degeneracies needed for The-
orem 8.2 and 8.3, calling the respective structures sufficiently supported, and mention those 
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on C and Q explicitly in the proof. See [17] for the general construction and more detailed 
explanations of the mechanics of proofs. First we recall three properties from [15, Lemma 
8.2] that generalise readily beyond one dimension.

By analogy to the double catoids and quantales considered in Theorem 8.2, we define an 
ω-fold catoid as a set equipped with ω catoid structures which do not interact. Likewise, an 
ω-fold quantale is a complete lattice equipped with ω sup-preserving monoidal structures 
which do not interact.

Lemma 8.7 Let C be an ω-fold catoid and Q be an ω-fold modal quantale, all without 

globular structure. Let QC  be the associated ω-fold modal quantale. Then, for i ̸= j , 

1. Domi(δ
α
x ) =

∨
y

domi(δ
α
x (y))δsi(y) = domi(α) · δsi(x),

2. Domi(δ
α
x ∗j δβ

y )(z) = domi(α ·j β) ·i [z ∈ s(x ⊙j y)],

3. (Domi(δ
α
x ) ∗j Domi(δ

β
y ))(z) = domi(α) ·j domi(β) ·j [z ∈ si(x) ⊙j si(y)],

4. (δα
x ∗ δβ

y )(z) = α · β · [z ∈ x ⊙ y].

Theorem 8.8 Let X be a set, let QX  and Q be ω-quantales with Q sufficiently supported. 
Then X can be equipped with a local ω-catoid structure.

Proof Given Theorems 8.2 and 8.3 we need to check the homomorphism axioms. As in 
Theorem 8.5, all proofs are similar and we show only one. Suppose

 Domi(δ
α
x ∗j δβ

y )(z) ≤ (Domi((δ
α
x ) ∗j Domi(δ

β
y ))(z)

holds in QC  and domi(α ∗j β) ≤ domi(α) ∗j domi(β) in Q. Suppose also, for non-degen-
eracy, that domi(α ·j β) ̸= ⊥. Then si(x ⊙j y) ≤ si(x) ⊙j si(y) using Lemma 8.7(2) and 
(3).  □

Once again we get stronger results for strong quantales. The proofs are obvious.

Corollary 8.9 Let QC  and Q be strong ω-quantales with Q sufficiently supported. Then C is 
a strong local ω-catoid.

Additional assumptions are needed to obtain ω-categories. We do not explain them in 
this article.

Theorem 8.10 Let Q be a complete lattice equipped with a multiplication that preserves 

arbitrary sups and has a unit. Let QC  be an ω-quantale and C a local ω-catoid that is suf-

ficiently supported. Then Q is an ω-quantale.

Proof Given Theorems 8.2 and 8.3 we need to check the homomorphism axioms and 
domj ◦ domi = domi. As in Theorem 8.5, all proofs of homomorphism axioms are simi-
lar and we show only one. Suppose Domi(δ

α
x ∗j δβ

y )(z) ≤ (Domi(δ
α
x ) ∗j Domi(δ

β
y ))(z) 

holds in QC  and si(x ⊙j y) ≤ si(x) ⊙j si(y) in C. Suppose also, for non-degeneracy, that 
z ∈ si(x) ⊙j si(y). Then, using Lemma 8.7(2) and (3),
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domi(α ·j β) = Domi(δ
α
x ∗j δ

β
y )(z)

≤ (Domi(δ
α
x ) ∗j Domi(δ

β
y ))(z)

= domi(α) ·j domi(β).

Finally, using Lemma 8.7(1),

 domj(domi(α)) = Domj(Domi(δ
α
x ))(sj(si(x))) = Domi(δ

α
x )(si(x)) = domi(α).

 □

The two-out-of-three correspondence captured by Theorems 8.5, 8.8 and 8.8 is depicted 
in the left diagram of Fig. 2 in the introduction.

Corollary 8.11 Let QC  be a strong ω-quantale and C a strong local ω-catoid that is suf-

ficiently supported. Then Q is a strong ω-quantale.

Example 8.12   

1. The category Cat extends to a convolution 2-quantale QCat for every value 2-quantale 
Q.

2. The ω-category of globular sets with the standard globular compositions extends to a 
convolution ω-quantale for every value ω-quantale Q.

Applications of the powerset case Q = 2 relevant to higher-dimensional rewriting are 
discussed in Sects. 11, 14 and 10. A convolution 2-quantale relevant to concurrency theory 
based on weighted languages of isomorphism classes of labelled posets, equipped with a 
so-called serial and a parallel composition is discussed in [17]. In this case, the only unit is 
the empty poset, and the domain/codomain structure is trivial, as for weighted languages 
with shuffle.

9 Dedekind Convolution Quantales and their Correspondences

In this section we study correspondence triangles between groupoids, Dedekind value quan-
tales and Dedekind convolution quantales, adapting the correspondence triangles between 
groupoids and relation algebras established by Jónsson and Tarski [23, Sect. 5].

We define, for every f : C → Q from a groupoid C into an involutive quantale Q,

 f◦(x) = (f(x−))◦.

Alternatively, we write f◦ =
∨

x∈C
(f(x))◦ · δx− .

Proposition 9.1 Let C be a groupoid and Q an involutive quantale. Then QC  is an involu-

tive quantale.
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Proof Given Theorem 8.1 it remains to check the three involution axioms.

For sup-preservation,

 

(
∨

F )◦ =
∨

x

((
∨

F )(x))◦ · δx−

=
∨

x

((
∨

{f(x) | f ∈ F})◦ · δx−

=
∨

{
∨

x

f(x)◦ · δx− | f ∈ F}

=
∨

{f◦ | f ∈ F}.

For involution proper,

 

f◦◦ =
∨

x

(

∨

y

(f(y))◦ · δy− (x)

)◦

· δx−

=

(

∨

y

(f(y))◦ · δy−−

)◦

=
∨

y

(f(y))◦◦ · δy−−

=
∨

y

(f(y)) · δy

= f.

For contravariance,

 

(f ∗ g)◦ =
∨

x

(

∨

y,z

f(y) · g(z)

)◦

· [x ∈ y ⊙ z] · δx−

=
∨

x,y,z

(f(y) · g(z))◦
· [x ∈ (y ⊙ z)−] · δx

=
∨

x,y,z

g(z)◦
· f(y)◦

· [x ∈ z−
⊙ y−] · δx

=
∨

x,y,z

g(z−)◦
· f(y−)◦

· [x ∈ z ⊙ y] · δx

=
∨

x

(

∨

z,y

g◦(z) · f◦(y) · [x ∈ z ⊙ y]

)

· δx

=
∨

x

(g◦
∗ f◦)(x) · δx

= (g◦
∗ f◦).
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 □

Theorem 9.2 Let C be a groupoid and Q a Dedekind quantale in which binary inf distrib-

utes over all sups. Then QC  is a Dedekind quantale (in which binary inf distributes over 

all sups).

Proof  

f ∗ g ∧ h =

((

∨

y,z

f(y) · g(z) · [x ∈ y ⊙ z]

)

∧ h(x)

)

· δx

=
∨

x,y,z

(f(y) · g(z) ∧ h(x)) · [x ∈ y ⊙ z] · δx

≤

∨

y,z

(f(y) ∧ h(x) · g(z)◦) · g(z) · [x ∈ y ⊙ z]

=
∨

x,y,z

(f(y) ∧ h(x) · g◦(z−)) · g(z) · [x ∈ y ⊙ z] · δx

≤

∨

x,y,z

(

f(y) ∧

∨

v,w

h(v) · g◦(w) · [y ∈ v ⊙ w]

)

· g(z) · [x ∈ y ⊙ z] · δx

=
∨

x,y,z

(f(y) ∧ (h ∗ g◦)(y)) · g(z) · [x ∈ y ⊙ z] · δx

=
∨

x,y,z

(f ∧ h ∗ g◦)(y) · g(z) · [x ∈ y ⊙ z] · δx

= (f ∧ h ∗ g◦) ∗ g.

The distributivity law is used in the first step of the proof. The sixth step works because 
x ∈ y ⊙ z if and only if y ∈ x ⊙ z− by Lemma 3.2(2), so that the pair (x, z−) is considered 
in the sup introduced.  □

The condition that binary infs distribute over all sups is well known from frames or 
locales, that is, complete Heyting algebras. It holds in every power set Dedekind quantale.

Theorem 9.3 Let X be a set, let QX  and Q be Dedekind quantales such that ⊥ ̸= 1  in Q. 

Then X can be equipped with a groupoid structure.

Proof We show that x ⊙ x− = {s(x)}. Suppose Dom(δα
x ) ≤ δα

x ∗ (δα
x )◦ holds in QC  and 

dom(α) ≤ α · α◦ holds in Q. Suppose also for non-degeneracy that dom(α) ̸= ⊥; we can 
pick α = 1 and simply require ⊥ ̸= 1. By Lemma 8.7(1) and (4),

 δ
s(x)(y) = Dom(δx)(y) ≤ (δx ∗ (δx)◦)(y) = [y ∈ x ⊙ x

−].

Thus s(x) ∈ x ⊙ x−. Moreover, {s(x)} = x ⊙ x− because, in fact, Dom(δx) = δx ∗ (δx)◦, 
that is, δx is functional.  □
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Theorem 9.4 Let Q be a complete lattice with a binary multiplication that preserves sups in 

both arguments and has a unit. Let QC  be a Dedekind quantale and C a groupoid. Then Q 

is a Dedekind quantale.

Proof We start with the involutive quantale axioms. First, suppose f◦◦ = f  in QC  and 
x−− = x in X. Then α◦◦ = (δα

x )◦◦(x−−) = δα
x (x) = α.

Second, suppose (
∨

{δα
x | α ∈ A)◦ =

∨
{(δα

x )◦ | α ∈ A} in QX . Then

 
(
∨

A)◦ = (
∨

{δα
x (x−) | α ∈ A})◦ =

∨

{(δα
x )◦(x−) | α ∈ A} =

∨

{α◦ | α ∈ A}.

Third, suppose (δα
y

∗ δβ
z

)◦ = (δβ
z

)◦ ∗ (δα
y

)◦ in QC  and (y ⊙ z)− = z− ⊙ y− in C. Also 

assume z ∈ x ⊙ y for non-degeneracy. Then

 (α · β)◦ = (δα
y

∗ δβ
z

)◦(x−) = ((δβ
y

)◦
∗ (δα

z
)◦))(x−) = β◦ · α◦.

Finally, for the modular law, suppose δα
u ∗ δβ

v ∧ δγ
w ≤ (δα

u ∧ δγ
w ∗ (δβ

v )◦) ∗ δβ
v . Assume, for 

non-degeneracy, that x ∈ u ⊙ v. Then

 

α · β ∧ γ = α · β · [x ∈ u ⊙ v] ∧ γ · δx(x)

= (δα
u ∗ δβ

v ∧ δγ
x)(x)

≤ ((δα
u ∧ δγ

x ∗ (δβ
v )◦) ∗ δβ

v )(x)

= (α ∧ γ · β◦ · [u ∈ x ⊙ v−]) · β · [x ∈ u ⊙ v]

= (α ∧ γ · β−) · β,

where x ∈ u ⊙ v ⇔ u ∈ x ⊙ v−, which holds by Lemma 3.2(2), is used in the fourth step. 
 □

It is straightforward to check that Q carries a complete Heyting structure if QC  does. The-
orem 9.2 and 9.4 clearly depend on the quantales Q or QC  in their hypotheses being Dede-
kind, while Theorem 9.3 uses slightly more general properties of the shape dom(x) ≤ xx◦ 
and cod(x) ≤ x◦x, which are further discussed in the context of ω-semirings and ω-Kleene 
algebras in Sect. 14.

The two-out-of-three correspondence captured by Theorems 9.2, 9.3 and 9.4 is illustrated 
by the left diagram of Fig. 3 in the introduction.

Example 9.5 Example 5.5 generalises from powerset quantales to convolution quantales. 
Let Q be a Dedekind value quantale. 

