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Abstract
To employ a reduced-order cardiovascular model as a digital twin for personalised
medicine, it is essential to understand how uncertainties in the model’s input parameters
affect its outputs. The aim is to identify a set of input parameters that can serve as clini-
cal biomarkers, providing insight into a patient’s physiological state. Given the challenge
of finding useful clinical data, careful consideration must be given to the experimen-
tal design used to acquire patient-specific input parameters. Model sloppiness—where
numerous parameter combinations have minimal impact on model predictions, whilst
only a few parameters significantly influence outcomes—is a critical concept in this con-
text. In this paper, we conduct the first quantification of a cardiovascular system’s slop-
piness to elucidate the structure of the input parameter space. By utilising Sobol indices
and examining various synthetic cardiovascular measures with increasing invasiveness,
we uncover how the personalisation process and the cardiovascular system’s sloppiness
are contingent upon the chosen experimental design. Our findings reveal that continuous
clinical measures induce system sloppiness and increase the number of personalisable
biomarkers, whereas discrete clinical measurements produce a non-sloppy system with
a reduced number of biomarkers. This study underscores the necessity for careful con-
sideration of available clinical data as differing measurement sets can significantly impact
model personalisation.

Introduction
The concept of digital twin (DT) originates in the 1960s with NASA creating a virtual repre-
sentation in the Apollo 13 moon exploration mission. There are now many definitions of DT
and one comprehensive definition is “a set of virtual information constructs that mimics the
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structure, context and behaviour of an individual or unique physical asset, which is dynam-
ically updated with data from its physical twin throughout its life-cycle and that ultimately
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informs decisions that realise value” [1]. In the realm of medicine, the potential of a DT is
profound, particularly in enhancing patient care and outcomes. In the context of healthcare,
a regularly updated digital representation of an individual’s anatomy, physiology or diseases
holds immense promise. It could empower healthcare professionals to simulate and predict a
patient’s disease trajectory enabling intervention and treatment to be delivered in a timely and
effective way [2].

Notably, in cardiology, the adoption of heart and circulatory DTs has gradually gained
momentum and trust within the clinical community, evidenced by several proof-of-concept
studies [3–5]. Traditionally, clinical diagnosis and patient trajectories in cardiology rely heav-
ily on a clinician’s expertise and population-based averages [6]. However, the emergence of
DTs in cardiology signifies a shift towards a more personalised approach. These DTs inte-
grate mechanistic (physics-based) models, grounded in physiological understanding of the
heart, human circulation, and related physiological processes such as baroregulation [7,8],
with dynamic clinical data collected over time or immediate data available in a clinical setting
[9]. This integration enables the DT tool to provide tailored predictions and assist in clinical
diagnosis, catering for the unique characteristics of each patient. Virtual representations of
a patient’s full cardiovascular health in differing states are referred to as their “physiological
envelope” [10].

Clearly, the choice of mechanistic model utilised for a cardiovascular DT is vital to ensure
the correct set of physiological relevance while also maintaining some set of clinical inter-
pretability. Lumped parameter models (LPM) offer a unique ability to examine both cardiac
function and global haemodynamics. LPM provide a simple approach in which all the main
characteristics of the blood flow (i.e. blood pressures, flows and volumes) are captured. Typ-
ically, an LPM is constructed of a heart chamber (acting as a blood pump), a presentation of
the mechanical nature of heart valves and a series of elements representing the various vas-
cular networks in which blood can be transported through the body. This class of model is
usually represented as a system of differential algebraic equations; the size of which depends
on the complexity of the system investigated (full body circulation or anatomically detailed
models of specific vessels) [11].

Each LPM or compartment can be represented as a combination of resistors, capacitors
and inductors which are parameterised by numerical values R, C and L, respectively. For a
generic vessel or organ located in a larger circulation network, R, C and L represent haemo-
dynamic dissipation, vessel distensibility and the inertial effects of the blood flow, respec-
tively [12]. Along with the input parameters of the heart chambers and valves, these param-
eters form a set of clinical biomarkers, which when personalised to a patient, by integrating
patient-specific clinical data, provide the insight that a cardiovascular DT aims to achieve
[13].

Useful clinical data are scarce resources, thus the requirement to identify and choose what
data are needed to personalise a LPM (in order to create a useful cardiac DT) is a complex one
[14]. Within a clinical setting, there are often a range of both continuous and discrete mea-
surement data. But the process of obtaining insightful and diagnostically useful clinical data
often requires a series of invasive tests being conducted on the patient. With any data col-
lected (e.g., blood pressure, flow and volume for each compartment), one then generates a
series of clinical metrics: ejection fraction [15], to quantify heart failure; pulse pressure [16],
to diagnose arterial stiffening; maximum blood velocity [17], to evaluate heart valve steno-
sis; cardiac output [18], to measure overall heart health and the observation of various clinical
time series waveforms [19]. These metrics can then be amalgamated into a DT, enriching the
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model’s predictions with additional detail and validity. However, given the plethora of avail-
able clinical tests, each carrying its own risks to patients, determining which metrics are indis-
pensable in creating a faithful virtual representation of a patient becomes a challenging task.
Each set of measurements collected and utilised to perform DT related tasks is denoted an
experimental design [20].

The integration of clinical data into an LPM to form a DT, is a task denoted ‘the personali-
sation process’ (or ‘model personalisation’ or ‘model calibration’). Mathematically, this is also
known as the ‘inverse problem’ [21]. One can think of the solution to the personalisation pro-
cess as an input parameter set that locates the global minimum of a response surface, spanned
by the combination of input parameters of the mechanistic model and the available clinical
measurements. Thus, we obtain a set of unique clinical biomarkers [22], i.e., we have found
a point in the input parameter space such that the outputs of our mechanistic model most
closely match the clinical measurements of a patient. This is the point in the input parame-
ter space which describes a patient’s patho/physiological state. However, calibration alone is
insufficient to establish model validity. Rigorous validation across multiple operational points
beyond the calibration condition is essential to ensure the DT will behave as the physical
entity is extended to the broader patho/physiological state space. Without such a validation,
one cannot distinguish between a genuinely predictive model and one that merely exhibits
over-fitting to a single calibration point. This knowledge is vital as a DT must update this per-
sonalisation point every time new information is received. Therefore, the validation serves as
a pillar of DT creation.

Despite progress, there are still many open questions surrounding the personalisation
process, which we distil as explicit questions below:

1. What clinical data must be acquired in-vivo to obtain insightful, patient-specific
biomarkers?

2. Does the set of biomarkers obtained remain consistent in the presence of new and
varying experimental designs?

3. What is the computational cost associated with finding the solution of the personalisa-
tion process under different experimental designs?

4. Should DTs be built to encapsulate a patient’s ‘physiological envelope’ or should DTs be
targeted to specific conditions?

5. What are the best practices involved in model personalisation under uncertainty?

This study investigates to what extent the above questions can be answered. We aim to pro-
vide a fundamental understanding of the sloppiness present within such models before being
able to deploy a functioning DT in future work. Before proceeding, it is important to note
that all investigations in this work are conducted with forward generated model data, in
order to understand and extract clinical biomarkers from the model in an ideal setting (i.e.
to eliminate any confounding effects of noise in clinical data). The synthetic data generated
from our model here are guided by clinical practice and reflect the type and key features of
data obtained in clinic. The investigations performed here reflect the common clinical path-
ways that are taken within the hospital. Without this critical, off-line investigation, mislead-
ing parameter selection from inappropriate experimental design which could then lead to
ill-informed clinical decisions.

The structure of this paper is as follows. In section background, we: (i) review relevant lit-
erature, (ii) introduce concepts germane to the personalisation process in both extraction and
optimisation of clinical biomarkers, (iii) detail the position this type of investigation has in
the personalisation process and (iv) summarise the principal contributions of this work. In
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section methods, the mathematical detail is provided for each tool used for model analysis
(Sobol indices, identifiability analysis and sloppy analysis). We also present the various exper-
imental designs utilised within this work. Section results declares our results from different
computational experiments. Discussion of the impact of varying experimental designs on the
personalisation process is given in section discussion.

Foundations and state-of-the-art
Model personalisation is synonymous with the base concepts of input parameter sensitivity,
identifiability and sloppiness [23]. From the discussion in section introduction, it is prudent
to review terminologies, prior art and state how this work will provide a novel insight into the
study of model personalisation.

Terminologies
When attempting to personalise a cardiovascular model, it is important to discuss the pre-
requisite properties corresponding to input parameter influence (sensitivity), uniqueness
(identifiability) and response surface structure (sloppiness).

Sensitivity. An input parameter’s effect needs to be influential on the output response sur-
face, if this is the case an input parameter is regarded as sensitive [24], i.e., a change in the
input parameter space causes a detectable change on the desired output. Thus, the said sen-
sitive input parameter may serve as a clinically insightful biomarker for personalisation (in
the creation of a digital twin), due to the ease of capturing the biomarkers’ effects in clinical
outputs. One can distinguish locally and globally sensitive input parameters, with respect to
the measurements. Locally sensitive input parameters are those eliciting the steepest gradi-
ent in the output about the model base operating point [25]. Globally sensitive input param-
eters are potential bio-markers which operate within a physiologically realistic value range.
Input parameters are said to be most globally sensitive when they cause the greatest influence
on the outputs, for the prescribed parameter ranges [26]. Different methods exist to calculate
the sensitivity of input parameters, with the most common being the variance based methods,
which we adopt in this work (see section sensitivity analysis). The personalisation process and
the use of cardiovascular DTs is a global process, because we need a virtual representation of
patients in a range of physiological and pathophysiological conditions. Thus, global sensitivity
analysis presents itself as an insightful tool in the search for of clinical biomarkers.

