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ABSTRACT

Representing species interactions probabilistically as opposed to deterministically conveys uncertainties in our knowledge of
interactions. The sources of uncertainty captured by interaction probabilities depend on the method used to evaluate them:
uncertainty of predictive models, subjective assessment of experts, or empirical measurement of interaction spatiotemporal
variability. However, guidelines for the estimation and documentation of probabilistic interaction data are lacking. This is
concerning because our understanding of interaction probabilities depend on their sometimes elusive definition and uncer-
tainty sources. We review how probabilistic interactions are defined at different spatial scales. These definitions are based
on the distinction between the realisation of an interaction at a specific time and space (local networks) and its biological or
ecological feasibility (metaweb). Using host-parasite interactions in Europe, we illustrate how these two network representa-
tions differ in their statistical properties, specifically: how local networks and metawebs differ in their spatial and temporal
scaling of interactions. We present two approaches to inferring binary interactions from probabilistic ones that account for
these differences and show that systematic biases arise when directly inferring local networks from metawebs. Our results
underscore the importance of more rigorous descriptions of probabilistic species interactions that specify their conditional
variables and uncertainty sources.

1 | Introduction and Londofio 2022; Abrego et al. 2021). However, cataloguing
species, populations and, in particular, ecological interactions
(e.g., predation, parasitism and pollination) is challenging
(Polis 1991; Pascual and Dunne 2006). There are methodological

and biological constraints that hinder our ability to document

1.1 | Species Interactions Are Variable
and Uncertain

As we navigate global biodiversity change, filling in knowl-
edge gaps about biodiversity becomes instrumental to monitor-
ing and mitigating those changes (Hortal et al. 2015; Gonzalez

species interactions, leading to uncertainty in our knowledge of
interactions. For example, the spatial and temporal uncoupling
of species (e.g., nocturnal and diurnal species coexisting in the
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same space, Jordano 1987) and the large number of rare and
cryptic interactions in a community contribute to these knowl-
edge gaps by making it more difficult to observe interactions
(Jordano 2016).

Several conditions must be satisfied for an interaction to be real-
ised locally. First, both species must have overlapping geographic
ranges, that is, they must co-occur (Morales-Castilla et al. 2015;
Cazelles et al. 2016). Second, they must have a non-zero proba-
bility of meeting (Poisot et al. 2015). Probabilities of interspecific
encounters are typically low, especially for rare species (Vazquez
et al. 2007; Canard et al. 2012, 2014). The probability that spe-
cies meet also depends on their biology, such as their phenology
(Olesen et al. 2010; Singer and McBride 2012) and discoverabil-
ity (Broom and Ruxton 2005). Finally, when species encounter,
an interaction occurs only if their traits, such as their pheno-
types (Bolnick et al. 2011; Stouffer et al. 2011; Gravel et al. 2013)
and behaviour (Pulliam 1974; Choh et al. 2012), are locally
compatible (Poisot et al. 2015). Because these conditions are not
consistently met locally, there will inevitably be instances where
interactions will occur and others where they will not.

Documenting the location and timing of interactions is difficult
when accounting for their spatiotemporal variability (Poisot
et al. 2012, 2015). Knowing the biological capacity of two spe-
cies to interact is necessary but not sufficient for inferring their
interaction at a specific time and space. Environmental fac-
tors, such as temperature (Angilletta Jr. et al. 2004), drought
(Woodward et al. 2012), climate change (Gilman et al. 2010;
Woodward et al. 2010; Araujo et al. 2011), habitat characteristics
(e.g., presence of refuges where prey can hide from predators,
Grabowski 2004) and land use change (Tylianakis et al. 2007),
contribute to this spatiotemporal variability by impacting spe-
cies abundance and traits. Interactions may also be influenced
by a third species (e.g., a more profitable prey species, Golubski
and Abrams 2011; Sanders and van Veen 2012). Even under
favourable circumstances, there remains a possibility that the
interaction does not occur locally, either due to the intricate na-
ture of the system or simply by chance. If it does occur, it might
go undetected, particularly if it happens infrequently. In this
context, it is unsurprising that our knowledge of ecological in-
teractions remains limited (Hortal et al. 2015) despite extensive
biodiversity data collection (Schmeller et al. 2015).

We distinguish two types of uncertainty: the uncertainty arising
from interaction variability (aleatory uncertainty) and the un-
certainty due to incomplete knowledge (epistemic uncertainty,
Walker et al. 2003). Interaction variability is defined as the
changes in the occurrence or strength of interactions along spa-
tial, temporal, or environmental axes (Poisot et al. 2015). For in-
stance, the proportion of networks in which an interaction occurs
is a measure of interaction variability. In contrast, knowledge
uncertainty represents our lack of knowledge about parameters
and variables (e.g., not knowing whether an interaction occurs or
not). When using statistical models to infer interactions, sources
of knowledge uncertainty include input data, parameter and
model structure uncertainties (Simmonds et al. 2024). Input data
uncertainty arises from our inability to observe all interactions
and from measurement errors in environmental and biological
variables used for inference. Parameter uncertainty represents
a plausible range of values for a parameter whose exact value

is unknown. For example, we may calculate a range of values
for interaction variability (e.g., there could be a 50% certainty
that an interaction occurs 50% of the time). When interaction
variability is used as a model parameter (Box 1, Figure 1), its de-
gree of accuracy may be determined by parameter uncertainty.
Model structure uncertainty recognises that different models
may adequately predict interactions. Simmonds et al. (2024)
underscores the importance of quantifying and reporting these
sources of uncertainty, and propagating them to model output
(such as predicted interactions) and higher-level measures (such
as network structure). The distinction between variability and
knowledge uncertainty (hereafter referred to as uncertainty)
is important because uncertainty can be reduced by collecting
more data, but not variability. Moreover, uncertainty is typically
represented by probability distributions, whereas variability is
often modelled using frequency distributions. This distinction
allows us to better understand the sources of our knowledge
gaps about ecological interactions.

1.2 | Species Interactions as Probabilistic Objects

The recognition of the variability and uncertainty of species in-
teractions has led ecologists to expand their representation of
ecological networks to include a probabilistic view of interac-
tions (Poisot et al. 2016; Dallas et al. 2017; Fu et al. 2021). This
allows filling in the Eltonian shortfall (i.e., the gap between
current knowledge and a comprehensive understanding of in-
teractions, Hortal et al. 2015) by modelling the probability of
occurrence of interactions. This can be important for direct-
ing efforts and taking action (Carlson et al. 2021), especially
in places where access and resources for research are scarce.
A probability is a measure of how likely a specific outcome is,
based on both the uncertainty and variability of interactions.
Interaction probabilities may be uncertain when there is a distri-
bution of plausible probability values. Probabilistic interactions
have been applied to direct interactions, which are conceptually
and mathematically analogous regardless of their biological
type (e.g., predation and pollination). This is in contrast with
indirect interactions (e.g., competition), which arise from dis-
tinct ecological processes and are often not directly observable
(Kéfi et al. 2015, 2016). By accounting for the uncertainty and
variability of direct interactions, networks of probabilistic inter-
actions (which differ from probabilistic networks measuring the
probability of the whole network) may provide a more realistic
portrait of species interactions.

Networks of probabilistic interactions, within a Bayesian per-
spective, express our degree of belief (or confidence) regarding
the feasibility, occurrence or observation of interactions. In a fre-
quentist approach, they represent the expected relative frequen-
cies of interactions over many repeated trials or sampling events.
Our level of confidence should be more definitive (approaching
either 0 or 1) as we extend our sampling to a broader area and
longer duration, thereby diminishing knowledge uncertainty
(but not the estimation of interaction variability). In contrast,
interactions are simply regarded as either occurring or not in
networks of deterministic binary interactions. In the broadest
sense, binary interactions are a type of probabilistic interaction,
in which the numerical value is restrained to 0 (non-occurring)
or 1 (occurring). In networks of probabilistic interactions, only
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BOX1 | A spatiotemporally explicit model of interactions.

Ecologists may use predictive models to reconstruct local networks across time and space. We introduce and develop a generative
Bayesian model for local interactions which explicitly accounts for their spatiotemporal variability. Our model is not designed for
regional interactions, which do not vary spatially nor temporally. Rather, it could prove valuable for generating new data on local
interactions across time and space, following parameter inference.

As indicated by Equation (2), the probability that two taxa i and jinteract locally can be obtained by multiplying their probability
of interaction given co-occurrence with their probability of co-occurrence. The probability of interaction given co-occurrence can
be made temporally explicit by modelling it as a Poisson process, that is, an event that occurs at a constant average rate 4;; . This
parameter represents the local expected frequency of interaction between co-occurring taxa (i.e., a measure of the temporal vari-
ability of the interaction). The exponential distribution gives us the probability density for the amount of time that passes between
two consecutive realisations of an event with a constant average rate. Therefore, the cumulative density function of the exponen-
tial distribution can be used to model the probability that two co-occurring taxa will interact at least once during a time interval £,:

P(Lyj=11X;;,=1)=1—e kb, 13)

which tends toward 1as ¢, — coif 4; ; > 0. In other words, two co-occurring taxa with a nonzero rate of interaction will inevita-
bly interact at least once in a sufficiently long time interval.