1. Every free groupoid extends to a modal Q-valued path Dedekind quantale in which 
formal inverses extend to converses.

2. Every pair groupoid extends to a modal Dedekind quantale of Q-valued relations.
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10 (ω, p)-Catoids and (ω, p)-Quantales

In this section we combine the structures of ω-catoids and ω-quantales from Sects. 6, 7 and 8 
with the structures of groupoids and Dedekind quantales from Sects. 3, 5 and 9 to define the 
corresponding (ω, p)-structures in higher-dimensional rewriting theory. We also show how 
2-out-of-3 correspondence triangles for the (ω, p)-structures can be obtained from those 
of their component structures, see also Fig. 2 in the introduction. We start from ω-catoids 
which have a groupoid structure above some dimension p < ω. These (ω, p)-catoids and 
the corresponding (ω, p)-quantales, which are Dedekind quantales above dimension p, are 
suitable for defining higher homotopies.

An (ω, p)-catoid is an ω-catoid C with operations (−)−i : C → C for all p < i ≤ ω such 
that (x)−i ∈ Ci for all x ∈ Ci and the groupoid axioms hold, for all p < i ≤ ω and x ∈ C:

 x ⊙i−1 x−i = {si−1(x)} and x−i ⊙i−1 x = {ti−1(x)}.

An (ω, p)-category is a local functional (ω, p)-catoid.
Likewise, an (ω, p)-quantale is an ω-quantale Q with operations (−)◦i : Q → Q for all 

p < i ≤ ω such that (α)◦j ∈ Qi for all α ∈ Qi and that satisfy the involution axioms and 
the modular law with respect to the composition ·i−1. Strong (ω, p)-quantales are defined as 
for higher quantales in Sect. 7.

All inverses in (ω, p)-catoids and all converses in (ω, p)-quantales are trivial on elements 
of lower dimensions. It follows from Lemma 3.1 that x−j = x for all x ∈ Ci with i < j. 
Similarly, it follows from Lemma 5.11 that α◦j = α for all α ∈ Qi with i < j.

The correspondence results from Sects. 8 and 9 can then be combined. We use the notion 
of sufficient support as for ω-catoids, ω-groupoids and ω-quantales defined in these sections.

Theorem 10.1   

1. Let C be a local (ω, p)-catoid and Q an (ω, p)-quantale in which binary inf distributes 
over all sups. Then QC  is an (ω, p)-quantale.

2. Let X be a set, let QX  be an (ω, p)-quantale and C a local (ω, p)-catoid that is suffi-
ciently supported. Then X can be equipped with an (ω, p)-catoid structure.

3. Let Q be a complete lattice equipped with a multiplication that preserves arbitrary sups 
and has a unit. Let QC  and Q be (ω, p)-quantales with Q sufficiently supported. Then C 
is a local (ω, p)-quantale.

These results specialise to correspondence triangles for strong (ω, p)-catoids and strong 
(ω, p)-quantales as usual. The complete Heyting structure can be used as part of the def-
inition of (ω, p)-quantale. Further, we obtain correspondences for powerset quantales as 
instances.

Corollary 10.2   

1. Let C be a local (ω, p)-catoid. Then PC is an (ω, p)-quantale.
2. Let X be a set and PC an (ω, p)-quantale in which idi ̸= ∅ and the atoms are functional. 

Then X can be equipped with a local (ω, p)-catoid structure.
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Again there are special cases for strong structures, and Proposition 7.7 can be extended to 
show that every strong (ω, p)-quantale is a globular (ω, p)-Kleene algebra á la [13, Defini-
tion 4.4.2]. The laws of converse used in the definition of globular (ω, p)-Kleene algebras 
are subsumed by the laws of of Dedekind quantales, as shown in Sect. 5; see Sects. 13 
and 14 for further discussion of globular Kleene algebras.

11 Correspondences for Powerset Quantales

The correspondence triangles of Sect. 8 and 9 specialise to powerset algebras for the value 
quantale Q = 2 of booleans (Example 4.1), using the isomorphism between the map C → 2 
and PC. We have already seen several examples of powerset extensions in previous sec-
tions. Here we give standalone correspondence proofs for the globular and the converse 
structure, because they are interesting for higher-dimensional rewriting. Most of the results 
in this sections have also been checked with Isabelle [28].

The first corollary is an immediate instance of Theorems 8.5 and 8.8.

Corollary 11.1   

1. Let C be a local ω-catoid. Then (PC, ⊆, ⊙i, Ci, si, ti)0≤i<ω  is an ω-quantale.
2. Let X be a set and PX  be an ω-quantale in which idi ̸= ∅. Then X can be equipped with 

a local ω-catoid structure.
3. If C is strong, then PC is strong and vice versa.

We present a set-theoretic proof in Appendix B because it might provide additional intu-
ition. We emphasise the one-to-one relationship between laws of ω-catoids and those of ω
-quantales in the proofs in Appendix B to highlight the underlying correspondence, includ-
ing the proof of this corollary. The extension from C to a modal quantale PC has been 
described in Example 4.2, see also [15, Theorem 6.5]. In the converse direction, one can 
recover a catoid from the atom structure of the powerset structure; its singleton sets, as 
discussed in the introduction: x ∈ y ⊙ z ⇔ {x} ⊆ {y} ∗ {z}, while source and target maps 
correspond to domain and codomain maps on singleton sets. Note that the relation between 
⊙ and ∗ fixes also ⊆ as the order on the powerset quantale, and it is compatible with the 
standard definition of a lattice order in terms of sups and infs.

Remark 11.2 A classical result by Gautam [49] shows that equations extend to the power-
set level if each variable in an equation occurs precisely once in each side. These results 
have later been generalised by Grätzer and Whitney [50] (see also [51] for an overview). 
It is therefore no surprise that all the (unreduced) axioms of ω-catoids extend directly to 
corresponding properties, which we have already derived from the ω-quantale axioms in 
Lemma 7.3. Nevertheless Gautam’s result does not prima facie cover multioperations, let 
alone constructions of convolution algebras.

Next we show how groupoids extend to Dedekind quantales and relation algebras. This 
mainly reproduces Jónsson and Tarski’s results [23] with groupoids based on catoids. In 
addition, we provide explicit extensions for dom and cod, which can otherwise be derived in 
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powerset quantales or relation algebras. In any groupoid C, we write X− for X ⊆ C. First 
we list some properties that are not directly related to the extension.

Lemma 11.3 Let C be a groupoid. For all X , Y ∈ P(C ) and all X ∈ P(P(C )), 

1. (
∪

X )− =
∪

{X− | X ∈ X } and (X ∪ Y )− = X− ∪ X−,
2. s(X) ⊆ XX

− and t(X) ⊆ X
−

X ,
3. X ⊆ XX−X ,
4. s(X) = C0 ∩ XX

− and t(X) = C0 ∩ X
−

X ,
5. s(X) = C0 ∩ X⊤ and r(X) = C0 ∩ ⊤X ,
6. X⊤ = s(X)⊤ and ⊤X = ⊤t(X).

A proof can be found in Appendix B. Properties (2) and (3) are of course the conditions 
for involutive quantales from Sect. 5. Next we specialise the results of Sect. 9, revisiting and 
Example 5.5 more formally and extending it to a correspondence.

Corollary 11.4   

1. Let C be a groupoid. Then (PC, ⊙, s, t, (−)−) is a Dedekind quantale.
2. Let X be a set and PX  be a Dedekind quantale in which id0 ̸= ∅ and the atoms are 

functional. Then X can be equipped with a groupoid structure.

As mentioned in Example 5.5, the proofs are due to Jónsson and Tarski; we have also 
checked (1) with Isabelle. The functionality requirement on atoms in (2), in particular, has 
been noticed and used by Jónsson and Tarski.

Remark 11.5 Jónsson and Tarski have considered relation algebras based on boolean alge-
bras instead of complete lattices. They also use the residual law mentioned in Sect. 5 instead 
of the modular or Dedekind law. This makes no difference. See [44, 45] for details.

Examples of powerset extensions for specific groupoids have been given in Example 5.5. 
This section provides a formal development that subsumes these results.

12 Modal Operators and their Laws

We have already mentioned that modal semirings and modal quantales carry their name 
because modal operators, akin to those of modal logics, can be defined and related using the 
domain and codomain structure. As already mentioned, the main application of the higher 
quantales introduced in Sect. 7 and the Dedekind quantales studied in Sect. 5 are proofs in 
higher-dimensional rewriting [13]. These require the modal operators that can be defined on 
these quantales. In this section, we briefly recall these modal structures and present some 
new modal laws that hold in higher quantales. The entire content of this section has been 
formalised with Isabelle [27, 28].

Modal diamond operators can be defined in modal semirings or quantales [4, 18] as
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 |α⟩β = dom(αβ) and ⟨α|β = cod(βα).

By domain and codomain locality, |α⟩β = |α⟩dom(β) and ⟨α|β = ⟨α|dom(β). Accord-
ingly, we mostly use those modal operators with β a domain element. See [15, 18] for 
additional properties for modal operators on quantales. In particular, we can “demodalise” 
diamonds at left-hand sides of inequalities: for p, q ∈ Q0,

 |α⟩p ≤ q ⇔ αp ≤ qα and ⟨α|p ≤ q ⇔ pα ≤ αq.

In boolean modal quantales, and hence in modal powerset quantales, we can define forward 
and backward modal box operators

 
[α|p =

∨

{q | |α⟩q ≤ p} and |α]p =
∨

{q | ⟨α|q ≤ p},

for all α ∈ Q and p ∈ Q0. (In arbitrary modal quantales, we cannot guarantee that the sups, 
which feature in the definienda, are again elements of Q0.)

The modal box and diamond operators are then adjoints in the Galois connections

 |α⟩p ≤ q ⇔ p ≤ |α]q and ⟨α|p ≤ q ⇔ p ≤ [α|q,

for all α ∈ Q and p, q ∈ Q0. The additional demodalisation laws p ≤ [α|q ⇔ αp ≤ qα and 
p ≤ |α]q ⇔ pα ≤ αq are helpful in deriving them. Further, in boolean modal quantales, 
boxes and diamonds are related by De Morgan duality,

 |α]p = −|α⟩ − p, |α⟩p = −|α] − p, [α|p = −⟨α| − p, ⟨α|p = −[α| − p.

Finally, in any modal Dedekind quantale, ⟨α| = |α◦⟩, |α⟩ = ⟨α◦|, [α| = |α◦] and |α] = [α◦|.
Modal diamond operators satisfy the following module-style laws.

Lemma 12.1 In every modal quantale, 

1. |αβ⟩p = |α⟩|β⟩p,
2. |α ∨ β⟩p = |α⟩p ∨ |β⟩p,
3. |α⟩(p ∨ q) = |α⟩p ∨ |α⟩q and |α⟩⊥ = ⊥,
4. |⊥⟩p = ⊥, |1⟩p = p and |α⟩1 = dom(α).

These laws hold already in domain semirings [4], hence we do not present proofs. Dual 
properties hold for backward diamonds, and for boxes, if the modal quantale is boolean.

Beyond these one-dimensional properties, we list some new modal laws for the ω-struc-
ture. We write ⟨α⟩i for either |α⟩i or ⟨α|i in the following lemma.

Lemma 12.2 In every modal ω-quantale Q, for all 0 ≤ i < j < ω, 

1. ⟨α⟩i|β⟩jγ = ⟨α⟩i(β ·j γ) and ⟨α⟩i⟨β|jγ = ⟨α⟩i(γ ·j β),
2. |α⟩i⟨β⟩jγ ≤ |α⟩i(domi(β) ·j domi(γ)) and ⟨α|i⟨β|jγ ≤ ⟨α|i(codi(γ) ·j codi(β)),
3. If α = domk(α) for some k ≤ j, then 
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 |α⟩i|β⟩jγ ≤ |α⟩iβ ·j |α⟩iγ and ⟨α|i⟨β|jγ ≤ ⟨α|β ·j ⟨α|γ,

4. |α⟩j⟨β⟩iγ ≤ |α⟩j⟨domj(β)⟩iγ and ⟨α|j⟨β⟩iγ ≤ ⟨α|j⟨codj(β)⟩iγ, and equality holds 
if Q is strong,

5. domi(α) ·i ⟨β⟩jγ ≤ ⟨domi(α) ·i β⟩j(domi(α) ·i γ) and, whenever Q is strong, then 
⟨α⟩jβ ·i domi(γ) ≤ ⟨α ·i domi(γ)⟩j(β ·i domi(γ)).