Identifiability. Personalisation of models now entails the pursuit of an identifiable model
and identifiable input parameters (an optimal subset, denoted as clinical bio-markers). The
analysis of identifiability in a cardiovascular system model requires three distinct examina-
tions: structural, sensitivity-based, and practical identifiability. Structural identifiability (the-
oretical) assumes abundant and noise-free target output data, rendering a model’s structural
identifiability largely academic in clinical terms. However, this assumption overlooks the pos-
sibility that inability to identify input parameters may stem from the model’s structure rather
than data issues [27]. Naturally, if a model lacks structural identifiability, practical attempts
at its utilisation are inherently limited. Sensitivity-based identifiability analysis involves the
identification of sensitive and orthogonal input parameters, under synthetic data generated
by the model, to ascertain which input parameters are identifiable under ideal circumstances
[28]. Practical identifiability analysis takes into account of the quality of patient data, where
noise and sampling rates may impact the identification of unique input parameters [29]. For
complete personalisation, each stage must be executed sequentially. Within this work, we
examine the identifiability of input parameters through their average influence across output
space.
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System sloppiness. System sloppiness is a term used to characterise the structure of the
input parameter space [30]. As discussed above, the main aim in many areas of systems biol-
ogy is to optimise a dynamical system’s input parameters to available experimental data. This
is normally performed by minimising a cost function, to obtain a point in the input parameter
space corresponding to a global minimum of the cost function J [31], of the form

J(p) =∑
i
(yi(p, t) – y(t)ei )2,

where p is the input parameter set, yei represents the ith experimental measurement available
and yi(p, t) represents the ith dynamical system output (obtained from the model), which the
experimental data are compared against.

Consider an example dynamical system with two input parameters p1 and p2. When
optimising such a system to experimental data, contour plots displaying the closeness of fit
are generated as in Fig 1. Here we see that moving up (in the direction of p2) and left in the
parameter space rapidly changes the value of the cost function, i.e., indicating how good a
fit is obtained by a specific value of p2. This direction is denoted a stiff direction in the input
parameter space. Conversely, if one was to travel up and right (in the direction of p1), one
could visit a range of p1 values without incurring changes of the cost function values. This
means the manifold generated by p1 is largely linear whereas the one generated by p2 has
steep gradients leading to a unique global minimum. Thus the sloppy direction controlled by
p1 would not make for a good biomarker to calibrate a model due to the limited impact of p1
to the selection of model outputs. The converse is true for p2.

However, most models in systems biology and in cardiovascular modelling cannot be
visualised through a two dimensional contour map. Mathematical sloppiness analysis of our
cardiovascular models can be found in section System Sloppiness.

The final stage of personalisation is the optimal estimation of the selected input parame-
ters, fitted to patient-specific clinical data. This estimation may be iteratively updated within
a DT as new information and data from the patient become available. Before the optimisa-
tion step takes place, the quantification of the stiffness/sloppiness of the system’s parameter
space provides insight into the complexity of the system, and in turn facilitates the choice of

Fig 1. A two dimensional sloppy model representation: A two dimensional contour plot displayed as a blue
curve, with the minimum contour value displayed in red for input parameters p1 and p2. Moving up and left
would lead to rapid changes in the contour where as moving up and right would lead to slow changes.

https://doi.org/10.1371/journal.pone.0326112.g001
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an appropriate optimisation routine (e.g. gradient descent, particle swarm genetic algorithms,
unscented Kalman filter etc.) [32,33]. A sloppy system tends to have elongated or even flat val-
leys around the minimum, meaning that the minimum is not well-defined. Of course, when
applying this method to patients whose measurements are noisy, the sloppiness of the model
can vary significantly due to influence from the noise.

The related concepts of identifiability and sloppiness provide different but insightful
information about the personalisation process [34]. Identifiability is a binary situation, whilst
sloppiness quantifies the difficulty associated with obtaining precise identifiable input param-
eters. The sloppiness analysis of a model can either distinguish stiff and sloppy regions of the
input parameter space, or show that the whole system under investigation can be regarded as
sloppy. Note, most system biology models belong to the latter category [35,36]. Within this
work, we examine the sloppiness associated with the sensitivity matrices, which are defined
by input parameter effects on the chosen outputs. Therefore, we can also establish a secondary
aim of investigating the effects of differing experimental design on a cardiovascular system
sloppiness.

Relevant literature
Cardiovascular model personalisation has been attempted in many clinically important areas
such as, congenital heart disease, fetal circulation or whole heart multi-scale modelling [37–
39]. In the majority of works, standard optimisation routines are used to obtain a set of input
parameters which are representative of the experimental data [40–42]. Outside of the stan-
dard optimisation routines, data assimilation methods, namely ensemble and unscented
Kalman filters, have developed traction as an efficient way to estimate patient specific input
parameters, at a reduced cost, compared to the optimisation methods [33,43,44]. Another
area which attracted research community’s attention recently is the utilisation of sensitivity
analysis to guide the search and selection of an optimal input parameter subset for simpler
and more efficient parameter estimations. Colunga et al. [45] applied this technique to incor-
porate invasive right heart data to obtain the personalisation of a model of pulmonary hyper-
tension with 25 parameters. Where as Strocchi et al. [46] applied global sensitivity analysis to
a 117-parameter cell-to-organ lumped parameter 4-chamber heart representation, reducing
the model down to 45 personalisable parameters. Schafer et al. [47] examined how the sen-
sitivities in a 1D model of the carotid artery change with respect to age and sex, highlighting
how the input parameters for personalisation do not remain constant.

As discussed above, it is also important to understand the identifiability of input parame-
ters, because this provides reassurance that any optimised input parameters are unique to a
patient. Casas et al. [48] performed a profile likelihood analysis of a LPM to personalise flow
in the systemic circulation. In comparison, other researchers such as Pironet et al., [49,50]
performed a structural and sensitivity identifiability analysis on a LPM to highlight what out-
puts would be required to obtain unique input parameters. In addition, there have been devel-
opments of experimental approaches from Marquis et al., de Bournonville et al. and Sala et al.,
who used invasive patient data to make good first estimates of model input parameters before
optimisation which ensured more input parameters within the model are identifiable [51–53].

Another popular approach was to optimise input parameters in an iterative manner [54].
Bjordalsbakke et al. [55] applied an iterative step-wise reduction scheme in which, guided
by sensitivity analysis, they began to optimise a group of parameters with increased num-
ber, each time with different cost functions to examine the closeness of fit. Bjordalsbakke [55]
found that cost functions constructed from waveform data, as opposed to common clinical
metrics, produced the smallest errors. Hann et al. [56], took a similarly structured approach in
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reducing the number of available outputs to reduce the complexity associated with the model.
They demonstrated that differing measurement sets consisting of continuous and discrete
measurements allowed for each subsection of the model to be optimised with minimal error.
The impact of varying outputs have also been examined by Eck et al. [57] through uncertainty
quantification in the arterial wall models and concluded that continuous time series Sobol
indices gave a more insightful look into the process.

All studies above indirectly examined the impact of changing outputs on obtaining per-
sonalisable input parameter sets. However this was not the primary objective of their investi-
gations. The most notable publication to date which investigated the impact of experimental
design on a cardiovascular model was that of Colebank et al. [58]. They studied the impact
of 4 different experimental designs on the ventricular function and found easily identifying
biomarkers of the ventricular function, when a practical identifiability analysis is performed
(including continuous data from both the left and right side of the heart).

Another aim of our study is to reveal and analyse the impact of experimental designs on
system sloppiness. Sloppiness is a property which has been known in system biology models
for over a decade [35]. Most studies have been focused on pharmacokinetic models [59] and
examinations of the route cause of sloppiness. More recently, a formal definition of sloppi-
ness was given and the concept was used to obtain a minimum set of outputs to ensure iden-
tifiability [60,61]. The impact of experimental designs on system sloppiness has been under-
stood through the lens of model identifiability (i.e., varying the model and the data shown to
the model can induce different intensity of model sloppiness which in turn impacts the over-
all identifiability of the model parameters) [62–64]. In terms of cardiovascular modelling,
sloppy analysis has been applied to electrophysiology modelling with the focus on calcium
and potassium channel modelling. Whitterker et al. [65], utilised sloppy analysis to provide
a method to simplify complex models of ion channels that improves parameter identifiability
which will aid in future development in voltage-gated ion channels. Sloppy analysis has been
applied to other classes of biochemical models [66,67]. For example, Bravo et al. [36] applied
sloppy analysis to a Bayesian model of an electrophysiological process to highlight how the
identification of stiff parameter combinations made the model personalisation much simpler.
As far as we are aware, sloppy analysis of a mechanical LPM of the cardiovascular system has
not been performed, nor has the impact of varying experimental designs on sloppiness been
studied.

Rationale and contributions
DTs in cardiovascular medicine offer profound promise in improving patient care. In order
to advance the application of DTs in clinic, further study into the impact of experimental
designs on the personalisation process must be understood. We investigate the impact of
varying clinical metrics, both continuous and discrete, in an ideal scenario (without the bias
of measurement noise). The main contributions of the work are:

1. Stability of identifiable parameters: Through varying experimental designs, we investi-
gate changes in the identifiability ranking of input parameters.

2. Sloppy analysis of an LPM: We perform and report the first global sloppy analysis of a
cardiovascular LPM to aid our understanding of the personalisation process.

3. Clinical metric guidelines: By evaluating different clinical metrics, we provide insight
into the set of clinical data (and therefore measurements) needed for the effective per-
sonalisation of cardiovascular models.

PLOS One https://doi.org/10.1371/journal.pone.0326112 June 24, 2025 7/ 29

https://doi.org/10.1371/journal.pone.0326112


ID: pone.0326112 — 2025/6/19 — page 8 — #8

PLOS One Sloppy experimental designs in cardiovascular models

By rigorously assessing the impact of varying clinical metrics and performing the first insight-
ful sloppy analysis of a cardiovascular model, revealing the structure of the input parameter
space, our work furthers the investigation and understanding needed in the personalisation of
cardiovascular DTs.

Methods
Here, we examine the methods used for analysing a lumped parameter 4-chamber cardio-
vascular circulation model. In section methods, we present the model, explain the computa-
tional framework and provide a full parameterisation with their initial conditions. We then
detail the clinical measures utilised in this work, which map to the different measurement sets
in section Clinical Measures. The global sensitivity method of Sobol indices and the related
Fisher information matrix are given in section sensitivity analysis and section FIM respec-
tively. In section average influence, we then examine an average metric for input parameter
influence. We detail how to examine system sloppiness in an n–dimensional space in section
sloppy analysis. Finally, section workflow is devoted to highlight the iterative workflow we
devised to examine the effects of varying experimental design on input parameter influence
and sloppiness.

