
This is a repository copy of Abstract rule learning promotes cognitive flexibility in complex 
environments across species.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/228541/

Version: Published Version

Article:

Bähner, F. orcid.org/0000-0002-6747-0045, Popov, T., Boehme, N. et al. (7 more authors) 
(2025) Abstract rule learning promotes cognitive flexibility in complex environments across 
species. Nature Communications, 16 (1). 5396. ISSN 2041-1723 

https://doi.org/10.1038/s41467-025-60943-7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Article https://doi.org/10.1038/s41467-025-60943-7

Abstract rule learning promotes cognitive
flexibility in complex environments across
species

Florian Bähner 1,2 , Tzvetan Popov3,4, Nico Boehme1,2, Selina Hermann1,2,

Tom Merten 1,2, Hélène Zingone 1,2, Georgia Koppe 2,5,6,

Andreas Meyer-Lindenberg2,12, Hazem Toutounji 7,8,9,12 &

Daniel Durstewitz 6,10,11,12

Rapid learning in complex and changing environments is a hallmark of intel-

ligent behavior. Humans achieve this in part through abstract concepts

applicable to multiple, related situations. It is unclear, however, whether the

computationalmechanismsunderlying rapid learning areunique tohumansor

also exist in other species. We combined behavioral, computational and

electrophysiological analyses of a multidimensional rule-learning paradigm in

male rats and in humans. We report that both species infer task rules by

sequentially testing different hypotheses, rather than learning the correct

action for all possible cue combinations. Neural substrates of hypothetical

rules were detected in prefrontal network activity of both species. This

species-conserved mechanism reduces task dimensionality and explains key

experimental observations: sudden behavioral transitions and facilitated

learning after prior experience. Our findings help to narrow the explanatory

gap between humanmacroscopic and rodentmicrocircuit levels andprovide a

foundation for the translational investigation of impaired cognitive flexibility.

Cognitive flexibility is critical for the ability to respond to changes in

the environment in adaptive ways. Deficits in this domain are observed

in several major neuropsychiatric disorders1. However, it is not fully

understood how correct behavioral rules are identified in ever-

changing contexts and how this information is encoded in neural

activity2–7. A powerful theoretical framework in this area is reinforce-

ment learning (RL), which describes how action values in different

environmental situations (known as states) are learned to guide

decisions and maximize reward8. This framework has gained support

from the neurosciences following the discovery of neural substrates of

RL quantities such as action values (i.e., the expected reward from

taking that action) and reward prediction errors (i.e., the difference

between actual and expected reward)9,10. A core assumption of classic

RL models is that subjects learn to map each state of the environment

to the maximum-value action8. However, the real world is multi-

dimensional, where many sources of information, such as sensory
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cues, rewardhistory, andworkingmemoryof past choices, combine to

form each state. This results in an exponential growth in the number of

states and state-action mappings (known as the curse of dimension-

ality) that translates into slow and gradual learning11. Consequently,

standard RL models struggle to explain hallmarks of flexible behavior

such as sudden transitions in performance7,12–15, rapid learning in

complex environments, or faster learning with prior experience3,11,16.

A long tradition in cognitive science maintains that humans work

around the curse of dimensionality by learning abstract concepts like

rules3,17, categories18,19, or schemas20,21 that can be applied to multiple,

related situations. Recent advances in artificial intelligence inspired by

cognitive neuroscience have suggested different computational

mechanisms for learning abstract models of the world that facilitate

generalization of knowledge and transfer of learned skills to new

tasks3,16,22–26.

Since one-to-one mappings of states to actions are inefficient in

high-dimensional environments with many potential task con-

tingencies, subjects may rather learn and test hypothetical rules

underlying these mappings. These hypothetical rules summarize dif-

ferent combinations of environmental cues, actions, and potential

outcomes within a common concept, such as don’t press any lever

paired with a bright light, regardless of lever location. This abstraction

reduces dimensionality dramatically since every cue becomes an

instance of a general task feature, allowing the learner to direct its

attention toward this feature and ignore other cues. The learner can

then test different hypothetical rules against environmental evidence

until they successfully identify the experimenter-defined rule. We call

such hypothetical rules behavioral strategies in the following to dis-

tinguish them from task rules.

Indeed, flexible human behavior can be explained by computa-

tional models that are compatible with this framework, including

hierarchical and attention-modulated RL models3,5,16,27. It is unknown,

however, how rodents infer task rules in complex environments and

whether someof theunderlyingbehavioral andneuralmechanismsare

conserved across species. Pioneering work has shown that in some

contexts, rats do follow behavioral strategies likewin-stay-lose-shift or

spontaneous alternation28,29, and recent methodological work has

shown that such strategies can be identified in rodents,macaques, and

humans30. However, these findings have not been generalized to cog-

nitive flexibility or empirically contrasted to the prevailing view of

classical RL models.

We developed a novel translational rule-learning task and used a

combination of behavioral, computational, and electrophysiological

methods to test whether common computational mechanisms exist in

both species. We found that both rats and humans followed low-

dimensional behavioral strategies to test each task feature for rele-

vance rather than learning high-dimensional mappings between

environmental states and actions. Moreover, we decoded strategy-

related quantities with features of abstract, hypothetical rules from

both rat multiple-single unit and human magnetoencephalography

(MEG) recordings in the prefrontal cortex (PFC), highlighting a com-

mon mechanism of flexible rule learning.

Results
Rats infer task rules using low-dimensional strategies
We developed a novel dual-choice multidimensional rule-learning

paradigm with four relevant task features to evaluate the hypothesis

that rats identify experimenter-defined rules by sequentially testing

different low-dimensional behavioral strategies (Fig. 1a). A loudspeaker

and a cue light were positioned above each lever. In each trial, one

auditory and one visual cue were presented to model multisensory

input. Rats received lever training and were exposed to task cues, but

were not pre-trained on any rule. They had to learn one out of eight

possible task rules with deterministic reward feedback: go-click (i.e.,

follow the auditory cue in the presence of a distracting visual cue), go-

silent, go-light, go-dark, go-right, go-left, alternate, or win-stay-lose-

shift/WSLS. Thus, four task features could be relevant for reward in

every trial: the visual and auditory cues, as well as outcome and choice

histories. Rats were able to learn each rule, albeit at different learning

rates (Supplementary Table 4). We used change point analysis and

behavioralmodeling to identify when performance increases occurred

during rule learning and how abrupt they were (Supplementary

Methods)31,32. We found that sudden transitions in performance

(median (Q1–Q3) of 10–90% rise time: 1 (1-1) trials, N = 117; e.g., Fig. 1d)

are similar to what has been observed in other, simpler learning

paradigms7,12,13. This finding is at odds with the classic RL view that

assumes gradual learning because rats would need to figure out the

correct action (e.g., right or left lever press) for each of 24 = 16 states if

they learned the full state-action space. We therefore propose an

alternative hypothesis (Fig. 1b) where rats use up to eight low-

dimensional behavioral strategies (go-light/go-dark, go-click/go-silent,

go-right/go-left, alternate, or win-stay-lose-shift) to sample different

features for relevance (i.e., significance of sensory cues, past choices,

and outcome history). In this scenario, rats would test different simple

hypothetical rules sequentially until they infer the correct task rule.

To test this, we developed a strategy detection algorithm that

assesses whether a particular strategy is more likely than chance or than

any other strategy within every possible trial window (Methods, Fig. 1b).

The algorithm identifies trial sequences within each session in which a

particular strategy is the winning strategy. In each task rule, animals

indeed followed a median of 7 (6–8) out of 8 possible strategies (Sup-

plementary Table 4). The average length of an individual strategy

sequence (i.e., the number of consecutive trials where a strategy was

followed) was 14 (12–16.3) trials. Interestingly, we replicated this finding

in a separate cohort of rats (N= 19) that were presented with random

reward feedback (i.e., none of the four task features were predictive of

reward), indicating that hypothesis testing reflects a general cognitive

strategy, even when there is no behavioral advantage.

We conducted several analyses to support our hypothesis

(Methods). First, we applied our detection algorithm on synthetic

strategy sequences to show that it has the required sensitivity to detect

strategies fromdatawhere the ground truth is known (Fig. 1c, bottom).

Moreover,we show that it is highly unlikely that thedetected strategies

were false positives, since the percentage of trials for which a strategy

could be detected was significantly higher in naïve rats (N = 159 ses-

sions) compared to a simulated agent making random choices

(10,000 sessions; Fig. 1c top). Second, we excluded the possibility that

rats were using more complex, higher-dimensional strategies such as

win stay-lose shift visual, where the action in response to the current

visual cue also depends on prior reward. We assessed whether rats use

a win stay-lose shift vs. win shift-lose stay approach with respect to

place, visual, and auditory cues. However, our detection algorithm

revealed no statistical difference in detecting these six higher-

dimensional strategies between rats and the randomly permutated

synthetic data (p =0.55, two-sided Mann–Whitney test; Fig. 1c top).