Proofs can be found in Appendix B.

13 Higher Semirings

In this section we weaken our value algebras from quantales to dioids, which are additively 
idempotent semirings. Convolution semirings have been studied widely in mathematics and 
computer science; the higher globular semirings in [13] form a starting point for the inves-
tigations in this article. Here we generalise from the powerset structures in [13] to convolu-
tion algebras. As usual in the construction of formal power series or convolution algebras, 
some restriction on the domain algebra or the function space need to be imposed. Beyond 
the relationship with [13], the consideration of ω-semirings and ω-Kleene algebras in this 
and the following section also sheds some light on the design space of algebras for higher-
dimensional rewriting. While ω-quantales are certainly more expressive, ω-semirings and 
ω-Kleene algebras might lead to stronger computational properties such as decision proce-
dures. But an exploration of this design space in rewriting applications remains beyond the 
scope of this article.

In convolution algebras on SC , where S is an additively idempotent semiring, the com-
plete lattice structure of the value quantale is replaced by a semilattice. To compensate for 
the lack of infinite sups in convolutions

 

(f ∗ g)(x) =
∨

x∈y⊙z

f(y) · g(z),

when infinitely many pairs (y, z) satisfy the ternary relation x ∈ y ⊙ z, we require finitely 
decomposable catoids C. That is, for each x ∈ C the fibre ⊙−1(x) = {(y, z) | x ∈ y ⊙ z} 
must be finite. Now algebras with finite sups such as additively idempotent semirings suf-
fice. This is standard, for instance, for the incidence algebras in combinatorics [52], where 
such a finiteness condition is imposed on intervals on the real line or a poset. In our context 
this means that modal value quantales can be replaced by modal value semirings [4] if 
catoids are finitely decomposable. Similar adaptations have been made for concurrent quan-
tales and concurrent semirings [17].

Example 13.1 ( [17]) In the Q-valued shuffle language 2-quantale from Example 8.4, the 
fibres {(u, v) | w = uv} and {(u, v) | w = u∥v} are finite for every word w. It therefore 
suffices that Q is a 2-semiring, as defined below.

The main results in this section show how finitely decomposable ω-catoids extend to 
convolution ω-semirings, where the ω-structure is defined precisely as for ω-quantales, and 
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to (modal) semirings with a converse structure. These results prepare for the study of ω
-Kleene algebras and (modal) Kleene algebras with converse in the following section, and in 
particular for a comparison with the higher globular Kleene algebras previously introduced 
[13].

We start with a summary of the structure of α-dioids. In a nutshell, their overall structure 
is the same as for α-quantales, except that the complete lattice in the latter is replaced by a 
semilattice in the former.

 ● A dioid is an additively idempotent semiring (S, +, ·, 0, 1). Thus (S, +, 0) is a semilat-
tice with least element 0. We write ≤ for its order.

 ● A modal semiring [4] is an additively idempotent semiring (or dioid) equipped with op-
erations dom, cod : S → S that satisfy precisely the modal quantale axioms for domain 
and codomain up to notational differences: we write dom(0) = 0, replacing ⊥ by 0, 
dom(α + β) = dom(α) + dom(β), replacing ∨ by +, and likewise for cod.

 ● An α-semiring is a structure (S, +, 0, ·i, 1i, domi, codi)0≤i<α, for an ordinal 
α ∈ {0, 1, . . . , ω}, such that the (S, +, 0, ·i, 1i, domi, codi) are modal semirings and 
we impose the same interchange and domain/codomain axioms as for α-quantales.

 ● An α-semiring is strong if it satisfies the same domain/codomain axioms as for strong 
α-quantales.

A formal list of axioms can be found in our Isabelle theories [28] and their proof document. 
Most properties derived for ω-quantales in previous sections are already available in ω
-semirings, in particular Lemmata 7.3, 7.8, 12.1 and 12.1, the results on chains of Ci cells 
and ω-quantales as filtrations, and the construction of n-quantales by truncation.

Along the lines of Sect. 5 we can also define a converse structure (−)◦ : S → S on a 
dioid S.

 ● In an involutive dioidS we impose the axioms α◦◦ = α, (α + β)◦ = α◦ + β◦ and 
(αβ)◦ = β◦α◦.

 ● In a dioid with converse we also require the strong Gelfand law α ≤ αα◦α.
 ● Modal involutive semirings and modal semirings with converse are then defined in the 

obvious way.
 ● A modal semiring with strong converse is a modal involutive semiring in which 

dom(α) ≤ αα◦ and cod(α) ≤ α◦α.

The involutive dioid axioms imply 0◦
= 0 and 1◦ = 1, but are too weak to relate dom and 

cod in the modal case. Dioids with converse have been introduced in [41]. These provide the 
domain/codomain interaction expected.

Lemma 13.2 In every modal semiring with converse, 

1. dom(α)◦ = dom(α) and cod(α)◦ = cod(α).
2. dom(α◦) = cod(α) and cod(α◦) = dom(α).

See Appendix B for proofs. Modal semirings with strong converse have been proposed 
in [46]. The strong Gelfand property holds in this setting: α = dom(α)α ≤ αα◦α. The 
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strong converse axioms can be seen as shadows of the explicit definitions of dom and cod 
in Dedekind quantales in the absence of ∧.

For finitely decomposable ω-catoids C, where each of the ω underlying catoids has this 
property, our main correspondence triangles from Sects. 8 and 9 transfer to ω-semirings and 
semirings with converse. Here we consider only the extensions from groupoids to convolu-
tion algebras. First we present a corollary to Theorem 8.5, but to deal with the sups in the 
definition of Dom and Cod, we need to impose another restriction: a catoid C has finite 
valency if for each x ∈ C0 the sets {y ∈ C | s(y) = x} and {y ∈ C | t(y) = x} are finite. 
An ω-catoid has finite valency if each of the underlying catoids has this property. we present 
a corollary to Theorem 8.5.

Corollary 13.3 Let C be a finitely decomposable local ω-catoid of finite valency and S a 
(strong) ω-semiring. Then SC  is a (strong) ω-semiring.

Proof In the construction of the convolution algebra in the proof of Theorem 8.5, it is rou-
tine to check that all sups remain finite when C is finitely decomposable. In particular, all 
sups in the definitions of Dom and Cod are finite because of finite valency. □

Next we consider the converse structure.

Proposition 13.4 Let C be a finitely decomposable groupoid. 

1. If S is a dioid with converse, then so is SC .
2. If S is a modal semiring with strong converse, then so is SC , whenever $C$ has finite 

valency.

Proof First note that the infinite sups in the proof of Proposition 9.1 can be replaced by finite 
sups when C is finitely decomposable and has finite valency. It remains to extend the strong 
Gelfand property for (1) and the axioms dom(α) ≤ αα◦ and cod(α) ≤ α◦α for (2). In the 
proofs we still write 

∨
, but tacitly assume that all sups used are finite and can therefore be 

represented using +.

For dioids with converse,

 

f ∗ (f◦ ∗ f) =
∨

w,x,y,z∈C

f(x)f(y−)◦g(z)[w ∈ x ⊙ y ⊙ z]δw

=
∨

w,x,y,z∈C

f(x)f(y)◦g(z)[w ∈ x ⊙ y−
⊙ z]δw

≥

∨

w∈C

f(w)f(w)◦g(w)[w ∈ w ⊙ w−
⊙ w]δw

≥

∨

w∈C

f(w)[w ∈ s(w)w]δw

=
∨

w∈C

f(w)δw

= f.
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For semirings with strong converse,

 

Dom(f) =
∨

x∈C

dom(f(x))δs(x)

≤
∨

x∈C

f(x)f(x)◦[s(x) ∈ x ⊙ x−]δx

≤
∨

x,y,z∈C

f(y)f(z−)◦[x ∈ y ⊙ z−]δx

=
∨

x∈C

(f ∗ f◦)(x)δx

= f ∗ f◦

and the proof for Cod follows by opposition.  □

Next we present two examples that separate the three converse structures introduced 
above in the modal case.

Example 13.5 In the involutive modal semiring given by

with  as inf, dom = id = cod and a◦ = b, b◦ = a we have

 dom(a◦) = dom(b) = b ̸= a = cod(a)

and likewise cod(a◦) ̸= dom(a). Hence it is not a modal semiring with converse.
Similar examples show that dom(α)◦ and cod(α)◦ need not be equal to dom(α) and 

cod(α) in involutive modal semirings, respectively.

Example 13.6 In the modal semiring with converse given by 0 < a < 1, aa = a, 
dom(a) = cod(a) = 1 and (−)◦ = id, we have dom(a) = cod(a)1 > a = aa

◦ = a
◦
a. It is 

therefore not a modal semiring with strong converse.

Remark 13.7 In an involutive domain semiring or domain semiring with converse S, one can 
of course define codomain explicitly as cod(α) = dom(α◦), from which dom(α) = cod(α◦) 
follows, but then Sdom need not be equal to Scod: dom ◦ cod = cod may hold, but 
cod ◦ dom = dom may fail. We do not consider such alternative definitions of modal semir-
ings with converse any further.

Remark 13.8 As in Sect. 10, we can consider (ω, p)-semirings and (ω, p)-Kleene algebras. 
We start with the former and outline the latter in Sect. 14.
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An (ω, p)-dioid is an ω-dioid S equipped with operations (−)◦j : S → S for all 
p < j ≤ n such that (α)◦j ∈ Sj  for all α ∈ Sj  and such that the involution axioms and 
α ≤ αα◦j α hold for p < j ≤ n.

Corollary 10.2 then specialises further to (ω, p)-semirings owing to Corollary 14.3. We 
can still extend to (ω, p)-semirings, that is, whenever C is a finitely decomposable local 
(ω, p)-catoid of finite valency and S an (ω, p)-semiring, then SC  is an (ω, p)-semiring. 
Truncations at dimension n work as expected and the globular (n, p)-semirings introduced 
in [13] arise as special cases.

Finally, we compare ω-semirings with the previous slightly different axiomatisation 
of higher globular semirings [13, Definition 3.2.6]. These have been proved sound with 
respect to a powerset model of path n-categories [13, Sect. 3.3], which is the basis of higher-
dimensional rewriting, but axioms have been introduced in an ad hoc fashion with a view 
on higher-dimensional rewriting proofs. Our correspondence triangles with respect to ω
-catoids and ω-categories yield a more systematic structural justification of the ω-quantale 
and ω-semiring axioms.

One difference between the globular variant and ours is that the morphism axioms 
domi(α ·j β) ≤ domi(α) ·j domi(β) and codi(α ·j β) ≤ codi(α) ·j codi(β) are missing 
in the globular axiomatisation, while they are irredundant among the ω-semiring and ω
-quantale axioms (Example 7.1). Yet they can be derived in our construction of convolution 
ω-quantales over any ω-catoid and hence hold in the powerset model of path n-categories. 
A second difference is that the previous axiomatisation contains redundant assumptions and 
axioms, for instance on the bounded distributive lattice structure of Si or the relationships 
between quantalic units at different dimensions, which are now derivable. This discussion 
can be summarised as follows.

Proposition 13.9 Every strong ω-semiring is a globular ω-semiring. Every glob-

ular ω-semiring, which satisfies domi(α ·j β) ≤ domi(α) ·j domi(β) and 

codi(α ·j β) ≤ codi(α) ·j codi(β), is a strong ω-semiring.

The result generalises to (ω, p)-semirings with or without strong converses.

14 Higher Kleene Algebras

In this section we extend the results in the previous one from semirings to Kleene alge-
bras K, adding a Kleene star (−)∗ : K → K. By contrast to the quantalic Kleene star 
α∗ =

∨
i≥0

αi in Sect. 4, it is modelled in terms of least fixpoints. Intuitively, the Kleene 
star models an unbounded finite iteration or repetition of a computation or a sequence of 
rewrite steps. In the quantale of binary relations in Example 4.2, for instance, the Kleene 
star of a binary relation models its reflexive-transitive closure, in particular the iterated 
execution of a rewrite relation. In the same example, the Kleene star on the quantale of paths 
models the iterative gluing of paths in a given set, thus in particular of rewriting sequences. 
The same observations can be made about Kleene algebras of relations or sets of paths. For 
evidence that Kleene stars are crucial for reasoning algebraically about higher-dimensional 
rewriting properties see [13].
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The axioms of α-Kleene algebras are not as straightforward as those for α-dioids; addi-
tional identities capturing the interaction between higher stars, domain and codomain are 
needed. For convolution algebra constructions, a star on convolution Kleene algebras KC  
has previously been defined only for finitely decomposable catoids C with a single unit that 
satisfy a certain grading condition [17]. This does not cover the α-semirings with multiple 
units in this paper. Instead of general convolution algebras, we therefore only consider pow-
erset extensions in this section, where the finite decomposibility of catoids is not needed.

