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A. Tonazzo161, D. Torbunov20, D. Torres Muñoz186, M. Torti99,141, M. Tortola84, Y. Torun88, N. Tosi93, D. Totani27,
M. Toups66, C. Touramanis129, D. Tran81, R. Travaglini93, J. Trevor28, E. Triller140, S. Trilov19, J. Truchon213,
D. Truncali105,181, W. H. Trzaska120, Y. Tsai24, Y.-T. Tsai184, Z. Tsamalaidze72, K. V. Tsang184, N. Tsverava72,
S. Z. Tu117, S. Tufanli35, C. Tunnell174, J. Turner56, M. Tuzi84, J. Tyler121, E. Tyley183, M. Tzanov131,
M. A. Uchida29, J. Ureña González84, J. Urheim92, T. Usher184, H. Utaegbulam175, S. Uzunyan150,
M. R. Vagins24,122, P. Vahle212, G. A. Valdiviesso62, V. Vale115, E. Valencia77, R. Valentim200, Z. Vallari28,
E. Vallazza99, J. W. F. Valle84, R. Van Berg164, D. V. Forero138, A. Vannozzi96, M. Van Nuland-Troost147,
F. Varanini102, T. Vargas Auccalla204, D. Vargas Oliva198, N. Vaughan155, K. Vaziri66, A. Vázquez-Ramos73,
J. Vega46, J. Vences61,128, S. Ventura102, A. Verdugo39, S. Vergani202, M. Verzocchi66, K. Vetter66, M. Vicenzi20,
H. Vieira de Souza161, C. Vignoli75, C. Vilela128, E. Villa35, S. Viola107, B. Viren20, R. Vizarreta175,
A. P. Vizcaya Hernandez44, S. Vlachos136, G. Vorobyev185, Q. Vuong175, A. V. Waldron172, M. Wallach140,
J. Walsh140, T. Walton66, L. Wan66, B. Wang110, H. Wang25, J. Wang186, L. Wang127, M. H. L. S. Wang66,
X. Wang66, Y. Wang86, K. Warburton111, D. Warner44, L. Warsame89, M. O. Wascko156,178, D. Waters202,
A. Watson16, K. Wawrowska178,190, A. Weber66,135, C. M. Weber144, M. Weber14, H. Wei131, A. Weinstein111,
S. Westerdale26, M. Wetstein111, K. Whalen178, A. White214, L. H. Whitehead29, D. Whittington191, F. Wieler192,
J. Wilhlemi214, M. J. Wilking144, A. Wilkinson202, C. Wilkinson127, F. Wilson178, R. J. Wilson44, P. Winter8,
J. Wolcott199, J. Wolfs175, T. Wongjirad199, A. Wood81, K. Wood127, E. Worcester20, M. Worcester20, K. Wresilo29,
M. Wrobel44, S. Wu144, W. Wu66, W. Wu24, M. Wurm135, J. Wyenberg53, B. M. Wynne57, Y. Xiao24, I. Xiotidis89,
B. Yaeggy40, N. Yahlali84, E. Yandel27, J. Yang80, T. Yang66, A. Yankelevich24, L. Yates66, K. Yonehara66,
T. Young149, B. Yu20, H. Yu20, J. Yu196, Y. Yu88, W. Yuan57, R. Zaki216, J. Zalesak49, L. Zambelli51, B. Zamorano73,
A. Zani100, O. Zapata6, L. Zazueta191, G. P. Zeller66, J. Zennamo66, J. Zettlemoyer66, K. Zeug213, C. Zhang20,
S. Zhang92, M. Zhao20, E. Zhivun20, E. D. Zimmerman43, S. Zucchelli17,93, J. Zuklin49, V. Zutshi150, R. Zwaska66

1 University of Albany, SUNY, Albany, NY 12222, USA
2 Institute of Nuclear Physics at Almaty, 050032 Almaty, Kazakhstan
3 University of Amsterdam, 1098 XG Amsterdam, The Netherlands
4 Antalya Bilim University, 07190 Döşemealtı, Antalya, Turkey
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Abstract The Pandora Software Development Kit and
algorithm libraries perform reconstruction of neutrino inter-
actions in liquid argon time projection chamber detectors.
Pandora is the primary event reconstruction software used
at the Deep Underground Neutrino Experiment, which will
operate four large-scale liquid argon time projection cham-
bers at the far detector site in South Dakota, producing high-
resolution images of charged particles emerging from neu-
trino interactions. While these high-resolution images pro-
vide excellent opportunities for physics, the complex topolo-
gies require sophisticated pattern recognition capabilities to
interpret signals from the detectors as physically meaningful
objects that form the inputs to physics analyses. A critical
component is the identification of the neutrino interaction
vertex. Subsequent reconstruction algorithms use this loca-
tion to identify the individual primary particles and ensure
they each result in a separate reconstructed particle. A new
vertex-finding procedure described in this article integrates
a U-ResNet neural network performing hit-level classifica-
tion into the multi-algorithm approach used by Pandora to
identify the neutrino interaction vertex. The machine learn-
ing solution is seamlessly integrated into a chain of pattern-
recognition algorithms. The technique substantially outper-
forms the previous BDT-based solution, with a more than
20% increase in the efficiency of sub-1 cm vertex recon-
struction across all neutrino flavours.

1 Introduction

The Deep Underground Neutrino Experiment (DUNE) [1],
currently under construction, will be a world-leading obser-
vatory for the study of neutrinos and nucleon decay. The
DUNE far detector modules will be hosted approximately
1.5 km underground at the Sanford Underground Research
Facility (SURF), in South Dakota, USA. The liquid argon
time projection chambers (LArTPCs) comprising the far
detector will contain 70 kt of liquid argon, with a fiducial
mass of at least 40 kt.