Moreover, the percentage of trials for which a strategy could be

detected was significantly higher for low- compared to high-

dimensional strategies in rats (p = 1.46 × 10−27, two-sided Wilcoxon

signed rank test). Third, we tested whether the observed pattern of

low-dimensional strategies can predict learning. To achieve this, we

defined an empirical measure for learning based on the comparison

between the length of a correct strategy sequence (i.e., the strategy

that corresponds to the current task rule) and the distribution of

sequence lengths of that same strategy as detected in the cohort that

received random reward. For example, we assume a rat learned the

rule go-silent successfully when the sequence length of the corre-

sponding go-silent strategywas at least 21 trials. Beyond this threshold,

go-silent sequences were considered outliers in the random reward

cohort (Supplementary Methods, Supplementary Table 4). The trial at

which rats reached the empirical learning criterion correlated
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significantly with abrupt performance increases (Fig. 1d, e). Further-

more, we reasoned that if rats follow strategies to identify task rules,

more efficient strategy use should lead to faster learning. For instance,

we could expect that faster learners do not revisit poorly performing

strategies and donot abandon a successful strategy after they discover

it leads to reward. Indeed, multiple regression analysis revealed that

several strategy-associated quantities were predictive of the trial at

which the empirical learning criterion was reached (R2
adjusted= 80%;

Fig. 1f). These included the trial number at which the animal followed

the correct strategy for the first time (p = 1.6 × 10−4), the number of

correct strategy sequences before reaching criterion (p = 5.0 × 10−10), a

perseveration measure33 indicating that poorly performing strategies

are revisited (p = 9.0 × 10−20), and a categorical variable indicating the

target rule (Supplementary Tables 5 and 6). While a number of trials

(36.16 ± 1.24%) couldnot be assigned to a specific strategy, this number

was not predictive of learning since adding it to the regression model

did not increase goodness of fit (R2
adjusted = 78.9%, p =0.43 for this

regressor). We found qualitatively comparable results in a classic

operant two-rule set-shifting task33 with less task features, where rats

(N = 16) also followed behavioral strategies that predicted sudden

transitions in performance (Supplementary Methods, Supplementary

Fig. 1a, b). However, rats reached criterion earlier in this task, which is

in line with the idea that learning is faster because there were fewer

strategies to explore (Supplementary Fig. 1c). In sum, these analyses

provide a first indication that rats test low-dimensional behavioral

strategies to infer task rules rather than learning high-dimensional

mappings between environmental states and actions.

Strategy-specific attention reduces task dimensionality
We next aimed to identify computational processes that lead to

dimensionality reduction during strategy-based learning. Selective

attention is a candidate mechanism because it allows animals to focus

on one task feature at a time, rather than dividing attention between

low-level cues (Fig. 2a). This has been shown to result inmore efficient

learning in complex environments5,11. Attention thus acts like a filter

such that only part of the state space (Fig. 2a) is relevant for choice and

learning when individuals test different hypothetical rules (e.g., go-

click). This sub-space corresponds to the current attention focus (e.g.,

the task feature auditory cue). Strategies thus map to distinct state

spaces via their attention focus.

To test the role of attention in our paradigm, we applied machine

learning techniques (Methods) to screen videotaped sessions for

behavioral markers of attention in rats performing multiple con-

secutive rule switches (N = 29 rats). We found a strong orientation
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the task rule go-click (rectangular shape). For each trial, the current sensory input is

shown as well as the choice and reward feedback. Bottom: count of trials that are

consistent with each strategy (oval-shaped icon). The binomial statistic (Methods)

basedon this count indicates that the rat followed the strategy go-click. cValidation

of the strategy detection algorithm. Top: higher strategy ratio (i.e., the percentage

of trials forwhich a strategy couldbedetected) for eight low-dimensional strategies

in naive rats performing the random rule vs. a random agent (two-sided
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significant difference between the ratios for low- vs. high-dimensional strategies
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sequence length (statistical power >80% for sequence lengths ≥9 trials).d Learning
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criterion is marked with a circle. e High correlation between learning criterion and

performance change point, each dot is a rat learning one out of seven different

rules (Pearson correlation). f A linear regression model shows that several indica-

tors of strategy usage significantly predicted the learning trial (R2
adjusted). See

Supplementary Tables 5 and 6. Created in BioRender. Böhme, N. (2025) https://

BioRender.com/k38n620. Source data are provided as a Source Data file.
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reaction at cue onset that was influenced by the current strategy.More

specifically, we found that the onset and offset trials of each strategy

sequencewere locked to abrupt changes in headdirection at cue onset

towards and away from the task feature that is relevant for that strat-

egy (Fig. 2b). This allowed us to obtain a trial-by-trial measure of the

rat’s attention to each task feature at the time of cue presentation,

which we term attention-at-choice. We detected strategy-specific

abrupt changes in attention to the corresponding task feature for all

eight strategies (Supplementary Fig. 2, Supplementary Table 1). A

similar, but feature-independent, orientation reaction occurred during

reward feedback, which we term attention-at-reward (Methods). We

replicated these findings in two cohorts of rats receiving random

reward (Supplementary Figs. 3 and 4, Supplementary Tables 2 and 3).

This adds to the evidence that, in the context of random reinforce-

ment, choices are not random (Fig. 1c) but correspond to goal-directed

actions that canbe predicted fromheadmovements preceding choice.

Rats thus test different hypotheses sequentially, even when they have

no incentive to follow a specific strategy. Based on head-direction

plots, it is difficult to exclude that rats focus their attention on more

than one task feature. However, we also show in three different

experimental contexts that some strategies (alternate, go-left, go-right)

can already be identified based onmovement patterns in the inter-trial

interval (ITI) preceding each trial (Supplementary Fig. 5). This indicates

that at least in some cases, rats exclusively focus on a single task

feature.

To assess whether attention leads to dimensionality reduction

during rule learning, we incorporated binarized (based on the cur-

rently detected strategy) and continuous (based on head-movement

patterns) attention measures into different RL models (Methods). We

evaluated how rats learn rules in the state-action/s-a space defined by

the four task features (where the state space consists of three sub-

spaces: a visual, an auditory, and a 2-dimensional history state com-

bining the place and outcome features; Fig. 2a). More specifically, we

tested whether attention modulates behavior during choice alone

(attention-at-choice/AC model), learning (credit assignment during

value update) alone (attention-at-learning/AL model), or both (ACL

model)11. The attention measures bias learning and choice in the ACL

model such that one task feature has a privileged position: the

4-dimensional state space of the task collapses into the 1-dimensional

sub-space related to the current strategy. In a fourth model, attention
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(2025) https://BioRender.com/a62a760. Source data are provided as a Source

Data file.
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is split equally between all three subspaces so that it neither biases

choice nor learning (uniform-attention/UAmodel). We also compared

these attention-modulated RL models to three variants of a standard

RL model that mapped a multidimensional state space directly to

actions. These standard models differed in which task features com-

prised the relevant states: (1) a 4-dimensional RLmodel (4D-RL) where

the state space consisted of all four relevant task features, resulting in

32 s-a mappings to be learned simultaneously, (2) a 3-dimensional RL

model (3D-RL) that excluded the outcome feature, and (3) a

2-dimensional RL model (2D-RL) that only included the sensory task

features.

We first compared the models through simulations of artificial

agents that aimed to learn an experimenter-defined rule (go-dark in

this example; Fig. 2c). We found that attention during choice (ACL and

AC models) is necessary to produce sudden transitions in the agent’s

behavior as it learned the correct task rule. In contrast, models where

attention-modulated learning alone (AL model) or where the agent

learned all or partial mappings between states and actions (UA model

and standard RL models) resulted in slow and gradual learning.

Next, we fitted the parameters of the four attention-modulated RL

models and the three standard RL models to experimental data, fol-

lowed by cross-validated model comparison. This revealed that the

ACL model was indeed the best at predicting held-out behavioral data

in all 29 rats. Most importantly, there was no statistical difference

between the binary ACL model (Fig. 2d) that assumes the rat is

attending fully to the current cue and the continuousACLmodel based

on measured head angles (p =0.87, two-sided Wilcoxon signed rank

test; Supplementary Fig. 6a). This indicates that attention is a very

strong filter and is thus additional evidence for low-dimensional

strategies. We further confirmed that attention-at-choice is necessary

to capture sudden improvements in performance, a core feature of rat

multidimensional rule learning: we ranmodel simulations usingmodel

parameters as estimated from the experimental data and constrained

by sensory cues and attention scores as measured experimentally. We

found that sudden performance changes could only be reproduced if

choice is modulated by strategy-specific attention (Fig. 2e–g). To fur-

ther test whether all strategies are necessary to predict held-out

behavioral responses orwhether subsets of themsuffice,wecompared

the binary ACL model to three model variants where one of the s-a

spaces (either auditory, visual, or place-outcome) was treated as in the

UA model. This corresponds to a scenario in which strategy-specific

attention effects for either auditory (go-click, go-silent), visual (go-light,

go-dark), or place-outcome strategies (alternate, go-left, go-right, and

win-stay-lose-shift) are removed. Removal of attention effects related

to any of the s-a-spaces resulted in significantly worse prediction of

held-out behavioral responses (Supplementary Fig. 6d).

In summary, our data suggest that selective attention organizes

action selection and learning when individuals test different hypo-

thetical rules and that this computational mechanism speeds up

learning by reducing task dimensionality in complex environments.