A Kleene algebra is a dioid K equipped with a star operation (−)∗ : K → K that satisfies 
the star unfold and star induction axioms

 1 + α · α∗

≤ α∗, γ + α · β ≤ β ⇒ α∗ · γ ≤ β

and their opposites, where the arguments in compositions have been swapped. A modal 

Kleene algebra is simply a Kleene algebra which is also a modal semiring.
The star unfold and induction axioms of Kleene algebras thus model α∗ in terms of 

the least pre-fixpoints of the maps x �→ 1 + α · x and x �→ 1 + x · α, and hence their least 
fixpoints. Every quantale is a Kleene algebra: the quantalic Kleene star defined in Sect. 4 
satisfies the Kleene algebra axioms.

An adaptation of the definition of ω-quantales to Kleene algebras is straightforward—
except for the last two axioms.

For an ordinal α ∈ {0, 1, . . . , ω}, an α-Kleene algebra is an α-semiring K equipped with 
Kleene stars (−)∗i : K → K that satisfy the usual star unfold and star induction axioms, 
for all 0 ≤ i < j < α,

 

1i + α ·i α∗i ≤ α∗i , γ + α ·i β ≤ β ⇒ α∗i ·i γ ≤ β,

1i + α∗i ·i α ≤ α∗i , γ + β ·i α ≤ β ⇒ γ ·i α∗i ≤ β,

domi(α) ·i β∗j ≤ (domi(α) ·i β)∗j , α∗j ·i codi(β) ≤ (α ·i codi(β))∗j .

An α-Kleene algebra is strong if the underlying α-semiring is, and for all 0 ≤ i < j < α,

 domj(α) ·i β∗j ≤ (domj(α) ·i β)∗j , α∗j ·i codj(β) ≤ (α ·i codj(β))∗j .

Remark 14.1 The axioms mentioning domain and codomain are derivable in (strong) α
-quantales. In α-Kleene algebras we have neither proofs nor counterexamples to show 
redundancy or irredundancy of these axioms with respect to the remaining ones, yet these 
laws are needed for coherence proofs in higher-dimensional rewriting [13].

The converse structure on Kleene algebras is inherited from dioids. This leads immedi-
ately to involutive Kleene algebras, Kleene algebras with converse, their modal variants and 
modal Kleene algebras with strong converse.

Lemma 14.2 In every involutive Kleene algebra, α∗◦ = α◦∗.

A proof can be found in Appendix B, as usual.
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We now present a correspondence result for higher Kleene algebras– in the special case 
of powerset extensions. As usual, we consider ω-structures. As every quantale is a Kleene 
algebra and the Kleene star on a set is simply a union of powers, it is an immediate conse-
quence of Corollary 11.1.

Corollary 14.3   

1. Let C be a local ω-catoid. Then PC is an ω-Kleene algebra.
2. Let X be a set and PX  an ω-Kleene algebra in which idi ̸= 0. Then X can be equipped 

with a local ω-catoid structure.
3. If C is strong, then PC is strong and vice versa.

Similarly, the following correspondence result is a specialisation of Corollary 11.4.

Corollary 14.4   

1. Let C be a groupoid. Then PC is a modal Kleene algebra with strong converse.
2. Let X be a set and PX  a modal Kleene algebra with strong converse in which id0 ̸= ∅ 

and all atoms are functional. Then X can be equipped with a groupoid structure.

Proof For (1), it remains to extend the strong converse axioms, as the modular law is not 
available. This has been done in Lemma 11.3.

For (2), note that the strong converse axioms are used in the proof of Theorem 9.3 instead 
of the Dedekind or modular law, but the strong Gelfand law would be too weak. For a direct 
proof, x ⊙ x− = {x} · {x}◦ = dom({x}) = {s(x)} and likewise for the target axiom, 
using the strong converse axiom for domain in the second step (as an equation because 
atoms are functional).  □

Typical examples of powerset ω-Kleene algebras are subalgebras of powerset ω-quanta-
les generated by some finite set and closed under the operations of ω-Kleene algebras. Lan-
guages over a finite alphabet Σ, for instance, form a quantale, whereas the regular languages 
generated by Σ form a Kleene algebra, but not a quantale.

Remark 14.5 The definition of (ω, p)-Kleene algebra is a straightforward extension of that 
of (ω, p)-semiring. The fact that α◦j = α for all α ∈ Sdomi

( or Kj) with i < j now follows 
from Lemma 13.2.

Corollary 10.2 now specialises to (ω, p)-Kleene algebras owing to Corollary 14.3. In par-
ticular, an (ω, p)-Kleene algebra with strong converse is needed to recover the (ω, p)-catoid 
among the atoms. For the more general convolution algebra constructions, the limitations 
mentioned in Sect. 14 remain; an extension to Kleene algebras requires further thought. 
Truncations at dimension n work as expected.

Finally, we briefly compare ω-Kleene algebras with globular Kleene algebras [13, Defi-
nitions 3.2.7]. As both are based on the higher semirings discussed in the previous section, 
we focus on the star axioms. On one hand, as discussed in Remark 14.1, we need a strong ω
- Kleene algebra to derive two of the globular ω-Kleene algebra axioms. On the other hand, 

1 3

   25  Page 48 of 67



Higher Catoids, Higher Quantales and their Correspondences

two globular ω-Kleene algebra axioms are derivable in the context of ω-Kleene algebras, as 
the following lemma shows.

Lemma 14.6 In every ω-Kleene algebra, (α ·j β)∗i ≤ α∗i ·j β∗i  for all 0 ≤ i < j < ω.

See Appendix B for a proof. The following result summarises this discussion.

Proposition 14.7 Every strong ω-Kleene algebra is a globular ω-Kleene algebra. Every 

globular ω-Kleene algebra, which satisfies domi(α ·j β) ≤ domi(α) ·j domi(β) and 

codi(α ·j β) ≤ codi(α) ·j codi(β), is a strong ω-Kleene algebra.

This proposition extends to strong (ω, p)-Kleene algebras and globular (ω, p)-Kleene 
algebras, as introduced in [13, Definition 4.4.2] for the case (n, p), using either the notion of 
converses or strong converses discussed in the previous section.

15 Conclusion

This paper combines two lines of research on higher globular algebras for higher-dimen-
sional rewriting and on the construction of convolution algebras on catoids and categories. 
More specifically, we have introduced ω-catoids and ω-quantales, and established corre-
spondence triangles between them. These extend and justify the axioms of higher globular 
Kleene algebras [13], which have previously been used for coherence proofs in higher-
dimensional rewriting, up to some modifications. We have also introduced several exten-
sions and specialisations of these constructions, in particular to (ω, p)-catoids and (ω, p)

-quantales and to variants of such quantales based on semirings or Kleene algebras. While 
the technical focus has been on convolution algebras, which often lead to interesting appli-
cations in quantitative program semantics and verification in computer science, we currently 
have no use for convolution ω-quantales or (ω, p)-quantales with value quantales different 
from the quantale of booleans. In the latter case, however, we can use power set ω-quantales 
instead of globular Kleene algebras to reason about higher-dimensional rewriting systems 
with greater flexibility and expressive power. A detailed introduction to the relationship 
with higher-dimensional rewriting, to globular Kleene algebras and to their use in coher-
ence proofs such as higher Church–Rosser theorems and higher Newman’s lemmas can be 
found in [13].

Our results add a new perspective to higher-dimensional rewriting and they yield new 
tools for reasoning with higher categories. But further work is needed for exploring them in 
practice. A first line of research could consider categorical variations of the strict globular ω
-catoids and ω-quantales introduced in this work to provide a categorical framework for the 
construction of coherence proofs and more generally of polygraphic resolutions, which are 
cofibrant replacements in higher categories:

 ● It is worth considering cubical versions of ω-catoids and ω-quantales, as confluence 
diagrams in higher-dimensional rewriting have a cubical shape [53, 54] and proofs of 
higher confluence properties can be developed more naturally in a cubical setting. A sin-
gle-set axiomatisation of cubical categories has recently been developed [55]. It remains 
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to generalise it to cubical catoids, to introduce cubical quantales and to study their corre-
spondences along the lines of the globular case. Cubical catoids and quantales may also 
be beneficial for explicit constructions of resolutions. Beyond that, we are interested in 
applications to precubical sets and higher-dimensional automata, where Kleene algebras 
or quantales describing their languages remain to be defined [56, 57], and to cubical ω
-categories with connections [58], where single-set formalisations might be of interest.

 ● To expand the constructions in this article to algebraic rewriting such as string, term, 
linear or diagrammatic rewriting, the development of catoids and quantales internal to 
categories of algebras over an operad would be needed.

 ● The homotopic properties of algebraic rewriting require weakening the exchange law 
of higher categories [59, 60] and, in our context, Gray-variants of the ω-catoids and ω
-quantales, where interchange law holds only up to coherent isomorphism [61].

A second line of research could investigate the link of the correspondence triangles between 
catoids, value quantales and convolution quantales with duality results for convolution alge-
bras beyond the Jónsson-Tarski case and similar structural results, and the categorification 
of such an approach. Catoids, for instance, are equivalent to monoids in the monoidal cat-
egory Rel with the standard tensor and unit. Related to this are questions about free power-
set or convolution ω-quantales generated by polygraphs, or computads, and about coherent 
rewriting properties of these internal monoids.

A third line of research could consider the formalisation of higher category theory, and 
higher-dimensional rewriting support for these, in the single-set framework of catoids 
developed in [26–28] or by other means with proof assistants such as Coq, Lean or Isabelle. 
The formalisation of the theorems in [13] could serve as stepping stones towards coherence 
theorems like Squier’s theorem in higher dimensions [9, 62] or the computation of resolu-
tions by rewriting in categorical and homological algebra [10–12].

Finally, the study of domain, codomain and converse in the setting of quantales leads to 
interesting questions about Dedekind quantales and the interplay of these operations in vari-
ants of allegories [63]. These will be addressed in successor articles.

Eckmann–Hilton-Style Collapses

Strengthening the weak homomorphism axioms

 si(x ⊙j y) ⊆ si(x) ⊙j si(y) and ti(x ⊙j y) ⊆ ti(x) ⊙j ti(y),

for 0 ≤ i < j < ω to equations in the ω-catoid axioms collapses the structure. The equa-
tional homomorphism laws for sj  and tj  and ⊙i for i < j in ω-categories are therefore 
rather exceptional. In this Appendix, following [15], we call st-multimagma a catoid in 
which associativity of ⊙ has been forgotten. We extend this notion to ω-st-magmas in the 
obvious way.

Lemma 1 If the inclusions

 si(x ⊙j y) ⊆ si(x) ⊙j si(y) and ti(x ⊙j y) ⊆ ti(x) ⊙j ti(y),
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for 0 ≤ i < j < ω are replaced by equations in the axiomatisation of ω-st-multimagmas, 
then 

1. si = sj  and ti = tj ,
2. si = ti and sj = tj .

Proof For si = sj ,

 

si(sj(x) ⊙j si(sj(x))) = si(sj(x)) ⊙j si(si(sj(x)))

= sj(si(sj(x))) ⊙j si(sj(x))

= {si(sj(x))},

thus si(sj(x) ⊙j si(sj(x))) ̸= ∅ and therefore ∆j(sj(x), si(sj(x))). It follows that

 sj(x) = tj(sj(x)) = sj(si(sj(x))) = sj(sj(si(x))) = sj(si(x)) = si(x).

By opposition, therefore, ti = tj . Also, si(x) = tj(si(x)) = si(tj(x)) = si(ti(x)) = ti(x), 
and sj = tj  then follows from the previous properties.  □

Lemma 2 If the same replacement is made for ω-categories, then ⊙i = ⊙j  for 0 ≤ i < j ≤ ω 

and both operations commute.