Cardiovascular model
Our LPM can be expressed in a standard state space formulation:

d
dt
X(t) = f(X(t); p) , Y(t) = h(X(t)), (1)

in which p denotes an input parameter vector, X represents the set of state variables of the sys-
tem, f is a function describing the system (usually this is an collection of differential algebraic
equations), h is the measurement function where the forward model synthetic measurements
are generated, using the computed state variables X, and Y represents the measurements of
interest.

The model declared in its electrical analogue form in Fig 2 is a system-set, differential alge-
braic equation based, electrical analogue cardiovascular model, after Comunale et al., [68],
with 4 heart chambers and a representation of both the systemic and pulmonary circulations.
The model was first developed to model both physiological and pathophysiological states. The
state variables of each compartment are specified by its time-dependant dynamic pressure P
(mmHg), inlet flow Q (mL/s) and volume V (mL):

Xk(t) = (Vk(t),Pk(t),Qk(t)) , k∈ {la, lv, sa, svb, sv, ra, rv, pa, pvb, pv}, (2)

where la denotes the left atrium, lv denotes the left ventricle, sa the systemic arteries, svb the
systemic vascular bed, sv the systemic venous system, ra the right atrium, rv the right ventri-
cle, pa the pulmonary arteries, pvb the pulmonary vascular bed and pv the pulmonary venous
system, Formally, t is a continuous time variable.

In generic form, the equations relating to the passive compartmental state variables all take
the form:

dVs,k

dt
=Qk –Qk+1,

dPk
dt
=

1
Ck
(Qk –Qk+1), Qk =

Pk–1 – Pk
Rk

. (3)

Above, the subscripts (k–1), k, (k+ 1) respectively represent the proximal, present and
distal system compartments; Vs,k(mL) denotes the circulating (stressed) volume [70] and Ck
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Fig 2. Lumped 4-chamber cardiovascular model: Our state-space cardiovascular model, first introduced by
Comunale et al. [68]. Both left and right atria and ventricles are represented by the Shi double cosine model [69].
Heart valves are assumed to have Ohmic behaviour allowing no back flow. The systemic and pulmonary circulations
are represented by a CRRCR combination with all parameters are given in Table 1.

https://doi.org/10.1371/journal.pone.0326112.g002

(ml/mmHg) and Rk (mmHgs/mL) denote compartmental compliance and the Ohmic resis-
tance between compartments k, (k+ 1). Flow in and out of the active heart chambers are
controlled by Ohmic diode valves:

Qk =

⎧⎪⎪⎨⎪⎪⎩

Pk–1–Pk
Rval

, Pk–1 > Pk,
0 Pk–1 ≤ Pk,

(4)

where Rval = (Rlv,Rla,Rrv,Rra) representing the resistances across aortic, mitral, pulmonary
and tricuspid valves.

The active heart chambers can be represented by time varying elastances Ek(t)
(mmHg/ml), which determines the change in pressure for a given change in the volume [70]:

Ek(t) =
Pk(t)

Vk(t) –Vk,0
=

Pk(t)
Vk,s(t)

, k∈ {lv, rv, la, ra} (5)

where Vk,0 & Vk,s(t) represent the chamber unstressed and stressed volumes for the two ven-
tricles and atria. Ek(t) is written following [69]:

̃t =Mod(t + (1 – Ek,shift)𝜏, 𝜏)
Ek( ̃t) = (Ek,max – Ek,min) ⋅ e( ̃t) + Ek,min,

e( ̃t) = ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2[1 – cos( 𝜋 ̃t𝜏k,es )], 0≤ ̃t < 𝜏k,es,
1
2[1 + cos(𝜋( ̃t–𝜏k,es)𝜏k,ep–𝜏k,es )], 𝜏k,es ≤ ̃t < 𝜏k,ep,
0, 𝜏k,ep ≤ ̃t < 𝜏,

(6)

where e(t; 𝜏k,es, 𝜏k,ep,Ek,shift) is the activation function for the heart chamber and is parame-
terised by the end systolic and end pulse timing parameters 𝜏k,es and 𝜏k,ep respectively.
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Table 1 provides the parameterisation for the model to produce physiological results for
the lumped parameter 4-chamber model in which the input parameter space has a dimen-
sionality of 36. To construct the model, the cardiovascular LPM Julia package CirculatorySys-
temModels.jl [71] is utilised which reduces the system to 8 ordinary differential equations in
volume with the initial volumes also given in Table 1. The model is solved utilising the Vern7
[72] algorithm with tolerances of 1e–6. For 30 cardiac cycles the model computes in 0.064s.

Clinical measures
When varying the experimental design, we generate synthetic data based on medically accu-
rate measures utilised in the diagnoses of cardiovascular diseases. This enables us to perform
such a large computational investigation, and at the same time, to follow the standard clin-
ical pathway through an iterative scheme. To investigate the effect of experimental design,
we devise an additive algorithm: each time we move to the next measurement set, the new
measurement is added to the previous output set and therefore defining the new output space
of an increased dimension, for the analysis of input parameter effects. Practically, the below

Table 1. Input parameters for the lumped parameter 4-chamber model: Each input parameter is displayed along
with the respective units and valves. Here we fix the heart period cycle to 𝝉 = 0.81(s).
Heart Parameters
Parameter Name Symbol LV RV LA RA
Maximal
Elastance [mmHg/ml]

Emax 2.8 0.45 0.13 0.09

Minimal
Elastance [mmHg/ml]

Emin 0.07 0.035 0.09 0.045

Unstressed
Volume [ml]

V0 20 30 3 7

End Systolic
Time [s]

𝜏es 0.269𝜏 0.269𝜏 0.11𝜏 0.11𝜏
End Diastolic
Time [s]

𝜏ep 0.452𝜏 0.452𝜏 0.18𝜏 0.18𝜏
Atrial Activation
Time [s]

Eshift 0 0 0.85𝜏 0.85𝜏
Valve Resistance [mmHg ⋅ s/ml] Rval 0.01 0.01 0.005 0.005
Circulation Parameters Initial Volume Values
Resistance Systemic
Arteries [mmHg ⋅ s/ml]

Rsa 0.0448 Initial Volume
Systemic Arteries [ml]

Vsa,0 98.3

Resistance Systemic
Vascular Bed [mmHg ⋅ s/ml]

Rsvb 0.824 Initial Volume
Systemic Veins [ml]

Vsv,0 117.996

Resistance Systemic
Veins [mmHg ⋅ s/ml]

Rsv 0.0269 Initial Volume
Pulmonary Arteries [ml]

Vpa,0 100.5

Resistance Pulmonary
Arteries [mmHg ⋅ s/ml]

Rpa 0.003 Initial Volume
Pulmonary Veins [ml]

Vpv,0 126.4

Resistance Pulmonary
Vascular Bed [mmHg ⋅ s/ml]

Rpvb 0.0552 Initial Volume
Left Ventricle [ml]

Vlv,0 149.6

Resistance Pulmonary
Veins [mmHg ⋅ s/ml]

Rpv 0.0018 Initial Volume
Right Ventricle [ml]

Vrv,0 189.2

Compliance Systemic
Arteries [ml/mmHg]

Csa 0.983 Initial Volume
Left Atrium [ml]

Vla,0 71

Compliance Systemic
Veins [ml/mmHg]

Csv 29.499 Initial Volume
Right Atrium [ml]

Vra,0 67

Compliance Pulmonary
Arteries [ml/mmHg]

Cpa 6.7

Compliance Pulmonary
Veins [ml/mmHg]

Cpv 15.8

https://doi.org/10.1371/journal.pone.0326112.t001
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model outputs represent the conventional medical tests which a patient may be subjected
to, with increasing invasiveness to assess their cardiovascular health. While we do not tar-
get a specific health condition in this work, the increasing output sets represent further and
deepening knowledge about a patient’s physiological envelope.

In Tables 2, 3, and 4, we display the measurement sets for the cases of discrete, continuous
and mixed measurements. These will then be utilised to perform the variety of investigations
as described below and pictured graphically in Fig 3.

Discrete measurements. In the discrete case in Table 2, we utilise only single point met-
rics. These metrics can be obtained through just 3 clinical tests:

1. Blood Pressure (BP): This can be readily obtained through a sphygmomanometer read-
ing while a patient is in hospital. In our chosen model, this measurement is obtained by
calculating Max(Psa)

Min(Psa) and corresponds to set 1.
2. Ejection Fraction (EF): This can be obtained through an echocardiogram. In our

model, we calculate EF for the left and right ventricle then the left and right atria as
Max(Vi)–Min(Vi)

Min(Vi)
. For i = lv, rv, la, ra this corresponds to sets 2A, 2B, 2C and 2D.

3. Max(Qi) - Maximum flow: This could be obtained from either an echocardiogram or
a cardiac MRI. This is calculated for the systemic arteries, pulmonary arteries, aortic
valve, mitral valve, pulmonary valve and tricuspid valve.

To highlight the additive process of the experiment in the discrete setting, for example, the
full output set for 3A is defined as follows:

Set 3A = (BP,EFlv,EFrv,EFla,EFra,Max(Qs)).

Continuous measurements. For the continuous measurements displayed in Table 3, each
continuous waveform obtained is made up of 150 time points. This metrics can be obtained
though 4 clinical metrics below.

1. Qi - Flow rate: This can be obtained through a Doppler ultrasound, for the systemic,
pulmonary, aortic valve, mitral valve, pulmonary valve and tricuspid valve.

2. Vi - Chamber volume: can be obtained through a cardiac MRI, for the two ventricles
and two atria.

3. Plv,Psa - Left heart pressures: These invasive diagnostic measurements can be obtained
through catherterisation for the left ventricle and systemic artery.