Dimensionality reduction also contributes to transfer effects
Prior experience often leads to faster learning in similar tasks3,11,16. We

also observed that experienced rats acquired the task rules alternately

and go-silent (as a third and fourth rule) faster than naïve animals

(Fig. 3a). Below, we tested whether dimensionality reduction during

strategy-based learning contributes to such transfer effects in two

different ways.
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Fig. 3 | Dimensionality reduction also contributes to transfer effects. a Faster

rule learning with prior experience. Both the learning trial (left) and the perfor-

mance change point (right) occurred earlier in experienced rats learning the task

rules alternate/go-silent as compared to naïve animals (two-sided Mann–Whitney

tests). Replication of RL model findings (as in Fig. 2d) for rats learning alternate

(N = 19; b) and go-silent (N = 19; c) as a first rule. Dashed lines connect values (cir-

cles) of the same rat; filled circles represent the best (i.e., highest cross-validated

likelihood) model of each rat. Model comparisons between ACL and all other

models are Benjamini–Hochberg corrected two-sidedWilcoxonmatched pairs test

with *p <0.05, **p <0.01, ***p < 10−3. See Supplementary Fig. 6b, c for RL models

with continuous attention scores. d Scatter plot showing results from the regres-

sion model using data from naïve and experienced rats learning the rules alter-

nating and go-silent. The learning trial was predicted (R2
adjusted) by median

attention-at-choice (p = 1.6 × 10−5) but not median attention-at-reward (p =0.86). A

variable coding for learning experience was also significant (p = 4 × 10−3). Each dot

represents the empirical vs. predicted learning trial. e In the absence of a task rule,

strategies are selected earlier if they have been previously reinforced (i.e., in

experienced rats/fourth rule) as compared to a naïve cohort (first rule), two-sided

Mann–Whitney test. f Perseveration on the previously reinforced strategy alternate

predicts when the rule go-silent is learned, indicating a negative transfer effect

(each dot corresponds to one rat, Pearson correlation).g The number of times a rat

used the strategy alternate in previous rules predicted how fast a rat would learn

the task rule alternate (Pearson correlation). Box plots showing median, 25%–75%

percentile, whiskers: 1.5 IQR, and outliers. Created in BioRender. Böhme, N. (2025)

https://BioRender.com/b41u710. Source data are provided as a Source Data file.
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Given that attentional mechanisms were similar for both naïve

(Fig. 3b, c, Supplementary Fig. 6b, c) and experienced rats (Fig. 2d), we

first testedwhether faster learning in experienced rats is related tomore

focused attention. More specifically, we estimated a regression model

(R2
adjusted = 33.3 %; Fig. 3d) and found that the learning trial can be

predicted by median attention-at-choice (for all trials preceding the

learning trial; p = 1.6 × 10−5) but not median attention-at-reward

(p =0.86). A variable coding for learning experience was also sig-

nificant (p =0.004), which indicates that experienced rats have a

stronger attention focus compared to naïve rats, even when they

require the same number of trials to learn the task rule. Average angles

at cue onset were lower in experienced (N = 51) vs naïve (N = 38) rats:

10.4 (9–13.8) vs. 13.2 (11.1–16.3) ° (p =6× 10−4, two-sidedMann–Whitney

test), indicating higher levels of attention in experienced rats.

Second, it has been proposed that transfer effects during human

rule learning occur because subjects tend to reuse pre-existing stra-

tegies, rather than relearn all possible state-action mappings3. This is

another typeof strategy-baseddimensionality reduction. This scenario

is compatible with the ACL model but adds another computational

layer: it offers an explanation of how strategies and attention focus are

selected in the first place. Such hierarchical models assume that stra-

tegies are selected from a pre-existing repertoire of hypothetical rules

based on their value or created anew3,27.

A hierarchical framework predicts that previously reinforced

strategies are chosen earlier in a novel context because they have a

higher value. We compared strategy selection between two cohorts of

rats receiving random reward feedback that were either naïve or that

had previously learned three different experimenter-defined rules (go-

dark→place→ alternate). Attention-at-choicewasnotdifferent between

cohorts, but experience indeed had an effect on how often specific

strategies were selected (Supplementary Fig. 7a). The strategies go-

dark andalternatewere chosen earlier in the cohortwith prior learning

experience (Fig. 3e). Further, if strategies are re-selected as a whole

based on their value, both negative and positive transfer effects can be

expected3. Indeed, learning the rule go-silent after a sequence of three

experimenter-defined rules (go-dark→ place→ alternate) was slower if

rats were perseverating on the previously reinforced strategy alternate

(Fig. 3f). In contrast, the number of times rats used the strategy

alternate in previous task rules (which indicates a higher strategy

value) predicted how fast they inferred the task rule alternate (Fig. 3g).

However, many rats did not use the strategy alternate before it was

reinforced (Fig. 3g). This indicates that some strategies are not part of

their repertoire (see also Supplementary Fig. 7a) but are created anew.

We provide evidence for strategy formation in the Supplementary

Information (Supplementary Note 1, Supplementary Fig. 7b–d).

Abstract representations of strategies and attention in PFC
Research on hierarchical rule learning in humans also suggests that

strategies as hypothetical rules, are represented in prefrontal brain

activity3. We tested whether such abstract prefrontal representations

of strategies exist, whether they are related to selective attention, and

how they compare to the decoding of other task variables. Using

multiple single-unit recordings, we decoded behavioral strategies

from the activity of prelimbic neurons in rats performing rule switches

in either the novel multidimensional rule-learning paradigm or a con-

ventional set-shifting task (62 sessions from nine rats, 34 (21–38)

neurons per session; Methods, Fig. 4a). Maximum decoding accuracy

from population activity for each pair of strategies (N = 105) within an

experimental session was 80.9 ± 1.0% and peaked at 0.66 s (−1.05 to

+1.2) after lever onset. Interestingly, decoding accuracy was already

above chance 3 s prior to cue onset (72.5 ± 1.2%, p = 2.7 × 10−36, one-

sample t-test; Fig. 4b). We also conducted a population analysis for the

entire 20 s ITI (moving window of 3000ms width with step size of

300ms) and found that theminimumvalue for decoding accuracywas

64.3 ± 1.2 % (N = 105 strategy pairs) which occurred 10.2 (6.68–14.1) s

prior to cue onset. This was significantly lower than for the 3 s prior to

cue onset (1.1 × 10−25, two-sided paired t-test) but higher than the 50%

chance level (8.9 × 10−21, one-sample t-test). Electrophysiological find-

ings thus corroborate behavioral results, which indicate that action

selection is a top-down process and not tied to specific cues.

Further analyses showed that population-level decoding depends

on small contributions from many strategy-selective units. Prefrontal

units typically have a low signal-to-noise ratio (SNR) but are often

responsive to multiple task features, i.e., they exhibit mixed

selectivity34,35. We tested whether single-unit firing significantly dis-

criminated between either different strategies, side of lever press,

reward feedback or location of visual and auditory cues. 67.8% of all

units were responsive to at least one task feature (Bonferroni-cor-

rected two-sided, unpaired t-tests with p <0.05; Supplementary

Methods). The firing rate of 37.1% of units discriminated between at

leastonepair of strategies in at leastone taskphase (46.4% alsoprior to

cue onset; Fig. 4c), which is in line with literature on prefrontal rule

representations in rats13 and primates36,37. Unit firing was also sig-

nificantly modulated by the side of lever press (40.9%), reward feed-

back (28.9%), or sensory cue location (visual cue: 11.9%, auditory cue:

7.6%). Moreover, many units were responsive to multiple task features

(36.8% of units responded to ≥2/5, 15.1% to ≥3/5 of the tested task

features; see Fig. 4c, Supplementary Fig. 8a–c).

We further computed the selectivity index d’ (Supplementary

Methods) for strategies during three trial phases for 3348 strategy

pairs from 1884 units. Consistent with previous literature on rule

learning13, d’ values were generally low SNR for units (pre cue: 0.2

(0.1–0.34), post cue 0.21 (0.1–0.36), post lever 0.22 (0.1–0.39); Sup-

plementary Fig. 8d). Toexaminehowsingle-unit selectivity is related to

population decoding, we performed two analyses. First, we compared

population-level decoding based on all units in a session with accuracy

after sequentially removing one unit at a time. On average, the

resulting difference in decoding accuracy was small in all trial phases

(pre cue: −0.27 (−1.4 to +0.87) %, post cue: −0.27 (−1.53 to +0.93) %,

post lever: −0.2 (−1.27 to +0.8) %; Supplementary Fig. 8e). Linear

regression confirmed that accuracy differences were predicted byd’ in

all three trial phases but other regressors in the model were not con-

sistent predictors (Supplementary Methods, Supplementary Fig. 8f).

Second, we ranked all units in a session according to d’ in each trial

phase and repeated population decoding after removing the top 5, 10,

20, 30 or 40% units from the decoding analysis. Only after removing

the top 40% of units, decoding accuracy was not higher than a 50%

chance level (one-sample t-test with p >0.05), and this effect was

restricted to the respective trial phase (Supplementary Fig. 8g).

Given the strong behavioral evidence for the close connection

between selective attention and strategy-based learning, we tested

whether attention scores for a pair of strategies correlated with

population decoding accuracy. There was a significant correlation

between the median attention-at-choice score and decoding accuracy

in the 3 s following cue onset (p =0.006) after correcting for the

number of neurons recorded in this session (p = 1.7 × 10−5,

R2
adjusted= 18.2 %; Fig. 4d). The correlation between attention-at-

reward and decoding accuracy in the corresponding trial phase was

not significant (p =0.09) after correcting for the number of neurons

recorded (p = 2 × 10−4, R2
adjusted = 11.8 %).