Proof If x ⊙i y = ∅, then x ⊙i y ⊆ x ⊙j y. Otherwise, if x ⊙i y ̸= ∅, then ti(x) = si(y) 
and

 

{x ⊙i y} = (x ⊙j tj(x)) ⊙i (sj(y) ⊙j y)

⊆ (x ⊙i sj(y)) ⊙j (tj(x) ⊙j y)

= (x ⊙i si(y)) ⊙j (ti(x) ⊙j y)

= (x ⊙i ti(x)) ⊙j (si(y) ⊙j y)

= {x ⊙j y}

and therefore x ⊙i y = x ⊙j y by functionality.
Likewise, if x ⊙i y = ∅, then x ⊙i y ⊆ y ⊙i x. If x ⊙i y ̸= ∅, then ti(x) = si(y) and

 

{x ⊙i y} = (sj(x) ⊙j x) ⊙i (y ⊙j tj(x))

⊆ (sj(x) ⊙i y) ⊙j (x ⊙i tj(y))

= (ti(x) ⊙i y) ⊙j (x ⊙i si(y))

= (si(y) ⊙i y) ⊙j (x ⊙i ti(x))

= {y ⊙j x}.

Then x ⊙i y = y ⊙i x and x ⊙j y = y ⊙j x by functionality and the previous result.  □

Unlike the classical Eckmann-Hilton collapse, the resulting structure is not an abelian 
monoid: different elements can still have different units and ⊙i( and therefore ⊙j) need not 
be total. There are 2-element counterexamples for ⊙0 and ⊙1 in the case of 2-categories.
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Finally we obtain a stronger collapse in the presence of an equational interchange law in 
the more general setting of multioperations and several units.

Lemma 3 If the inclusions (w ⊙j x) ⊙i (y ⊙j z) ⊆ (w ⊙i y) ⊙j (x ⊙i z), for 

0 ≤ i < j < ω, are replaced by equations in the axiomatisation of ω-st-multimagmas, then 

⊙i  and ⊙j  coincide, si = sj = ti = tj  and ⊙i( as well as ⊙j) is associative and commutative.

We have verified this result with Isabelle in two dimensions, but leave a proof on paper 
to the reader. Once again, the resulting structure is not automatically an abelian monoid: dif-
ferent elements can have different units and ⊙i( and therefore ⊙j) need neither be total nor 
functional. There are again 2-element counterexamples.

Proofs

Proof of Lemma 3.1(2)-(4) Item (2) is immediate from the axioms. For (3), suppose xy = {s(x)}. 
Then t(x) = s(y) and hence {y} = t(x)y. Thus y ∈ x−xy = x−s(x) = x−t(x−) = x− 
and therefore x− = y. Finally, (4) is immediate from (3) because s(x)t(x) = {s(x)} and 
t(x)t(x) = t(x) by Lemma 2.3(3).  □

Proof of Lemma 3.2 For (1), x−x = {t(x)} = {s(x−)} implies (x−)− = x by Lemma 3.1(2).

For (2), suppose x ∈ yz. Then t(y) = s(z) and xz− ⊆ yzz− = ys(z) = yt(y) = {y}. 
Moreover, by assumption, t(x) = t(z) and therefore ∆(x, z−) by locality. It then follows 
that xz− = {y} and hence y ∈ xz−. The converse implication follows from (1). The 
remaining equivalence follows by opposition.  □

Proof of Lemma 3.4 For (1), suppose s(x) = t(z) = s(y) and zx = zy. Then z−zx = z−zy, 
therefore t(z)x = t(z)y, s(x)x = s(y)y and finally x = y. (2) follows by opposition.  □

Proof of Lemma 5.2 (1) and (2) are immediate consequences of sup-preservation.

For (3),

 γ ≤ (α ∧ β)◦ ⇔ γ◦ ≤ α ∧ β ⇔ γ◦ ≤ α ∧ γ◦ ≤ β ⇔ γ ≤ α◦ ∧ γ ≤ β◦ ⇔ γ ≤ α◦ ∧ β◦

implies the claim for ∧, and the proof for 
∧

 is similar.
For (4), ⊤◦ ≤ ⊤ and hence ⊤ = ⊤◦◦ ≤ ⊤◦, and the other proofs are equally simple.
For (5), α◦ ∧ β = ⊥ ⇔ (α◦ ∧ β)◦ = ⊥ ⇔ α ∧ β◦ = ⊥.
For (6), we know that every quantale is a Kleene algebra an can use their induction axi-

oms (see Sect. 14). First, α◦∗◦ = (1 + α◦α◦∗)◦ = 1 + αα◦∗◦ and hence α∗ ≤ α◦∗◦ by star 
induction. Thus α∗◦ ≤ α◦∗. For the converse direction, α∗◦ = (1 + α∗α)◦ = 1 + α◦α∗◦ 
and therefore α◦∗ ≤ α∗◦ by star induction. An alternative inductive proof uses the definition 
of the star in quantales.  □
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Proof of Lemma 5.3 Let Q be an involutive quantale. Suppose the modular law holds. We 
derive two auxiliary properties before deriving the Dedekind law. First, the modular law can 
be strengthened to

 αβ ∧ γ = (α ∧ γβ◦)β ∧ γ,

because αβ ∧ γ = αβ ∧ γ ∧ γ ≤ (α ∧ γβ◦)β ∧ γ using the modular law and 
(α ∧ γβ◦)β ∧ γ ≤ αβ ∧ γ by properties of infs and order preservation. Second, a dual 
equational modular law

 αβ ∧ γ = α(β ∧ α◦γ) ∧ γ

then follows because 
αβ ∧ γ = (β◦α◦ ∧ γ◦)◦ = ((β◦ ∧ γ◦α◦◦)α◦ ∧ γ◦)◦ = α(β ∧ α◦γ) ∧ γ using properties 
of converse and the first equational modular law in the second step. Therefore,

 

αβ ∧ γ = α(β ∧ α◦γ) ∧ γ

≤ (α ∧ γ(β ∧ α◦γ)◦)(β ∧ α◦γ)

= (α ∧ γ(β◦ ∧ γ◦α))(β ∧ α◦γ)

≤ (α ∧ γβ◦)(β ∧ α◦γ),

using properties of converse and order preservation as well as the dual equational modular 
in the first and the modular law in the second step. This proves the Dedekind law.

Finally, αβ ∧ γ ≤ (α ∧ γβ◦)(β ∧ α◦γ) ≤ (α ∧ γβ◦)β yields the modular law from the 
Dedekind law using properties of inf and order preservation.

These proofs are standard in relation algebra.  □

Proof of Lemma  5.4 For the strong Gelfand property, 
α = 1α ∧ α ≤ ⊤α ∧ α ≤ (⊤ ∧ αα◦)α = αα◦α using the modular law in the third step.

For Peirce’s law, suppose αβ ∧ γ◦ = ⊥. Then (αβ ∧ γ◦)β◦ ∧ α = ⊥ and therefore 
βγ ∧ α◦ = ⊥ using the first equational modular law from the proof of Lemma 5.3 and 
properties of convolution. The converse implication is similar, using the dual equational 
modular law from Lemma 5.3.

For the first Schröder law, αβ ∧ γ = ⊥ ⇔ β ∧ α◦γ = ⊥, αβ ∧ γ = ⊥ implies 
β◦α◦ ∧ γ◦ = ⊥ by properties of converse and therefore β ∧ α◦γ = ⊥ by Peirce’s law. The 
proof of the converse direction is similar.

The second Schröder law, αβ ∧ γ = ⊥ ⇔ α ∧ γβ◦ = ⊥ follows in a similar way from 
Peirce’s law, the first Schröder law and properties of converse.

These proofs are once again standard in relation algebra.  □

Proof of Proposition 5.6 The proofs of dom(α) ≤ 1 and dom(⊥) = ⊥ are trivial.

For α ≤ dom(α)α, α = α ∧ α1 ≤ (1 ∧ αα◦)α = dom(α)α by the modular law, and the 
converse inequality follows from the second axiom.
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For dom(αdom(β)) = dom(αβ), we have 
dom(αdom(β)) = 1 ∧ αdom(β)⊤ = 1 ∧ αβ⊤ = dom(αβ).

For dom(α ∨ β) = dom(α) ∨ dom(β), note that dom(dom(α)) = dom(α) is immediate 
from the previous axiom. We first show that dom(dom(α) ∨ dom(β)) = dom(α) ∨ dom(β). 
Indeed,

 

dom(dom(α) ∨ dom(β)) = 1 ∧ (dom(α) ∨ dom(β))(dom(α) ∨ dom(β))◦

= 1 ∧ (dom(α) ∨ dom(β))(dom(α) ∨ dom(β))

= 1 ∧ (dom(α) ∨ dom(β)) ∧ (dom(α) ∨ dom(β))

= 1 ∧ (dom(α) ∨ dom(β))

= (1 ∧ dom(α)) ∨ (1 ∧ dom(β))

= dom(α) ∨ dom(β),

where the third step uses the fact that multiplication of domain elements is commutative 
and idempotent. Proofs can be found in our Isabelle theories. Using this property with the 
alternative definition of domain,

 

dom(α ∨ β) = 1 ∧ (α ∨ β)⊤

= 1 ∧ (α⊤ ∨ β⊤)

= 1 ∧ (dom(α)⊤ ∨ dom(β)⊤))

= 1 ∧ (dom(α) ∨ dom(β))⊤

= dom(dom(α) ∨ dom(β))

= dom(α) ∨ dom(β).

For the compatibility property note that, by the strong Gelfand property and previous 
domain axioms dom(α)dom(α)dom(α) = dom(α), therefore dom(α)dom(α) = dom(α) 
and likewise for cod(α). The proof of cod(dom(α)) = dom(α) is similar.  □

Proof of Lemma  5.7 For (1), 1 ∧ α⊤ = 1 ∧ α(⊤ ∧ α◦1) = 1 ∧ αα◦ = dom(α) using the 
modular law.

For (2), α⊤ = dom(α)α⊤ ≤ dom(α)⊤⊤ = dom(α)⊤ and 
dom(α)⊤ = (1 ∧ α⊤)⊤ ≤ ⊤ ∧ α⊤⊤ = α⊤.

Item (3) and (4) are trivial.
Finally, (4) is immediate from the definition of dom.  □

Proof of Lemma 6.8 By the morphism axiom for si, si(x ⊙j y) ⊆ si(x) ⊙j si(y). The right-
hand side must not be empty whenever the left-hand side is defined, which is assumed. 
Hence it must be equal to {si(x)} because compositions of lower cells in higher dimensions 
are trivial.  □

Proof of Lemma 5.11 By the strong Gelfand property,

 dom(α) ≤ dom(α)dom(α)◦dom(α) ≤ 1dom(α)◦
1 = dom(α)◦,
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from which dom(α)◦ ≤ dom(α) follows using the adjunction in Remark 5.1. The proof for 
cod follows by duality.  □

Proof of Proposition  6.13 Before the proof proper, we derive si ◦ tj ◦ si = si and 
ti ◦ sj ◦ si = si. We have

 

{si(x)} = si(x) ⊙i si(x)

= (sj(si(x)) ⊙j si(x)) ⊙i (si(x) ⊙j tj(si(x)))

⊆ (sj(si(x)) ⊙i si(x)) ⊙j (si(x) ⊙i tj(si(x))),

hence ∆j(sj(si(x)) ⊙i si(x), si(x) ⊙i tj(si(x))). Thus ∆i(sj(si(x)), si(x)) and 
∆i(si(x), tj(si(x))), and therefore ti(sj(si(x))) = si(si(x)) = si(x) as well as 
si(tj(si(x))) = ti(si(x)) = si(x).

Next we derive the missing n-catoid axioms. First we consider sj ◦ si = si, sj ◦ ti = ti, 
tj ◦ si = si, and tj ◦ ti = ti. For the first one,

 

{si(x)} = si(x) ⊙i si(x)

= (sj(si(x)) ⊙j si(x)) ⊙i (si(x) ⊙j tj(si(x)))

⊆ (sj(si(x)) ⊙i si(x)) ⊙j (si(x) ⊙i tj(si(x)))

= (sj(si(x)) ⊙i ti(sj(si(x)))) ⊙j (si(tj(si(x))) ⊙i ti(tj(si(x))))

= sj(si(x)) ⊙j tj(si(x))

and therefore si(x) = sj(si(x)) as well as si(x) = tj(si(x)). The remaining identities hold 
by opposition.