The occurrence of an interaction between i and j may be the result of a Bernoulli trial with parameter ¢;;  representing the prob-
ability of interaction P(L; k= 1). A Bayesian model can be built using the preceding equations to generate new interaction data,
following the inference of 4; ; , and P(X; ; ;).

L, ; x ~ Bernoulli(g, ; ;) (14)

@ik =P(Ly X, ) P (X i) = (1= e ) P(X, o) 1s)
P(X; ) ~ Beta(2, 2) (16)

A j.x ~ Exponential(2) a7

In Figure 1, we show the variation in the probability of interaction under different parameter values. In the right panel, we notice
that the probability of interaction always converges toward the probability of co-occurrence P(Xi k= 1), for all positive values
of the interaction rate. This suggests that, over time, the probability that two taxa interact is given by their probability of co-
occurrence, assuming they have the biological capacity to interact under suitable environmental conditions.

Spatiotemporally explicit models of interactions have a wide range of applications, including predictions, research design, and
sampling evaluation. They can be customised in different ways, such as by linking parameters to specific environmental or bio-
logical variables. For instance, the probability of co-occurrence could be modelled as a function of climatic variables, while the
interaction rate could be modelled based on taxa abundances. This could enable better predictions of interactions across space
and time based on occurring environmental and biological conditions. Additionally, these models can help determine the sam-
pling duration needed to obtain a specific probability of observing an interaction, thereby informing the evaluation of sampling
completeness.

forbidden interactions (i.e., interactions prohibited by biological
traits or species absence, Jordano et al. 2003; Olesen et al. 2010)
have a probability of zero. Understanding the nuances between
probabilistic and binary interactions is essential for accurately
modelling and interpreting ecological networks.

The development and application of computational methods in
network ecology, often based on a probabilistic representation
of interactions, can alleviate (and guide) the sampling efforts re-
quired to document species interactions (Strydom et al. 2021). For
example, statistical models can be used to estimate the probability
of missing (false negatives) and spurious (false positives) interac-
tions (Guimera and Sales-Pardo 2009), helping us identify places
where sampling is most needed to reduce uncertainty. Statistical
models can predict networks without prior knowledge of inter-
actions, for example, using body size (Petchey et al. 2008; Gravel

et al. 2013; Caron et al. 2024), phylogeny (Elmasri et al. 2020;
Strydom et al. 2022), or a combination of niche and neutral pro-
cesses (Bartomeus et al. 2016; Pomeranz et al. 2019). Before being
used to test ecological hypotheses, predicted networks must be
validated against empirical data (Brimacombe et al. 2024), which
could be sampled strategically to optimise the validation process.
Topological null models, which generate networks of probabilistic
interactions by preserving chosen characteristics of the adjacency
matrix while intentionally omitting others (Bascompte et al. 2003;
Fortuna and Bascompte 2006), are examples of common proba-
bilistic models. Null models can produce underlying distributions
of network measures for null hypothesis significance testing.
However, how the uncertainty of interactions propagates to net-
work structure remains to be elucidated. Many measures describe
the structure (Poisot et al. 2016) and diversity (Ohlmann et al. 2019;
Godsoe et al. 2022) of probabilistic interaction networks. These
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FIGURE 1 | Parameters of the spatiotemporally explicit model of interactions. (a) Probability of local interaction ¢;;, = P(L,- J,k) (short for
P(Li k= 1)) given by the process model (Equation (15), Box 1) under different values of 4; ik (interaction rate) and P(X,- j,k) (probability of co-
occurrence, short for P (Xi,;,k =1 )), with ¢, = 1 (duration). The probability of local interaction represents the probability that the two taxa will interact
at least once within the given time interval. Parameters £, and 4;;, have complementary units (e.g., £, in months and 4, ; in number of interactions

per month). The parameter values used in the right panel are denoted by the white stars. (b) Scaling of the probability of interaction with the duration

parameter £, for different values of 4;;, and P(X; ;).

models and measures support the use of probabilistic interactions
for studying a wide range of ecological questions, from predicting
species distributions (Cazelles et al. 2016) to forecasting the impact
of climate change on ecological networks (Gilman et al. 2010).

1.3 | We Lack a Clear Understanding
of Probabilistic Species Interactions

We still lack a precise definition of probabilistic interactions,
which makes the estimation and use of these data more difficult.
We take a step back by outlining different ways in which prob-
abilistic interactions are defined and used in network ecology.
We distinguish two broad categories of probabilistic interac-
tion networks: local networks describing probabilities of real-
ised interactions, and regional networks (metawebs) describing
probabilities of potential interactions. Potential interactions are
defined as the biological or ecological capacity of taxa to interact
(i.e., the probability that they interact if they were to encounter
each other, given sufficient time and appropriate environmental
conditions) whereas realised interactions are their occurrence
in a well-defined space and time. For two co-occurring taxa and
over enough time, the probability of local interaction tends to-
ward the probability of regional interaction, a longer duration
increasing the probability that these taxa will eventually en-
counter each other and that suitable environmental conditions
will occur. We compare these two network representations and
examine their properties and relationships with space and time.

The lack of guidelines on probabilistic interaction data is worri-
some, as it affects both data producers and re-users who gener-
ate and manipulate these numbers. This is concerning because
decisions regarding network construction can affect our un-
derstanding of network properties (Brimacombe et al. 2023).
There is currently no reporting standard that could guide the

documentation of all types of probabilistic interactions (Salim
et al. 2022 discuss data standards for deterministic mutualistic
networks). We discuss general best practices (such as thorough
data documentation) rather than recommending specific data
formats or software tools, because the choice of data formats
depends on the variable, research question and software used,
while different tools (e.g., Stan, Julia) can be used for making
inference. Data documentation should outline the scale (local
or regional) and biological type (e.g., predatory or pollination)
of interactions, the taxonomic level and characteristics (e.g., life
stages) of the individuals involved, the mathematical expression
of probabilities, including clearly identified conditional vari-
ables (e.g., area, duration and environmental conditions) and
the model used. Thorough data documentation helps adequately
interpret and manipulate probabilistic interaction data. In the
following sections, we show why this is important by comparing
different types and conditions of probabilistic interactions as we
scale up from pairwise interactions to interactions within local
and regional networks.

2 | Pairwise Interactions: The Building Blocks of
Ecological Networks

2.1 | What Are Probabilistic Interactions?

Consider a scenario where an avian predator has just established
itself in a northern habitat home to a small rodent. Suppose their
interaction has not been previously observed, either because they
never co-occurred before or because previous sampling failed to
detect an interaction. What is the probability that the rodent is
part of the predator's diet? This question can be answered in dif-
ferent ways. We could calculate the probability that their traits
match, that is, that the predator has the biological attributes to
capture and consume the rodent (regional interaction). We could
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also calculate the probability that their traits support an inter-
action under the typical environmental conditions of the new
habitat (also a regional interaction). For example, because avian
predators hunt by sight, predation could be highly improbable
when snow is present. Finally, we could calculate the probability
that the avian predator will consume the rodent at that particu-
lar location (local interaction). Our estimation hinges on our un-
derstanding of these probabilities and the ecological processes
we aim to capture.

We use the terms metaweb (Dunne 2006) to designate regional
networks of potential interactions and local networks (Poisot
et al. 2012) for those of realised interactions. Metawebs are the
network analogues of the species pool, where local networks
originate from a subset of both species and interactions of the
metaweb (Saravia et al. 2022). Local interactions are the sub-
set of all potential interactions that were either observed or
predicted to occur at a given time and location. Without clear
documentation, it can be challenging to know if probabilistic
interactions are local or regional. A better understanding of
probabilistic interactions would facilitate a more adequate use
of these data and prevent misinterpretations of their biological
meaning.

2.2 | What Is the Outcome of Probabilistic
Interactions?

2.2.1 | The Outcome of Probabilistic Interactions Is
Usually Binary

Local networks and metawebs are made of nodes and edges that
may be represented at different levels of organisation. The basic
units of ecological networks are individuals that interact with
each other (e.g., by predation, Elton 2001), forming individual-
based networks (Melian et al. 2011). The aggregation of these
individuals into more or less homogeneous groups (e.g., pop-
ulations, species, feeding guilds) allows us to represent nodes
at broader taxonomic scales, which affects our interpretation
of network properties (Guimardes 2020; Hemprich-Bennett
et al. 2021).