Among DUNE’s many physics goals are the measure-
ment of the charge-parity violation phase in the lepton sector,
determination of the neutrino mass ordering and the octant in
which the θ23 mixing angle lies, along with a search for super-
nova neutrino bursts and to test the three-flavour paradigm
itself. Physics analyses depend upon determination of event
properties such as the flavour of the neutrino interacting or an
estimation of the incident neutrino energy. The determination

a e-mail: andrew.chappell@warwick.ac.uk

of such quantities depends upon high quality reconstruction
of the interactions that will take place inside DUNE’s far
detectors. The Pandora Software Development Kit (SDK)
acts as one of the main reconstruction tools used by DUNE,
providing pattern recognition algorithms to build up a picture
of the interactions. This article presents details of the inte-
gration of deep learning into the set of algorithms previously
described in [2,3].

The Pandora SDK was originally developed to identify
the energy deposits of particles in fine-granularity detectors,
in particular guiding the design and optimisation of future
e+e− linear colliders [4,5]. The multi-algorithm approach
to pattern recognition seeks to apply focused, decoupled
algorithms to input building blocks. Input is provided into
Pandora in the form of a sparse list of hits (localised
charge deposits), determined by a low-level hit-finding pro-
cedure developed for MicroBooNE [6]. Complex topologies
are deferred to later algorithms, when more is understood
about the context, in an effort to avoid making errors that
will be difficult to correct later. As a result of the multi-
algorithm approach, it is not necessary to choose between
hand-engineered or machine-learned algorithms, but one can
combine the approaches, leveraging the power of modern
machine learning techniques where appropriate, while tak-
ing advantage of physics and detector knowledge in the form
of ‘hand-tuned’ algorithms where appropriate. Algorithms
are designed to be generic and tunable, such that multiple
experiments can be supported.

Identifying the neutrino interaction vertex is a critical
aspect of reconstructing a neutrino interaction within a
LArTPC. All charge deposition proceeds from this location,
so its accurate and precise determination can exert a strong
influence on the quality of the subsequent reconstruction.
Misidentification of the interaction vertex location can result
in splitting of the trajectory of a single particle and merg-
ing of multiple trajectories, as well as incorrect parent–child
relationships (e.g. the two photons from π0 decay are chil-
dren of the parent pion) between particles. Depending on the
magnitude of the error, these problems can affect estimates
of reconstructed energy and incident neutrino direction, or
could lead to mischaracterisation of the interaction type and
thereby alter the interpretation of an interaction. In this article
we describe an approach to determine the interaction vertex
location using a deep neural network, which represents the
first integration of support for deep learning algorithms into
Pandora.

Section 2 briefly introduces LArTPCs, while Sect. 3
describes the simulated data used for this work. The con-
ceptual approach to finding the vertex and the correspond-
ing truth definition are presented in Sect. 4. Section 5 sum-
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Fig. 1 Schematic of the workspace geometry (red) within the context
of the full detector geometry (black). APAs are indicated by gray boxes
in the YZ plane of the workspace volume, while CPA walls are indicated

in red in the YZ plane. APA walls in the full geometry are indicated by
the black boxes in the YZ plane

marises the network architecture, provides details of the train-
ing metrics and assesses the behaviour of the loss function
and network weights. Results in a simulated experimental
environment are presented in Sect. 6. The performance char-
acteristics, sources of bias and robustness considerations are
discussed in Sect. 7 and a number of extensions/alternative
approaches planned for future work are described in Sect. 8.

2 Liquid argon time projection chambers

Two far detector designs currently exist for DUNE, the
horizontal-drift [7] and vertical-drift [8] detectors. These
two designs utilise different geometries, orientations, drift
lengths and readout technologies, the details of which are left
to the aforementioned references (Fig. 1). Conceptually the
operation is the same, and Pandora is agnostic to the detector
differences. A LArTPC volume is a fully active liquid argon
target, with a uniform electric field applied between a cath-
ode and anode. Charged particles propagating through this
medium ionise the argon (see Fig. 2), producing drift elec-
trons and scintillation photons. The drift electrons are carried
by the electric field to the anode where they are read out on
three readout planes: Two planes (U and V) with voltage
biased to be transparent to the electrons and thereby allow
current to be induced in readout channels as the electrons
pass by, and a readout plane (W) with voltage set to permit
collection of the drift electrons on the readout channels. The
scintillation light is detected by photon detectors embedded
in anode and cathode planes [9], though Pandora currently
only reads charge information coming from the TPC wave-
forms, and does not yet read in scintillation light information
and therefore this will not be discussed further in this article.

3 Simulated data

Given Pandora’s agnosticism to the detector design, this arti-
cle will focus on samples in the horizontal-drift detector and
that come from beam neutrinos. Each simulated event repre-
sents a single readout window (a span of time allowing the
ionisation electrons from a triggered event to drift the width
of the detector), with the triggered neutrino beam placed
within the window such that the time of the neutrino inter-
action corresponds to t0 = 0. Given the rock overburden the
rate of cosmic ray muons is expected to be approximately
1 × 10−4 per typical readout window (5.4 ms) in the full
volume of a horizontal-drift far detector and therefore no
cosmics are simulated.

Three samples of simulated data were generated for each
of forward horn current (FHC) and reverse horn current
(RHC) beam running, producing beams composed predom-
inantly of neutrinos and antineutrinos, respectively. The
expected unoscillated long-baseline neutrino facility (LBNF)
flux [10], folded with cross-section, yields a νµ-dominated
sample with a small contribution from intrinsic νe in FHC
operation. The other two samples in FHC are produced by
applying flavour swapping to this sample, producing a νe-
dominated sample via the swaps νµ → νe and νe → ντ ,

and a ντ -dominated sample via the swaps νµ → ντ and
νe → νµ. Equivalent swaps are applied for the RHC sam-
ples. The true neutrino energy distribution of the combined
sample (FHC + RHC) is shown in Fig. 3.