To quantify how prefrontal representations of strategies compare

to representations of other task variables, we conducted two analyses.

First, we evaluated how the normalized decoding score (Supplemen-

tary Methods) of strategies and the current attention focus (Fig. 2a)

compares to that of cues and specific actions in consecutive trial

phases. A two-way repeated-measures ANOVA had a significant inter-

action effect (N = 60 sessions, F(6,54) = 32.65, p < 10−3, multivariate

results) and we found significant simplemain effects for all task stages

(Pre cue: F(3,57) = 85.5, Post cue: F(3,57) = 90.6, Post lever:

F(3,57) = 99.6, all p < 10−3). Bonferroni-corrected two-sided pairwise
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comparisons showed that decoding of strategies and current attention

focus is comparable and outperforms decoding of cues and simple

actions, with most prominent effects appearing prior to cue onset.

Decodingof cueswasweakest in all follow-up comparisons (allp < 10−3)

and at the time of lever press, decoding accuracy was not different

between strategies, attention focus and simplemotor actions (Fig. 4e).

Second, we conducted another two-way repeated-measures ANOVA

(interaction effect not significant: F(6,33) = 2.3, p =0.056, multivariate

results) to test how decoding of strategies across three trial phases

compares to decoding of s-a pairs as defined in the 2D-RL, 3D-RL and

4D-RL models shown in Fig. 2d (N = 39 sessions). There was a main

effect of the factors model (F(3,36) = 49.4, p < 0.001, multivariate

results) and trial phase (F(2,37) = 75.9, p < 10−3). Bonferroni-corrected

two-sided pairwise comparisons showed that conceptualizing actions

as strategies was better than all othermodels (all p < 10−3) but the three

classical RL models were not statistically different from each other.

Moreover, action decoding was highest at lever onset and lowest prior

to cue onset (all p < 10−3; Fig. 4f).

Moreover, we evaluated whether there is neural evidence that

strategies are abstract actions as opposed to simplemotor responses38.

To test this, we trained a classifier to discriminate between strategy

pairs, but only using trials where all lever presses were on one side (i.e.,

all trials with either left or right lever presses for both strategies). We

then compared strategy decoding in two testing conditions: either
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Fig. 4 | Abstract representations of strategies and attention in PFC. aPopulation

decodingbasedonprelimbic (PrL)multiple single-unit activity. Cg1/cingulate cortex,

IL/infralimbic cortex. b Left: decoding accuracy for three consecutive trial phases of

each strategy pair. Above-chance decoding before cue onset indicates top-down

action selection. Right: decoding across time, one strategy pair is highlighted

(marked in left panel; dotted horizontal line: 50% chance level, vertical lines: cue and

lever onset). c PSTH of a unit (from highlighted session in b) with 1.3Hz mean

firing rate that significantly discriminated (Bonferroni-corrected, two-sidedunpaired

t-tests) between strategies (go-dark/orange, go-left/blue; ppre cue = 6.4 × 10−5,

ppost cue= 3.5 × 10
−7, ppost lever= 4.1 × 10

−7), visual cue location (ppost lever = 3.3 × 10
−5),

and side of lever press (ppost lever= 3.5 × 10
−3). Data presented as mean values ± SEM.

d Scatter plot of regression model: median attention-at-choice predicted decoding

post cue in a session (corrected for number of neurons/session). e Two-way repe-

ated-measures ANOVA to evaluate decoding of strategies, attention focus, cues, and

specific actions across trial phases. Decoding of strategies and attention focus is

comparable and outperforms decoding of cues and actions with most prominent

effects before cue onset (N = 60 sessions, Bonferroni-corrected pairwise compar-

isons, ***p < 10−3; chance level: normalized decoding score of 0). fTwo-way repeated-

measures ANOVA to compare decoding of strategies vs. state-action-pairs as defined

in the 2D-RL, 3D-RL and 4D-RL models (Fig. 2d). Strategy decoding outperforms all

other models (N = 39 sessions, Bonferroni-corrected pairwise comparisons, all

p < 10−3; chance level: normalized decoding score of 0). g Prefrontal strategy

representations did not depend onmotor response. A classifier was trained on trials

with leverpresses onone side, anddecoding accuracywas comparedwhen testedon

trials with lever presses on either the same or opposite side. h Accuracy was not

different between conditions in the 3 s before and after cue onset, but significantly

lower in the 3 s following lever onset (dot plots with mean as horizontal line, two-

sided paired t-test). Decoding accuracy was above chance in all conditions (all

p < 10−5, two-sided unpaired t-test; dotted horizontal line: 50% chance level). Box

plots showingmedian, 25%–75%percentile,whiskers: 1.5 IQR, andoutliers. Created in

BioRender. Böhme, N. (2025) https://BioRender.com/v10a089. Source data are

provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-60943-7

Nature Communications |         (2025) 16:5396 7

https://BioRender.com/v10a089
www.nature.com/naturecommunications


using trials where all lever presses were on the same side used for

training, or on the opposite side (different condition; Supplementary

Methods, Fig. 4g). If the PFC encodes simple motor actions instead of

abstract strategies, we would expect to find a significant decrease in

decoding accuracy for the different condition. Instead, we found that

the side of the lever is not relevant in the 3 s prior to and following cue

onset. The side of the lever was only relevant for strategy decoding

when the action is performed, indicating that this representation is not

driving low-level action selection (Fig. 4h). Further, we found neural

representations of the task feature that is relevant for the current task

rule before learning was detectable in behavioral choice data

(Supplementary Note 2, Supplementary Fig. 9). In sum, we detected an

abstract neural representation of specific strategies and the associated

current attention focus throughout trial phases, which is in line with

their proposed role in top-down action selection.

Humans also infer task rules using low-dimensional strategies
Although our rodent task is inspired by concepts fromhuman research,

it is unknown whether humans show similar behavioral and neural

processes in this specific experimental context. We therefore analyzed

data from 31 healthy adults who solved an adapted version of the

multidimensional rule-learning task during MEG recordings (Fig. 5a).
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Fig. 5 | Humans also infer task rules using low-dimensional strategies. aHealthy

adults solved an adapted version of the multidimensional rule-learning task during

MEG recordings. Left: order of task rules. Right: trial structure. ITI/inter-trial inter-

val. b Higher strategy ratio for low-dimensional strategies in humans performing

the random rule vs. a random agent (two-sided Mann–Whitney test). In contrast,

the ratio for high-dimensional strategies was not higher than chance (two-sided

Mann–Whitney test). The ratio was higher for low- vs. high-dimensional strategies

in humans (1.58 × 10−6, two-sided Wilcoxon signed rank test). c Significant Pearson

correlation between the onset of the first correct strategy sequence and the per-

formance change point mirrors rat findings. d Significant Pearson correlation

between the onset of the first correct strategy sequence and a decrease in reaction

time. e Replication of RL model findings in humans. Dashed lines connect values

(circles) of the same subject; filled circles represent the best (i.e., highest cross-

validated likelihood) model of each subject. Model comparisons between ACL and

all other models are Benjamini–Hochberg corrected two-sided Wilcoxon matched

pairs test with **p <0.01, ****p < 10−4, *****p < 10−5. f–h Representative example of

simulations using model parameters estimated from experimental data of one

human. Color-coded sigmoidal learning curves show transitions instead of gradual

learning. Sudden performance changes could only be reproduced if choice was

modulated by strategy-specific attention (ACL in f), but not AL (g) or 4D-RLmodels

(h). i Trial-based decoding of current attention focus across time (similar to rats;

Fig. 4e) is shown with respect to cue onset (vertical dashed line), 33% corresponds

to decoding at chance level (horizontal dashed line). j Decoding increased fol-

lowing cue onset (cluster-based permutation test69, comparison against pre-

stimulus baseline). Shaded areas correspond to time points for which the H0

hypothesis of no difference between decoding was rejected. k Source-level topo-

graphy of attention decoding during task (0–1000ms) vs. baseline (−500 to 0ms).

Note increased attention decoding following cue onset in task-related sensory

areas and in PFC (two-sided, paired t-test; t-values converted to Cohen’s d). Box

plots showingmedian, 25%–75% percentile, whiskers: 1.5 IQR, and outliers. Created

in BioRender. Böhme, N. (2025) https://BioRender.com/w17o467. Source data are

provided as a Source Data file.
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Due to limits on MEG session duration, the number of trials was

necessarily lower in the human task version. Nevertheless, subjects

testedmost of the behavioral strategies (6 (5–6) out of 8 strategies) and

were able to learn 58.1% of the rules. Performance in our task could be

related to establishedmarkers of executive function as measured using

the CANTAB neuropsychological test battery that all subjects com-

pleted (Supplementary Table 9).

Similar to what we observed in rats, the median sequence length

was 15 (12–18) trials. As in rodents, the detected strategies are unlikely

to be false positives: the strategy ratio was significantly higher in

humans performing the random rule (N = 31) vs. a simulated randomly

behaving agent (10,000 sessions;Methods, Fig. 5b). Similar towhatwe

found in rats (Fig. 1c), there was also no evidence that humans used

alternative, higher-dimensional strategies during rule learning. There

was no statistical difference between the strategy ratio for high-

dimensional strategies in humans vs. a random agent (p = 0.13, two-

sided Mann–Whitney test; Fig. 5b). Moreover, there was a significant

difference for the strategy ratio in humans for low- vs. high-

dimensional strategies (1.58 × 10−6, two-sided Wilcoxon signed

rank test).