Ecologists have traditionally represented interactions as binary
objects that were considered realised after observing at least one
individual from group i interact with at least another from group
Jj- In an adjacency matrix B of binary interactions, the presence
or absence of an interaction B;; can be viewed as the result of a
Bernoulli trial B;; ~ Bernoulli(¢;;), with ¢,; = P(B;; = 1) being
the probability of interaction characterising our limited knowl-
edge and/or interaction variability. Interaction probability may
be estimated using predictive models or expert (prior) knowl-
edge about the interaction. In networks of probabilistic interac-
tions, the edge values P(B;; = 1) (which we denote as P(B;;) for
simplicity and better readability) are probabilistic events whose
only two possible outcomes are the presence (B;; = 1) or absence
(B;; =0) of an interaction. Depending on the type of network
(local or regional), stochastic parameters like P(B; J) can be
linked to environmental and biological factors such as species
abundances, traits, area and time, for example, using logistic re-
gression. This allows us to model the probability that at least two
individuals interact under these conditions.

The variability of an interaction determines the number of net-
works in which it occurs. This number can be predicted using a
Binomial distribution, assuming a constant interaction proba-
bility and independence between networks. When accounting
for uncertainties in the estimation of P(Bl- J ), a Beta distribution
Beta(a, #) may be used to represent the relative likelihood of dif-
ferent probability values. The a and § parameters estimate the
number of successes (sampled networks with the interaction)
and failures (sampled networks without the interaction), respec-
tively. The Beta distribution predicts the probability of interac-
tion in a local network containing both species. If we consider
this uncertainty, a Beta-Binomial distribution can be used to
predict the number of networks in which the interaction occurs.
Empirically observing this interaction provides important in-
formation updating previous estimates of P(B;;). By sampling
interactions in different contexts, we can estimate their local
variability more precisely.

2.2.2 | The Outcome of Probabilistic Interactions May
Be Quantitative

Even though binary interactions constitute a valuable source of
information (Pascual and Dunne 2006), they overlook interac-
tion strengths. Represented in a quantitative adjacency matrix
W, interaction strengths describe energy flows, demographic
impacts or frequencies of interactions (Berlow et al. 2004;
Borrett and Scharler 2019), with W;; being a natural N or real
R number depending on the measure. For example, they may
represent local interaction rates (e.g., the flower-visiting rates of
pollinators, Herrera 1989). Relative frequencies of interactions
may be used as a measure of both the strength and probabil-
ity of local interactions. When interaction strengths character-
ise predation pressure on prey, they can serve as parameters in
a Lotka—Volterra model (e.g., Emmerson and Raffaelli 2004).
The extra amount of information in quantitative networks typ-
ically comes at a cost of greater sampling effort and data vol-
ume (Strydom et al. 2021), especially when quantifying the
uncertainty and variability of quantitative interactions (Berlow
et al. 2004). However, if two taxa are repeatedly found together
without interacting, there may be more uncertainty about the
occurrence of the interaction than its strength (which would as-
suredly be close to 0).

Like binary interactions, the uncertainty and variability of inter-
action strengths can be represented probabilistically. Interaction
strengths can follow different probability distributions depend-
ing on the measure. For instance, they can follow a Poisson dis-
tribution W;; ~ Poisson ( 4; ,;to) when predicting the number of
times individuals interact during a time interval f, with 4;; being
the expected rate of interaction. The Poisson distribution can be
0O-inflated when modelling non-interacting taxa, which consti-
tute the majority of taxa pairs in most networks (Jordano 2016).
Regardless of the measure, estimating the uncertainty of quan-
titative interactions enables us to consider a range of possible
values of interaction strength.

Because binary interactions are usually easier to sample
(Jordano 2016) and predict (Strydom et al. 2021) than quantitative
interactions, they have been more frequently studied and used.
Software like Ecopath (Christensen and Pauly 1992) simplifies
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the prediction of quantitative interactions, but the number of bi-
ological parameters that they require may hinder their applica-
tion in many systems. Moreover, most published probabilistic
interaction networks (e.g., Strydom et al. 2022) and methods (e.g.,
Poisot et al. 2016) involve probabilistic interactions with binary
outcomes. This underlines the need for better guidelines on the
interpretation and manipulation of probabilistic interactions with
binary outcomes first. For these reasons, our primary focus is on
the interpretation of interaction probabilities that determine the
presence or absence of interactions, in both local networks and
metawebs.

3 | Local Networks: Communities Interacting in
Space and Time

3.1 | What Are Local Probabilistic Interactions?

Local networks of probabilistic interactions describe how likely
taxa are to interact in a given local context. In local networks,
edges commonly represent the probability that interactions
are realised in nature, but can also represent the probability of
empirically observing this interaction. Realised interactions
occur locally without necessarily being observed (two locally
interacting taxa may not be seen interacting during sampling).
In practice, observed interactions often serve as proxies for
realised interactions. However, this distinction becomes im-
portant when detection biases are strong, as is frequent in
many datasets containing rare species (Catchen et al. 2023).
False negatives in interaction data can impact the inference of
ecological networks, and accounting for observation errors in
predictive models can mitigate this issue (Catchen et al. 2023).
For example, Weinstein and Graham (2017b) developed a hi-
erarchical model for hummingbird-plant interactions that ex-
plicitly accounts for detection probability, with was estimated
under 25 % in their dataset. Observed and realised interactions
may thus differ considerably, and local interactions may arise
from both the ecological and sampling processes taking place
locally.

Local networks are defined within a particular location and
time. Even though space and time are continuous variables that
should yield probability densities of interactions (i.e., relative
likelihoods of interactions occurring at infinitesimal locations
and instants in time), they can be treated as spatial patches and
time segments. The spatial boundary of local networks may be
delineated by a collection of geographic coordinates (x,y,z),
with (x,y) representing longitude and latitude coordinates, and
z denoting altitudes or depths. Ecological interactions may
vary along latitudinal and altitudinal gradients, as evidenced
by changes in hummingbird-plant interactions (Weinstein and
Graham 2017a, 2017b) and mosquito biting rates (e.g., Kulkarni
et al. 2006) at different elevations. On the other hand, time is
treated as the specific time period within which interactions
were observed or predicted. Treating space and time as dis-
crete dimensions aligns with the common sampling methods of
ecological networks and provides probabilities of interactions,
which can be obtained by integrating probability densities over
space and time. We can quantify both an area (or volume) A,
and a duration t, with these definitions. The choice of area and
duration when sampling local networks depends on the study

system, the ecological processes we aim to capture, and available
resources (e.g., Olesen et al. 2008 sampled an Arctic pollination
network daily over two seasons to study network assembly). By
sampling and modelling local networks, we may thus conduct
spatiotemporal analyses of interactions (Box 1, Figure 1).

3.2 | What Are Local Probabilistic Interactions
Conditioned on?

3.2.1 | Local Interactions May Be Conditioned on
Co-Occurrence

The probability that two taxa i and j interact in a local network
L,, . (spatial and temporal subscripts hereafter replaced by k for
clarity) can be conditioned on different variables. In addition to
network area (or volume) A, and duration f,, they may be con-
ditioned on taxa co-occurrence X;;, which describes if the geo-
graphic distributions of both taxa overlap within the study area.
As illustrated in Box 1, co-occurrence may be modelled prob-
abilistically, in which case it may conform to a Bernoulli dis-
tribution X, ;; ~ Bernoulli(e,;; ), where ¢;;; = P(X,;;, =1). The
probability of co-occurrence can be calculated using the mar-
ginal occurrence probabilities P(X;; = 1)and P(X;, = 1). Given
that taxa occurrences are not independent of each other, the

probability of co-occurrence can be calculated as follows:

P(Xyjx) = P(Xijo Xji) = P(Xiel Xpc) X P(Xpie) - (D)
Note that for concision, the probability notation used in this man-
uscript implicitly assigns a value of 1 to binary variables (e.g., in
Equation (1), P(X; | X ) is short for P(X;, = 1| X;; = 1)), unless

stated otherwise. The value is stated explicitly when it is 0 or
when emphasising the value of 1.

The probability of co-occurrence P(Xij,k) can be esti-
mated using joint species distribution models (e.g., Pollock
et al. 2014), potentially taking into account biotic interac-
tions (Staniczenko et al. 2017). Given that the probability
that two non-co-occurring taxa interact locally is zero (i.e.,
P(L;j;, =1|X;; =0) =0), the probability of local interaction
can be obtained as follows:

P(Lyjp=1)=P(Ly; =11X;;, = 1) xP(X;;, =1). (2
Knowing if two taxa co-occur improves our estimation of the
probability that they interact locally by mitigating a potential
source of uncertainty.

3.2.2 | Local Interactions May Be Conditioned on
Different Environmental and Biological Factors

Local interactions may also be conditioned on local environ-
mental variables such as temperature (Angilletta Jr. et al. 2004),
precipitation (Woodward et al. 2012), habitat structure (Klecka
and Boukal 2014) and the presence or abundance of other taxa
(Pilosof et al. 2017; Kéfi et al. 2012). We use the variable E, as a
placeholder for the set of environmental variables used for es-
timation. For example, in Gravel et al. 2019, E, represents two
distinct variables: temperature and precipitation. Both can be
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treated as distinct conditions in the expression of interaction
probability. Environmental variables can be binary (e.g., pres-
ence of another taxa), discrete (e.g., abundance of another taxa),
or continuous (e.g., temperature and precipitation). Like co-
occurrence, E, can also be probabilistic when considering the
variability or uncertainty of environmental factors. E; represents
all environmental variables that were considered when measur-
ing interaction probabilities; it is therefore a subset of all envi-
ronmental factors actually impacting ecological interactions.