4. Prv,Ppa,Pra,Ppv - Right heart and circulation pressures: These invasive measurements
can be obtained by performing Swan-Ganz catherterisation and wave form pressures

Table 2. Table of discrete measurements: This table presents the sequential addition of discrete measurements
to the experimental design. Each pairing represents a measurement set, showing which new cardiovascular
measurement is added whilst retaining all previous measurements. These discrete measurements repre-
sent single-point values extracted from the cardiac cycle, reflecting clinical metrics commonly used for
cardiovascular assessment with increasing physiological depth.
Discrete Measurement Sets
Set 1 2A 2B 2C 2D
Measurement
Added

BP EFlv EFrv EFla EFra

Set 3A 3B 3C 3D 3E 3F
Measurement
Added

Max(Qs) Max(Qp) Max(Qlv) Max(Qla) Max(Qrv) Max(Qra)

https://doi.org/10.1371/journal.pone.0326112.t002

PLOS One https://doi.org/10.1371/journal.pone.0326112 June 24, 2025 11/ 29

https://doi.org/10.1371/journal.pone.0326112.t002
https://doi.org/10.1371/journal.pone.0326112


ID: pone.0326112 — 2025/6/19 — page 12 — #12

PLOS One Sloppy experimental designs in cardiovascular models

Table 3. Table of continuous measurements: This table illustrates the progression of continuous measurement
sets employed in the cardiovascular model analysis. Each set incorporates a new continuous waveformmeasure-
ment (consisting of 150 time points from a complete cardiac cycle) whilst preserving all previous measurements.
The progression moves from non-invasive to increasingly invasive measurements, mirroring typical clinical
pathways for comprehensive cardiovascular assessment.
Continuous Measurement Sets
Set 1A 1B 1C 1D 1E 1F
Measurement
Added

Qs Qp Qlv Qla Qrv Qra

Set 2A 2B 2C 2D 3A 3B
Measurement
Added

Vlv Vrv Vla Vra Plv Psa

Set 4A 4B 4C 4D
Measurement
Added

Prv Ppa Pra Ppv

https://doi.org/10.1371/journal.pone.0326112.t003

Table 4. Table of mixed measurements: This table details the mixed measurement protocol combining both
discrete and continuous cardiovascular measurements in a clinically-relevant sequence. Each set (except set 2,
which replaces set 1) adds a new measurement to the cumulative experimental design, progressing from simple
non-invasive assessments to comprehensive invasive monitoring.This reflects realistic diagnostic pathways
where discrete measurements (single values) are often obtained before continuous waveforms (150 time points
per cardiac cycle) are recorded, particularly for invasive parameters.
Mixed Measurement Sets
Set 1 2 3A 3B 3C 3D
Measurement
Added

BPN BP EFlv EFrv EFla EFra

Set 4A 4B 4C 4D 4E 4F
Measurement
Added

Qs Qp Qlv Qla Qrv Qra

Set 5A 5B 5C 5D 5E
Measurement
Added

Max(Qlv) Max(Qla) Max(Qrv) Max(Qra) Vlv

Set 5F 5G 5H 6A 6B
Measurement
Added

Vrv Vra Vra Psv Psa

Set 7A 7B 7C 7D
Measurement
Added

Prv Ppa Pra Ppv

https://doi.org/10.1371/journal.pone.0326112.t004

are collected in the right heart for the right ventricle, pulmonary artery, right atrium
and pulmonary vein (which can also be seen as a surrogate for left atrial pressure).

Mixed measurement sets. The previous two measurement settings will reveal the differ-
ence between continuous and discrete metrics. The mixed measurement set combines both
the discrete and continuous measurements but represents a standard diagnosis procedure
with increasing invasiveness, i.e., in clinic, a patient would not be subject to invasive chamber
pressure measurements unless deemed necessary. Apart from one additional measurement
(noisy blood pressure) which will be introduced bellow, all other metrics and correspond-
ing measurement sets are the same as the ones defined in sections Discrete and Continuous
Measurements.

• BPN - noisy blood pressure: This set is added to represent the situation of a patient tak-
ing their own arterial blood pressure measurement at home, with noisy reading due to
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Fig 3. Experimental design workflow:The process for how to analyse the input parameter influence and
sloppiness in the presence of changing experimental designs.

https://doi.org/10.1371/journal.pone.0326112.g003

potential human error and lower device accuracy. The analysis of noisy output data will
provide insight into how global sensitivity indices alter in the presence of noise.

BPN is calculated as

BPN = Max(Psa)
Min(Psa)

× (1 + 𝜖), 𝜖 ∼N(0, 0.1).

In this setting, set 2 represents an arterial blood pressure measurement obtained in hospi-
tal and is assumed to not be subject to noise. Slightly different to the measurement sets intro-
duced in sections Discrete and Continuos Measurements, here set 2 will replace set 1 instead
of adding to it and set 2 will be used in all increasing measurement sets for the later sets.

Sobol indices
Given a model of the form in eqn 1 with Y (a continuous or discrete output), a variance based
first order or total order effect can be calculated for a generic input factor pi. pci denotes the
complementary set, i.e., all other model inputs excluding pi. Performing a Sobol analysis pro-
vides the quantification of the input parameter effect against a specific output [73]. Both the
first and total order sensitivity indices return a matrix of the form:

S = Sj,i, j = 1, ...,m; i = 1, ...,n, (7)

where n and m represent the number of input parameters and output measurements, respec-
tively. In this work, we handle a fixed high-dimensional input parameter space (n = 36). How-
ever, when the experimental design changes, m varies and also the output measurement
space. For example, in the discrete measurement setting, the largest value of m is 11. In com-
parison, in the mixed measurement setting, the largest output set (set 7D) results in m = 1609,
so the resulting sensitivity matrix is of size S = (1609 × 36).
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The first and total order sensitivity indices can be written as:

S1,i(Y) = Var(E(Y|pi))
Var(Y) , ST,i(Y) =

E(Var(Y|pci))
Var(Y) , (8)

where S1,i, ST,i denote the first and total order indices’ vectors for an input parameter pi
against the specific output Y. In order to quantify the effects continuous measurements have
on the calculation of sensitivity indices, we typically average this sensitivity waveform. Rather
than averaging across a time range (which process regions of low variance equally to those of
high variance), one seeks to expose differential sensitivities by examining variance-weighted
averages:

TASi =
∑k Si(Yc(tk))Var(Yc(tk))∑k Var(Yc(tk))

, (9)

where TASi is the time averaged first/total order effect of an input parameter i and Yc(tk)
represents the approximated continuous measurement at time step k [57].

The sensitivity indices can be interpreted as:

ST,i = Si +∑
i≠j

Sij + ∑
i≠j≠k

Sijk + ...,

i.e., for a given input parameter pi, the total order indices are the first order indices (pi’s inde-
pendent effects) plus all higher order interactions. This study utilises the total order sensitivity
matrix to quantify an input parameter’s full impact on the outputs. To ensure convergence, we
used 75,000 samples with the Jansen estimator [74,75] with a bootstrapping sample of 1000
[76]. In this work we prescribe a uniform distribution on the inputs with the upper and lower
bounds for the parameters being at ±50%, from the values shown in Table 1, and we generate
a quasi-Monte carlo Sobol sequence to improve the convergence of the Sobol indices [75].

Fisher information
Another important matrix derived from the (m × n) sensitivity matrices is the square (n × n)
Fisher information matrix (FIM) [77]:

F = STS. (10)

The FIM is a symmetric matrix representing the information one can extract on parame-
ters from the model outputs (i.e., the available measurements [78]). We choose to construct
the FIM from the total order Sobol indices (eqn 8) to account for the full non-linear effects
which are present within the system and the impacts of the varying experimental designs as
done in previous work [25,79,80].

Average parameter influence
The sensitivity vectors derived in section Sensitivity Analysis only display the effects of an
input parameter against a specific measurement. In order to obtain an input parameter’s iden-
tifiability, we must assess an input parameter’s influence across our chosen set of outputs.
Li et al., [81], derived such a metric based upon the FIM F defined in eqn (10). To examine
the global effect of input parameters through the FIM, we use principal component analysis
(PCA) [82] where the principal components (PC) are the eigenvectors of the FIM.
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Let Q be the matrix of the ordered PC (eigenvectors of F), in which the absolute value of
each element Qij reflects the contribution of the ith parameter to the variance of the jth output.
We follow Li et al. [81], who measure an overall effect for the ith parameter as:

Ei =
∑m

j=1 |𝜇jQij|∑m
j=1 |𝜇j| , (11)

where 0≤ Ei ≤ 1 and 𝜇j represents the non-zero eigenvalues of F. This measure reflects the
difficulty in determining the ith parameter when only a single factor is estimated. Parame-
ter identifiability is associated with Ei - the larger the value of Ei, the more identifiable the
ith parameter is. We record the rank and the overall effect of every input parameter greater
than 0.01, a number which has been discussed as the lowest possible value that may have the
possibility of being identifiable in [25].

Sloppiness analysis
In section System Sloppiness, we explored the concept of sloppiness by examining the con-
tour lines of the cost function. In order to examine sloppiness in an n-dimensional input
parameter space, we examine the eigenvalues of FIM (eqn 10). The eigenvalues of the FIM
provide insight into the variation of parameters constrained by the available data. A model
can be regarded as sloppy if the eigenvalues of the FIM have a uniform spacing on a log scale
spread over many orders of magnitude [30,63,83,84]. On the other hand, if the FIM eigenval-
ues have a non-uniform distribution, the model is regarded as stiff. We can then identify stiff
directions in the input parameter space which corresponds to a set of input parameters where
personalisation should take place.

One can interpret this analysis as follows, the eigenvalues of the FIM represents the varia-
tion that a model parameter contributes the model outputs. In the case where a model is stiff
we have a select subset of model parameters with large eigenvalues compared to their com-
plementary set. Thus when looking to calibrate model parameters this stiff subset of input
parameters denote rapidly varying directions on the response surface, thus one can more eas-
ily obtain a personalised operating point of input parameters, due to the impact of varying
input parameter sets been clear. Conversely in the case of sloppy models these properties are
not clear in the response surface thus choosing the correct direction for personalisation more
difficult.

Workflow
All the above sections define an iterative investigation in which we examine the effects of
varying experimental designs on input parameter’s influence and sloppiness. This can be
encapsulated in the following steps and in Fig 3.

1. Define an output set: As shown in section Clinical Measures, we define the various sets
of discrete, continuous and mixed measurements, starting from the first and simplest
output set.