We also provide several lines of evidence that strategies are rela-

ted to rule learning. Across rules, the onset of the first correct strategy

sequence correlated with both increases in performance (Fig. 5c) and

decreases in reaction time (Fig. 5d). Interestingly, the onset of the first

correct strategy sequence occurred before the decrease in reaction

time (trial 29 (15–63) vs. 51 (40.5–86.5), p = 1.2 × 10−3, two-sided Wil-

coxon matched pairs test). Faster responses, indicating higher con-

fidence in their choices, thus occurred only after subjects tested the

correct strategy for the first time. This supports the idea that humans

indeed test strategies to identify the correct task rule.

Moreover, we investigated evidence for strategy-based learning

further by fitting our attention-modulated and standard RL models to

human behavior. As in the rat cohort, we found that the binary ACL

model was the best at predicting held-out behavioral data in 19 out of

31 subjects, followed closely by the AC model in 9 out of 31 subjects

(Fig. 5e). Again, model simulations constrained by human experi-

mental data showed that experimentally observed sudden changes in

performance could onlybe reproduced if choicewasmodulatedby the

strategy-specific attention focus (Fig. 5f–h). As in rats, ACL model

variants in which strategy-specific attention effects for either auditory,

visual, or place-outcome strategies were removed, resulted in sig-

nificantly worse prediction of held-out behavioral responses (Supple-

mentary Fig. 6e).

In our main analysis at the neural level, we decoded the current

attention focus instead of directly decoding strategies. This was

necessary for the (random-effects) group-level analysis because sub-

jects did not all use the same strategies but sampled the same task

features (e.g., go-click/go-silent share the same task feature). As for

animals (Fig. 4e), decoding of the current attention focus was already

above chance prior to cue onset (i.e., the lower confidence interval of

the curve exceeded chance level at all time points; Methods, Fig. 5i,

Supplementary Fig. 10a). This indicates that attention allocation in

humans is also driven by top-down processes related to strategy

learning rather than being tied to specific cues. Decoding accuracy

significantly increased in the second following cue onset as compared

to the pre-stimulus baseline (Fig. 5j). We used multivariate pattern

searchlight analysis to characterize the source-level topography

(Methods) of attention decoding during task (0–1000ms) vs. baseline

(−500 to0ms). Note increased attention decoding following cue onset

in task-related sensory areas (auditory, visual) and in PFC (Cohen’s d;

Fig. 5k). We conducted an additional source-level fixed effects analysis

to evaluate whether there is evidence for neural representation of

strategies in humans. Indeed, trial-based decoding across time was

above chance (although only following stimulus presentation; Sup-

plementary Fig. 10c) and the peak was located in the right cingulate

(Supplementary Fig. 10d). In sum, behavioral and neural findings in

humans replicate those in rodents, suggesting that both species

address novel task challenges by probing different low-dimensional

behavioral strategies, in contrast to solving the higher-dimensional

problem of learning all possible cue-action pairs.

Discussion
Identifying the computational processes of executive functions and

their neural implementation39,40 is crucial to gain a mechanistic

understanding of cognitive flexibility and how it is impaired in psy-

chiatric conditions1,41. However, a key challenge on that path is the

explanatory gap between macroscopic human brain imaging and the

microcircuit level in animals39,42. A cross-species approach has been

proposed to overcome this barrier that includes aligned task para-

digms in both species with detailed computational modeling of cog-

nitive processes and the use of complementary neural activity

measures that can be compared in a common representational

space39,42–44. However, careful behavioralwork is central to interpreting

neural data45,46: neural representations are only informative if we can

make sure that cross-behavioral assays engage similar cognitive pro-

cesses. This is important because most learning problems can, in

principle, be handled by many different computational mechanisms40

and humans have remarkable abilities to learn in complex

environments16 that may be qualitatively different from how animals

solve the same task47. Therefore, a key aspect of our study is that it

goes beyond performance measures used in traditional rule learning

paradigms1 and evaluates whether there is a conserved set of compu-

tational mechanisms at work when both species are challenged in a

matched paradigm. Several computational models can explain how

humans infer task rules in complex environments3,5,16,27. In rodents,

however, these learning mechanisms are largely unknown in spite of a

wealth of information about task-related neural firing patterns,

necessary brain regions, and involvedneurotransmitters in the context

of rule-switching paradigms33,41. We therefore designed rat experi-

ments to test behavioral and neural predictions made by different

learning models and then evaluated whether these computational

processes are also at work in a matched paradigm in humans.

The aim of our study was twofold. First, we tested our core

hypothesis that both rats and humans sequentially follow different

hypothetical rules—which we call behavioral strategies—to identify the

current task rule. The existence of behavioral strategies in rats and

humans is well-documented, and it has been speculated that it could

serve as an exploratory behavior that samples environmental cues for

relevance, but the precise role in higher-order cognition is less

clear28–30,48. Despite huge differences in learning speed (see Fig. 1e vs.

Fig. 5c), results from behavioral and computational modeling indi-

cated that low-dimensional strategies predict learning in both species

and are able to explain why sudden transitions in performance occur

(Figs. 1d–f, 2c–g and 5c–h). Our results also indicate that low-

dimensional strategies provide a better explanation for behavioral

responses than random choice, high-dimensional strategies, and

learning the full state-action-space or variants thereof (Figs. 1c,

2d and 5b, e).

Second, we used RL models and tested their predictions on

behavioral and neural data to understand which computational pro-

cesses are species-conserved3,5,11,23. Our working hypothesis (Fig. 6)

based on our data is that there are two levels at which the task is

performed: (1) a lower level at which state-action values are learned

within the attended-to sub-state space, and (2) a higher level at which

strategies are selected from a pre-existing repertoire or created anew.

Attention can reduce the perceived complexity of a multi-

dimensional environment and allows for efficient sampling of a sim-

plified state space11. In line with previous literature49, we found head

movements related to cue onset and reward feedback, and these

orientation reactions were modulated by strategy-specific attention
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(Fig. 2b, Supplementary Figs. 2–4). Stronger attention-at-choice pre-

dicted learning (Fig. 3d), and task responses in both species were best

explained by the ACLmodel (Figs. 2d, 3b, c and 5e), similar to what has

recently been described in humans11. Furthermore, there was no dif-

ference between attention-modulated RL models based on either

attention scoresmeasuredbyheaddirectionor binary attention scores

in rodents. The latter corresponds to the scenario that the rat is

attending fully to the current task cue, which indicates that attention is

a very strong filter and is thus additional evidence for low-dimensional

strategies. Note that both ACL models are equivalent to sensory fil-

tering models where selective attention acts on sensory inputs and

thereby influences both choices and learning50,51. Interestingly, similar

attentional mechanisms also underlie the flexibility and generalization

capabilities in powerful state-of-the-art AI systems based on

Transformers52–54.

The higher level addresses the question of how a strategy and the

associated attention focus are selected, which is a challenge for

attention-modulated RL models5,11. We tested behavioral and neural

predictions of hierarchical RL, an influential model of human cognitive

flexibility3,27, to provide evidence for that second level. Note that serial

hypothesis testing models are also relevant in this context, but these

models assume that hypothesis testing occurs across a fixed set of

behavioral strategies (i.e., strategies arenot formeddenovo)55,56. At the

behavioral level, rats preferably selected previously reinforced strate-

gies in a novel context (Fig. 3e, Supplementary Fig. 7a) and added new

strategies to their repertoire based on task demands (Supplementary

Note 1, Supplementary Fig. 7b–e). Note that the exploration-

exploitation balance is also relevant for action selection at the higher

level, which explains why rats sometimes abandon a correct strategy

(e.g., task rule alternate in Fig. 2e). We found that both strategy values

and top-down attention contribute to transfer effects, another salient

phenomenon observed during rule learning (Fig. 3). Future data-

guided computational modeling of high-level, strategy-based learning

could complement our current low-level attention-modulated RL

approach to provide novel, testable predictions on how subjects take

advantage of regularities in the environment to generalize established

behaviors to new situations5,22.

Our behavioral results support the idea that similar cognitive

processes are engaged in aligned task versions in rats and humans.We

used neural decoding analyses to provide further evidence for shared

computational processes during rule learning in both species. Our

approach was inspired by an extensive body of work on neural

representations of RL quantities such as action values or reward pre-

diction errors in human fMRI and animal single-unit recordings9,10.

Indeed, we showed that constructs related to the computational pro-

cesses formalized by the RL models (specifically, strategies and the

current attention focus; Fig. 6) can be reliably decoded from both

rodent prefrontal single-unit activity and human prefrontal MEG

(Figs. 4 and 5i–k, Supplementary Figs. 8 and 10). Of course, our ana-

lyses are restricted to this level of computational quantities repre-

sented in the prefrontal cortices of both species, as it is not possible to

directly map macroscopic MEG to cellular resolution electro-

physiology. Further evidence for the proposed role of low-dimensional

strategies in top-down action selection was provided by above-chance

decoding before stimulus onset in both rats and humans.

Our human findings are consistent with the proposed role of lat-

eral PFC representations during task rule inference5,48. Nevertheless, a

translational link remains challenging because large parts of the

human PFC probably have no clear corresponding homologs in

rodents57. However, individual prefrontal neurons in both rodents and

primates have consistently been found to encode abstract task rules in

the steady state (i.e., after task rules have been reliably identified),

indicating that some neural computations are conserved13,36,37.