Other factors impacting interaction probabilities locally are taxa
local abundances N; and N, which affect encounter probabil-
ities (Canard et al. 2012), and local traits T}, and T; (e.g., move-
ment rates, Beardsell et al. 2021; Cherif et al. 2024), which may
impact encounter probabilities and the ability of individuals to in-
teract after encountering each other (Bartomeus et al. 2016; Caron
et al. 2024; Poisot et al. 2015). Local interaction probabilities may
also be conditioned on higher-level properties such as network
structure, which we denote by f (L ). Many topological null mod-
els (i.e., statistical models that randomise interactions by retaining
certain properties of the network while excluding others) provide
interaction probabilities from selected measures of network struc-
ture, such as connectance (Fortuna and Bascompte 2006) and the
degree distribution (Bascompte et al. 2003). Like E,, the variables
Tip Tjy and f (Lk) are placeholders for more specific biological
variables, which need to be clearly identified when documenting
local interaction probabilities.

3.2.3 | Local Interactions May Be Conditioned on
Biological Feasibility

Local interactions must be biologically feasible before occur-
ring at a specific time and space. A local probability of interac-
tion P(Li J,k) can be expressed as the product of the probability
of local interaction given that the taxa can potentially interact
P(L;j, =1|M;; = 1), with their probability of regional interac-
tion P(M,; =1):

P(Lyjy=1)=P(L;;; =1M;; =1) XxP(M;; =1), (3
assuming that P(L;; = 1|M;; =0) = 0.

Low values of P(L;;,|M,;) indicate that potential interactions
rarely occur locally, intermediate values around 50% suggest
considerable spatiotemporal variability, while high values in-
dicate that potential interactions almost always occur locally.
The local probability of interaction between two taxa is thus
always equal or below their probability of regional interaction.
Considering biological feasibility when estimating local inter-
action probabilities leverages information from the metaweb
to better predict the local occurrence of interactions (Strydom
et al. 2021; Dansereau et al. 2024).

3.2.4 | Conditional Variables Must Be Explicitly Stated

The probability that two taxa i and j interact in a local net-
work Ly can thus be conditioned on their co-occurrence X; ; , (or
more explicitly on their occurrences X;; and X; ), local abun-
dances N;; and N, local traits T;, and T}, local environmental

conditions E, network area (or volume) A, time interval ¢, net-
work properties f (Lk) and biological feasibility M; ;. When these
conditions are absent from an expression, it may be because
they have been marginalised over. Interaction probabilities may
also be implicitly conditioned on missing variables (e.g., when
estimated for specific values of these variables without explic-
itly including them as conditions), potentially impacting our
interpretation. The local probability of interaction is described
by the following expression when all conditional variables are
included:

P(Lij el Xi s Xiges Niges Njsos Ties Tyior Bies Ags b0 f (L) s Mig) - (4)

These conditional variables do not all need to be considered at
all times. The ones that should be considered depend on the
study system, the objectives of the study, and the resources
available to the researchers. For example, Gravel et al. (2019)
analysed local European host-parasite networks of willow-
galling sawflies and their natural enemies, all referenced
in space and time, to infer local interaction probabilities be-
tween co-occurring species. This was achieved by including
temperature and precipitation as conditional variables. In
Box 2 and Figure 2, we reuse these data to show the extent of
variation among local networks. We do so by measuring their
dissimilarity with the metaweb aggregating all interactions,
both in terms of species composition and interactions. We esti-
mated local probabilistic interactions following Equation (3),
showing that insufficient local variation (high probability of
local interaction among potentially interacting species) re-
sults in an overestimation in the number of interactions and
connectance (i.e., the proportion of non-forbidden links that
are realised). This analysis was conducted for illustrative pur-
poses, and other conditional variables could have been used.

When accounted for, conditional variables should be clearly de-
scribed in the documentation of the data (Brimacombe et al. 2023),
preferentially in mathematical terms. For instance, ecologists
should be explicit about their consideration (P(L;; X, )) or not
(P(L, ik )) of co-occurrence, as this can change our interpretation
of the data and their uncertainty sources. In Table 1, we present
examples of studies that used different conditional variables. This
table includes the probability of empirically observing an interac-
tion that is realised locally P (Oi el Li J‘k) to underscore the distinc-
tion between local observations and realisations of interactions.

3.3 | How Are Local Probabilistic Interactions
Estimated?

Interaction matrices derived from direct field observations can be
used to estimate local interaction probabilities. When networks
are sampled repeatedly across time or space, the proportion of net-
works where an interaction occurs can serve as an estimation of
its variability. This proportion may represent the probability that
the interaction occurs in a network similar to those previously
sampled. Environmental and biological variables can be used as
predictors of binary interactions to enhance our estimations of
local interaction probabilities. For example, a generalised linear
model with environmental covariates can be used to predict local
interaction probabilities (Gravel et al. 2019). Moreover, interaction
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BOX?2 | Dissimilarity of local host-parasite networks.

Comparing local networks to the metaweb helps us evaluate
the local realisation of potential interactions. For instance,
Noreika et al. (2019) examined the dissimilarity between
local and regional networks to explore whether potential
plant-pollinator interactions are more likely to occur in better-
connected and restored environments. Here we compare
local tripartite host-parasite networks to the metaweb to an-
alyse the variability of local networks and their dissimilarity
regarding species composition and interactions. We use data
from Kopelke et al. (2017), consisting of interactions between
willows, willow-galling sawflies, and their natural enemies
sampled in different networks across Europe. All data manip-
ulation and methods are described in Data S1, as well as the
formulas used to calculate dissimilarity measures and connec-
tance. All code and data to reproduce these analyses are avail-
able on Zenodo (https://doi.org/10.5281/zenodo.15476609).

To simulate different sampling levels, we aggregated local
networks of binary interactions by sequentially and randomly
selecting a number of networks and aggregating both their spe-
cies and interactions. We built the metaweb of binary interac-
tions by aggregating all local networks. In Figure 2a,b, we show
how the dissimilarity between the metaweb and aggregated
local networks changes with the number of sampled networks.
We compared the metaweb to the aggregated local networks
using the dissimilarity in species composition (g, Figure 2a)
and the dissimilarity of interactions between common species
(Bos, Figure 2b) indices (Poisot et al. 2012). Expectedly, local
networks are highly dissimilar from the metaweb in terms of
species composition, especially when only a limited number of
sites have been sampled. This is because few species from the
metaweb (species pool) occur locally. Moreover, we observe
a peak in the dissimilarity of interactions between common
species at intermediate sampling levels. This suggests that spe-
cies are collected faster than their interactions. With a limited
number of sampled local networks, few regional interactions
are observed locally. Adding more sites brings new species,
but not always their interactions. Quadratic relationships of
network properties with sampling effort were also observed by
McLeod et al. (2021). This type of analysis can offer insights
into the amount of sampling required to get a more compre-
hensive understanding of the metaweb.

Next, we converted binary regional interactions to probabil-
istic ones by applying constant false positive and negative
rates across all interactions, and predicted local networks
of probabilistic interactions using Equation (3) and different
values of P(L; e[ M; J)' These local networks were then se-
quentially and randomly aggregated to investigate how the
number of interactions and connectance scale with the num-
ber of sampled networks (Figure 2c,d). By comparing the
scaling relationships observed in local networks of binary
and probabilistic interactions, we observe that high values
of P(L;;xIM,;) lead to systematic overestimations in the
number of interactions and connectance, especially when
P(L;;;|M;;) =1 (i.e., when local and regional probabilities
of interactions are equivalent). This suggests that high val-
ues of P(Li gl M; J) do not adequately capture the variability
of local interactions. However, these biases tend to dimin-
ish as the number of sampled networks increases, indicat-
ing that most interactions are eventually captured when
P(L;;;|M;;) is high. In contrast, low values of P(L;;|M,;)

lead to missing interactions, resulting in an underestimation
in the number of interactions and connectance when the
number of sampled networks is high. These results under-
score the importance of using the appropriate level of var-
iability when estimating local interaction probabilities, and
show how sampling effort can impact our estimation of the
probability that potential interactions occur locally.

data can be aggregated into a metaweb to predict local interac-
tion probabilities, as demonstrated in Data S1 using host-parasite
interaction data from Kopelke et al. (2017). In the absence of in-
teraction data, environmental and biological factors can still pro-
vide valuable predictions of interaction probabilities (e.g., neutral
model of Canard et al. 2014). These predictions must, however, be
validated with empirical data to assess model quality. Examples of
probabilistic models of local interactions are provided in Table 1.
Several studies have used raw interaction data to fit or validate
these models (Table 1). These studies can serve as practical exam-
ples for ecologists looking to integrate raw interaction data into
probabilistic models. For a deeper discussion of the challenges
and opportunities in the modelling of species interactions, refer to
Strydom et al. (2021).