Samples are produced using a suite of software compris-
ing DUNESW v09_81_00d02. In particular, neutrino events
are generated using GENIE v3.04.00 [11,12] with the Liquid
Argon Experiment tune AR23_20i_00_000, the propagation
of particles and their interaction within the detector is simu-
lated by Geant4 v10.6.p01f [13–15] with the QGSP_BERT
physics list. The electronics and field response is simu-
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Fig. 2 Operating principle of a
LArTPC [7]. Charged particles
produced by the incident
neutrino interaction ionise the
argon medium, producing
ionization electrons that drift
towards anode induction (U and
V) and collection (W) planes,
along with scintillation photons

Fig. 3 Distribution of true neutrino energy for the combined
(FHC + RHC) simulated, unoscillated far detector interactions

lated using Wire-Cell, which also processes the signal to
recover the original wire waveforms, as described in [6]. Hit
finding is then performed by LArSoft v09_81_00 [16,17].
The resultant hits are passed to the Pandora pattern recog-
nition, where reconstruction of events is performed using
LArPandora v9_21_12, which depends upon PandoraSDK
v03-04-01 [18]. In the case of the horizontal-drift far detec-
tor [7], the detector is represented by a subset of the full far
detector geometry, known as the 1x2x6 workspace geom-
etry (see Fig. 1), with an active volume of approximately
719 cm × 1208 cm × 1394 cm (X×Y×Z). This is intended
to provide good containment across a broad range of events.
The detector volume is defined by twenty four drift volumes,
arranged about twelve anode plane assemblies (APAs – the
wire planes that sense the ionisation electrons), such that the
workspace geometry is two APAs high and six deep.

4 Conceptual overview of vertex finding

The outputs of LArTPC detectors can be represented as two-
dimensional images (see Fig. 4a) where charge deposition is
represented as a hit. For each readout plane, a hit is composed
of a triplet (x, c, q), where x is a drift coordinate indicating
the distance traveled by drift electrons from the point of ion-
isation to the relevant readout plane, c is a coordinate repre-
senting the readout channel number, and q is a scalar quantity
proportional to the amount of charge induced or deposited on
the readout channel. In addition to the position and charge
deposition for the hit, the width of the Gaussian fitted to the
signal waveform is also retained, and is referred to as the hit
width.

Upon visual inspection by a human expert, the interac-
tion vertex is often, though not always, easily identified as
a clear feature of the interaction from which all activity
emanates. It therefore seems reasonable to suppose that mod-
ern machine learning techniques, such as deep convolutional
neural networks, would be well-suited to automate this inher-
ently visual task.

The concept for the network design adopted here is to
relate each hit to the interaction vertex in terms of its dis-
tance from the vertex (see Fig. 4a). This avoids the need to
define coarse signal and background regions for the events,
or target coordinates for regression. Each hit can contribute
in a relatively precise way to the loss function that quantifies
the network’s accuracy, and spatial correlations between hits
can help provide context. In particular, a hit can be allocated
a pixel coordinate (hx , hc), while the vertex can be similarly
allocated to a pixel coordinate (vx , vc) (x indicating drift
coordinate and c readout channel in U, V, or W), with the
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distance between those pixels computed as

D =

√

(vx − hx )2 + (vc − hc)2
⌈

√

2(L − 1)2
⌉ (1)

where L is the width (and height) of the image in pixels and
acts to provide scale invariance for the network inputs. This
distance measure is then allocated one of 19 discrete class
labels for the network to learn (Fig. 4a), covering a range
of distances which can then be used as a target for pixel-
level semantic segmentation [19]. Thus, the network does
not extract a vertex location directly, rather it infers a class
that describes a range of distances between the pixel under
consideration and the true vertex location. This information
can then be used to project rings (Fig. 4b) of appropriate
inner and outer radii, centred on an active pixel of interest to
form a heat map where the pixel with the most ring intersec-
tions would be considered the candidate vertex. The width
of the rings depends upon the distance of the correspond-
ing class to the interaction vertex. Rings describing pixels
that are in close proximity to the candidate interaction vertex
have narrow rings, while those rings broaden for classes at
greater distances to the true/estimated interaction vertex. This
reflects the expectation that it is more challenging to estimate
the distance to the interaction vertex at large distances than
nearby.

Neutrino interactions at DUNE can have a very large phys-
ical extent. Muons, for example, can travel many metres
through the liquid argon medium. To avoid an excessive com-
putational burden in processing, the images passed to the net-
work are no more than 256 × 256 pixels. This can yield a
resolution as coarse as ∼ 5 cm per pixel for an event spanning
the length of the detector, so an additional step is needed to
improve the resolution to the scale of the channel spacing.
As a result, a choice must be made about how to present the
event to the network such that an acceptable vertex location
precision can be obtained. Given that the interaction vertex
location is unknown at this stage, it is desirable to retain all
hit information from the image, rather than attempt to crop
the image and risk losing the region around the interaction
vertex. However, as noted, the large physical extent of many
events can lead to individual pixels covering many readout
channels, and therefore a two pass approach is adopted. The
first pass uses as input all hits from the event, fitting this to
the input image dimensions (the dimensions are scaled inde-
pendently to fit the image size), allowing a low-resolution
identification of the likely vertex location. Given this loca-
tion, a second pass of the network is undertaken, zooming
in on the region around this provisional location, to iden-
tify the vertex location to high-precision (the framing of the
event in this second pass will be described in Sect. 5). Each
network produces a vertex position within its respective 2D
readout plane, and these therefore need to be consolidated

into a single 3D position. This is achieved by considering
each combination of readout plane pairs to identify the Y
and Z coordinate intersection of the two planar points based
on the known position and orientation of the channels in each
view, with X being directly available for each plane. The three
sets of X, Y and Z coordinates are then averaged to produce
a single 3D location, which is then projected back into each
of three readout planes based on the known detector geome-
try, and a χ2 is computed between the projected and original
vertex positions as a consistency check. If the χ2 value is less
than 1, the 3D vertex is accepted, otherwise the 3D vertex
corresponding to the two plane combination with the lowest
difference between X coordinates is accepted.