For our conclusions, it was important to exclude that prelimbic

neurons encode body position rather than strategies per se, which is a

known confounder in prefrontal recordings from freely-moving

rodents58. This was supported by the observations that PFC popula-

tion activity represents abstract strategies rather than simple motor

actions (Fig. 4g, h) and that strategies could be decoded throughout all

trial phases even though rat orientation and location in spacewas highly

variable both within and across trials (Fig. 4b). Furthermore, attention-

at-choice indeed affected prefrontal strategy decoding (Fig. 4d). While

this provides evidence for the link between strategy selection and cur-

rent attention focus, it also shows that it is not possible to disentangle

movement from cognition completely because our behavioral read-out

for attention is the orientation reaction following cue onset.

Our results highlight the potential of an aligned, yet com-

plementary approach in both species. For example, higher neural SNR

in rats allowed us to show that prefrontal computations may support

generalization across contexts because they reflect only the shared

structure in the environment with unnecessary details discarded

(Fig. 4g, h, Supplementary Fig. 9)59. In contrast, human whole-brain

imaging has lower SNR and spatial resolution, but it was possible to

identify the entire cortical network (not restricted to PFC) related to

the current attentional focus (Fig. 5k). Applying such a cross-species

approach is not only relevant for basic neuroscience but may also

increase predictive validity in animal models of neuropsychiatric

diseases42. In turn, these insights could inform studies in clinical

populations that combine empirical attention measures (e.g., using

eye tracking), imaging and computational approaches to better

understand how altered neural representations lead to impaired cog-

nitive flexibility40.

Methods
Animals
Two hundred sixteen male Sprague Dawley rats (Charles River, Ger-

many) were 6 weeks old when they arrived at our animal housing
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Fig. 6 | Schematic of computational processes underlying rule inference.Value-

based strategy selection and top-down attention affect decision making and

learning in a trial. Our working hypothesis, based on our data, is that there are two

levels at which the task is performed: (1) A lower level at which state-action values

are learned within the attended-to sub-state space. This sub-space corresponds to

the current attention focus, where strategies map to distinct low-dimensional state

spaces via their attention focus. (2) A higher level at which strategies are either

selected from a pre-existing repertoire of hypothetical rules based on their value or

created anew. Strategies are abstract because they summarize different combina-

tions of environmental cues, actions, and potential outcomes within a common

concept (in contrast to simple motor actions or cue-driven action selection), and

this facilitates the transfer of learned skills to new tasks. Both computational layers

contribute to strong dimensionality reduction during strategy-based learning. We

model the lower level using attention-modulated RL models, and predict the

existence of the higher level based on observed transfer effects (value-based

strategy selection) and neural decoding analyses (abstract prefrontal representa-

tions). Despite differences in learning speed across species (and additional human-

specific computational processes16), our results indicate that these computational

mechanisms are shared with humans. Created in BioRender. Böhme, N. (2025)

https://BioRender.com/wex0oga.
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facility. They were group-housed in standard Macrolon cages

(55 × 33 × 20 cm) with free access to drinking water throughout the

study. A subset of rats (N = 15) was implanted with silicon probes, and

these rats were single-housed after surgery in the same cage type with

a custom-made lid to prevent implant damage. Food was available ad

libitum for the first 2 weeks. Thereafter, food was restricted to ~20 g

per rat per day whichmaintained them on a stable bodyweight. Lights

were turned on from 7:30 am to 7:30 pm and experiments were per-

formed during the light phase. At the start of experiments, rats were at

least 8weeks old. The headand neckof rats (except for implanted rats)

were marked with a black hair dye (Koleston Perfect 2/0, Wella, Paris,

France) to facilitate the detection of body parts in video analyses. All

experiments in this study were performed in accordance with national

and international ethical guidelines, conducted in compliance with the

German Animal Welfare Act and approved by the local authorities

(Regierungspräsidium Karlsruhe, Germany, approval numbers 35-

9185.81/G-4/16, 35-9185.81/G-133/20). Efforts were made to reduce

the number of animals used, and all behavioral protocols were refined

to minimize adverse effects on animal well-being. Throughout the

study period, no adverse health events occurred that demanded spe-

cial veterinary care or removal of an animal from any experiment.

Seventeen rats were excluded from data analysis either due to

incomplete data (hardware/software problems or human error,N = 12)

or bad signal quality in the recovery period after surgery in the case of

implanted rats (N = 5). Supplementary Table 7 provides an overview of

how the remaining 199 rats were distributed across experimental

groups.

Human participants
32 healthy adults without a history of mental disorder (22 females/10

males, median age 24.5, range 19–55 years) were recruited from the

local community. Participants had normal or corrected-to-normal

vision. All subjects gave written informed consent and received a

financial compensation of 50€ for participation. The participants were

invited to two appointments. Thefirst one consisted of anMEG session

during which participants performed the multidimensional rule-

learning experiment. The second consisted of an anatomical mag-

netic resonance imaging (MRI) scan and a 90-min neuropsychological

test battery (CANTAB, Cambridge Cognition, Cambridge, UK). One

subject discontinued participation in the study prematurely; three

subjects could not be included in the MEG analysis (two due to strong

artifacts, one subject for behavioral reasons that are detailed in the

section on MEG analysis). The study was approved by the local ethics

committee (Ethik-Kommision II, University of Heidelberg, Medical

Faculty Mannheim, Germany, approval number 2020-568N).

Rat operant procedures
Initial operant training took place in automated operant training

chambers (20.5 × 24.1 cm floor area, 29.2 cm high; MED Associates, St.

Albans, VT, USA) that were equipped with two retractable levers,

located left and right from a central food tray. Cue lights were located

above each lever, and a house light was placed in the upper left corner

opposite the food tray. All chamberswere light- and sound-attenuated,

and a ventilator provided constant background noise. All procedures

were controlled by a computer running custom-made MedStat nota-

tion code (MedPC IV, MED Associates, St. Albans, VT, USA). Initially,

rats were trained to respond equally to the presentation of both levers

individually33. Rats were exposed to the experimental stimuli before

the actual experiment started (i.e., sensory stimuliwere notnovel). The

rule-learning tasks were performed either in the same boxes (operant

two-rule set-shifting task with deterministic reward feedback) or in

large (30 × 48 × 41 cm, custom-made) operant boxes (all implanted rats

and rats performing the multidimensional rule-learning task). For the

multidimensional rule-learning task, operant chambers were addi-

tionally equipped with two loudspeakers located above each lever.We

used either sweetened condensed milk (small boxes: 80μl, Milch-

maedchen, Nestlé, Germany) or food pellets (big boxes: 45mg food

pellets, BioServ F0021, Flemington, NJ, USA) as rewards.

Rat multidimensional rule-learning task
A pseudorandomized list was used for presenting one visual and one

auditory cue (click sound) at the beginning of each trial (Supplemen-

tary Table 8). Three seconds after trial onset, two levers were pre-

sented. Rats had to respond within 10 s after presentation, otherwise

the trial was considered an omission trial. At the end of the trial, the

levers were retracted, and the next trial was started after a fixed ITI of

20 s. Each session consisted of 300 trials (i.e., independent of perfor-

mance) and no rule switches occurred within a session. Nine different

experimenter-defined rules (go-light, go-dark, go-click, go-silent,

alternate, go-right, go-left, win-stay-lose-shift, random)were used. The

random rule refers to a session with random reward feedback. Rats

learned either a single rule or one of two versions of a fixed sequence

of four rules. The go-left rule was excluded for rats learning only one

rule. The sequence go-dark→ place→ alternate→ random (N = 11) was

used to test the effect of prior learning on strategy selection in the last

rule. Five random rule sessions were performed and compared to the

first five sessions of a separate cohort of naïve rats (N = 19) also

receiving random reward feedback. The sequence go-dark→ place→

alternate→ go-silent (N = 22) was used to investigate positive transfer

effects (e.g., accelerated learning of the go-silent rule as the fourth

versus the first rule). In both four-rule task versions, the place strategy

(i.e., always pressing the right or the left lever) that rats spontaneously

used less during learning of the go-dark rulewas selected as the second

experimenter-defined rule for each rat (go-right:N = 22, go-left:N = 11).

In multi-rule experiments, uncued rule switches occurred after the

percentage of trials explained by the correct strategy (i.e., the one

corresponding to the task rule) exceeded 50%of all trials in the session

or if a rat reached the criterion of 18 correct trials out of 20 in two

consecutive sessions. Reward feedback was deterministic except for

the random rule (50% reward independent of choice), and win-stay-

lose-shift (80% reward for correct responses, 20% reward for incorrect

responses; otherwise, it would not be possible to tell whether a rat

followed win-stay-lose-shift or a place strategy).

Rat surgery
Fifteen rats underwent surgery for microelectrode implantation after

they had learned to respond equally to the presentation of both levers

individually. 64-channel silicon probes (chronic P1-probe with four

shanks and 16 channels/shank; Cambridge NeuroTech, Cambridge,

UK) attached to a drive (nano-Drive; Cambridge NeuroTech, Cam-

bridge, UK) were implanted into the right prelimbic cortex (center of

probe placed at: AP +3.0, ML +0.6, DV −3mm from brain surface) of

rats anesthetized with isoflurane (2.0–2.5%). A bone screw above the

cerebellum served as ground. Electrodes were only moved if signal

quality declined. For each rat, placement of electrodes within the

prelimbic cortex was confirmed using histological methods. More

specifically, animals were deeply anesthetized and transcardially per-

fused with a 4% buffered formalin solution. The entire head with

electrodes in placewas kept in formalin solution for 3weeks before the

brains were collected and then sectioned using a vibratome. This

procedure ensured that electrode tracks were visible without further

staining.