When using multiple competing models to estimate local inter-
action probabilities, rather than selecting a single model that
best fits the data, model averaging may enhance our estimations.
Model weights represent the probability that each model is the
most suitable for explaining the data. They can be obtained using
Akaike weights, a measure derived from the Akaike information
criterion based on prediction error (Burnham and Anderson 2004;
Wagenmakers and Farrell 2004). For instance, given two compet-
ing models mod, and mod, with respective probabilities P(mod, )
and P(mod2 ) interaction probability can be calculated as follows:

P(L;;;) = P(L;jxlmod,) x P(mod, ) + P(L;;;|mod,) x P(mod,).
(5)

Model averaging takes into account the uncertainty of model
structure. In addition to model structure, it is crucial to quantify
and disclose all sources of uncertainty to better understand the
validity and limitations of our predictions of local interactions
(Simmonds et al. 2024).

4 | Metawebs: Regional Catalogues of Interactions

4.1 | What Are Regional Probabilistic
Interactions?

Metawebs (Dunne 2006) are networks of potential interactions
over broad spatial, temporal and taxonomic scales, which is why
they are referred to as regional networks. They are the temporal
and spatial asymptotes of local interactions (Box 1, Figure 1).
Over time, two co-occurring taxa should eventually interact in
at least one location with suitable environmental conditions if
their traits can support an interaction, and will never interact
otherwise. Potential interactions thus describe the biological
capacity of taxa to interact under suitable environmental condi-
tions if they are given enough time to do so.
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FIGURE2 | Network accumulation curves. (a) Dissimilarity in species composition and (b) dissimilarity of interactions between common species

between aggregated local networks and the metaweb of binary host-parasite interactions. In both panels, the coloured line represents the median
dissimilarity across simulations and the grey areas cover the 50 % and 95 % percentile intervals. (c) Scaling of the number of interactions and (d)
scaling of connectance with the number of sampled (aggregated) binary and probabilistic local interaction networks. For a better comparison with
binary interactions, local networks of probabilistic interactions were derived from a metaweb of probabilistic interactions with a false positive and
false negative rate of zero. A specific value of P(L; gl M J-) (the local probability of interaction among potentially interacting species) was used for all
non-aggregated local networks within a particular curve. Aggregated local networks were obtained by sequentially and randomly selecting a number
of local networks and aggregating both their species and interactions (with the value of P(Li,,-yk |M; J) increasing in aggregated local networks of prob-

abilistic interactions). All data are from Kopelke et al. (2017), and more details on the analysis can be found in Box 2 and Data S1.

Metawebs have been used for different types of direct interac-
tions, such as predator-prey (e.g., Maiorano et al. 2020), host-
parasite (e.g., Gravel et al. 2019) and plant-pollinator (e.g., Aguiar
et al. 2024) interactions. For instance, they were used to investi-
gate the effects of connectivity and restoration efforts in plant-
pollinator networks (Noreika et al. 2019) and evaluate sampling
completeness in avian frugivory networks (Martins et al. 2022).
This was achieved by analysing the proportion of potential in-
teractions realised locally, which is typically lower (i.e., high dis-
similarity between regional and local networks, Box 2, Figure 2)
when local interactions are more context-dependent and envi-
ronmentally driven. Metawebs of probabilistic interactions are
particularly useful when there is uncertainty in the ability of taxa
to interact (Strydom et al. 2023). They may also be used as pri-
ors of local interactions (i.e., first estimates of local interaction
probabilities, as done in Dansereau et al. 2024), which can then
be updated with local data to obtain better informed local inter-
action probabilities (e.g., using Equation 3). Therefore, building

a metaweb of probabilistic interactions may be an important first
step before predicting local networks.

In contrast to local interactions, where uncertainty arises from
the variability of interactions and the lack of information on
the conditions, uncertainty in metawebs solely results from a
lack of knowledge. This uncertainty arises due to insufficient
interaction data, especially for taxa that have not yet been ob-
served to co-occur, and uncertainties in trait-matching models.
As data accumulate, regional interactions should tend toward
binarity, either taking a value of 1 (observing an interaction at
least once) or approaching 0 (repeatedly failing to observe an in-
teraction). Confidently observing an interaction once confirms
its biological feasibility, but due to the possibility of false nega-
tives, failing to observe it does not necessarily indicate that it is
unfeasible (Catchen et al. 2023 show how to estimate the rate
of false negatives in ecological networks). While local interac-
tion probabilities are irreducible because of local variability, the
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TABLE1 | Mathematical expressions of probabilistic interactions.

Outcome

Common models

References

P(MI T, T,,F)

Expression Type
P(LiJ,k | X jes X s ) Local
P(Lyjj | Nijjo Njs - ) Local
P(Lij,k | Ti,k’ Tj,k’ ) Local
P(Li,j,k | By, ...) Local
P(Lyjy | Ay, -..) Local
P(Lijy Ity ) Local
P(Lyjy 1 f(Ly)s ) Local
P(Li,j,k | M, ) Local
P(Oyju | Lijges ---) Local
P(M| T, T;) Regional
Regional

Realisation of the interaction given taxa co-occurrence

Realisation of the interaction given taxa abundances
Realisation of the interaction given local traits

Realisation of the interaction given
local environmental conditions

Realisation of the interaction in a given area or volume
Realisation of the interaction during a given time period

Realisation of the interaction given network structure

Realisation of the interaction given
that it is biologically feasible

Observation of the interaction given
that it is realised locally

Biological feasibility of the interaction given
regional traits (non-forbiddenness)

Ecological feasibility of the interaction given
regional traits and environmental conditions

Species distribution models

Neutral models
Trait matching models

Environmental-based models

Spatial models
Temporal models

Topological models

Spatiotemporal models

Sampling models

Trait matching models

Trait matching and
environmental-based models

Gravel et al. (2019); Dansereau
et al. (2024); Boxes 1 and 5

Canard et al. (2014)
Caron et al. (2024); Box 4

Gravel et al. (2019) (temperature
and precipitation)

Galiana et al. (2018) *, Box 3
Weinstein and Graham 2017a; Boxes 1 and 3

Fortuna and Bascompte (2006)
(connectance); Stock et al. (2017)
Dansereau et al. (2024); Boxes 2, 3 and 5
Catchen et al. 2023

Strydom et al. (2022); Box 4

This study
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Note: The probability of interaction between two taxa i and j is interpreted differently in a local network L, of realised interactions, a local network O, of observed interactions, a metaweb M of potential interactions (representing
the biological feasibility of interactions), and a metaweb M* of potential interactions (representing the ecological feasibility of interactions). Each expression emphasises a different conditional variable, the ellipsis serving as a

placeholder for other variables not explicitly stated in the expression. The outcome of each of these probabilistic events, along with common models used for estimation, is presented alongside examples of studies that employed them
(with specific variables indicated in parentheses, when applicable). These studies show how environmental, biological and interaction data can be used within these models in a practical way. The study marked with an asterisk (*)
has been conducted on binary interaction networks. The boxes in our study that discuss these expressions are also specified.



uncertainty of regional interactions reduces to 0 with the ad-
dition of information. Moreover, although neutrally forbidden
interactions (i.e., forbidden interactions between rare species,
Canard et al. 2012) have low probability in local networks, they
would have a probability of 1 in the metaweb (this is because
the species’ traits could support an interaction if they were to
encounter each other at high enough abundances). Likewise,
non-co-occurring taxa may have a non-zero probability of in-
teraction in the metaweb. Regional interaction probabilities are
thus fundamentally different from local interaction probabili-
ties, both in terms of uncertainty sources and probability values.

The extent of sampling effort influences our evaluation of re-
gional interaction probabilities, as more interactions can be
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FIGURE 3 | Spatial scaling of interactions. Expected number of host-parasite interactions in a network aggregating all (a) local and (b) regional
probabilistic interactions within a latitudinal window of a given width. Every dashed curve corresponds to a different window centered at a given
latitude (colour bar), with the pink solid line representing the median number of interactions across windows. Heatmaps of the expected number of

captured over a larger area or longer duration (Box 3, Figure 3;
McLeod et al. 2021). However, in contrast with local interac-
tions, regional interactions are not evaluated for any particu-
lar local context (they are rather a collection of local contexts),
which impacts how they scale with space and time (notably
through the extent of the region covered and sampling du-
ration). In Box 3, we discuss the differences in spatial and
temporal scaling of regional interactions compared to local
interactions. We do so by using the host-parasite networks
of Kopelke et al. (2017) as an illustration of spatial scaling
(Figure 3). Understanding the effect of spatial and temporal
scales (including sampling effort) on local and regional inter-
action probabilities is important for effectively propagating
uncertainty across scales.