2. Calculate ST: Form the total order sensitivity matrix for the input parameters and cho-
sen output set.

3. Form the FIM: Utilising eqn 10, the FIM represents all the information about the
parameters constrained by the specific measurement set.
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4. Analyse parameter’s influence and sloppiness: Using methods in section Average
Parameter Influence and Sloppy Analysis, we record each input parameter’s rank and
influence value being greater than 0.01 and the distribution of eigenvalues.

5. Add a new measurement: Move to the next measurement set and repeat stages 2-4.

Results
Sections Results Discrete, Continuos and Mixed detail the average input parameter influence
across all outputs for varying experimental design, using the method presented in section
Average Parameter Influence. The average input parameter rank and values are displayed as
tables. The corresponding fig in each section displays the eigenvalues of the Fisher informa-
tion matrix on a log10 scale, for varying measurement sets (see sections Fisher Information
and Sloppy Analysis). The sections below presents results for the varying discrete, continuous
and mixed measurement sets, respectively, as described in section Clinical Measures.

Discrete measures
Table 5 displays the rank of each input parameter and their corresponding influence value
calculated using eqn 11, using discrete measurements. We note, from set 1 to set 3F, the resis-
tance of the systemic vascular bed Rsvb and the systemic arterial compliance Csa rank the high-
est, with the largest influence values, with the exception from set 2D in which Eshift,ra ranks the
most influential. This can be explained by the experimental design. The newest measurement
added for set 2D was the ejection fraction of the right atrium. Although in all the other cases,
it appears Rsvb and Csa still dominate. As more measurements are added to the experimental
design, we observe more input parameters record an influence score greater than 0.01. For
case 3F where there are 11 outputs, 17 input parameters are recorded with an influence score
larger than 0.01. As the measurement set increases, the largest influential value decreases.
In addition, as more measurements are added, although more “influential” parameters are
obtained, the majority have an influence score in the range of hundredths.

The sloppiness analysis result in Fig 4 shows that the model cannot be regarded as sloppy,
with a discrete output set. With an increasing output set, we observe more input parame-
ters are regarded as stiff. Even with the largest output set, set 3F, the model still exhibits an
eigenvalue spectrum of over 15 orders of magnitude.

Continuous measures
With an increasing continuous measurement set, in Fig 6, a much higher number of influ-
ential input parameters are present, compared to the discrete case (Fig 5). Even with just a
single continuous measurement of the systemic flow (Column 1A), 17 input parameters are
regarded as influential. In set 4D, where there are 16 continuous output measurements, 20
input parameters are recorded as influential. Here, the ranking of influential input parameters
shows much less consistency, compared to Table 5. The most influential parameters appear
to loosely correlate with the latest output added to the measurement list. For example, in set
3B, the left ventricular pressure and systemic arterial pressure are new additions to the out-
put set, and then the top ranking parameters are the minimal ventricular elastance Emin,lv and
the end pulse time for the left ventricle 𝜏ep,lv. Where as in set 4C, pressures associated with
the pulmonary system have just been added, then the top ranking parameters are the right
atrial activation time Eshift,ra and the minimal elastance for the right ventricle Emin,rv. Despite
the change in rankings, we note that a similar set of input parameters are recorded as influen-
tial input parameters, with just minor changes when new output measurements are added. As
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Table 5. Input parameter ranking for discrete measurements: Each column displays parameters (P) and their influence values (E) calculated using Eq (11),
shown in decreasing order of influence. Results are presented for progressively expanding discrete measurement sets (from Set 1 to Set 3F). Only parameters
with influence values greater than 0.01 are shown.
Measurement Sets
1 2A 2B 2C 2D
P E P E P E P E P E
v Csa 0.80 Rsvb 0.44 Rsvb 0.34 Rsvb 0.26 Eshift,ra 0.24
Rsvb 0.60 Csa 0.43 Csa 0.33 Csa 0.26 Rsvb 0.10𝜏es,lv 0.04 Emax,lv 0.24 Emax,lv 0.18 Emax,lv 0.14 Csa 0.10

V0,lv 0.04 V0,lv 0.03 V0,lv 0.03 Emax,lv 0.06𝜏es,lv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emax,ra 0.04𝜏es,lv 0.02 𝜏es,lv 0.01 𝜏ep,rv 0.02
Emin,rv 0.01
Emax,rv 0.01
V0,lv 0.01

Measurement Sets
3A 3B 3C 3D 3E 3F
P E P E P E P E P E P E
Rsvb 0.22 Rsvb 0.20 Rsvb 0.19 Rsvb 0.17 Rsvb 0.15 Rsvb 0.13
Csa 0.20 Csa 0.18 Csa 0.17 Csa 0.15 Csa 0.13 Csa 0.11
Emax,lv 0.10 Emax,lv 0.09 Emax,lv 0.09 Emax,lv 0.09 Emax,lv 0.08 Eshift,ra 0.10
Eshift,ra 0.05 Eshift,ra 0.06 Eshift,ra 0.06 𝜏es,lv 0.05 Eshift,ra 0.05 Emax,lv 0.07
Emin,lv 0.03 Emin,lv 0.03 Emin,lv 0.03 Eshift,ra 0.05 𝜏es,lv 0.05 𝜏es,lv 0.04
Emax,rv 0.02 Emax,rv 0.02 Cpa 0.03 Emin,lv 0.03 Emin,lv 0.05 Emin,lv 0.03
V0,lv 0.02 V0,lv 0.01 Rpvb 0.03 Emax,rv 0.02 Emax,rv 0.03 Emax,ra 0.03
Csv 0.01 Csv 0.01 Emax,rv 0.02 Emax,la 0.02 𝜏es,rv 0.02 Emax,rv 0.03
Emax,la 0.01 Emax,la 0.01 Eshift,la 0.02 Eshift,la 0.02 Emax,la 0.02 𝜏es,rv 0.03
Eshift,la 0.01 Eshift,la 0.01 Emax,la 0.02 Csv 0.01 Eshift,la 0.02 Emin,ra 0.02𝜏es,lv 0.01 Cpa 0.01 Csv 0.02 V0,lv 0.01 Csv 0.02 Csv 0.02
Rpvb 0.01 Rpvb 0.01 V0,lv 0.01 Cpa 0.01 Emin,rv 0.01 Eshift,la 0.02
Emin,rv 0.01 Emin,rv 0.01 Emin,rv 0.01 Emin,rv 0.01 V0,lv 0.01 Emax,la 0.02𝜏es,lv 0.01 𝜏es,lv 0.01 Emax,ra 0.01 Rpvb 0.01 Cpa 0.01 Emin,rv 0.01

Rpvb 0.01 Rpvb 0.01 Rra 0.01
Cpa 0.01
Rpvb 0.01

https://doi.org/10.1371/journal.pone.0326112.t005

Fig 4. Discrete measures - sloppy analysis: The eigenvalues of the Fisher information matrix for increasing
discrete measurements are displayed on a log10 scale.

https://doi.org/10.1371/journal.pone.0326112.g004
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Fig 5. Continuous measures - sloppy analysis: The eigenvalues of the Fisher information matrix for increasing
continuous measurements are displayed on a log10 scale.

https://doi.org/10.1371/journal.pone.0326112.g005

observed in the discrete measurement set, when more input parameters are regarded as influ-
ential, the concentration of influence decreases and is more evenly spread between the input
parameters with an influence value greater than 0.01.

Fig 5 shows that for any continuous measurement set, the system can be regarded as
sloppy. When increasing the output measurements, the set of sloppiness decreases, with the
eigenvalue spectra decreasing from a range of 10–16 to 10–6. Compared to the discrete sloppy
analysis (Fig 4), input parameters in the stiff direction exhibit larger values than observed
previously.

Mixed measures
When combing both discrete and continuous measurements, the results in Table 7 show a
similar structure to that observed when only continuous measurements are utilised. When
only BPN is the only output, all input parameters record an influence greater than 0.01,
despite the noise, there are still clear influence parameters (Csa,Rsvb and 𝜏es,lv) which could be
regarded as biomarkers. However, when we introduce the noise free BP, the influence values
associated with the biomarkers increase largely. At set 4A, the first continuous measurement
is introduced alongside the previous discrete ones, as a consequence we observe the number
of input parameters with influence greater than 0.01 grows from 9 in set 3D to 17 in set 4A.
In set 7D which contains all discrete and continuous measurements, the exact same ranking
as set 4D in Table 6 displays, although the values of influence vary slightly. This indicates that
continuous measurements dominate, when obtaining influential input parameters for a set
of measurements. This pattern is also present in Fig 6, where once continuous measurements
are introduced to the output list, sloppiness appears and the eigenvalues are greater than 100