To leverage the machine learning techniques within the
standard Pandora reconstruction workflow, an interface to
LibTorch, the binary distribution of PyTorch [20], was imple-
mented in Pandora. The interface is lightweight, wrap-
ping the torch::jit::script::Module and the at::Tensor and
torch::Tensor types, along with provision of a small num-
ber of helper functions to load the model, initialise tensors
and run the inference step. This interface allows Pandora to
run any TorchScript compatible network on a CPU as part
of its chain of algorithms, requiring only suitably structured
input tensors and code to process the network output upon
its return. The computational costs associated with the vertex
reconstruction step are modest: Running over 1182 events,
approximately evenly split between the neutrino flavours, the
maximum resident set size averaged 207±12 MB, while the
average computation time for both passes on all three readout
planes was 0.96 ± 0.02 s running on an Intel Core i3-9100
CPU @ 3.60 GHz.

5 Training and understanding the network

Given the previously described formulation of the problem
in terms of semantic segmentation, the architecture used has
a dense U-ResNet structure [19,21]. The network has four
blocks in the down-sampling path (extracting features) and
in the up-sampling path (recovering spatial detail), with all
convolutional filters of size 3 × 3. The convolutional blocks
implement residual skip connections between the input to
those blocks and the final ReLU activation function of the
respective block (adding the input to the block to the interme-
diate network output prior to the activation function). Due to
the limited training batch size of 32 images per batch required
to fit within GPU memory (16 GB) during training, group,
rather than batch, normalisation is applied within convolu-
tional and transpose convolutional blocks to ensure the inputs
to network layers don’t drift as training proceeds.

Six networks were trained for the vertex finding task, one
network for each wire plane for the low resolution pass and
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Fig. 4 An example of a the input hits and assignment of the first seven of the nineteen true distance classes for those hits and b a schematic of the
heat map produced by three arbitrary hits during inference, for one view (W) of an event

then three equivalent networks for the resolution refining sec-
ond pass.

The network architecture and distance class definitions
were identical in each case, as was the choice for the loss
function, categorical cross-entropy loss, which measures the
distance between the network’s estimated probability distri-
bution and the underlying true probability distribution for the
classes, and is given by

Ln = −wyn log
exp (xn,yn )

∑C
c=1 exp (xn,c)

(2)

(PyTorch’s default weighted cross-entropy loss) where n is
the batch number, C the number of classes, x the input and y

the target, with class weightings w. The optimiser was Adam
[22], with default PyTorch parameters. The two passes used
different image sizes; 256 × 256 pixels in pass 1, with the
entire event scaled down to fill the image canvas, while the
second pass used a 128×128 pixel input image, where images
were cropped, as needed, to ensure a single pixel per channel
pitch for the channel coordinate and 0.5 cm per pixel for the
drift coordinate. While there are small variations between
collection and induction readout plane channel pitches, for
the horizontal-drift far detector, this corresponds to a region
covering approximately 0.61 m in channel coordinates and
0.64 m in drift coordinates. The framing of the second pass
images attempts to retain as much useful information around
the vertex as possible. Centring the image on the provisional
vertex location is likely wasteful, as activity around the vertex
is highly likely to be downstream of the incident neutrino
direction. As such, the fraction of hits on the left and right, and
upstream and downstream of the provisional vertex location
is determined, and the image centre is then shifted to better
cover the region with greatest activity. That is, if 80% of all

hits are to the left of the provisional vertex, 80% of the image
area is also to the left of the provisional vertex.

For an image to be considered for training, the true neu-
trino interaction vertex was required to reside within a defined
fiducial volume with respect to the workspace geometry,
50 cm inside the left, right, top, bottom and upstream (with
respect to the beam direction) faces of the detector, and
150 cm inside the downstream face. Furthermore, there must
be at least 10 hits in the image and the true vertex must be
no more than 1 cm outside of the region containing the hits
in either readout channel or drift coordinate, which excludes
∼ 5% of νµ and νe images and ∼ 6% of ντ images from
consideration. This allows the network to learn the location
of vertices that are slightly offset from the associated visible
charge deposition, even when the closest hit is at an extreme
edge of the image. Under these conditions the total number
of images available for the first pass training were 93218,
92806, and 91252 for the U, V and W views, respectively
and for validation there were 31069, 30935, and 30417 for
the U, V and W views, respectively.

For the second pass training, with equivalent inclusion cuts
applied, there were 85981, 85555, and 84658 for the U, V
and W views, respectively. Note that images are excluded if
errors in the first pass produce framing of the candidate vertex
region that does not contain the true vertex. For validation
there were 28660, 28518, and 28219 for the U, V and W
views, respectively. Each network was trained for 25 epochs
and the evolution of the network performance across each of
those training iterations is shown in Fig. 5a–d.