(b)
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(c) local and (d) regional interactions found in windows of specified width and position (central latitude). Probabilities of regional interactions were

obtained with a false positive rate of 5% and a false negative rate of 10 %. Local probabilistic interactions were derived from regional probabilistic

interactions by setting the value of P(L; il M J-) (the local probability of interaction among potentially interacting species) to 1. Aggregated local net-

works were obtained by aggregating both the species and interactions found within a particular latitudinal window, with the values of P(Ll- acIM; J-)

remaining at their maximum value of 1. All data are from Kopelke et al. (2017), and more details on the analysis can be found in Box 3 and Data S1.
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BOX3 | Spatial and temporal scaling of interactions.

Local networks and metawebs scale differently with space
(area or volume) and time (sampling effort or duration).
Local interaction probabilities scale both spatially and
temporally, because local interactions have more opportu-
nities to be realised in larger areas and longer durations. In
a larger sampling area and duration, we increase the like-
lihood of sampling favourable conditions for interactions
to occur. If a local network of probabilistic interactions L,
with an area A, is compared to a larger network L, with
an area A, and A, is entirely nested within A, interac-
tion probabilities should be lower in the smaller network,
that is, P(L;;; A4, <Ay) < P(L;;0lA,). However, if A, and
A, are disjoint, interaction probabilities could be higher in
the smaller area, contingent upon local environmental and
biological conditions. In practice, this can be accounted
for by increasing the value of P(LiJ,k|MiJ) as we scale up
spatially or temporally, provided that smaller networks
are incorporated into larger ones. In contrast, regional
interaction probabilities do not scale with space and time.
The probability that two taxa potentially interact should
be similar in all metawebs in which they are present re-
gardless of scale, provided that the data and methods used
for estimation are consistent. This is because they depend
solely on the biological capacity of taxa to interact, regard-
less of co-occurrence and local environmental conditions.
However, regional interaction probabilities may change,
tending to become more definitive, with increased sam-
pling effort. While understanding the temporal scaling of
networks is useful for assessing sampling effort (Weinstein
and Graham 2017a), studying network-area relationships
enables more accurate predictions of the effect of habitat
loss and fragmentation on biological communities (Galiana
et al. 2018).

Reusing the host-parasite network data of Kopelke
et al. 2017, we built local and regional networks at different
spatial scales by aggregating both the species and interac-
tions (local or regional) found within expanding latitudinal
windows. In Figure 3, we show how the expected number
of local host-parasite interactions scales with the spatial
boundary of the network (represented by the latitudinal
window) in comparison with regional interactions. The in-
crease in the number of regional interactions is due to the
inclusion of more species in a larger area. To ensure a con-
servative comparison between local and regional interac-
tions, we employed equal interaction probabilities (i.e., using
P(L;;;|M;;) = 1) in both types of network. This means that
local interaction probabilities could not increase further dur-
ing aggregation. Despite this, we notice that the total num-
ber of regional interactions scales more rapidly than local
interactions. This is because numerous regional interactions
involve species that never co-occur, and as a result, these
interactions are not captured in local networks. Therefore,
the spatial scaling of networks is inherently determined by
the nature of local and regional interactions, regardless of
whether interaction probabilities differ between the two
types of networks. All data manipulation and methods are
described in Data S1, and all code and data to reproduce
these analyses are available on Zenodo (https://doi.org/10.
5281/zenodo.15476609).

4.2 | What Are Regional Probabilistic Interactions
Conditioned on?

4.2.1 | Regional Interactions Describing Biological
Feasibility Are Conditioned on Traits

Potential interactions describe the biological feasibility of inter-
actions, which is based solely on the regional traits distributions
T;and T;of taxa i and j. We define regional traits distributions as
the range of phenotypes a taxon can express across various envi-
ronments. Local traits T; , and T}, which vary spatially and tem-
porally because of phenotypic plasticity (Berg and Ellers 2010),
are a subset of regional traits. In practice, T; and T; may cor-
respond to summary measures of trait distributions (e.g., the
average body mass of a species). The probability of potential in-
teraction in a metaweb M describing biological feasibility may
be expressed as:

P(M| T, T;), ©)

which, in contrast with local networks, is not conditioned on
any spatial, temporal, co-occurrence or environmental variables
(Table 1). Because phylogenetically close species often share
similar traits, closely related species often have similar interact-
ing partners. We can thus use phylogenetic trees to predict spe-
cies traits and infer regional interactions (Strydom et al. 2022;
EkIof and Stouffer 2016; Stouffer et al. 2012). The taxonomic
level of interactions influences the distribution of regional traits.
However, as explained in Box 4, there is no fundamental differ-
ence in the taxonomic scaling of regional and local interactions
(i.e., how interaction probabilities change with taxonomic level)
because they both depend on trait aggregation.

The biological feasibility of interactions represents the proba-
bility that there exists at least one combination of phenotypes
that could support a specific type of interaction if they were to
encounter each other, assuming they had enough time to inter-
act. This probability is evaluated without incorporating envi-
ronmental variables in the model. It is the complement of the
probability P(F; il T TJ) of forbidden interactions (i.e., the prob-
ability that their traits do not support an interaction), which is
based uniquely on biological traits:

P(M,.J|Ti,Tj) =1—P(F1-J|Ti,Tj). (7)

For example, let i be a western diamondback rattlesnake
(Crotalus atrox Baird and Girard, 1853) and j, a wood lemming
(Myopus schisticolor Lilljeborg, 1844). These two taxa never co-
occur, the rattlesnake being adapted to warm regions of North
America (Castoe et al. 2007) and the lemming, to northern
habitats of Eurasia (Fedorov et al. 2008). As we lack observa-
tions of an interaction between these species, we have to rely
on expert knowledge or trait-matching models to estimate their
probability of potential interaction. To accurately estimate this
probability, we need to ensure that the set of traits considered
reflects the overall traits distributions of both taxa. We could for
instance consider their average body mass and the average phy-
logenetic distance of lemmings to rattlesnakes' prey. Doing so,
we might find a high probability of potential interaction. This
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BOX 4 | Taxonomic scaling of interactions.

Given that our interpretation of the properties of ecological networks depends on their taxonomic level (Melian et al. 2011), inves-
tigating the taxonomic scaling of interactions (i.e., how interaction probabilities change with taxonomic level) is important. There
are no inherent differences between the taxonomic scaling of local and regional interactions. The taxonomic level of interactions
impacts the definition of nodes, and local and regional interaction probabilities are not directly conditioned on taxonomic scale.
However, some conditional variables (e.g., trait distribution) may covary with taxonomic scale. In such cases, local and regional
interaction probabilities would change taxonomically following the scaling of these variables. A better understanding of the tax-
onomic scaling of local and regional interactions could help us generate networks at the right level of organisation for addressing
specific ecological and evolutionary questions (Guimaraes 2020), even when network data are collected at a different taxonomic
resolution.

In both types of networks, transitioning to a broader level of organisation (e.g., from a species-level network S to a genus-level
network G) can be done using interaction probabilities from finer scales. For example, in a network with n, species of genus g, and
n, species of genus g,, one can calculate the probability that at least one species from genus g, interacts with at least one species
from genus g, (i.e., the probability that the genus-level interaction occurs) as follows:

n,

P(Ggugz) =1- H H (1 _P(Sgl,i’gzj))’ 18)

i=1 j=1

where g;; and g, ; are the species of the corresponding genus. This equation (which provides the complement probability that no
species pair interacts) assumes independence between species-level interactions, which may not hold true in practice due to the
strong phylogenetic signal frequently encountered in species interactions (Gomez et al. 2010). In contrast, a different approach is
necessary when transitioning from a broader to a finer level of organisation. This is because knowing that an interaction between
two genera occurs does not guarantee that all possible pairwise species combinations will also interact. One possible method is to
build a finer-scale network by generating probabilities of interaction through random sampling from a beta distribution, param-
eterized by the broader-scale network.

Fundamentally, the taxonomic scaling of interactions involves aggregating interactions between individuals into larger groups.
Interaction probabilities at broader taxonomic scales should thus conform to probabilities of interactions between individuals. For
example, Canard et al. (2012) built a species-based network using simulated individual-based networks. In local individual-based
food webs, the probability that two individuals interact reflects our degree of belief that one individual will consume the other.
Likewise, in local species-based food webs, the probability that two species interact represents our degree of belief that at least
one individual from the predator species will consume at least another individual from the prey species. In that regard, taxonomic
scaling is analogous to the spatial and temporal scaling of interactions, as they all represent different ways to aggregate individu-
als into broader groups (either spatially, temporally, or taxonomically).

example illustrates how regional interactions may be estimated
solely based on traits, without taking into account environmen-
tal conditions.