with an eigen-spectrum ranging from 10–12 for set 4B decreasing down to 10–6 for set 7D. In
sets 5A to 5D, the maximum flow in each chamber compartment was added to the optimisa-
tion process as a discrete measurement. Despite discrete measurements being more numer-
ous than continuous ones in our analysis, we acknowledge that mathematically, a continuous
measurement is, in principle, infinite-dimensional. While clinically these are often considered
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Table 6. Input parameter rankings for continuous measurements: Input parameters (P) and their corresponding influence values (E) calculated using eqn (11), displayed in decreas-
ing order of influence for each continuous measurement set (from Set 1A to Set 4D).The table shows how influence rankings evolve as additional continuous measurements are
incorporated. Note, only parameters with influence values exceeding 0.01 are included.
Measurement Sets
1A 1B 1C 1D 1E 1F
P E P E P E P E P E P E
Emin,lv 0.57 Emin,lv 0.32 𝜏es,lv 0.38 Eshift,la 0.21 Eshift,la 0.19 Eshift,la 0.11
Rsvb 0.26 Eshift,la 0.16 Emin,lv 0.14 𝜏ep,lv 0.18 𝜏ep,lv 0.15 Eshift,ra 0.1
Csa 0.23 Rsvb 0.16 Rsvb 0.1 Emin,lv 0.07 Emin,lv 0.06 𝜏ep,lv 0.08𝜏es,lv 0.16 Cpa 0.14 Csa 0.06 𝜏es,lv 0.06 𝜏es,lv 0.05 Emin,lv 0.04
Cpv 0.15 Csv 0.12 Emax,lv 0.06 Rsvb 0.03 𝜏es,rv 0.05 𝜏es,rv 0.04
Eshift,la 0.13 Csa 0.11 Eshift,la 0.05 Cpa 0.03 Rsvb 0.03 𝜏es,lv 0.03
Emax,lv 0.13 Rpvb 0.11 Csv 0.04 Emin,la 0.03 Cpa 0.03 𝜏ep,rv 0.03
Csv 0.12 𝜏es,rv 0.1 Cpa 0.04 Csv 0.02 Emin,la 0.02 Rsvb 0.02
Eshift,ra 0.08 Cpv 0.1 Cpv 0.04 Emax,la 0.02 Csv 0.02 Cpa 0.02
Emax,la 0.08 Emax,lv 0.09 Rpvb 0.03 Rpvb 0.02 Emax,la 0.02 Csv 0.02
Emin,rv 0.08 𝜏es,lv 0.09 Eshift,ra 0.03 𝜏es,rv 0.02 Rpvb 0.02 Rpvb 0.01
Emax,rv 0.07 Eshift,ra 0.07 𝜏es,rv 0.03 Csa 0.01 Csa 0.02 Emin,la 0.01
Cpa 0.07 Emin,rv 0.07 Emin,rv 0.03 Emax,lv 0.01 Emax,lv 0.02 Emin,rv 0.01
Rpvb 0.04 Emax,la 0.06 𝜏ep,lv 0.02 Cpv 0.01 Cpv 0.01 Emax,la 0.01
Emax,ra 0.03 Emax,rv 0.05 Emax,la 0.02 Eshift,ra 0.01 Emin,rv 0.01 Emax,lv 0.01
Rsv 0.02 𝜏ep,lv 0.04 Emin,rv 0.01 Eshift,ra 0.01 Csa 0.01
Emin,la 0.02 Emin,la 0.03 Cpv 0.01

Emax,ra 0.02
Measurement Sets
2A 2B 2C 2D 3A 3B
P E P E P E P E P E P E𝜏ep,lv 0.18 𝜏ep,lv 0.12 Eshift,la 0.11 Eshift,ra 0.16 𝜏ep,lv 0.12 Emin,lv 0.1
Eshift,la 0.06 Eshift,ra 0.1 𝜏ep,lv 0.1 Eshift,la 0.06 Emin,lv 0.09 𝜏ep,lv 0.08
Emin,lv 0.04 Eshift,la 0.06 Emin,lv 0.08 Emin,lv 0.05 Eshift,ra 0.08 Rsvb 0.08
Eshift,ra 0.04 Emin,lv 0.05 Eshift,ra 0.06 𝜏ep,lv 0.04 Eshift,la 0.07 Eshift,ra 0.07𝜏es,lv 0.03 𝜏es,rv 0.03 Emin,la 0.05 Emin,rv 0.03 Emin,la 0.04 Eshift,la 0.07
Emax,lv 0.02 𝜏es,lv 0.03 Emax,lv 0.03 Emin,la 0.03 𝜏es,lv 0.03 𝜏es,lv 0.07𝜏es,rv 0.02 𝜏ep,rv 0.03 𝜏es,lv 0.02 𝜏ep,rv 0.03 Emax,lv 0.03 Emin,la 0.04
Rsvb 0.02 Emax,lv 0.02 Csv 0.02 Csv 0.02 Csv 0.02 Emax,lv 0.03
Csv 0.02 Csv 0.02 𝜏es,rv 0.02 Emin,ra 0.02 Emin,rv 0.02 Csv 0.03
Cpa 0.01 Rsvb 0.02 Rsvb 0.02 𝜏es,rv 0.02 Rsvb 0.02 Emin,rv 0.03
Csa 0.01 Emax,rv 0.02 Emax,la 0.02 Emax,rv 0.02 Emax,rv 0.02 Csa 0.03
Emin,la 0.01 Cpa 0.01 Emax,rv 0.02 Emax,lv 0.02 Cpv 0.02 Cpv 0.03
Cpv 0.01 Emin,rv 0.01 Cpa 0.02 Rsvb 0.02 Csa 0.02 Emax,rv 0.02
Emin,rv 0.01 Csa 0.01 Csa 0.02 Emax,ra 0.02 𝜏es,rv 0.02 Emax,la 0.02

Cpv 0.01 Cpv 0.02 Cpa 0.01 Cpa 0.02 Cpa 0.02
Emin,la 0.01 Emin,rv 0.02 𝜏es,lv 0.01 Emax,la 0.01 𝜏es,rv 0.02𝜏ep,rv 0.01 Cpv 0.01 𝜏ep,rv 0.01 𝜏ep,rv 0.01

Rpvb 0.01 Emax,la 0.01 Emin,ra 0.01 Emin,ra 0.01
Csa 0.01 Emax,ra 0.01 Emax,ra 0.01

Measurement Sets
4A 4B 4C 4D
P E P E P E P E
Emin,lv 0.09 Emin,lv 0.09 Eshift,ra 0.18 Eshift,ra 0.16
Eshift,ra 0.08 Eshift,ra 0.09 Emin,rv 0.05 Emin,lv 0.08
Rsvb 0.07 Rsvb 0.07 Emin,lv 0.05 Emin,rv 0.05𝜏ep,lv 0.06 𝜏ep,lv 0.06 Rsvb 0.04 Rsvb 0.04
Eshift,la 0.06 Eshift,la 0.05 Csv 0.03 Eshift,la 0.04
Emin,rv 0.04 Emin,rv 0.04 Eshift,la 0.03 Csv 0.03𝜏es,lv 0.03 Csv 0.04 Emin,ra 0.03 𝜏ep,lv 0.03
Emin,la 0.03 Emin,la 0.03 𝜏ep,rv 0.03 Emin,la 0.03
Csv 0.03 𝜏es,lv 0.03 𝜏ep,lv 0.02 Emin,ra 0.03
Emax,lv 0.03 Emax,lv 0.03 Emax,rv 0.02 Emax,rv 0.03𝜏ep,rv 0.02 𝜏es,rv 0.03 𝜏es,rv 0.02 Emax,lv 0.02𝜏es,rv 0.02 𝜏ep,rv 0.03 Emax,ra 0.02 𝜏ep,rv 0.02
Emax,rv 0.02 Emax,rv 0.02 Emin,la 0.02 𝜏es,rv 0.02
Csa 0.02 Cpv 0.02 Emax,lv 0.01 Cpv 0.02
Cpv 0.01 Csa 0.01 Cpv 0.01 Emax,ra 0.02
Cpa 0.01 Cpa 0.01 Cpa 0.01 𝜏es,lv 0.02
Emin,ra 0.01 Rpvb 0.01 𝜏es,lv 0.01 Csa 0.02
Emax,la 0.01 Emin,ra 0.01 Rpvb 0.01 Cpa 0.02
Emax,ra 0.01 Emax,ra 0.01 Csa 0.01 Rpvb 0.01

Emax,la 0.01 Emax,la 0.01

https://doi.org/10.1371/journal.pone.0326112.t006
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Fig 6. Mixed measures - sloppy analysis: The eigenvalues of the Fisher information matrix for every other
increasing mixed measurements are displayed on a log10 scale. The delineation line between 3D and 4B denotes the
stage at which continuous measurements are added to the system.

https://doi.org/10.1371/journal.pone.0326112.g006

as independent objects which contain different information, we recognise that continuous
functions typically require multi-dimensional representations (unless constant). The addition
of these discrete values had no influence on the ranking or sensitivity of the most influential
parameters. It is important to note, however, that the maximum value of flow is contained
in the continuous measurement, so in effect no new information is provided to the solver;
rather, a weighting on the maxima of the flow is applied.

Discussion
Our study aims to assess the impact of experimental design on the input parameter influ-
ence and the system sloppiness. Overall, the results largely agree with previous work: contin-
uous measurements lead to a larger selected subset of input parameters as prime candidates
for personalisation in a cardiovascular DT [45,55,58]. When only discrete measurements are
used, there is a smaller and more concentrated subset of identifiable input parameters. Per-
haps surprising is the quantitative extent of this disparity. Only when the largest discrete mea-
surement set, 3F, is examined, we obtain the same number of input parameters with a value
greater than 0.01, compared to the first continuous measurement set 1A. It is important to
note that these findings are specifically applicable to the LPM digital twin with Julia imple-
mentation in this work. In accordance with established verification and validation (V&V)
frameworks, such as ASME V&V40 [85], we acknowledge that computational models inher-
ently contain model uncertainty—uncertainty associated with the structure, assumptions, and
limitations of the computational model itself. Without comprehensive code verification and
validation procedures, parameter sensitivity results may be influenced by coding errors or
flawed hypotheses rather than true physiological relationships. This limitation underscores
the necessity of implementing rigorous V&V protocols in future work to distinguish between
genuine parameter insensitivity and artefacts introduced by model implementation errors.