Rat electrophysiological recordings
Rats were allowed to recover for at least 7 days after surgery before

they were accustomed to the recording set-up and performed addi-

tional training sessions. The actual rule-learning paradigms started at

least 14 days after electrode implantation. Multiple single-units were

simultaneously recorded using a 64-channel RHD2164 amplifier con-

nected to a RHD2000 USB interface board (Intan Technologies LLC,
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CA, USA). Channels were digitized with 16-bit resolution, sampled at

30 kHz, and bandpass filtered between 0.1 and 7500Hz. Time stamps

for cue lights, lever presentation, and lever presses were transmitted

from the Med Associates behavioral control system to the Intan

recording system to align behavioral markers with neural activity.

Human rule switching
We developed a version of the multidimensional rule-learning task

during MEG recordings using Presentation (Version 20.1, Neurobeha-

vioral Systems, Berkeley, CA, USA). We aimed for a task that is both

close to the ratmultidimensional rule-learning task (i.e., same stimulus

material, sequence of multiple, uncued rule switches) and can be

completed in a single MEG session. This came at the cost of having

fewer trials as compared to the rat data. At the same time, we aimed to

strike a balancebetween the level of difficulty (to avoid a ceiling effect)

and being able to perform several rule switches in one session. Based

on a behavioral pilot outside the scanner, we used a fixed number of

trials/rule (as opposed to performance-dependent rule switches in

rats), and reward feedback was probabilistic (80% for correct, 20% for

incorrect responses) tomake the taskmore challenging (deterministic

reward feedback in rats). Moreover, the human task version had an

additional task rulewith randomized reward feedback at the beginning

to examine whether hypothesis testing reflects a general cognitive

strategy, even when there is no behavioral advantage similar to what

we observed in rats (Figs. 1c and 5b). The experiment comprised 650

trials and consisted of the following five different experimenter-

defined rules: random (126 trials)→ go-dark (100 trials)→ go-right (75

trials)→ alternate (199 trials)→ go-silent (150 trials). The trial structure

was as follows (Fig. 5a): each trial started with the pseudorandomized

presentation of a white circle and a sound on either the right or left

side. The stimuli were presented for 0.1 s, followed by a 2.9 s delay

interval with a white central crosshair. Participant responses (either

right or left buttonpress)were loggedwhile the crosshair turned green

for 2 s. Feedback then appeared on the screen for 1 s - either the word

richtig (correct) as positive feedback or a white central crosshair as

negative feedback. The white central crosshair was then displayed for

4 ± 1 s before the next trial commenced. Before the experiment, sub-

jects were informed about the trial structure and told that their goal

was to get as many correct answers as possible. Afterwards, partici-

pants were asked whether they identified the experimenter-defined

rules and how they solved the task.

Human MEG acquisition
MEG was recorded at a sampling rate of 1000Hz using a 306-sensor

TRIUX MEGIN system (MEGIN, Finland) in a magnetically shielded

room (hardware filtering: 0.1–330Hz). Signals were acquired by 102

magnetometers and 204 orthogonal planar gradiometers at 102 dif-

ferent scalp positions. A signal space separation algorithm imple-

mented in the Maxfilter program provided by the manufacturer was

used to remove external noise (e.g., 16.6Hz train power supply and

50Hz power line noise) and to align the data to a common standard

head position across acquisition sessions based on themeasured head

position at the beginning of each session. Each participant’s head

shape and fiducials (nasion and pre-auricular points) were digitized

using a Polhemus Fastrak digitizer (Polhemus, Vermont, USA). Con-

tinuous tracking of head position relative to the MEG sensors was

achieved utilizing five head position indicator coils. Oculomotor

events such as blinks and saccades were recorded using conventional

vertical and horizontal electrooculography/EOG. EOG electrode

impedance was kept below 10 kΩ.

Strategy detection algorithm
For each strategy i, we identify trial blocks where following that

strategy ismore likely than chance or than following each of the seven

other strategies. To do so, we first define eight binary time series bi,

where bti = 1 indicates that behavior at trial t is consistent with strategy

i. For a candidate sequence length n, we compute count time series

cti nð Þ=
Pt

t�n+ 1bti, i.e., the number of trials within a window of size n,

ending at trial t, for which behavior is consistent with strategy i, and

estimate the probabilities within each of these n-blocks as pti = cti=n.

We then evaluate the following binomial statistic (i.e., based on the

binomial distribution) at every trial,

Ptij nð Þ= Pr c≥ ctijctj

� �

= 1�
X

cti�1

c=0

n

c

� �

pc
tj 1� ptj

� �n�c
ð1Þ

where j indexes the alternative strategy i is tested against. When test-

ing against chance, we set j =0, pt0 =0:5 and ct0 =n=2. Strategy i is

significantly more likely than strategy j for a block of size n ending at

trial t when Ptij nð Þ<0:05 (i.e., we ask theH0 question: How likely is it to

observe cti or more trials consistent with strategy i when the true

strategy in place was j?). Starting from n=6 (the minimum admissible

sequence length at which this significance level can be achieved),

sequence length is iteratively increased up to the number of trials in

the session. If several overlapping blocks of a candidate strategy are

significant, theblockwith the lowest binomial statisticwhen compared

to the secondmost likely strategy is kept (usually the longest), and the

others are discarded. Significant blocks where the animal does not

follow the tested strategy in the first or last trial in the block are dis-

carded, as well as blocks in which the strategy is not followed formore

than two trials in a row. In cases where a significant, lengthm block of

one strategy i is a subset of a significant, length n >m block of another

strategy j, both blocks are discarded to avoid false positives (the

detectionmethod is conservative). We excluded the strategywin-stay-

lose-shift from strategy detection in experiments where rats learned a

deterministic place rule.

We used the following approach to validate the strategy detection

results. In order to quantify the rate of false negatives, we created ses-

sions that consistedof 100 trialswith randomchoices. Next,we inserted

one synthetic strategy sequence per session at randomized positions

and counted the percentage of strategy trials correctly detected by the

strategy detection algorithm (i.e., the sensitivity of the detection algo-

rithm). This process was repeated 10,000 times (1250 times for each of

the eight strategies) formultiple sequence lengths (ranging from6 to50

trials). Moreover, we tested whether we can use choice data to exclude

that strategy detection is not merely a false-positive result. For this, we

directly compared the percentage of trials explainedby strategies in the

random rule against strategies detected in simulated data with rando-

mized choices (10,000 sessions with the same length as in rats and

humans). Finally, we evaluatedwhether strategy detection is specific for

the proposed set of strategies or if similar results can be obtained for an

alternative set of six strategies that could also be used to learn all rules

(win stay-lose shift vs.win shift-lose stay approach with respect to place,

visual, and auditory cues). We adapted the detection algorithm to

compare the percentage of trials that can be assigned to high- vs. low-

dimensional strategies in rats and humans performing the random rule

and to compare it against high-dimensional strategies detected in

simulated data with randomized choices.

Rat video analysis
Anight visionUSBcamera (ELP, Shenzhen,China) positionedabove each

operant chamber recorded animal behavior with 30 frames per second

(Image Acquisition Toolbox, MATLAB, Natick, MA, USA). Video software

(FFmpeg,https://www.ffmpeg.org/) converted thevideos intogray scale,

downsampled them to five frames per second, and separated them into

single frames. Using open source software for machine learning-based

image analysis (Ilastik-1.2.0, http://ilastik.org/)60, frameswere segmented

into background, head and body of a rat. In each segmented frame, the

center of the head and body was determined using a custom-written

Python script (https://www.python.org/). Distances between the center
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of theheadandeachof the twocue lightsweredetermined.Additionally,

the head angleswith respect to both sideswere computedby calculating

the angles between the lines connecting head-to-body and the cue light

to the body. A custom-written MATLAB script identified the frames

corresponding to the cue light on- and offsets in the downsampled

videos. Potential markers for attention during choice formation and

reward feedback were identified as follows: we observed an orientation

reaction after cue onset and used the minimum angle of view with the

respect to the side of subsequent responses (in the second after cue

onset) as a marker for attention at choice (Fig. 2, Supplementary

Figs. 2–4, Supplementary Tables 1–3). Smaller angles aAC putatively

correspond to a stronger attention focus. Similarly, rats often looked

back and forthbetween thepressed lever and the food receptacle during

reward feedback. We therefore assumed that the angle sum in the sec-

ond after the lever press (volatility at reward vAR) is a marker for

attention-at-reward. A higher angle sum would correspond to higher

attention levels. Based on careful screening of rat behavior in videos, we

also evaluated the hypothesis that strategies can be identified based on

movement patterns in the ITI (Supplementary Fig. 5). More specifically,

we monitored the median position in the ITI (posITI: positive/negative

values indicate that the animal is in the right/left compartment of the

operant box) to test whether rats stay in the respective compartment

while following a place strategy. For the strategy alternative, we tested if

rats had switched sides in the 3 s before cue onset (posITI3: binary score,

1 indicates that the rat moved to the other side).