4.2.2 | Regional Interactions Describing
Ecological Feasibility Are Conditioned on Traits
and Environmental Conditions

The biological feasibility of interactions should not be confused
with their ecological feasibility. The probability of potential in-
teraction in a metaweb M* describing ecological feasibility may
be expressed as:

P(MI T, T,,E), ®

where E is a set of environmental variables (Table 1). Unlike
E,, these variables do not represent environmental conditions
occurring at specific locations. Ecological feasibility rep-
resents the probability that two taxa interact if they were to
encounter each other under given environmental conditions,

assuming they had enough time to interact. Incorporating
environmental conditions into a trait-matching model may
be important when there is high covariance between the en-
vironment and traits. In our example involving rattlesnakes
and lemmings, the probability of potential interaction may be
low in most environmental conditions. Western diamondback
rattlesnakes are unactive under low temperatures (Kissner
et al. 1997), whereas wood lemmings have low tolerance to
high temperatures (Kausrud et al. 2008). The probability that
an interaction is ecologically feasible is always lower than the
probability that it is biologically feasible, even across all envi-
ronmental conditions:

P(M:i| Ti,Tj) = /P(M;:}.| Ti,Tj,E)g(E| T, T,)dE
E

< P(My| T, T;), ©)

where g(E| T}, T]) is the conditional probability density function
of E given T; and T;..
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This is because the biological feasibility of an interaction is a
prerequisite for its ecological feasibility. In other words, bio-
logical feasibility is necessary but not sufficient for an inter-
action to be ecologically feasible. Our discussion of metawebs
focuses on the biological feasibility of interactions since most
methods developed for inferring regional interactions do not
explicitly consider environmental conditions (e.g., Strydom
et al. 2022).

4.3 | How Are Regional Probabilistic Interactions
Estimated?

Starting from a selected set of taxa distributed within a region
of interest, metawebs can be built using different data sources,
including literature review (e.g., Maiorano et al. 2020), ag-
gregated interaction data (e.g., Gravel et al. 2019; Saravia
et al. 2022), trait-matching models (e.g., Shaw et al. 2024;
Strydom et al. 2022) and expert knowledge. Every pair of taxa
confidently observed to interact at least once can be given a
probability of 1 because we know they can interact. This dif-
fers from local interactions, where interaction events may
remain stochastic (i.e., P(L;;;) < 1) even after empirically ob-
serving interactions due to their variability. Interactions that
were never observed typically have low probability values in
local networks and vary from low to high values in metawebs,
reaching 0 for forbidden links. The aggregation of observa-
tions and predictions tends to raise the number of potential
interactions in metawebs.

When using local interaction data to estimate probabilities of
regional interactions, repeatedly failing to observe an inter-
action decreases the probability that it is biologically feasible.
Using Bayes' theorem, the probability that the interaction is
biologically feasible given that it was never observed locally,
P(Mij =1|0;;, = O), may be calculated as follows:

P(O;, =0IM;; =1) xP(M;; =1)
PO, =0)

The reduction in the probability of regional interac-
tion after considering the lack of observations (.e.,
P(M;;=1|0;;; =0) < P(M;; =1)) occurs because
P(O;;x =0[M;; =1) must be lower than P(0;;, =0), that is,
there is a higher chance of observing an interaction when we
know it is biologically feasible.

Observations of interactions may be false positives because of
errors due to taxonomic misidentifications and ecological mis-
interpretations, such as those involving phylogenetically close
species or cryptic interactions (Pringle and Hutchinson 2020).
Likewise, forbidden interactions may be false negatives if they
were evaluated based on unrepresentative or incomplete traits
distributions. Employing Bayesian models proves valuable when
estimating regional interaction probabilities (e.g., Bartomeus
et al. 2016; Cirtwill et al. 2019) by updating prior information
(e.g., expert knowledge of interaction probabilities) with empiri-
cal data on interactions and traits. By improving our estimation
of potential interaction probabilities, we may build more reliable

metawebs that better reflect our uncertainty on the biological
feasibility of interactions.

5 | Future Perspectives

In this contribution, we underline the importance of network
documentation for adequately interpreting and manipulating
probabilistic interaction data. Clear documentation should de-
scribe the type of interaction (local or regional) and the con-
ditions under which they were estimated. We show that local
networks and metawebs differ in their spatial and temporal
scaling (Box 3, Figure 3), with regional interactions remaining
consistent across scales. In contrast with metawebs, local inter-
actions are evaluated in a specific context (e.g., in a given area,
time and biological and environmental conditions) and depend
on co-occurrence. These differences highlight the need to use
probabilistic data with caution, for instance when generating
network realisations across space (Box 5, Figure 4). Here we
identify key research priorities for improving our understanding
of probabilistic local and regional interactions.

5.1 | Predicting Local Networks From Metawebs

Metawebs can be used to predict local networks across time
and space. Local networks of binary interactions can be re-
constructed by selecting a subset of taxa and interactions from
the metaweb (Dunne 2006). Selecting taxa can be achieved
empirically (e.g., observed occurrence data) or numerically
(e.g., species distribution models). As species composition is
arguably easier to sample and predict than interactions, the
primary challenge lies in deciding which interactions to select
from the metaweb. Inferring the structure of local networks
from the metaweb before predicting their interactions could
hold promise (Strydom et al. 2021), considering that the struc-
ture of local networks is constrained by the metaweb (Saravia
et al. 2022).

Inferring local networks of probabilistic interactions from a met-
aweb comes with its own challenges. For example, Dansereau
et al. (2024) inferred spatially-explicit food webs from a met-
aweb of probabilistic interactions. Their predicted localised food
webs are downscaled versions of the metaweb (i.e., localised
metawebs with interaction probabilities identical to those in
the regional metaweb). To infer local networks of realised in-
teractions, local interaction probabilities must be smaller than
regional ones. Inferring local networks from a metaweb by
maintaining identical interaction probabilities introduces sys-
tematic biases, as discussed in Box 2 (unless networks are seen
as downscaled metawebs).

As suggested by McLeod et al. 2021, metawebs establish an
upper limit for local interactions (similarly for metawebs of
probabilistic interactions, Strydom et al. 2023). The probability
of local interaction is lower than the probability of regional in-
teraction, regardless of the variables considered:

P(Lyyl...) <P(My| T, T;). 11)

14 of 20

Ecology Letters, 2025

D pue SWId, 34 23S *[S70Z/L0/10] U0 Areiqr duruQ KM ‘A THIAAAHS A0 ALISYIAINN AQ 1910L™21%/1 1 11°01/10p/wod A[1m" Kreiqy[aut[uoy/:sdny woiy papeojumod ‘9 ‘Sz0z ‘8¥7019+1

qupaur[uo//:sdny) suonip

2-SULIS) W00 K3 1M K1e.

2SUAIT suowo)) danear)) ajqeardde ayy £q pauroaos are saponIe Y asn Jo sajni 10y K1eiqiy auljuQ K3[IAL UO (SUONIPUOD-P!



(my m) my

2 2 2 014

2 o014 g o4 2o

g 012 s 012 g 012 P

S o010 | S o010 [ $ o010 | )

E € E

£ 008 | £ 008 | £ 008 |

3 0.06 | S 006 [ S 0.06 |

° ° °

3 o004 | B 004 ® o4 3 o004 |

g © ©

2 002 3 002 2 002

wn 12 2}

% 0.00 1 1 = S S =3 g 0.00 1 1 1 1 1 1 % 0.00 1 1 1 1 1 1

2 1 5 10 20 50 100 2 1 5 10 20 50 100 2 1 5 10 20 50 100

Number of samples Number of samples Number of samples

FIGURE 4 | Connectance of sampled binary interaction networks. (a-c) Average connectance of binary interaction networks obtained from the

Average connectance across regional samples

(a) P(Lii,k| Mi,;) = 1.0

(d) P(Li,ik | Mij) = 1.0

Average connectance across regional samples

(b) P(Li,i,x | Miy) = 0.75

(e) P(Li,i,x | Mij) = 0.75

(c) P(Lix | Mi,;) = 0.50

%] wn %]

1} L} 4}

° a °

& & &

% 10 H 100 samples JI % 10 K 100 samples ‘ % Lo 100 samples N L Y i) ‘I
o 50 samples s + o 50 samples (9] 50 samples

o 0.8 H ¢ 10samples a y 2 0.8 | ¢ 10samples - o 0.8 H ¢ 10samples

0 . 4 1 sample : 0 . 4 1 sample 0 . 4+ 1 sample % 4
g o S -,
® 06 | & 06 | ® 06 | e

§ g + g 1 g | +

g 04 | g 04 g 04 | e d%,,

@ @ 9} A

= = - |

g 02 g 02 | g 02 2

81 1 1 1 1 1 8, 1 1 1 1 1 8, 1 1 1 1 1
© © ©

@ 0.2 0.4 0.6 0.8 1.0 ] 0.2 0.4 0.6 0.8 1.0 ] 0.2 0.4 0.6 0.8 1.0
> > >

< < <

Average connectance across regional samples

(f) P(Li,j,x | Mi,;) = 0.50

two sampling techniques for 20 randomly selected host-parasite networks. Cross markers represent the connectance of a single sample for each net-
work, diamond markers the average connectance across 10 samples, hexagon markers the average connectance across 50 samples, and the coloured
circles the average connectance across 100 samples (marker size proportional to the number of samples). (d-f) Reduction in the mean squared loga-
rithmic error between the average connectance of binary interaction networks (all 233 host-parasite networks) obtained from these two sampling
techniques as the number of samples increases. The local probability of interaction between potentially interacting species was set to three different
values: (a, d) P(LijyklM,-J—) =1.0,(b, e P(Li,,-,k|MiJ) =0.75, and (c, f) P(Li,,-,k|MiJ) = 0.50. Probabilities of regional interactions were obtained with a
false positive rate of 5% and a false negative rate of 10 %. Regional samples were obtained by randomly sampling binary interactions from the prob-
abilistic interaction metaweb, and then propagating this result to all local networks that include the species potentially engaged in the interactions.
Local samples were obtained by independently sampling binary interactions for each local network of probabilistic interactions. All data are from

Kopelke et al. (2017), and more details on the analysis can be found in Box 5 and Data S1.