We also observe that as the size of the output set increases, the influence between input
parameters appears to become more evenly distributed. For example, for the discrete mea-
surements results shown in Table 5, the systemic vascular bed resistance Rsvb and arterial com-
pliance Csa rank as the most influential parameters for all measurement sets except 2D. In
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Table 7. Input parameter ranking for mixed measurements: Parameters (P) and their influence values (E) calculated using Eq (11), presented for increasingly complex experimental
designs that combine both discrete and continuous measurements. The progression from Sets 1-7D demonstrates how parameter influence changes when different measurement types are
integrated. Only parameters with influence values greater than 0.01 are displayed.
Measurement Sets
1 2 3A 3B 3C 3D 4A 4B 4C 4D 4E 4F 5A
P E P E P E P E P E P E P E P E P E P E P E P E P E
Csa 0.22 Csa 0.80 Csa 0.44 Rsvb 0.34 Rsvb 0.26 Eshift,ra 0.24 Emin,lv 0.44 Emin,lv 0.27 𝜏es,lv 0.38 𝜏ep,lv 0.25 𝜏ep,lv 0.20 𝜏ep,lv 0.11 𝜏ep,lv 0.11
Rsvb 0.21 Rsvb 0.60 Rsvb 0.43 Csa 0.33 Csa 0.26 Rsvb 0.10 Rsvb 0.29 Cpa 0.16 Emin,lv 0.11 Eshift,la 0.16 Eshift,la 0.14 Eshift,la 0.09 Eshift,la 0.09𝜏es,lv 0.17 𝜏es,lv 0.04 Emax,lv 0.24 Emax,lv 0.18 Emax,lv 0.14 Csa 0.10 Csa 0.23 Rsvb 0.16 Rsvb 0.09 Emin,lv 0.06 𝜏es,rv 0.05 Eshift,ra 0.09 Eshift,ra 0.09

A
llinputparam

etersregisterE>0.01

V0,lv 0.04 V0,lv 0.03 V0,lv 0.03 Emax,lv 0.06 Csv 0.22 Eshift,la 0.16 Csv 0.06 𝜏es,lv 0.05 Emin,lv 0.05 𝜏es,rv 0.05 𝜏es,rv 0.05𝜏es,lv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emax,ra 0.04 𝜏es,lv 0.17 Csv 0.14 Emax,lv 0.06 Cpa 0.03 𝜏es,lv 0.04 Emin,lv 0.04 Emin,lv 0.04𝜏es,lv 0.02 𝜏es,lv 0.02 𝜏ep,rv 0.02 Eshift,ra 0.13 𝜏es,rv 0.12 Csa 0.05 Rsvb 0.02 Cpa 0.03 𝜏ep,rv 0.03 𝜏ep,rv 0.03
Emin,rv 0.02 Emax,lv 0.13 Rpvb 0.11 Eshift,la 0.05 Csv 0.02 Rsvb 0.02 𝜏es,lv 0.03 𝜏es,lv 0.03
Emax,rv 0.01 Emin,rv 0.12 Csa 0.10 Cpa 0.04 Emin,la 0.02 Csv 0.02 Cpa 0.02 Cpa 0.02
V0,lv 0.01 Cpv 0.11 Eshift,ra 0.09 Eshift,ra 0.03 𝜏es,rv 0.02 Emin,la 0.02 Rsvb 0.02 Rsvb 0.02

Eshift,la 0.10 Emax,lv 0.08 Emin,rv 0.03 Rpvb 0.02 Rpvb 0.02 Csv 0.02 Csv 0.02
Emax,rv 0.08 Emin,rv 0.08 Cpv 0.03 Emax,la 0.02 Emax,la 0.01 Emin,rv 0.01 Emin,rv 0.01
Emax,la 0.06 Cpv 0.08 Rpvb 0.03 Emax,lv 0.01 Emax,lv 0.01 Rpvb 0.01 Rpvb 0.01
Emax,ra 0.04 𝜏es,lv 0.07 𝜏es,rv 0.03 Eshift,ra 0.01 Emin,rv 0.01 Emin,la 0.01 Emin,la 0.01
Rsv 0.04 Emax,rv 0.05 Emax,rv 0.02 Emin,rv 0.01 Eshift,ra 0.01 Emax,lv 0.01 Emax,lv 0.01
Cpa 0.03 Emax,la 0.04 Emax,la 0.02 Csa 0.01 Csa 0.01 Emax,la 0.01 Emax,la 0.01
Rpvb 0.03 𝜏ep,lv 0.04 𝜏ep,lv 0.01 Cpv 0.01 Cpv 0.01
Emin,la 0.01 Emax,ra 0.03 Emax,ra 0.01

Rsv 0.03 Rsv 0.01
Emin,la 0.03

Measurement Sets
5B 5C 5D 5E 5F 5G 5H 6A 6B 7A 7B 7C 7D
P E P E P E P E P E P E P E P E P E P E P E P E P E𝜏ep,lv 0.11 𝜏ep,lv 0.11 𝜏ep,lv 0.11 𝜏ep,lv 0.17 𝜏ep,lv 0.11 Eshift,la 0.11 Eshift,ra 0.16 𝜏ep,lv 0.12 Emin,lv 0.10 Emin,lv 0.09 Emin,lv 0.09 Eshift,ra 0.18 Eshift,ra 0.16
Eshift,la 0.09 Eshift,la 0.09 Eshift,la 0.09 Eshift,la 0.06 Eshift,ra 0.10 𝜏ep,lv 0.09 Eshift,la 0.06 Emin,lv 0.09 𝜏ep,lv 0.08 Eshift,ra 0.09 Eshift,ra 0.09 Emin,rv 0.05 Emin,lv 0.08
Eshift,ra 0.09 Eshift,ra 0.09 Eshift,ra 0.09 Emin,lv 0.05 Eshift,la 0.06 Emin,lv 0.07 Emin,lv 0.05 Eshift,ra 0.08 Rsvb 0.08 Rsvb 0.07 Rsvb 0.07 Emin,lv 0.05 Emin,rv 0.05𝜏es,rv 0.05 𝜏es,rv 0.05 𝜏es,rv 0.05 Eshift,ra 0.04 Emin,lv 0.05 Eshift,ra 0.06 𝜏ep,lv 0.04 Eshift,la 0.07 Eshift,ra 0.07 𝜏ep,lv 0.06 𝜏ep,lv 0.05 Rsvb 0.04 Rsvb 0.04
Emin,lv 0.04 Emin,lv 0.04 Emin,lv 0.04 𝜏es,lv 0.03 𝜏es,rv 0.03 Emin,la 0.05 Emin,rv 0.03 Emin,la 0.04 Eshift,la 0.06 Eshift,la 0.06 Eshift,la 0.05 Csv 0.03 Eshift,la 0.04𝜏ep,rv 0.03 𝜏ep,rv 0.03 𝜏ep,rv 0.03 Emax,lv 0.02 𝜏ep,rv 0.03 Emax,lv 0.03 Emin,la 0.03 𝜏es,lv 0.03 𝜏es,lv 0.04 Emin,rv 0.04 Emin,rv 0.04 Emin,ra 0.03 Csv 0.03𝜏es,lv 0.03 𝜏es,lv 0.03 𝜏es,lv 0.03 𝜏es,rv 0.02 𝜏es,lv 0.03 𝜏es,lv 0.03 𝜏ep,rv 0.03 Emax,lv 0.03 Emin,la 0.03 𝜏es,lv 0.03 Csv 0.03 Eshift,la 0.03 𝜏ep,lv 0.03
Cpa 0.02 Cpa 0.02 Cpa 0.02 Rsvb 0.02 Emax,lv 0.02 Csv 0.02 Csv 0.03 Csv 0.02 Emax,lv 0.03 Emin,la 0.03 Emin,la 0.03 𝜏ep,rv 0.02 Emin,la 0.03
Rsvb 0.02 Rsvb 0.02 Rsvb 0.02 Csv 0.02 Rsvb 0.02 𝜏es,rv 0.02 Emin,ra 0.02 Emin,rv 0.02 Csv 0.03 Csv 0.03 𝜏es,lv 0.03 𝜏es,lv 0.02 Emin,ra 0.02
Csv 0.02 Csv 0.02 Csv 0.02 Cpa 0.01 Csv 0.02 Rsvb 0.02 𝜏es,rv 0.02 Rsvb 0.02 Emin,rv 0.02 Emax,lv 0.03 Emax,lv 0.03 Emax,rv 0.02 Emax,rv 0.02
Emin,rv 0.01 Emin,rv 0.01 Emin,rv 0.01 Csa 0.01 Emax,rv 0.02 Emax,la 0.02 Emax,rv 0.02 Emax,rv 0.02 Csa 0.02 𝜏ep,rv 0.02 𝜏es,rv 0.03 𝜏es,rv 0.02 Emax,lv 0.02
Rpvb 0.01 Rpvb 0.01 Rpvb 0.01 Emin,la 0.01 Cpa 0.02 Emax,rv 0.02 Emax,lv 0.02 𝜏es,rv 0.02 Cpv 0.02 𝜏es,rv 0.02 𝜏ep,rv 0.02 Emax,ra 0.02 𝜏ep,rv 0.02
Emin,la 0.01 Emin,la 0.01 Emin,la 0.01 Cpv 0.01 Emin,rv 0.02 Cpa 0.02 Rsvb 0.02 Cpv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emin,la 0.02 𝜏es,rv 0.02
Emax,lv 0.01 Emax,lv 0.01 Emax,lv 0.01 Emin,rv 0.01 Csa 0.01 Csa 0.02 Emax,ra 0.02 Csa 0.02 Emax,la 0.02 Csa 0.02 Cpv 0.02 Emax,lv 0.02 Cpv 0.02
Emax,la 0.01 Emax,la 0.01 Emax,la 0.01 Cpv 0.01 Cpv 0.02 𝜏es,lv 0.02 Emax,la 0.01 𝜏es,rv 0.01 Cpv 0.02 Csa 0.02 Cpv 0.01 Emax,ra 0.02

Emin,la 0.01 Emin,rv 0.01 Cpa 0.02 Cpa 0.01 Cpa 0.01 Cpa 0.02 Cpa 0.02 Cpa 0.01 𝜏es,lv 0.02𝜏ep,rv 0.01 Cpv 0.01 𝜏ep,rv 0.01 Emin,ra 0.01 Emin,ra 0.02 Rpvb 0.02 𝜏es,lv 0.01 Csa 0.02
Rpvb 0.01 Emax,la 0.01 Emin,ra 0.01 𝜏ep,rv 0.01 Emax,ra 0.01 Emin,ra 0.02 Rpvb 0.01 Cpa 0.02

Csa 0.01 Emax,ra 0.01 Emax,ra 0.01 Emax,ra 0.01 Emax,ra 0.01 Csa 0.01 Rpvb 0.01
Emax,ra 0.01 Emax,la 0.01

https://doi.org/10.1371/journal.pone.0326112.t007

PLOS
One

https://doi.org/10.1371/journal.pone.0326112
June

24,2025
21/29

https://doi.org/10.1371/journal.pone.0326112.t007
https://doi.org/10.1371/journal.pone.0326112


ID: pone.0326112 — 2025/6/19 — page 22 — #22

PLOS One Sloppy experimental designs in cardiovascular models

set 1, Csa and Rsvb have influence values of 0.8 and 0.6 respectively. However, in set 3F, when
the dimensionality of output space increases to 11, these two parameters’ influence values
decrease to 0.11 and 0.13.