In all first pass cases the validation loss and accuracy (the
fraction of correctly classified hits) appear to plateau beyond
the 20th epoch, with no evidence of divergence between the
training and validation loss. In second pass training there is
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Fig. 5 Training a loss and b accuracy for all views in pass 1. Training c loss and d accuracy for all views in pass 2

modest evidence of such divergence beyond epoch 12 and
thus the chosen model is that of epoch 12. Across all views
and both passes, approximately 90% of hits in the validation
set generate rings containing the true interaction vertex. As
a result, a very large majority of hits will contribute weights
to the heat map that contain the true vertex location, over-
whelming any noise from the errant hits, and so one would
expect effective reconstruction of the interaction vertex.

Also of interest are the confusion matrices for the various
classes of the different networks. As already noted, per class
accuracy is high, but one can also observe the distribution
of classification errors in Fig. 6a, b for the W view, with
similar distributions for the U and V views, which are not
shown. The off-diagonal contribution where errors are made
is typically found in a class adjacent to the true one. The
region in which most errors are made is that in the immediate
vicinity of the true interaction vertex, which is unsurprising

given the relative infrequency of hits in this region (geometric
considerations result in fewer pixels belonging to the classes
closest to the vertex).

The behaviour of the network also considered the distri-
bution of weights in the trained model, the structure of the
loss landscape in the vicinity of the minimum and we also
explored the evolution of the learned weights in various con-
volutional layers to assess the stability of the training process.
Figure 6c shows the distribution of weights in the trained pass
1, W view network – small weights reduce the sensitivity of
the network to small perturbations [23], helping the network
to generalise to previously unseen events. Figure 7 shows
how the average loss over 1024 validation events varies as
we take steps away from the minimum using the method
described by Li et al. [24]. The loss landscape (note the 3D
surface depicts the logarithm of the average loss) appears
smooth over the full grid of assessed weights and zooming
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Fig. 6 Confusion matrix for the W view in a pass 1 and b pass 2 (the null class (0) is zero-suppressed) and c the distribution of weights for the
trained W view, pass 1 network

Fig. 7 Loss landscapes showing in a the full 3D landscape, b the equiv-
alent loss contour covering the full range of α and β (coefficients of two
random Gaussian direction vectors with dimensions compatible with the

network weights) for the trained W view, pass 1 network, and c the 3D
landscape for the region α, β ∈ [−0.1, 0.1]

into the region close to the minimum the landscape continues
to exhibit features that lead to effective training.

6 Vertex reconstruction performance

To assess the performance on any given event, the true neu-
trino interaction vertex was required to reside within the fidu-
cial volume. A total of 179558 out of the 300000 available
events (independent of the training and validation samples)
across all flavours and horn currents passed this cut.

Figure 8 compares the vertex reconstruction performance
of our vertex finding network with the previous state-of-the-
art boosted decision tree (BDT) for each neutrino flavour
(inclusive of CC and NC interactions) for the horizontal-drift
detector. The new method substantially outperforms the pre-
vious state-of-the-art across all samples. As the BDT depends
upon hit clustering for its inputs, any reconstruction ineffi-
ciencies at this stage may hinder its performance, whereas

the vertex finding network operates on hits and therefore
is not subject to such inefficiencies. The vertex is recon-
structed with high precision in a large fraction of events for
the νµ and νe samples, with approximately 80% of all vertices
reconstructed within 1 cm of the true interaction vertex. The
reconstruction performance is notably lower for the ντ sam-
ple, where approximately 66% of vertices are reconstructed
within 1 cm of the true interaction vertex. The reason for this
difference is discussed further below. A notable minority of
events reconstruct the vertex at > 5 cm from the true inter-
action vertex location. Such failures will be referred to as
‘catastrophic failures’ and the nature of these failures will be
discussed below, though we note here that one weakness of
the two pass approach is that a sufficiently large error in pass
1 cannot be recovered in pass 2, because the true vertex will
not be present in the image considered in pass 2.

Figure 8d shows the vertex reconstruction performance for
the network, broken down by flavour and weak current. It is
clear in this figure that the presence of a leading lepton in the
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Fig. 8 Fraction of vertices reconstructed within a given distance of the
true neutrino interaction vertex for the previously used BDT and new

network for a
(−)
ν µ, b

(−)
ν e and c

(−)
ν τ . d shows the performance of the new

deep learning network for different currents, flavours and in the case of
CC ντ interactions, for the leptonic and hadronic decays of the τ. The
network outperforms the BDT in all cases

final state yields a highly performant vertex reconstruction.
For the νµ and νe samples approximately 87% of all vertices
are reconstructed within 1 cm of the true interaction vertex,
with approximately 83% for the ντ sample, and almost all
vertices (95–97%) are reconstructed within 5 cm of the true
interaction vertex. In conjunction with any hadronic activity,
a leading lepton provides clear pointing information back
to an interaction vertex, and so high quality reconstruction
is expected. In contrast, the neutral current performance is
lower, with 60–61% of vertices reconstructed within 1 cm
of the true interaction vertex, and a catastrophic failure rate
of 21–22%. The absence of a leading lepton in such events
reduces the available pointing information, and the topology
becomes especially challenging for events dominated by dif-
fuse neutron-induced activity, where the interaction location
cannot be reasonably identified even by a human expert. This
difference between charged current (CC) and neutral current
(NC) events also provides an explanation for the inclusive

ντ vertex reconstruction performance. With the τ production
threshold suppressing CC events below neutrino energies of
∼ 3.5 GeV the fraction of CC interactions in the ντ sample is
only ∼ 25%, as compared to ∼ 70% for the νe and νµ sam-
ples, and therefore the inclusive sample more closely tracks
the NC performance than the CC performance.