Moreover, the probability of regional interaction between two
taxa must be higher than the probability of them interacting
at any location and time because they may never co-occur.
Specifically, the marginal probability of local interaction
across all spatial, temporal and environmental conditions
must be less than the probability of regional interaction,
that is,

///P(Li‘i,k|Ek,A0,to)g(Ek,AO,tO)dtodAOdEksP(Milei,Tj),

Ee Ayt

12)
where g(E,, Ay, t,) is the joint density function of E,, A, and

Estimating more precisely the probability P(L;;|M,;) that two
taxa interact locally if they can potentially interact can improve
our predictions of local networks from the metaweb. This task is
challenging due to the variability of this probability across space,
time and species pairs. Using simple models of P(L; e[ M; J), as
shown in Data S1, represents an initial step toward reconstruct-
ing local networks from metawebs.

5.2 | Validating Models and Reducing Uncertainty

Field data are essential for validating predictive models and up-
dating previous estimates. One approach to model validation is
to evaluate different probabilistic thresholds that distinguish
between predicted interactions and non-interactions (Cirtwill
and Hambick 2021; Strydom et al. 2022). By comparing these
predictions with empirical data, we can identify the most accu-
rate threshold and assess model performance. At the local scale,
in addition to validating interactions, we can also compare
predicted network structure and interaction variability with
empirical measures (e.g., frequency of plant-pollinator interac-
tions measured through repeated sampling). Validation helps
determine whether the model is appropriate for making predic-
tions or requires modifications. Furthermore, new observations
allow us to continuously update our predictions. At the regional
scale, observing a new interaction increases its probability to 1,
while failing to observe it decreases the probability. At the local
scale, new observations allow us to adjust previous estimates of
interaction variability. This process, often implemented using
Bayesian statistics, iteratively refines a model's predictions to
better match observed data.
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BOX5 | Sampling for binary interaction networks.

Probabilistic interactions are valuable for assessing the uncertainty of interactions, but we often rely on thresholding or sampling
to convert probabilities into binary predictions. These approaches can be employed, for example, to validate models, analyse net-
work structure, or support decision making. Local networks of binary interactions may be predicted by performing independent
Bernoulli trials for each probabilistic interaction. This can be particularly useful when analysing the structure of probabilistic
interaction networks in the absence of specific analytical formulas (Poisot et al. 2016), even though it may introduce biases in
our estimations when connectance is low (Poisot and Gravel 2014; Chagnon 2015). There are at least two techniques to sampling
binary interaction networks across space, each predicting a different network for each location within a given region. The first
technique performs a single Bernoulli trial for each pair of taxa based on their regional probability of interaction:

M;; ~ Bernoulli(g;;), 19)

where ;; = P(M;; =1).

In employing this technique, we predict a single metaweb of binary interactions for each simulation. Every pair of taxa predicted
to interact in this metaweb will be treated as interacting in all localised networks where they co-occur, ie., L;;;, = M;; when
Xijx = 1. This will result in local pairwise interactions without spatial variation.

The second technique is to independently sample each local network of probabilistic interactions:

Lijk ~ Bernoulli((pi‘i,k), 20)

where @, = P(Li‘i,k =1).

This can be achieved by first generating distinct probabilistic interaction networks for each location. Because binary interactions
are sampled independently for each location, this second technique captures network structure across space and time more effec-
tively. When sampling binary interactions from local interaction probabilities, it is crucial to sample at the same spatial scale for
which probabilities were estimated to prevent systematic biases in predictions.

In Figure 4, we compare the average connectance of binary interaction networks resulting from these two sampling techniques.
We sampled regional and local interactions from our host-parasite networks of probabilistic interactions (derived from the origi-
nal data of Kopelke et al. 2017), generating a number of binary interaction network realisations for each site in the dataset. These
two sampling techniques yield different outcomes, particularly for intermediate values of P(L, ac M J) of 0.50, which represent
instances where regional interactions do not consistently manifest locally (i.e., with the largest local variability). As anticipated,
we observe that sampling binary interactions from the metaweb tends to overestimate connectance on average compared to sam-
pling them from local networks (Figure 4). The magnitude of this overestimation depends on the value of P(L, acl M ) with differ-
ences in connectance being larger when this probability is small, that is, when local interaction probabilities are much lower than
regional ones. We also observe an increase in the variability of connectance when employing a single simulation (Figure 4a-c,
cross markers), which is a more tangible representation of the ecological process leading to the realisation of local interactions
in nature. All data manipulation and methods are described in Data S1, and all code and data to reproduce these analyses are
available on Zenodo (https://doi.org/10.5281/zenodo.15476609).

Both sampling techniques assume independence between interactions, which may not hold true in reality. The realisation of inter-
actions can be influenced by other interactions (Golubski and Abrams 2011) or the presence and abundance of other taxa (Pilosof
et al. 2017; Kéfi et al. 2012). For example, a predator may consume a particular prey only if preferred prey are not readily available.
The consequences of assuming independence when predicting network structure have yet to be empirically examined. Different
approaches can be used to relax this assumption. One option is to condition interaction probabilities on the occurrence of other
interactions. In this case, the interactions that serve as conditions must be sampled first to determine the appropriate probability
of interaction. Another approach is to directly sample whole networks instead of pairwise interactions (Battiston et al. 2020). This
would require estimating the probability of different network structures, a concept further discussed in the conclusion.

While sampling communities decreases knowledge uncertainty
by accumulating evidence for the feasibility and local realisa-
tion of interactions, interaction variability cannot be reduced
with additional data. Regional interactions should become more
definitive (probabilities approaching 0 or 1) as we investigate
various conditions, including different combinations of species
traits. In comparison, owing to environmental heterogeneity,
there will invariably be instances in which a local interaction
occurs and others in which it does not, across different times
and locations. Quantifying and partitioning all sources of uncer-
tainty will enable us to make more accurate predictions about
ecological interactions at various spatial and temporal scales

and to identify priority sampling locations to reduce this uncer-
tainty. This will prove to be of vital importance as our time to
understand nature runs out, especially at locations where the
impacts of climate change and habitat loss hit harder.

5.3 | Relaxing the Independence Assumption

Estimating local interaction probabilities independently for
each taxa pair and assembling them into a network comes with
limitations. Predicting local networks of binary interactions
based on these probabilities assumes independence between
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interactions, a condition seldom respected in practice (Golubski
and Abrams 2011). The occurrence of an interaction may depend
on the realisation of other interactions or the presence or abun-
dance of other taxa (Pilosof et al. 2017; Kéfi et al. 2012). Relaxing
this assumption is the next step in the stochastic representation
of interactions.

A more accurate representation of the uncertainty and vari-
ability of ecological networks involves creating probabilistic
networks (P(L, ) and P(M)), rather than networks of probabi-
listic interactions (P(Ly;, ) and P(M,;)). Probabilistic networks
describe the probability that a particular network of binary
interactions (its whole adjacency matrix) is realised. For ex-
ample, Young et al. (2021) employed a Bayesian method to
estimate the probability of different plant-pollinator network
structures. Generating probabilistic networks could lead to
more accurate predictions of local networks of binary interac-
tions by bypassing the independence assumption. Probabilistic
networks could serve as an alternative to null hypothesis sig-
nificance testing when comparing the structure of a local net-
work to some random expectations or the metaweb (Pellissier
et al. 2018, Box 2, Figure 2). These random expectations are
typically derived by performing a series of Bernoulli trials on
probabilistic interactions, assuming independence, to gener-
ate a distribution of networks of binary interactions (Poisot
et al. 2016). One could instead compare the likelihood of an
observed network to the one of the most likely network struc-
ture to directly obtain a measure of discrepancy of the empir-
ical network. Generating probabilistic ecological networks
represents a tangible challenge, one that, in the coming years,
promises to unlock doors to more advanced and adequate
analyses of ecological networks.
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