The first sloppy analysis of this cardiovascular model indicates that discrete measurements
do not introduce sloppiness into the system, whereas for continuous measurements, the sys-
tem begins to exhibit sloppy behaviour. Through the perspective of creating DTs, the stiff
input parameters are clearly identified using discrete measurements which would lead to eas-
ier identification of a personalised global minimum parameter set. When using the combina-
tion of both the continuous and discrete measurement sets, as they increase in size, the num-
ber of stiff input parameters which can be considered as prime candidates for personalisation
increases. Sloppiness provides a view into the structure of the input parameter space and an
insight for why more “influential” input parameters appear when the dimensionality of the
output grows. As more measurements are added, there is a noticeable change in the structure
of the response surface, providing more guidance towards the personalisable global mini-
mum. It should be noted that as more and more continuous signals are added, more outputs
of the model are constrained. Therefore the increasing number of equally significant param-
eters is unsurprising. Whilst potential cross-correlation amongst measurements might seem
a plausible explanation for this phenomenon, our observations suggest otherwise; parame-
ter significance changes align with the physiological subsystems being measured rather than
reflecting mere statistical redundancy, indicating genuine additional model constraint. For
specific use cases, this suggests that, where multiple data are available, a weighting of the
most important clinical features may be required in the optimisation function to identify the
required biomarkers.

When creating a virtual representation of a patient, it is still an open question whether the
DT should be personalised to a specific condition or encapsulate the full physiological enve-
lope of a patient [2,10,23]. Our experiments and analysis provides an insight to this question:
if one wishes to capture a full physiological envelope through the DT, a number of continuous
measurements are essential. This is due to the larger number of influential input parameters,
along with the higher values of stiff eigenvalues, when compared to the discrete measurement
setting. This approach brings practical problems of course, because of the invasive nature
associated with obtaining some continuous measurements (for example, ventricular pressure).
A patient would have to be subject to a series of invasive tests with associated risks, in order
to generate the data to for a personalised DT. Alongside this, continuous measurements have
shown a higher set of sloppiness, indicating that a computationally expensive optimisation
routine may have to be utilised to generate the virtual patient representation. Conversely, if
the purpose of a DT is to target specific conditions, a set of non-invasive discrete measure-
ments poses as an alternative. Although there is a smaller number of identifiable input param-
eters in this case, the influence is concentrated strongly around the biomarkers relevant to the
discrete metrics. In addition, because the system does not exhibit sloppy behaviour, the per-
sonalisation process using discrete measurements may be more efficient than its continuous
counterparts. Additionally, continuous measurements taken clinically are also susceptible to
noise from several sources, including equipment accuracy and differences in method between
operators. In the case of time series data, noise can be present at varying sets at each time
step, and therefore it is expected that noise in continuous data will have an increased effect on
model sloppiness and parameter identifiability.

One problem with sloppy analysis is the subjectivity in diagnosing whether sloppiness is
present within a system. In this work, we have used the common definition of evenly spaced
eigenvalues on a logarithmic scale, distributed over a minimum range of 6 orders of magni-
tude [61,63]. The absence of sloppiness is evident in the discrete measurements setting (see
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Fig 4). In the case of continuous measurements, as the measurement set increases, the dis-
tribution of eigenvalues (Fig 5), whilst still evenly spaced, reduces from a spread of 1016 to
just 106 (i.e., more input parameters align with the stiff direction than before). But does this
apparent reduction in sloppiness align with intuition? Given the increase of parameters in the
stiff direction, one would expect more accurate optimisation of the input parameters when
compared to set 1. However, this remains an open question and requires further study to
investigate. This discrepancy highlights a fundamental challenge in sloppy analysis: the quan-
titative metrics we employ may not always capture the qualitative behaviour that practitioners
intuitively expect from the system.

The study of sloppiness is common practice in most other areas of systems biology, how-
ever, this is not the case for cardiovascular models. The concept of sloppiness provides an
important insight for examining the personalisability of cardiovascular models. By assessing
the stiff and sloppy directions generated from the input parameters, sloppy analysis provides
an alternative approach to identify optimal subsets for personalisation, compared to other
methods such as profile likelihood and combining sensitivity and orthogonality [58,79,86].
This is an interesting area which should be explored in future research. When attempting to
personalise a DT, there are several stages and sloppy analysis belongs to the vital off-line stage
in which prime candidates for personalisation are identified. This off-line stage enables us to
identify biomarkers for which can be personalised to produce the virtual representation of
a patient. The off-line stage is vital because once patient data are introduced, any additional
issues occurring during personalisation can then be attributed to issues within the clinical
data. If we examine the parameters in Figs 4–6 we observe that the rankings obtained by the
analysing their influence (Tables 5–7) are the same rankings obtained through the sloppy
analysis. So in the discrete setting the systemic vascular bed resistance Rsvb and the arterial
compliance Csa exhibit the largest eigenvalues making them the stiffest parameters in that
setting. Thus these parameters are prime candidates for personalisation.

For the personalisation of cardiovascular DTs, the process in which this happens must
operate on a multi-dimensional input parameter space in which some points give accurate
representation of a patient’s physiological and pathophysiological state. Currently, much anal-
ysis on the input parameter space and the identification of the optimal parameter subset for
personalisation are conducted on a local basis [25,87,88]. For example, it is still the norm
to form the sensitivity matrices through local methods when analysing system sloppiness
[35,36]. If sloppy analysis is to be utilised more in the identification of biomarkers, local anal-
ysis should not be adopted for larger, more complex circulatory models. Personalisation is a
global process, therefore it is vital to understand and quantify the global behaviour and the
structure present within the input parameter space. This is why we have conducted our sloppi-
ness analysis using the global sensitivity analysis outcomes in this work. Our workflow could
be enhanced by incorporating alternative physiologically-informed priors. When certain
parameter combinations produce unrealistic outputs (such as cardiac output or pressures out-
side clinically accepted ranges), constraints based on population data could be implemented.
By leveraging known physiological distributions of outputs from clinical cohorts, we could
work backwards to infer suitable distributions of input parameters that would generate these
observed output patterns. This Bayesian approach would allow sampling from a more realis-
tic parameter space, potentially improving the efficiency of the personalisation process. Such
physiologically-constrained priors would be particularly valuable when working with contin-
uous measurement sets that induce system sloppiness, as they would help narrow the solu-
tion space towards clinically relevant parameter combinations. This refinement represents a
natural extension of our workflow that maintains the global sensitivity analysis framework
while incorporating domain knowledge about cardiovascular physiology. In this work, we
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have avoided such a task due to the bias which would be introduced into the input space when
trying to identify such physiological regions. This bias is likely to break the orthogonality con-
ditions which are present within the calculation of Sobol indices [89,90]. We will consider and
investigate this in future work.

In order to perform such an extensive study, the associated computational expense is
another important factor to consider. In total, we have tested 48 individual experimental
designs, for each of which a sensitivity analysis has been performed with 75,000 samples to
ensure convergence [75]. As our chosen global sensitivity method is Sobol indices [25,53,79],
this means for each experimental design, 75000 × (36 + 2) = 2.85 × 106 model evaluations are
required. Thus for 48 independent experimental designs, we have solved the lumped param-
eter 4-chamber model 136.8 million times. This study has only been made feasible due to the
superior computational speed exhibited by DifferentialEquations.jl within Julia in solving
the dynamical system for a single model run including 30 cycles took 0.060246(s). Another
approach would be to utilise emulation which is also likely to significantly improve the com-
putational time [46]. However, when emulating such a model, a smooth assumption on the
input space is applied which can make identifying unphysiological or unstable regions chal-
lenging. When personalising DTs, computationally efficient and accurate tools should be
utilised where possible, for the most effective allocation of computational resources for all
stages of DT development. Of further interest in the development of LPMs in clinical use
is the ability to validate the results of the model. Validation must be suitable for the context
of use [91], and therefore also plays a key factor in experimental design, defining the clini-
cal measurements taken and the choice of model output. Experimental design is therefore
constricted not only by model behaviour as analysed here, but by clinical requirements. The
requirement for testing in the context of use is one of the limitations of general cardiovascular
models, as each use case must be included in the validation.

Alongside LPMs, there is also extensive research in higher dimensional (e.g. 1D, 2D and
3D) cardiovascular models which can be utilised as DTs [9,92,93]. The set of physiological
details in these models is usually far superior to what can be established in LPMs. The main
drawback or compromise, is the lack of ability to simulate global haemodynamics because of
the astronomical computational cost. If we were able to create a full cardiovascular circula-
tion representation, which could adapt to pathophysiological states, we would then be able
to observe and predict other circulatory diseases, on top of the one in which the current con-
dition occurs. Physiologically detailed models of a single piece of vessel or a compartment
are of course of great importance, to further biological understanding where invasive clinical
assessments are inappropriate or unethical. One promising area of the cardiovascular digi-
tal twin development is in the creation of multi-scale, multi-modal models, combining both
LPMs and physiologically detailed higher dimensional representations of specific vessels or
valves [46,94]. This approach combines the advantages of both modelling domains and forms
an attractive avenue for future research in cardiovascular personalisation and building DTs.

Conclusion
Our study highlights the importance of the experimental design for the quantification of
input parameter influence and the associated sloppiness, for a lumped parameter person-
alised cardiovascular digital twin. Using a realistic lumped 4-chamber 36-parameter LPM
as a test bench, we investigated 48 independent experimental designs. The most significant
findings, corresponding to the ones identified in Section Rationale and Contributions, are:
(i) Input parameter identifiability is not consistent when subject to varied measurement data
and depends on the chosen experimental design. (ii) Sloppiness is present in LPMs, when the
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chosen experimental design contains continuous measurements. (iii) The personalisation of
a digital twin to encompass a person’s complete physiological envelope necessitates invasive
tests to obtain continuous measurements. Although this approach offers an increased number
of identifiable parameters with potentials to be biomarkers, it comes at the expense of a sloppy
system which in turn increases the difficulty in parameter identification. Conversely, discrete
metrics may provide a simpler personalisation approach, yielding less identifiable but more
targeted biomarkers, due to the absence of sloppiness in the system.
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