Second, we derive the identities si ◦ sj = sj ◦ si, si ◦ tj = tj ◦ si, ti ◦ si = sj ◦ ti and 
ti ◦ tj = tj ◦ ti. For the first, {sj(x)} = sj(si(x)) ⊙i sj(x) = si(x) ⊙i sj(x) and there-
fore ∆i(si(x), sj(x)). It follows that sj(si(x)) = si(x) = ti(si(x)) = si(sj(x)). The 
remaining proofs are similar.

Note that none of the proofs so far requires an associativity law.
It remains to derive si(x ⊙j y) ⊆ si(x) ⊙j si(y) and ti(x ⊙j y) ⊆ ti(x) ⊙j ti(y). We 

prove the first inclusion by cases. If si(x ⊙j y) = ∅, then the claim is trivial. Otherwise, if 
si(x ⊙j y) ̸= ∅, then tj(x) = si(y) and thus

 

si(x ⊙j y) = si(sj(x ⊙j y))

= si(sj(x ⊙j sj(y)))

= si(sj(x ⊙j tj(y)))

= si(sj(x))

= {si(x)}

= si(x) ⊙j tj(si(x))

= si(x) ⊙j si(tj(x))

= si(x) ⊙j si(sj(x))

= si(x) ⊙j si(x).
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This uses weak locality laws that are available in all catoids if the composition under the 
source operation is defined. See Lemma 2.6 and [15] for details. The second inclusion fol-
lows by opposition.  □

Proof of Lemma 7.3 For (1) codj ◦ domi = codj ◦ domj ◦ domi = domj ◦ domi = domi, 
and the remaining identities in (1) follow by opposition.

For (2), 1j ·i 1j = dj(1j) ·i dj(1j) = dj(1j ·i 1j) ≤ 1j  if Q is strong and

 1j = 1j ·i 1i = (1j ·j 1j) ·i (1i ·j 1j) ≤ (1j ·i 1i) ·j (1j ·i 1j) = 1j ·j (1j ·i 1j) = 1j ·i 1j .

Further, 1i ·j 1i = di(1i) ·j di(1i) = dj(di(1i)) ·j di(1i) = di(1i) = 1i.
For (3), 1i = 1i ·i 1i = (1j ·j 1i) ·i (1i ·j 1i) ≤ (1j ·i 1i) ·j (1i ·i 1j) = 1j ·j 1j = 1j .
For (4), dj(1i) = dj(di(1i)) = di(1i) = 1i, and di(1j) ≤ 1i as well as 

1i = di(1i) ≤ di(1j). The other identities in (4) then follow by opposition.
For (5), domi ◦ domj = domj ◦ domi follows from

 

domi(domj(α)) = domi(domj(domi(α) ·i α))

= domi(domj(domi(α)) ·i domj(α))

= domi(domi(α) ·i domj(α))

= domi(α) ·i domi(domj(α))

= domj(domi(α)) ·i domi(domj(α))

≤ domj(domi(α)) ·i 1i

= domj(domi(α))

and

 

domj(domi(α)) = domi(α)

= domi(domj(α) ·j α)

≤ domi(domj(α)) ·j domi(α)

≤ domi(domj(α)) ·j 1i

≤ domi(domj(α)) ·j 1j

= domi(domj(α)).

Moreover, domi ◦ codj = codj ◦ domi follows from

 

domi(codj(α)) = domi(codj(domi(α) ·i α))

= domi(codj(domi(α)) ·i codi(α))

= domi(domi(α) ·i codi(α))

= domi(α) ·i domi(codi(α))

= codj(domi(α)) ·i domi(codi(α))

≤ codj(domi(α)) ·i 1i

= codj(domi(α))
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and

 

codj(domi(α)) = domi(α)

= domi(α ·j codj(α))

≤ domi(α) ·j domi(codj(α))

≤ 1i ·j domi(codj(α))

≤ 1j ·j domi(codj(α))

= domi(codj(α)).

The remaining two identities in (6) then follow by opposition.
Finally, for (6),

 

domi(α ·j β) = domi(domj(α ·j β))

= domi(domj(α ·j domj(β)))

= domi(α ·j domj(β))

and the second identity in (7) then follows by opposition.  □

Proof of Lemma 7.6 For the first property in (1) and k = i, we first use induction on k to 
prove domi(α) ·i βk1 ≤ (domi(α) ·i β)kj , where (−)kj  indicates that powers are taken 
with respect to ·j . The base case follows from domi(α) ·i 1j ≤ 1i ·i 1j = 1j . For the induc-
tion step, suppose domi(α) ·i βkj ≤ (domi(α) ·i β)kj . Then

 

domi(α) ·i β(k+1)j = domj(domi(α)) ·i (β ·j βkj )

= (domj(domi(α)) ·j domj(domi(α))) ·i (β ·j βkj )

= (domi(α) ·j domi(α)) ·i (β ·j βkj )

≤ (domi(α) ·i β) ·j (domi(α) ·i βkj )

≤ (domi(α) ·i β) ·j (domi(α) ·i β)kj

= (domi(α) ·i β)(k+1)j .

Using this property yields

 

domi(α) ·i β∗j = domi(α) ·i
∨

k≥0

βkj

=
∨

{domi(α) ·i βkj | k ≥ 0}

≤
∨

k≥0

(domi(α) ·i β)kj

= (domi(α) ·i β)∗j .

The proof of the second property in (1) for k = i is dual.
The proofs for (2) are very similar, but in the base case, domj(x) ·i 1j ≤ 1j ·i 1j  needs to 

be shown, which follows from Lemma 7.3(2) and needs a strong ω-quantale.
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For (3), we first use induction on k to show that (α ·j β)ki ≤ αki ·j βki . In the base case, 
1i = 1i ·j 1i. For the induction step, suppose (α ·j β)ki ≤ αki ·j βki . Then

 

(α ·j β)(k+1)i = (α ·j β) ·i (α ·j β)ki

≤ (α ·j β) ·i αki ·j βki

≤ (α ·i αki ) ·j (β ·i βki )

= αk+1i ·j β(k+1)i
.

Using this property, we get (α ·j β)ki ≤ α∗i ·j β∗i  for all k ≥ 0 and thus 
(α ·j β)∗i ≤ α∗i ·j β∗i  by properties of sup.  □

Proof of Lemma 7.8 For (1),

 

dom0(α) ·1 dom0(α) = dom1(dom0(α)) ·1 dom1(dom0(α))

= dom1(dom0(α)

= dom0(α)

and the proof for codomain follows by opposition.
For (2),

 

domi(α ·j β) = domi(domj(α ·j β))

= domi(domj(α ·j domj(β)))

= domj(α ·j domj(β)),

and the proof for codomain follows by opposition.
The proofs of (3) are similar to those of (2), inserting codj  instead of domj  in the first 

step.
For (4),

 

domi(α ·i β) = domi(α ·i domi(β))

= domi(α ·i domj(domi(β)))

= domi(α ·i domi(domj(β)))

= domi(α ·i domj(β))

and the proof for codomain follows by opposition.
For (5),

 

domi(x ·i y) = domi(codj(x ·i y))

≤ domi(codj(x) ·i codj(y))

= domi(codj(x) ·i domi(codj(y)))

= domi(codj(x) ·i domi(y))

= domi(codj(x) ·i y).
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The second step uses the morphism law for codj . If the quantale is strong, it can be replaced 
by an equational step. The proofs for codi follow by opposition.

Item (6) is immediate from (1) and interchange.
Items (7) and (8) are immediate consequences of the weak homomorphism laws and the 

homomorphism laws, respectively.
For (9),

 

domi(α) ·j domi(β) = domi(domi(α) ·j domi(β)) ·0 (domi(α) ·j domi(β))

≤ (domi(domi(α)) ·j domi(domi(β)))) ·0 (domi(α) ·j domi(β))

≤ (domi(α) ·j 1i) ·0 (1i ·j domi(β))

≤ (domi(α) ·j 1j) ·0 (1i ·j domj(β))

≤ domi(α) ·i domi(β),

where the first step uses domain absorption, the second a weak homomorphism law, and the 
remaining steps are straightforward approximations. For the converse direction,

 

domiα) ·i domi(β) = (domi(α) ·j domi(α)) ·i (domi(β) ·j domi(β))

≤ (domi(α) ·i domi(β)) ·j (domi(α) ·i domi(β))

≤ (domi(α) ·i 1i) ·j (1i ·i domi(β))

= domi(α) ·j domi(β),

where the first step uses (1), the second step the interchange law, and the remaining steps 
are obvious.

For (10), using in particular (9),

 

(domi(α) ·j domi(β)) ·i (domi(γ) ·j domi(δ))

= (domi(α) ·i domi(β)) ·i (domi(γ) ·i domi(δ))

= (domi(α) ·i domi(γ)) ·i (domi(β) ·i domi(δ))

= domi(domi(α) ·i domi(γ)) ·i domi(domi(β) ·i domi(δ))

= domi(domi(α) ·i domi(γ)) ·j domi(domi(β) ·i domi(δ))

= (domi(α) ·i domi(γ)) ·j (domi(β) ·i domi(δ)).

 □

Proof of Corollary 11.1 For (1), we show explicit proofs for the globular structure, starting 
with the interchange laws. For W, X, Y, Z ⊆ C,

 

a ∈ (W ⊙j X) ⊙i (Y ⊙j Z) ⇔ ∃w ∈ W, x ∈ X, y ∈ Y, z ∈ Z. a ∈ (w ⊙j x) ⊙i (y ⊙j z)

⇒ ∃w ∈ W, x ∈ X, y ∈ Y, z ∈ Z. a ∈ (w ⊙i y) ⊙j (x ⊙i z)

⇔ a ∈ (W ⊙i X) ⊙j (Y ⊙i Z).

This requires only the interchange law in C. It remains to extend the globular laws.
For domj(x ·i y) ≤ domj(x) ·i domj(y) and X, Y ⊆ X ,
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a ∈ sj(X ⊙i Y ) ⇔ ∃b ∈ X ⊙i Y. a = sj(b)

⇔ ∃b, c ∈ X, d ∈ Y. a = sj(b) ∧ b ∈ c ⊙i d

⇔ ∃c ∈ X, d ∈ Y. a ∈ sj(c ⊙i d)

⇒ ∃c ∈ X, d ∈ Y. a ∈ sj(c) ⊙i sj(d)

⇔ ∃c ∈ sj(X), d ∈ sj(Y ). a ∈ c ⊙i d

⇔ a ∈ sj(X), ·isj(Y ).

The implication in the fourth step can be replaced by ⇔ if C is an ω-category. The proofs of 
codj(x ·i y) ≤ codj(x) ·i codj(y) and its strong variant follows by opposition. These proofs 
require only the respective morphism laws in C.

For domi(x ·j y) ≤ domi(x) ·j domi(y), note that si(x ⊙j y) ⊆ si(x) ⊙j si(y) is 
derivable even in the reduced axiomatisation of n-catoids (Proposition 6.13). The proof is 
then similar to the previous one.

Finally, for domj ◦ domi = domi, note that sj ◦ si = si is derivable in the reduced axi-
omatisation of n-catoids (Proposition 6.13). Hence let X ⊆ C. Then

 a ∈ sj(si(X)) ⇔ ∃b ∈ X. a = sj(si(b)) ⇔ ∃b ∈ X. a = si(b) ⇔ a ∈ si(X).

For (2), we consider the morphism laws for si and ti. We consider these correspondences 
one by one between quantales and catoids and thus mention the laws for si and ti for the 
context without locality. As for Theorem 8.5, we start with an explicit proof of interchange 
for multioperations and powersets.

 

(w ⊙j x) ⊙i (y ⊙j z) = ({w} ·j {x}) ·i ({y} ·j {z})

⊆ ({w} ·i {y}) ·j ({x} ·i {z})

= (w ⊙i y) ⊙j (x ⊙i z).

For the morphism law for sj ,

 sj(x ⊙i y) = domj({x} ·i {y}) ⊆ domj({x}) ·i domj({y}) = sj(x) ⊙i sj(y).