In order to validate our approach, we took the following steps. In

the initial phase of our study, image analysis was performed in an

iterative manner, i.e., the algorithm was retrained with images of rats

that led to poor segmentation results. Training of the algorithm was

stopped after results did not further improve, and no session in the

study was excluded based on segmentation results. Segmentation

quality was quantified based on visual inspection of the first 1000

frames of each session. First, we inspected whether the computed

center-of-mass of a body part was aligned with the actual position in

that frame. Error rates were low across rats (0.2 (0–0.8)%,

N = 70 sessions) and therefore not routinelymonitored for all sessions.

However, the actual head direction was compared against the com-

puted line connecting head-to-body for all sessions because error rates

were higher: 8.2 (5.4–11.9)% (N = 1100 sessions). As a furthermeasureof

quality control, we correlated the difference between cue onsets

identified based on gray scale value thresholds at cue light pixel

coordinates with times provided by the MedPC behavioral control

software for each session. Sometimes, frames corresponding to cue

onsets were incorrect when rats were partially obscuring the cue light,

leading to decreased correlation values. After manual correction of

these errors, correlation values indicated successful identification of

frames for cue onsets (0.996 (0.989–0.999)).

Reinforcement learning (RL) models
We used attention-based RL models following the approach of Leong

and colleagues11 to test whether our strategy-related attention mea-

sures are behaviorally relevant and indeed represent empirical mar-

kers for attention at choice and learning. We assumed that rats use

eight strategies to probe four task features for relevance (see Fig. 2a).

We compared four RL models that differ in how attention modulates

animal behavior: either during choice alone (attention-at-choice/AC

model), learning (or reward feedback) alone (attention-at-learning/AL

model), or both (ACL). This also allowed us to compare our data

against the null hypothesis that attention modulates neither choice

nor learning (uniform-attention/UA model). For attention-modulated

RLmodels, we used both empirical attention scoresmeasured by head

direction and binary attention scores. We made a further comparison

between attention-based RL models and standard RL models where

rats learn all possible mappings between a multidimensional state

space and actions. See Supplementary Methods for further details.

Rat electrophysiology: data preprocessing
Raw data were first bandpass-filtered between 600–6000Hz (Butter-

worth filter using MATLAB function filtfilt), and at each time point, the

median across all channels was subtracted to reducenoise and remove

artifacts61. Preprocessed data were then automatically spike sorted

with Klusta (https://github.com/kwikteam/klusta) and afterwards

manually curated with Klustaviewa (https://github.com/klusta-team/

klustaviewa)62. See Supplementary Methods for details.

Rat electrophysiology: decoding analyses
Decoding analyses of multiple single-unit data were performed by

adapting MATLAB code from the Neural Decoding Toolbox (www.

readout.info)63. Analyses were run using neural data from individual

experimental sessions (using recordings from both the multi-

dimensional rule-learning task and the probabilistic two-rule set shift).

We included all sessions with ≥10 simultaneously recorded neurons

and at least two different strategy types with ≥15 trials each (these

numberswere based on toolbox recommendations63 and the structure

of our data). Based on these criteria, 62 experimental sessions from

nine rats were included in all further analyses (N = 4 multidimensional

rule-learning task,N = 5 probabilistic conventional set shift). Raw spike

trains were first aligned to trial onset for each prefrontal neuron. Trial-

aligned spike trains from trials of a behavioral category were con-

catenated for each neuron and labeled accordingly. Spikes were then

binned using a sliding window approach (bin width 3000ms, step size

300ms). We used z-score normalized data to avoid that neurons with

higher firing rates have a larger influence on the classification results.

We used a maximum-correlation-coefficient classifier for decoding

analyses basedon leave-one-out cross-validation. The classifier learns a

mean neural population vector for each class (i.e., a template for a

behavioral category) by averaging all training points within each class.

The classifier predicts the correct class using Pearson’s correlation

coefficient between the test data and the training set of each class (the

highest correlation value corresponds to the predicted label). At least

15 trials per behavioral category were required: neural data from 14

trials were used as a training set to predict behavior in the test trial.

Decoding accuracy for each session was based on 50 cross-validation

runs using a resampling procedure (i.e., 15 trials per category were

randomly drawn from the pool of all available trials per behavioral

category in each run)63. See Supplementary Methods for more details.

Human MEG: data preprocessing
MEG data preprocessing involved the segmentation of epochs of 2 s

before to 4 s after stimulus presentation. Eye-movement-related

activity and cardiac signals were identified with independent compo-

nent analysis64 and then discarded. All data were analyzed using the

MATLAB-based toolbox for neuroelectric and neuromagnetic data

analysis FieldTrip65.

Human MEG: source-level analysis
We computed forward models based on the MNI ICBM 2009 template

brain (http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009).

A parcellation scheme based on the Desikan-Kiliani atlas66 was used.

Following procedures similar to those described in Schoffelen et al.67,

single-dipole-specific spatial filters were concatenated across vertices

comprising a givenparcel. For eachparcel, singular valuedecomposition

was performed to extract spatially orthogonal and temporally uncorre-

lated components that describe the time course of activity within a

parcel. These components were ordered by the amount of variance

explained. Subsequently, the first principal component was selected,

capturing the parcel’s time course of activity. This procedure yielded 68

virtual sensors corresponding to each parcel that were subsequently

treated in a similar fashion as MEG sensor-level activity.

Note that source-level analyses were also included because they

increase the SNR for two reasons. First, sensor-level data represent a
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linear superposition of all source activity plus the muscular, cardiac,

and ambient noise, which potentially confound further analyses. In

contrast, spatial filtering algorithms scan the entire source space voxel

by voxel and treat the remainder of the signal, including all brain

activity, as noise. Moreover, head movement within the MEG helmet

introduces a variance on sensor-level data. Source analysis mitigates

this confound and allows reliable estimates of the data at both

descriptive and inferential levels.

Human MEG: decoding analyses
Trial-based decoding was performed at the single-subject level using

the MVPA-Light toolbox (https://github.com/treder/MVPA-Light)68.

We decided to decode the current attentional focus (see Fig. 2a for a

definition) instead of individual strategies in our primary analysis (e.g.,

during go-light and go-dark, subjects focus on the same task feature) to

be able to include all available data sets in a random-effects group-level

statistics (i.e., not all subjects displayed the same behavioral strate-

gies). Since the strategy win-stay-lose-shift (task feature: outcome his-

tory) was not consistently detected across subjects (14/29 subjects

eligible for MEG analysis), decoding analyses focused on the three

remaining task features (auditory, visual, choice history; detected in

28/29 subjects eligible for MEG analysis) in 28 subjects. Moreover, we

also used a complementary fixed effects analysis to test whether

individual strategies can also be decoded in humans (see Supple-

mentary Fig. 10 for details). Classification was performed using linear

discriminant analysis, implementing 10-fold cross-validation with two

repetitions. This means that the following process was performed

twice: the entire data setwas split into tenparts, with nineparts serving

as a training set and one part as a test set. This was repeated ten times,

such that each part served as a test set once. Thus, the number of trials

used for decoding depended on the total number of available trials per

category (i.e., it was not fixed as in rats). We computed discriminative

information (expressed as the mean ± SEM decoding accuracy across

subjects) across time to test whether decoding accuracy depends on

sensory stimuli. We assumed significant decoding if the lower con-

fidence interval of the curve exceeded the chance level for that time

point. Moreover, we also compared decoding accuracy following sti-

mulus presentation to the pre-stimulus baseline using a cluster-based

permutation test69. A searchlight approach was used to highlight the

source-level topography of decoding accuracy for the average of a

selected timewindow. For one topographical visualization (Fig. 5k), we

computed a within-subject contrast (paired t-test) between the base-

line period (−500 to 0ms) and the task period (0–1000ms). This

contrast was chosen because the null hypothesis that decoding per-

formance during baseline and task stemmed from the same distribu-

tion was already rejected (Fig. 5j). To quantify the effect size of the

within-subject contrast (task vs. baseline),weconverted the resulting t-

values to Cohen’s d using the following formula: d = t=sqrtðnÞ, where d

is Cohen’s d for within-subject designs (also referred to as repeated-

measures or paired-sample d), t is the t-statistic from the paired t-test,

n is the number of participants70.

Statistics
Data analysis was performed with Graphpad Prism (Version 7), IBM

SPSSStatistics (Version 29.0.0.0, IBM, Armonk, NY,USA), andMATLAB

(R2017a or higher, MATLAB, Natick, MA, USA). All linear regression

models were estimated with the MATLAB routine fitlm. To reduce the

effect of potential outliers on model estimation, robust linear regres-

sion implementing the iteratively reweighted least squares algorithm

was used. Normality distribution assumption was tested using the

Shapiro-Wilk test. If systematic deviations from normality were

detected, non-parametric statistical testing was used. Data are dis-

played as mean± standard error of the mean (SEM) or as median and

first and third quartile (Q1–Q3); Tukey-style whiskers were used in

box plots.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
Rat and human data sets generated in this study have been deposited

in the Zenodo database under accession code: https://doi.org/10.5281/

zenodo.1546650471. One human participant did not give consent to

share data. Source data are provided with this paper.

Code availability
Custom MATLAB code used for this study is available at https://doi.

org/10.5281/zenodo.1546650471.
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