Performance is further summarised according to selected
final states in Fig. 9. Performance is assessed for the number
of final state protons, charged pions and neutral pions, and
CC and NC interactions. Immediately evident in the figures
is the significance of the leading lepton. In the presence of the
leading lepton, vertex reconstruction efficiency is very high
at baseline, and moderately increases as the number of final
state particles increases for each of the selected final state
particles. This behaviour is expected, with each additional
final state particle augmenting the existing pointing informa-
tion to more clearly identify the vertex location. For example,
Fig. 10 depicts a well-reconstructed vertex given ample, con-
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Fig. 9 Fraction of vertices reconstructed within a given distance of the
true neutrino (all flavours) interaction vertex for (left) CC and (right) NC
events, for a given number of final state (top) protons, (middle) charged

pions and (bottom) neutral pions. The CC interactions show little sen-
sitivity to final state multiplicity, while NC interactions approach CC
performance with increasing final state multiplicity

sistent pointing information from the electron, charged pion
and proton in a resonant pion production event. The effect
of additional final state particles on NC events is much more
substantial. In the absence of a leading lepton, fewer selected
final state particles lead to large reductions in performance,
particularly for protons, where little more than 40% of all ver-
tices are reconstructed within 5 cm of the true vertex location.
This is unsurprising, given that the failure of even a single
proton to emerge from a nucleus will often imply no, or few,

other final state particles that ionise the medium, and thus
yield little guidance for even a human expert. As the num-
ber of these final state particles increases, the performance
improves rapidly at first, and then slowly approaches CC-like
performance. High pion multiplicity yields CC-like perfor-
mance, with improved pointing information provided by the
longer minimally ionising charged pion tracks relative to the
shorter, highly ionising protons, and also by decay photons
from final state neutral pions pointing to a common vertex.
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More generally, we can consider vertex reconstruction
performance as a function of inelasticity (i.e. the fraction
of incident neutrino energy not carried away by the outgoing
lepton). Figure 11 shows vertex reconstruction performance
for different bins of inelasticity for (a) CC and (b) NC interac-
tions. A few interesting features are evident in these figures.
For the NC case, we see behaviour entirely consistent with
that seen when considering the number of final state pro-
tons and pions. Without a leading lepton, the vertexing must
instead depend upon protons emerging from the nucleus, or
perhaps the charged particles produced in downstream inter-
actions of neutral final state particles, which will provide
imperfect pointing information by the nature of their produc-
tion. As the contribution of the visible hadronic component
increases, the vertex reconstruction performance improves,
starting from a low baseline where much of the momentum
is carried away by the neutrino, leaving little for the hadronic
system and therefore little visible charge deposition. For
CC interactions however, there is a subtle difference. Vertex
reconstruction performance is high across bins of inelasticity,
with small improvements as inelasticity increases at first, but
then turns over at high inelasticity to yield slightly worse per-
formance. The fraction of events reconstructed within 1 cm
of the true vertex is around 84% below inelasticities of 0.8,
but drops to around 82% by inelasticities above this level. Ini-
tially, increases in the hadronic contribution usefully increase
particle multiplicity and add to pointing information, but as
the hadronic component begins to dominate, highly complex
topologies with dense charge deposition and secondary inter-
actions can form plausible primary interaction vertex candi-
dates, which can lead to larger vertex misidentification rates.
Figure 11 also shows vertex reconstruction performance for
different bins of hadronic invariant mass for (c) CC and (d)
NC interactions. The fraction of events reconstructed within
1 cm of the true vertex is around 85% for hadronic invariant
masses below 5 GeV, but drops to around 82% for hadronic
invariant masses above this level. As for inelasticity, the effect
on CC interactions is relatively small, with similar evidence
for turnover as the hadronic component becomes very large
and topologies become more complex. For NC interactions
we see improved performance as the hadronic invariant mass
increases, consistent with the picture for inelasticity, though
highlighting that at lower energies, even if inelasticity is high,
the reduced charge deposition associated with lower hadronic
invariant mass still yields lower performance.

Figure 12 shows the distribution of the difference between
the three-dimensional positions of the reconstructed and true
interaction vertex locations for each individual dimension,
across all flavours, interaction types and horn currents. Of
note in these distributions, in addition to the large fraction
of events where the vertex is reconstructed to within 1 cm of
the true vertex, is the lack of bias or skew in the distributions.
The distributions are centred on zero in all three dimensions

Fig. 10 A 3 GeV νe CC resonant pion production interaction with an
electron, charged pion, neutral pion (decays to two photons) and proton
in the final state. Hits from the W view in black, reconstructed vertex
in red

and are as likely to be reconstructed upstream/left/below
as downstream/right/above. The Y coordinate can only be
inferred from the overlap of at least two readout channels (no
channel provides a direct measurement in Y), which explains
the reduced resolution, while the collection plane provides
a direct measurement in Z (channels in the induction planes
span a range of Z coordinates), and all three readout planes
share a common X coordinate.

In summary, the vertex reconstruction performance exhibits
an evolution whereby performance is lowest for those events
where there is little information in the vicinity of the ver-
tex, as expected. This is particularly acute for NC interac-
tions with low inelasticity and low hadronic invariant mass,
whereas these issues are largely offset in CC interactions by
the presence of a leading lepton. As inelasticity or hadronic
invariant mass increase, performance improves, as higher
particle multiplicity yields more charge deposition leading
back to the vertex, and naturally makes vertex identification
easier. Eventually, however, increases in the number of sec-
ondary vertices, which act as additional candidates, and more
overlapping particle trajectories smearing the paths back to
the true interaction vertex, limit performance at the highest
inelasticities and hadronic invariant masses in CC interac-
tions.