The inclusion in the second step becomes an equality if Q is strong. The proofs for the mor-
phism laws for tj  are dual. The proofs of the laws for si and ti are very similar.  □

Proof of Lemma  11.3 The proofs of (1) and (2) are obvious; (3) is immediate from (2): 
X = s(X)X ⊆ XX−X . For (4),

 

a ∈ C0 ∩ XX−

⇔ s(a) = a ∧ ∃b ∈ X, c ∈ X− s(a) ∈ b ⊙ c

⇔ s(a) = a ∧ ∃b ∈ X. s(a) = s(b)

⇔ a ∈ s(X)

and the proof for t is dual. The proofs for (5) are very similar:
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a ∈ C0 ∩ X⊤ ⇔ s(a) = a ∧ ∃b ∈ X, c ∈ C. s(a) ∈ b ⊙ c

⇔ s(a) = a ∧ ∃b ∈ X. s(a) = s(b)

⇔ a ∈ s(X)

and likewise for t. Finally, for (6), X⊤ = s(X)X⊤ ⊆ s(X)⊤⊤ ⊆ s(X)⊤ and 
s(X)⊤ ⊆ XX

−⊤ ⊆ X⊤⊤ ⊆ X⊤.  □

Proof of Lemma 12.2 The equations in (1) follow immediately from Lemma 7.8(2)-(5).

For (2), domi(α ·i domj(β ·j γ)) ≤ domi(α ·i (domi(β) ·j domi(γ))) follows from the 
above using the weak morphism axiom, and a dual property holds for codi and codj .

For (3),

 

domi(domk(α) ·i domj(β ·j γ))

≤ domi(domk(α) ·i (domi(β) ·j domi(γ)))

≤ domi((domk(α) ·i domi(β)) ·j (domk(α) ·i domi(γ)))

≤ domi(domk(α) ·i domi(β)) ·j domi(domk(α) ·i domi(γ))

= domi(domk(α) ·i β) ·j domi(domk(α) ·i γ).

The first step uses an approximation from (2), the second Lemma 7.8(6), the third a weak 
morphism axiom and the last domain locality. The proof for codomains is similar.

For (4),

 

domj(α ·j domj(domi(β ·i γ))) = domj(α ·j domi(domj(β ·i γ)))

≤ domj(α ·j domi(domj(β) ·i domj(γ)))

= domj(α ·j domi(domj(β) ·i γ)).

The first step uses Lemma 7.3(5), the second applies a morphism axiom, the third 7.8(4). 
The second step becomes an equality if Q is strong. The remaining proofs are similar.

For (5),

 

dom0(γ) ·0 dom1(α ·1 β) = dom1(dom0(γ)) ·0 dom1(α ·1 β)

= dom1(dom0(γ) ·0 (α ·1 β))

≤ dom1((dom0(γ) ·0 α) ·1 (dom0(γ) ·0 β))

The first step uses an axiom, the second a strong morphism axiom and the third Lemma 7.8(6). 
The second proof is similar.  □

Proof of Lemma 13.2 For (1), dom(α) ≤ dom(α)dom(α)◦dom(α) ≤ dom(α)◦, and thus 
dom(α)◦ ≤ dom(α)◦◦ = dom(α) as converse is order preserving. The property for cod 
then follows by opposition.

For (2),
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dom(α◦) = dom((αcod(α))◦)

= dom(cod(α)◦x◦)

= dom(cod(α)α◦)

= cod(α)dom(α◦)

= cod(αdom(α◦))

= cod(α◦◦dom(α◦)◦)

= cod((dom(α◦)α◦)◦)

= cod(α◦◦)

= cod(α).

The export steps in the fourth and fifth lines of the proof work because of the compatibility 
laws dom ◦ cod = cod and cod ◦ dom = dom of modal semirings. The second property 
then follows by opposition.  □

Proof of Lemma 14.2 First, α◦∗◦ = (1 + α◦∗α◦)◦ = 1 + α · α◦∗◦ by star unfold and proper-
ties of involution. Thus α∗ ≤ α◦∗◦ by star induction and therefore α∗◦ ≤ α◦∗.

Second, α∗◦ = (1 + αα∗)◦ = 1 + α◦α∗◦ by star unfold and properties of involution. 
Thus α◦∗ ≤ α∗◦ by star induction.  □

Proof of Lemma 14.6 It suffices to show that 1i + (α ·j β) ·i (α∗i ·j β∗i ) ≤ (α∗i ·j β∗i ) by 
star induction. Then 1i ≤ (α∗i ·j β∗i ) holds because 1i = 1i ·j 1i and 1i ≤ α∗i , 1i ≤ β∗i  
by standard Kleene algebra. Also, we have (α ·j β) ·i (α∗i ·j β∗i ) ≤ (α∗i ·j β∗i ) by inter-
change and α ·i α∗i ≤ α∗i  and β ·i β∗i ≤ β∗i , again by standard Kleene algebra.  □

Diagrams for Main Structures

The main structures used in this article are related in the following two diagrams. The 
diagrams are drawn by analogy to the Hasse diagrams of order theory. An increasing blue 
line means that the class at the lower node is a subclass of the class at the higher node. 
For instance, every (single-set) category is a local catoid. An increasing orange line means 
that every element in the lower class can be obtained by truncation from an element of the 
higher one. For instance, every 2-catoid can be obtained by truncation from an ω-catoid. 
An increasing red line means that the upper and lower class are related by correspondence 
in the sense of Jónsson-Tarski duality. This the case, for instance, for local ω-catoids and ω
-quantales.
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In the diagram above we write 
C, 2C and ωC for the classes of (single-set) categories, strict 2-categories and strict ω-cat-
egories, respectively. Further Ct, lCt, 2Ct, ωCt lωCt stand for the classes of catoids, local 

catoids, 2-catoids, ω-catoids and local ω-catoids, respectively. Finally, Q, iQ, mQ, ωQ, 
indicate the classes of quantales, interchange quantales, modal quantales and ω-quantales, 
respectively. Structures introduced in this articles are shown in black, all others are shown 

in gray.

In the second diagram we further write 
G for the class of groupoids, (ω, p)C for that of (ω, p-categories, l(ω, p)Ct for the class of 
(ω, p)-catoids, DQ for that of Dedekind quantales and (ω, p)Q for that of (ω, p)-quantales.

Acknowledgements The authors would like to thank James Cranch, Uli Fahrenberg, Éric Goubault, Amar 
Hadzihasanovic, Christian Johanson, Tanguy Massacrier and Krzysztof Ziemiański for interesting discus-
sions and the organisers of the GETCO 2022 conference and the Nordic Congress of Mathematicians 2023 
for the opportunity to present some of the results in this article. The fourth author would like to thank the 
Plume team and the Computer Science Department of the ENS de Lyon for supporting a short visit at the LIP 

1 3

Page 63 of 67    25 



C. Calk et al.

laboratory in the final stages of this work. Last but not least, the authors would thank the rewiever for many 
helpful suggestions for improving the presentation of this article.

Author Contributions All authors contributed to the research in this article and to its writing. Calk and Struth 
contributed to the formalisation with the Isabelle/HOL proof assistant.

Funding No funding was received to support this work.

Data Availability The Isabelle/HOL components supporting this work can be found in the Archive of Formal 
Proofs (see references in article).

Code Availability The Isabelle/HOL components supporting this work can be found in the Archive of Formal 
Proofs [26–28].

Declarations

Competing interest The authors have no competing interest to declare.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
licence, and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. 
If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge University Press, 
Cambridge (2003)

2. Doornbos, H., Backhouse, R.C., Woude, J.: A calculational approach to mathematical induction. Theor. 
Comput. Sci. 179(1–2), 103–135 (1997).  h t t p s :  / / d o i  . o r g / 1  0 . 1 0  1 6 / S 0 3 0 4 - 3 9 7 5 ( 9 6 ) 0 0 1 5 4 - 5

3. Struth, G.: Abstract abstract reduction. J. Log. Algebr. Methods Program. 66(2), 239–270 (2006). 
https://doi.org/10.1016/J.JLAP.2005.04.001

4. Desharnais, J., Struth, G.: Internal axioms for domain semirings. Sci. Comput. Program. 76(3), 181–203 
(2011). https://doi.org/10.1016/J.SCICO.2010.05.007

5. Desharnais, J., Möller, B., Struth, G.: Algebraic notions of termination. Log. Methods Comput. Sci. 
(2011). https://doi.org/10.2168/LMCS-7(1:1)2011

6. Street, R.: Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra 8(2), 149–181 (1976). 
https://doi.org/10.1016/0022-4049(76)90013-X

7. Burroni, A.: Higher-dimensional word problems with applications to equational logic. Theor. Comput. 
Sci. 115(1), 43–62 (1991). https://doi.org/10.1016/0304-3975(93)90054-W

8. Ara, D., Burroni, A., Guiraud, Y., Malbos, P., Métayer, F., Mimram, S.: Polygraphs: From Rewrit-
ing to Higher Categories. London Mathematical Society Lecture Note Series, vol. 495. Preprint at 
arXiv:2312.00429 (2025)

9. Guiraud, Y., Malbos, P.: Polygraphs of finite derivation type. Math. Struct. Comput. Sci. 28(2), 155–201 
(2018). https://doi.org/10.1017/S0960129516000220

10. Guiraud, Y., Malbos, P.: Higher-dimensional normalisation strategies for acyclicity. Adv. Math. 231(3–
4), 2294–2351 (2012). https://doi.org/10.1016/j.aim.2012.05.010

11. Guiraud, Y., Hoffbeck, E., Malbos, P.: Convergent presentations and polygraphic resolutions of associa-
tive algebras. Mathematische Zeitschrift 293(1–2), 113–179 (2019).  h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 0 0 2 0 9 - 0 1 
8 - 2 1 8 5 - z       

12. Malbos, P., Ren, I.: Shuffle polygraphic resolutions for operads. J. London Math. Soc. 107(1), 61–122 
(2023). https://doi.org/10.1112/jlms.12681

1 3

   25  Page 64 of 67

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0304-3975(96)00154-5
https://doi.org/10.1016/J.JLAP.2005.04.001
https://doi.org/10.1016/J.SCICO.2010.05.007
https://doi.org/10.2168/LMCS-7(1:1)2011
https://doi.org/10.1016/0022-4049(76)90013-X
https://doi.org/10.1016/0304-3975(93)90054-W
http://arxiv.org/abs/2312.00429
https://doi.org/10.1017/S0960129516000220
https://doi.org/10.1016/j.aim.2012.05.010
https://doi.org/10.1007/s00209-018-2185-z
https://doi.org/10.1007/s00209-018-2185-z
https://doi.org/10.1112/jlms.12681


Higher Catoids, Higher Quantales and their Correspondences

13. Calk, C., Goubault, E., Malbos, P., Struth, G.: Algebraic coherent confluence and globular Kleene alge-
bras. Log. Methods Comput. Sci. 18(4), 9–1943 (2022) https://doi.org/10.46298/LMCS-18(4:9)2022

14. Cranch, J., Doherty, S., Struth, G.: Relational semigroups and object-free categories. CoRR 
abs/2001.11895 (2020)

15. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Catoids and modal convolution algebras. 
Algebra Univ. (2023). https://doi.org/10.1007/s00012-023-00805-9

16. Dongol, B., Hayes, I.J., Struth, G.: Convolution algebras: Relational convolution, generalised modali-
ties and incidence algebras. Log. Methods Comput. Sci. (2021).  h t t p s : / / d o i . o r g / 1 0 . 2 3 6 3 8 / L M C S - 1 7 ( 1 : 
1 3 ) 2 0 2 1       

17. Cranch, J., Doherty, S., Struth, G.: Convolution and concurrency. Math. Struct. Comput. Sci. 31(8), 
918–949 (2021). https://doi.org/10.1017/S0960129522000081

18. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Domain semirings united. Acta Cybern. 25(3), 
575–583 (2022) https://doi.org/10.14232/actacyb.291111

19. Brown, R., Higgins, P.J.: The equivalence of ∞-groupoids and crossed complexes. Cah. Topol. Géom. 
Différ. Catég. 22(4), 371–383 (1981)