7 Robustness testing

The final state particles emerging from a simulated neutrino
interaction depend upon the choice of generator and nuclear
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Fig. 11 Fraction of vertices reconstructed within a given distance of
the true neutrino interaction (all flavours) vertex as a function of inelas-
ticity for a CC and b NC events, and as a function of hadronic invariant
mass for c CC and d NC events. The CC interactions show little sen-

sitivity to inelasticity and hadronic invariant mass, while NC interac-
tions approach CC performance only at higher inelasticity and hadronic
invariant mass

model. It is common to observe differences in the number of
final state protons depending on the choices made. The par-
ticle multiplicity in the vicinity of the neutrino interaction
vertex clearly affects the resolution of the vertex reconstruc-
tion. Therefore, in this article we investigate how changes
to the number of final state protons impacts network perfor-
mance and if any biases emerge. It is beyond the scope of
this article to perform detailed generator and model compar-
isons, rather we seek to isolate particle multiplicity effects
that might change vertex reconstruction efficiency and res-
olution. In particular, we compare the standard DUNE sim-
ulation described in Sect. 3 to equivalent samples in which
final state protons with momentum below 0.4 GeV/c are sup-
pressed (hereafter, for brevity, the 0p sample) and to equiv-
alent samples in which final state neutrons are replaced by
final state protons (hereafter the n→p sample), altering the
number of small tracks emerging from the neutrino interac-
tion vertex. These are event-by-event modifications to the
generator-level particle content, such that a given generated

event has specific particles either suppressed, or exchanged
for an alternative flavour, while the remaining particle con-
tent is unchanged. These changes are deliberately extreme to
test that the network continues to produce sensible results
in response to substantial changes in particle multiplicity
around the vertex.

For each sample we generate 1000 νµ events and 1000
νe events. The sample generation procedure is as described
above, but with the following key alterations:

• Randomisation: The generator step is seeded such that
the same 2000 provisional events are generated for each
of the standard simulation, the 0p sample and the n→p
sample. This allows for direct comparisons between oth-
erwise equivalent events.

• Final state particle changes: Prior to the Geant4 stage, for
the 0p sample, any final state proton with a momentum
below 0.4 GeV/c has its status set to zero, ensuring it is
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Fig. 12 Vertex resolutions for each axis (µ and σ are the mean and
standard deviation of the fitted Gaussian, with RMS being the Root
Mean Square of the distribution of reco – true values). All flavours and
horn currents are combined here due to minimal differences in reso-

lution between samples. The reduced resolution in Y comes from the
need to infer this coordinate from the Z coordinates in more than one
plane

Fig. 13 The proton multiplicity for the different samples used for
robustness checks

not propagated in Geant4. For the n→p sample, final state
neutrons are replaced by otherwise equivalent protons.

The resultant proton multiplicity, up to 10 final state pro-
tons, of the three samples is shown in Fig. 13.

Figure 14 depicts the change in vertex reconstruction per-
formance as the number of final state particles varies. For

charged current interactions the differences are modest. Ver-
tex resolution improves with the number of protons as we
move from the proton-poor, through standard to proton-rich
samples. Most notably, the proton-rich sample achieves a
higher overall reconstruction efficiency below 5 cm. The
performance difference for neutral current interactions is
much larger. Here, the 0p sample further reduces particle
multiplicity around the vertex, where a leading lepton is
already absent, yielding many more catastrophic failures
(e.g. Fig. 15). Conversely, the proton-rich sample is able to
enhance pointing information in the region of the vertex and
thereby offset the lack of a leading lepton to a large degree
(e.g. Fig. 16).

The performance as a function of proton multiplicity is
depicted in Fig. 17. It can be seen that the performance in the
different samples is consistent for equivalent proton multi-
plicity and therefore the difference in performance between
the samples is driven by the changes in the distribution of
proton multiplicity over the whole sample. Furthermore, it
can be seen in Fig. 18 that while the number of final state
protons affects vertex resolution, there is no evidence that
the number of protons in the final state biases vertex recon-
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Fig. 14 Fraction of reconstructed vertices as a function of distance to the true vertex for the standard, n→p and 0p samples, split into (left) CC
and (right) NC interactions

Fig. 15 1.6 GeV NC interaction with a π0 → γ γ, nine neutrons and
either (left) three or (right) zero protons in the final state. The true inter-
action vertex is indicated by the blue circle (hidden below the recon-

structed vertex in the left image), while the reconstructed interaction
vertex is indicated by the red circle. Particle colours are arbitrary and
not correlated between left and right

struction in any particular direction, with differences in µ

covered by one tenth of one channel spacing.
The source of the changes in vertex resolution can be illus-

trated by comparing a few events. Figure 16 shows a 2.8 GeV
neutrino undergoing a neutral current interaction to produce
a π0 along with a neutron (left) in the final state, and the
corresponding event with the neutron replaced by a proton
(right). In the former case, one photon from the π0 decay
produces charge deposition close to the true vertex, while
the second photon produces charge deposition farther away,

and this is chosen as the reconstructed vertex. In the case
where the neutron is replaced by a proton there is an addi-
tional anchor point for the network to use in inferring the
vertex location. In addition, two photons also point towards
this location, yielding an accurate vertex reconstruction.