20. Street, R.: The algebra of oriented simplexes. J. Pure Appl. Algebra 49, 283–335 (1987).  h t t p s : / / d o i . o r g 
/ 1 0 . 1 0 1 6 / 0 0 2 2 - 4 0 4 9 ( 8 7 ) 9 0 1 3 7 - X       

21. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1998)
22. Steiner, R.: Omega-categories and chain complexes. Homol. Homotopy Appl. 6(1), 175–200 (2004)
23. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part II. Am. J. Math. 74(1), 127–162 (1952). 

https://doi.org/10.2307/2372074
24. Mulvey, C.J., Wick Pelletier, J.: A quantisation of the calculus of relations. In: Proceedings of the 1991 

Summer Category Meeting, Montreal, Canada. Conference Proceedings, Canadian Mathematical Soci-
ety, vol. 13. AMS, Providence, pp. 345–360 (1992)

25. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer, Heidelberg (2009)
26. Struth, G.: Catoids, categories, groupoids. Archive of Formal Proofs (2023).  h t t p s : / / i s a - a f p . o r g / e n t r i e s / 

C a t o i d s . h t m l     , Formal proof development
27. Calk, C., Struth, G.: Modal quantales, involutive quantales, Dedekind quantales. Archive of Formal 

Proofs (2023).  h t t p s :  / / i s a  - a f p . o  r g / e  n t r i e  s / Q u a  n t a l e s  _ C o n  v e r s e . h t m l, Formal proof development
28. Calk, C., Struth, G.: Higher globular catoids and quantales. Archive of Formal Proofs (2024).  h t t p s :  / / i s 

a  - a f p . o  r g / e  n t r i e  s / O m e  g a C a t o  i d s Q  u a n t a l e s . h t m l, Formal proof development
29. Kudryavtseva, G., Mazorchuk, V.: On multisemigroups. Port. Math. 71(1), 47–80 (2015).  h t t p s : / / d o i . o r 

g / 1 0 . 4 1 7 1 / P M / 1 9 5 6       
30. MacLane, S.: Groups, categories and duality. PNAS 34(6), 263–267 (1948).  h t t p s : / / d o i . o r g / 1 0 . 1 0 7 3 / p n 

a s . 3 4 . 6 . 2 6 3       
31. Rosenthal, K.I.: Relational monoids, multirelations, and quantalic recognizers. Cah. Topol. Géom. Dif-

fér. Catég. 38(2), 161–171 (1997)
32. Kenney, T., Paré, R.: Categories as monoids in span, rel and sup. Cah. Topol. Géom. Différ. Catég. 

52(3), 209–240 (2011)
33. Goldblatt, R.: Varieties of complex algebras. Ann. Pure Appl. Log. 44, 173–242 (1989).  h t t p s : / / d o i . o r g / 

1 0 . 1 0 1 6 / 0 1 6 8 - 0 0 7 2 ( 8 9 ) 9 0 0 3 2 - 8       
34. Givant, S.: Duality Theories for Boolean Algebras with Operators. Springer, Heidelberg (2014)
35. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. Am. J. Math. 73(4), 891–939 (1951). 

https://doi.org/10.2307/2372123
36. Brown, R.: From groups to groupoids: a brief survey. Bull. London Math. Soc. 19, 113–134 (1987). 

https://doi.org/10.1112/blms/19.2.113
37. Higgins, P.J.: Notes on Categories and Groupoids. van Nostrand Reynold Company, London (1971)
38. Rosenthal, K.I.: Quantales and Their Applications. Longman Scientific & Technical, Harlow (1990)
39. Rosenthal, K.I.: The Theory of Quantaloids. Addison Wesley Longman Limited, Harlow (1996)
40. Palmigiano, A., Re, R.: Groupoid quantales: A non-étale setting. J. Pure Appl. Algebra 215(8), 1945–

1957 (2011). https://doi.org/10.1016/j.jpaa.2010.11.005
41. Bloom, S.L., Ésik, Z., Stefanescu, G.: Notes on equational theories of relations. Algebra Univers. 

(1995). https://doi.org/10.1007/BF01190768
42. Ésik, Z., Bernátsky, L.: Equational properties of Kleene algebras of relations with conversion. Theor. 

Comput. Sci. 137(2), 237–251 (1995). https://doi.org/10.1016/0304-3975(94)00041-G
43. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941). https://doi.org/10.2307/2268577
44. Hirsch, R., Hodkinson, I.: Relation Algebras by Games. Elsevier, Amsterdam (2002)
45. Maddux, R.D.: Relation Algebras. Elsevier, Amsterdam (2006)
46. Calk, C., Goubault, E., Malbos, P.: Abstract strategies and coherence. In: RAMiCS 2021. LNCS, vol. 

13027. Springer, Heidelberg, pp. 108–125 (2021). https://doi.org/10.1007/978-3-030-88701-8_7

1 3

Page 65 of 67    25 

https://doi.org/10.46298/LMCS-18(4:9)2022
https://doi.org/10.1007/s00012-023-00805-9
https://doi.org/10.23638/LMCS-17(1:13)2021
https://doi.org/10.23638/LMCS-17(1:13)2021
https://doi.org/10.1017/S0960129522000081
https://doi.org/10.14232/actacyb.291111
https://doi.org/10.1016/0022-4049(87)90137-X
https://doi.org/10.1016/0022-4049(87)90137-X
https://doi.org/10.2307/2372074
https://isa-afp.org/entries/Catoids.html
https://isa-afp.org/entries/Catoids.html
https://isa-afp.org/entries/Quantales_Converse.html
https://isa-afp.org/entries/OmegaCatoidsQuantales.html
https://isa-afp.org/entries/OmegaCatoidsQuantales.html
https://doi.org/10.4171/PM/1956
https://doi.org/10.4171/PM/1956
https://doi.org/10.1073/pnas.34.6.263
https://doi.org/10.1073/pnas.34.6.263
https://doi.org/10.1016/0168-0072(89)90032-8
https://doi.org/10.1016/0168-0072(89)90032-8
https://doi.org/10.2307/2372123
https://doi.org/10.1112/blms/19.2.113
https://doi.org/10.1016/j.jpaa.2010.11.005
https://doi.org/10.1007/BF01190768
https://doi.org/10.1016/0304-3975(94)00041-G
https://doi.org/10.2307/2268577
https://doi.org/10.1007/978-3-030-88701-8_7


C. Calk et al.

47. Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61, 199–224 (1988).  h t t p s : / / d o i . o 
r g / 1 0 . 1 0 1 6 / 0 3 0 4 - 3 9 7 5 ( 8 8 ) 9 0 1 2 4 - 7       

48. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its foundations. J. Log. 
Algebr. Program. 80(6), 266–296 (2011). https://doi.org/10.1016/j.jlap.2011.04.005

49. Gautam, N.D.: The validity of equations in complex algebras. Arch. Math. Log. 3, 117–124 (1957). 
https://doi.org/10.1007/BF01988052

50. Grätzer, G., Whitney, S.: Infinitary varieties of structures closed under the formation of complex struc-
tures. Colloq. Math. 48, 1–5 (1984)

51. Brink, C.: Power structures. Algebra Univ. 30, 177–216 (1993). https://doi.org/10.1007/BF01196091
52. Rota, G.-C.: On the foundations of combinatorial theory I: Theory of Möbius functions. Zeitschrift für 

Wahrscheinlichkeitstheorie und verwandte Gebiete 2(4), 340–368 (1964)
53. Lucas, M.: Cubical categories for homotopy and rewriting. Phd thesis, Université Paris 7, Sorbonne 

Paris Cité (2017).  h t t p s :  / / h a l  . a r c h i  v e s -  o u v e r  t e s . f  r / t e l -  0 1 6 6  8 3 5 9
54. Lucas, M.: A cubical Squier’s theorem. Math. Struct. Comput. Sci. 30(2), 159–172 (2020).  h t t p s : / / d o i . o 

r g / 1 0 . 1 0 1 7 / s 0 9 6 0 1 2 9 5 2 0 0 0 0 0 1 8       
55. Malbos, P., Massacrier, T., Struth, G.: Single-set cubical categories and their formalisation with a proof 

assistant. J. Automat. Reason. 68(4), 20 (2024). https://doi.org/10.1007/s10817-024-09710-9
56. Fahrenberg, U., Johansen, C., Struth, G.: Ziemiański: Languages of higher-dimensional automata. 

Math. Struct. Comput. Sci. 31(5), 575–613 (2021). https://doi.org/10.1017/S0960129521000293
57. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: A Kleene theorem for higher-dimensional 

automata. In: CONCUR 2022. LIPIcs, vol. 243. Schloss Dagstuhl–Leibniz–Zentrum für Informatik, 
Dagstuhl, pp. 29–12918 (2022).  h t t p s :   /  / d o  i . o r  g /  1 0 .  4 2  3 0 /  L I P  I c  s . C O N   C U R .   2 0 2 2 . 2 9

58. Al-Agl, F.A., Brown, R., Steiner, R.: Multiple categories: The equivalence of a globular and a cubical 
approach. Adv. Math. 170, 71–118 (2002). https://doi.org/10.1006/aima.2001.2069

59. Forest, S.: Computational descriptions of higher categories. Phd thesis, Institut Polytechnique de Paris 
(2021). https://theses.hal.science/tel-03155192

60. Forest, S., Mimram, S.: Rewriting in Gray categories with applications to coherence. Math. Struct. 
Comput. Sci. 32(5), 574–647 (2022). https://doi.org/10.1017/S0960129522000299

61. Gordon, R., Power, A.J., Street, R.: Coherence for tricategories. Mem. Am. Math. Soc. 117(558), 81 
(1995). https://doi.org/10.1090/memo/0558

62. Guiraud, Y., Malbos, P.: Higher-dimensional categories with finite derivation type. Theory Appl. Cat-
egories 22(18), 420–478 (2009)

63. Freyd, P.J., Scedrov, A.: Categories, Allegories. North-Holland, Amsterdam (1990)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Cameron Calk1 · Philippe Malbos2 · Damien Pous3 · Georg Struth4,5

  Georg Struth
g.struth@sheffield.ac.uk

Cameron Calk
ccalk@lix.polytechnique.fr

Philippe Malbos
malbos@math.univ-lyon1.fr

Damien Pous
damien.pous@ens-lyon.fr

1 LIX, CNRS, École polytechnique, Institut Polytechnique de Paris, Bâtiment Alan Touring, 1 
rue Honoré d’Estienne d’Orves, 91128 Palaiseau, France

2 Institut Camille Jordan, UMR5208, CNRS, Université Claude Bernard Lyon 1, 43 Blvd. du 11 
Nov. 1918, 69622 Villeurbanne, France

1 3

   25  Page 66 of 67

https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1007/BF01988052
https://doi.org/10.1007/BF01196091
https://hal.archives-ouvertes.fr/tel-01668359
https://doi.org/10.1017/s0960129520000018
https://doi.org/10.1017/s0960129520000018
https://doi.org/10.1007/s10817-024-09710-9
https://doi.org/10.1017/S0960129521000293
https://doi.org/10.4230/LIPIcs.CONCUR.2022.29
https://doi.org/10.1006/aima.2001.2069
https://theses.hal.science/tel-03155192
https://doi.org/10.1017/S0960129522000299
https://doi.org/10.1090/memo/0558


Higher Catoids, Higher Quantales and their Correspondences

3 LIP, CNRS, ENS de Lyon, 46 allée d’Italie, 69364 Lyon, France

4 Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello,  
S1 4DP Sheffield, UK

5 Collegium de Lyon, Université de Lyon, 92 Rue Pasteur, 69007 Lyon, France

1 3

Page 67 of 67    25 


	Higher Catoids, Higher Quantales and their Correspondences
	Abstract
	1 Introduction
	2 Catoids
	3 Groupoids
	4 Modal Quantales
	5 Dedekind Quantales
	6 Higher Catoids
	7 Higher Quantales
	8 Higher Convolution Quantales and their Correspondences
	9 Dedekind Convolution Quantales and their Correspondences
	10 ￼-Catoids and ￼-Quantales
	11 Correspondences for Powerset Quantales
	12 Modal Operators and their Laws
	13 Higher Semirings
	14 Higher Kleene Algebras
	15 Conclusion
	Eckmann–Hilton-Style Collapses
	Proofs
	Diagrams for Main Structures
	References