Figure 19 shows a 24.9 GeV neutrino undergoing a
charged current interaction to produce a µ, a π+ and a
neutron (left) in the final state, and the corresponding event
with the neutron replaced by a proton (right). Here, the high-
energy (5.9 GeV) π+ (magenta) interacts to produce consid-
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Fig. 16 2.8 GeV NC interaction with a π0 → γ γ and either (left) a neutron or (right) proton in the final state. The true interaction vertex is
indicated by the blue circle, while the reconstructed interaction vertex is indicated by the red circle. Particle colours are arbitrary and not correlated
between left and right

Fig. 17 Fraction of reconstructed vertices as a function of distance to the true vertex broken down by the final state proton multiplicity (all
momenta) of events. The n→p sample is omitted from the 0 proton case due to a lack of events for a meaningful comparison
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Fig. 18 Vertex resolutions for the standard, n→p, and 0p samples for each axis (µ and σ are the mean and standard deviation of the fitted Gaussian,
with RMS being the Root Mean Square of the distribution of reco – true values)

Fig. 19 24.9 GeV CC interaction with a µ, a π+ and either (left) a neutron or (right) proton in the final state. The true interaction vertex is indicated
by the blue circle, while the reconstructed interaction vertex is indicated by the red circle. Particle colours are arbitrary
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erable subsequent activity. The initial colinearity of the muon
and pion results in a single track-like deposition emerging
from the vertex and therefore the network picks the subse-
quent pion interaction vertex as the likely vertex candidate.
With the neutron replaced by the proton (dark green), the
additional track-like deposition emerging from the true inter-
action vertex yields a correct reconstruction.

If we instead consider removal of protons from an inter-
action, Fig. 15 depicts a 1.6 GeV neutral current interaction
with a neutral pion, nine neutrons and either three (left), or
zero (right) protons in the final state. The three short proton
tracks emerging from the vertex (left) provide a clear handle
for accurate vertex reconstruction, whereas the separation
between the true vertex and the photons (right) from the neu-
tral pion decay, along with diffuse neutron-induced activity
results in an offset between the true and reconstructed vertex
location.

In summary, when changing the proton multiplicity we see
overall efficiency changes as a function of particle multiplic-
ity. In NC interactions we observe more catastrophic failures
where the vertex is shifted far from the correct region, which
is to be expected, and a feature that would not be unique to
machine learning methods, given that identifying a neutrino
interaction vertex requires charge deposition in the detec-
tor that can be traced back to that location. However, we do
not observe biases for those events that remain in the cor-
rect region – high particle multiplicity at the vertex does not
appear to smear out the vertex resolution, or shift the recon-
structed vertex position along the beam direction.

8 Future extensions

There are many avenues for optimising and extending the
vertex finding concept discussed in this article. In the first
instance there are relatively simple, if time intensive opti-
misations that can be considered. For example, the width of
the rings used to define the distance between a given hit and
the vertex. The number of classes, and their width could be
optimised to increase the resolution of each ring – in princi-
ple this approach could be extended to per-pixel regression
with a Gaussian error defining the width of the band rather
than per-pixel classification with a discrete width. It is also
expected that the number of networks per pass can be reduced
from three to two, by leveraging symmetries in the induction
planes to train a single network to process both induction
planes, thereby reducing the computational requirements of
training.

An additional technical enhancement would be to intro-
duce sparse convolutions or switch to a graph network. At
present the non-hit regions are processed alongside the hit
regions and given the sparse nature of the inputs, the com-
putational and memory overhead can expect to be improved

by moving to sparse convolutions or a graph network. In
addition, the contribution of non-hit regions to the outputs of
convolutions and transpose convolutions might reasonably be
expected to limit the performance of the semantic segmen-
tation, with sparse convolutions ensuring that only active hit
regions contribute to this process. Finally, the present need
for two passes to provide a sufficiently high-resolution recon-
structed vertex position may be eliminated by the ability to
represent hits via unstructured input tensors as opposed to
fixed size, two dimensional images.

A non-technical extension includes extending the tech-
nique to identify secondary vertices. When finding a single
vertex, the truth definition is each hit’s distance to that single
vertex. This can be modified to encode the distance to the
closest vertex, partitioning the plane as a Voronoi diagram
[25,26].

Finally, this method will be applied to additional detector
contexts, such as the vertical-drift far detector, and additional
samples, such as atmospheric and supernova neutrino sam-
ples, and extended to include the full far detector geometry,
rather than the workspace geometry.

9 Conclusion

Support for deep neural networks has been integrated into the
Pandora pattern recognition reconstruction workflow using
LibTorch. A U-ResNet classifying hits with respect to their
distance to the neutrino interaction vertex has been imple-
mented in the context of a DUNE horizontal-drift far detec-
tor and acts as a performant vertex finding technique that
substantially outperforms the previous BDT implementation,
with an increase in the efficiency of vertex reconstruction
within 1 cm of the true vertex of more than 20% in all flavours.
Given the transferability of Pandora’s algorithms to other
detector contexts, it is expected that this approach will also be
effective in a vertical-drift far detector, though perhaps with
a small reduction in resolution reflecting the larger induc-
tion channel spacing in the vertical-drift detector. Charged
current interactions yield highly performant vertex finding,
while neutral current performance is reduced by the absence
of pointing information from a leading lepton (though still
much improved relative to the BDT implementation). Inter-
action vertices are identified with equivalent efficiency in
νe and νµ samples, while ντ performance is reduced due to
a larger neutral current fraction. In general, precise vertex
reconstruction for events with little charge deposition in the
vicinity of the neutrino interaction vertex is very difficult,
as expected, but vertex reconstruction performance rapidly
improves as particle multiplicity in this region increases. This
performance then plateaus and even over-turns for the most
complex events with secondary and tertiary vertices acting
as plausible alternative candidates, and overlapping particle
trajectories smearing the path back to the true interaction
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vertex. Evaluation of robustness in terms of final state proton
multiplicity shows no direction bias in the reconstructed ver-
tex position. Though neutral current interactions yield lower
vertex efficiency (more catastrophic failures) as the proton
multiplicity goes to zero (which is to be expected given
reduced pointing information), charged current interactions
appear insensitive to proton multiplicity. These improve-
ments in vertex reconstruction will facilitate improvements in
hit clustering, particle characterisation and subsequent high-
level reconstruction quantities, such as estimates of neutrino
energy, by avoiding inappropriate splitting and merging of
particles, and errors in parent–child relationships.
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